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Abstract

The main goal of the thesis is to show the novel use of the Graphics Process-

ing Unit (GPU) computing with Compute Unified Device Architecture (CUDA)

hardware for enhancing the performance of sorting algorithms. The properties

of sorting algorithms make them special in that they can use the parallel pro-

cessing in order to have good time and space complexity. Many authors have

implemented the some sorting algorithms using GPU computing with CUDA.

A comprehensive study of various sorting algorithms and developed some new

algorithms using GPU computing on CUDA hardware is the objective of the

work.

The dataset and sorting benchmark has been considered for testing the var-

ious sorting algorithms. The dataset consists the four types of datasets. The

four cases of the dataset are random data, reverse sorted data, sorted data, and

nearly sorted data. The sorting benchmark contains the six types of test cases

which are uniform, gaussian, zero, bucket, staggered and sorted.

In the beginning, Count sort, Merge Sort, Quick Sort and Bubble Sort have

been tested on standard dataset and sorting benchmark using GPU computing

and compared with the sequential version of same. The outcome shows that more

speedup is gained by parallel sorting algorithms.

Next, the problems of odd-even transposition sorting network (OETSN) has

been solved. Odd-even transposition sorting is designed for networks. In networks

compare-exchange operation is used to compare the elements. We have find that

the time taken for sorting by OETSN is same for all test cases such as uniform,

sorted, zero, gaussian, staggered and bucket. The sequential and parallel time

complexity is O(n2) and O(n) respectively, of OETSN using any kind of test

cases. In our approach, we reduced the time complexity O(n) to O(1) over two

types of test case which are sorted and zero. We have motivated from the bubble

sort technique. If the data is sorted and unique, bubble sort requires only one pass

and terminate the program. In our approach we have also used this technique.
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In this way, we have reduced the number of levels in the network and the time

complexity for sorted and zero test cases. OETSN has been tested using GPU

computing with CUDA hardware on the six types of test cases.

Next, we have solved the problems of library sort algorithm. Library sort is

also called gapped insertion sort. It is a sorting algorithm that uses insertion sort

with gaps. Time taken by insertion sort is O(n2) because each insertion takes

O(n) time; and library sort has insertion time O(logn) with high probability.

Total running time of library sort is O(nlogn) time with high probability. Library

sort has better run time than insertion sort, but the library sort also has some

issues. The first issue is the value of gap which is denoted by ‘ε’, the range of gap

is given, but it is yet to be implemented to check that given range is satisfying

the concept of library sort algorithm. The second issue is re-balancing which

accounts the cost and time of library sort algorithm. The third issue is that, only

a theoretical concept of library sort is given, but the concept is not implemented.

The library sort algorithm is designed and the gap value has evaluated.

The library sort using non-uniform gap distribution algorithm (LNGD) is

also proposed in the thesis. The final results have shown that, execution time is

decreased when the gap value increases.The proposed algorithm is tested using

the four types of test cases. The experimental result of proposed algorithm is

compared to the library sort algorithm with uniform gap distribution (LUGD)

and LNGD proves to provide better results in all the aspects of execution time

like re-balancing and insertion. We have achieved an improvement that ranges

from 8% to 90%. The improvements of 90% has been found in the cases where

the LUGD is performing poorer.

Finally, we have proposed the efficient bucket sort algorithm. The bucket

sort has two issues 1) The first issue is that the bucket sort has the dynamic

nature and the memory for each bucket is allocated at the run time. 2) The

second issue is based on the data distribution over the buckets. The data are

distributed to the designed buckets. If the data is equally distributed to the

buckets, then there is no issue comes to the algorithm. But the problem occurs

xii



in the algorithm if elements belonging to the same bucket are in large number

rather than having element being classified equally into different buckets. We

have solved this problem using the threshold (τ) for the size of buckets. The

threshold is calculated for each bucket and different size of data sets. It will

helpful to decide the nature of data and to reduce the memory consumption.

The application of the proposed algorithms is mainly in the area of Com-

mercial computing, Search for information, Operations research, Event-driven

simulation, Numerical computations, Combinatorial search, Prim’s algorithm,

Dijkstra’s algorithm, Kruskal’s algorithm, Huffman compression, String process-

ing, Searching, Frequency distribution, Selection and Convex hulls. The results

are discussed in accordance to the sorting algorithms implemented. Experimental

results have shown that proposed sorting algorithms can powerfully enhance the

performance in all aspects of sorting. Finally, we concluded and give suggestions

for future research work.

Keywords

Sorting, Searching, GPU Computing, CUDA, Insertion Sort, Selection Sort, Bub-

ble Sort, Merge Sort, Quick Sort, Heap Sort, Shell Sort, Counting Sort, Radix

Sort, Library Sort, Bucket Sort, Stability, Time Complexity, Space Complexity,

Adaptivity, Sorting Benchmark, Standard Dataset, Parallel Sorting.
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Chapter 1

Introduction

1.1 Motivation behind Sorting

Sorting is a fundamental operation in computing. Hardly a month goes by with-

out any research reported on the problem. While it is important to thus under-

stand the basic principles behind classic sorting algorithms, the questions in this

experiment let you think of current problems. Another important aspect which

can be observed from this experiment is to think of large data sets. How classic

computation such as sorting should be designed for those large data sets.

1.2 Introduction of Sorting

Sorting [1] is defined as arranging an unordered collection of data into particular

order. Order can be monotonically increasing or decreasing. Suppose M = (p1,

p2, p3....pn) be a sequence of ‘n’ elements in unsorted manner, sorting transforms

‘M ’ into a monotonically increasing sequence S
′

= (p
′
1, p

′
2, p

′
3....,p

′
n). Sorting has

two categories, internal sorting and external sorting [2]. Sorting algorithm can

be sort the data as comparison-based and non-comparison-based. In comparison-

based sorting algorithm [3], sort the unordered data by comparing the pairs of

1



data repeatedly, and if the data are out of order then exchange them to each

other. This exchanging operation of this sorting is called compare-exchange. Non-

comparison-based [4] sorting algorithms sort the data by using certain well known

properties of the data, such as the binary representation or data distribution.

Sorting algorithms have four types of performance measures which are stability,

adaptivity, time complexity, space complexity [5].

Definition 1 (Stability) A sorting algorithm is stable [6] if it preserves the

order of duplicate keys, or stability means that equivalent elements retain their

relative positions, after sorting.

Definition 2 (Adaptivity) A sorting algorithm is adaptive [7] if it sorts the

sequences that are close to sorted faster than random sequences. A sorting algo-

rithm [8] is denoted adaptive if the time complexity is a function depending on

the size as well as the pre-sortedness of the input sequence.

Definition 3 (Time complexity) Time complexity [9] of an algorithm signifies

the total time required by the program to run to completion. Algorithms have

different cases of complexity [10] which are best case, average case, and worst

case. The time complexity of an algorithm is represented using the asymptotic

notations [11]. Asymptotic notations provide the lower bound and upper bound

of an algorithm.

Definition 4 (Space complexity) Space complexity [12] of any algorithm is

also important, and it is the number of memory cells which an algorithm needs.

Space complexity calculated by both auxiliary space and space used by the input.

1.3 Sorting Algorithms

In this section, the working of some traditional and popular sorting algorithms

have been explained with the help of algorithms and examples.
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1.3.1 Insertion Sort

Insertion sort [11] algorithm works efficiently for a small number of elements. In

insertion sort [13] algorithm we sort the one element at a time. We can use the

Algorithm 1 Insertion Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

for m = 0 to length[A] do

lock = A[m]

Arrange A[m] in sorted order

end for

i = m - 1

while (i > 0 and A[i ] > lock do) do

A[ i + 1] = A[i ]

i = i - 1

A[i + 1] = lock

end while

insertion sort algorithm, when we sort a deck of cards. In this algorithm we pick

an element from the list and place it in the correct location in the list. Process

will be repeated till there is no more unsorted items remained. It is an adaptive

sorting algorithm, it takes O(n) time when data is nearly sorted. Insertion sort

algorithm is stable, and also it is an online sorting. The insertion sort algorithm

can be depicted as follows; for the value m = 2, 3,..., n. Where n = Length [A].

Time Complexity of Insertion Sort

• Best Case: In the above algorithm line 1 to 7 is the outer loop and line 5

to 7 is the inner loop. Insertion sort have best case when the data is already

sorted or nearly sorted, and for the best case the inner loop never executed in the

algorithm. So the comparison will be like that, we need 1-comparison to compare

first element and 2-comparison to compare second element and n-comparison to

compare n-elements.

1 + 2 + 3 + .....+ n (1.3.1)

T (n) = Ω(n) (1.3.2)
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• Average Case: If we compare the average case with worst case, then we find

that, the average case comes to be same as the worst case. Suppose if there are

‘n’ numbers and the numbers chosen randomly and apply an insertion sort. Then

how much time algorithm will take to determine the sub array A[1...m-1] to insert

element A[m]. In average case, we divide the elements in two halves, in one half

elements are in [1... m-1] and these elements are less than A[m], and in another

half the elements are greater. In average case, we also check one half of the sub

array A[1...m-1] and so tm is become m/2. Then we find the resulting average

case execution time to be a quadratic function of the input size ‘n’, which is same

as the worst case execution time. i. e.

T (n) = Θ(n2) (1.3.3)

• Worst Case: Insertion sort worst case occurs if the array is re-versed sorted

that is in decreasing order. In the worst case, inner loop is executed exactly m-1

times for every iteration of the outer loop. Calculation of number of comparison of

an array ‘n’ elements in worst case will be: to insert the first element comparison

is not necessary, and to insert the second element one comparison is needed and

so on, and to insert the last element (n-1) comparisons is required at most

Total : 1 + 2 + 3 + .....+ (n− 1) = O(n2) (1.3.4)

Space Complexity of Insertion Sort

Auxiliary space complexity of insertion sort is O(1), i.e. insertion sort having a

constant space complexity.

1.3.2 Selection Sort

In the selection sort [11] algorithm, smallest item will be selected and swapped

by the item which is the filled in the next position. Selection sort working is

that: we search the smallest element through the entire array, once we find it,
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swap item with the smallest element in the position of the first element of the

array. After that we search for the second smallest element in the remaining

array and exchange it with the second element and so on. Selection sort is not

stable sorting, and it is also not adaptive sorting. Selection sort comes in the

categories of comparison based sort. Selection sort algorithm can be depicted as

follows, in the algorithm length [B ] = n, where ‘n’ is the input data which is used

for sorting in the algorithm.

Algorithm 2 Selection Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

n ← = length[B ]

for m ← 1 to n - 1 do

smallest ← m

for i ← m + 1 to n do

if B [i] < B [smallest] then

smallest ← i

exchange B [m] ↔ B [smallest]

end if

end for

end for

Time Complexity of Selection Sort

• Best Case, Average Case, Worst Case There is difficult to analyzing

the time complexity in selection sort algorithm [10], because there are no loops

depend on the item in the given array n-1 comparison will be taken to selecting

the lowest element. And to select the lowest element, we require scanning all

‘n’ elements and then lowest element swapped to the first position. After that

we again scan the remaining n-1 elements to find the next lowest element, and

also further scan the elements till there are no more items to swap, so the time

complexity of selection sort will be

T (n) = (n− 1) + (n− 2) + ....+ 2 + 1 = n(
n− 1

2
) = Θ(n2) (1.3.5)

Comparisons. In any cases of selection sort (worse case, best case or average

case) the number of comparisons between elements is the same. So in all the
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three cases selection sort have the time complexity:

T (n) = Θ(n2) (1.3.6)

Space Complexity of Selection Sort

Auxiliary space complexity of selection sort is O(1) i.e. selection sort having a

constant space complexity.

1.3.3 Bubble Sort

The basic idea underlying the bubble sort [4] is to pass through the list of elements

sequentially several times. In each pass, we compare each element in the array

and interchanging the two elements if they are not in proper order. Bubble sort is

a stable sorting algorithm. It is an adaptive sorting algorithm, it takes O(n) time

when data type is nearly sorted, it is also a comparison based sorting algorithm.

Bubble sort algorithm can be depicted as follows: In the algorithm length [Array]

= n, where ‘n’ is the input data which is used for sorting in the algorithm.

Algorithm 3 Bubble Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

for i ← 1 to length[array] - 1 do

for m ← to length[array] - i do

if array[m] > array[m + 1] then

exchange array[m] ↔ array[m + 1]

end if

end for

end for

Time Complexity of Bubble Sort

• Best Case: Bubble sort have best case when the data in the array is already

sorted or nearly sorted. In the best case, where the array is already sorted
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algorithm will terminate after the first iteration and no swap will made and the

one iteration will take n-1 comparison, so the

T (n) = Ω(n) (1.3.7)

• Average Case: Bubble sort average case is Θ(n2), which is same as worst case

of bubble sort.

• Worst Case: In the worst case of bubble sort elements compares till n-1

iterations with the following comparisons.

T (n) = (n− 1) + (n− 2) + ....+ 2 + 1 = n(
n− 1

2
) = O(n2) (1.3.8)

Space Complexity of Bubble Sort

Auxiliary space complexity of bubble sort is O(1), i.e. bubble sort having a

constant space complexity.

1.3.4 Heap Sort

Heap sort algorithm is sorted the items based on the data structure heaps. Heaps

are two types: 1. A max heap 2. A min heap. Heap sort should satisfy the heap

property. Heap property: [15]

• All nodes are either greater than or equal to or less than or equal to of each of

its children, according to a comparison the node will define for the heap.

• Heaps with a mathematical (≥) comparison predicate are called max-heaps.

Figure 1.1 shows the max-heap.

• Heaps with a mathematical (≤) comparison predicate are called min-heaps.

Figure 1.2 shows the min-heap.
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Figure 1.2: Min-heap

Figure 1.1: Max-heap

Heap sort works as: [9]

• Construct a heap,

• Add each item to its (maintaining the heap property),

• After adding the all items, we remove them one by one (restoring the heap

property as each one is removed).

Heap sort is not a stable sorting algorithm. Heap sort is not an adaptive sorting

algorithm. A heap sort algorithm can be depicted as follows:
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Algorithm 4 Heap Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

BuildHeap(B)

for i ← length(B) down to 2 do

exchange B [1] ↔ B [i ]

heap-size[B ] ← heap-size[B ] - 1

Heapify(B, 1)

end for

Algorithm 5 Heapify (B, i)
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

l← left[i ]

r ← right[i ]

if l ≤ heap-size[B ] and B [l ] > B [i ] then

largest ← l

else

largest ← i

end if

if r ≤ heapsize[B ] and B [i ] > B [largest] then

largest ← r

end if

if largest 6= i then

exchange B [i ] ↔ B [largest]

Heapify(B, largest)

end if

Time Complexity of Heap Sort

• Best Case, Average Case, Worst Case

1. Θ(n) trips through the loop.

2. T (n)Maxheapify = Θ(log n).

3. T (n)Heapsort = Θ(n) × Θ(log n) = Θ(n log n)

Space Complexity of Heap Sort

The auxiliary space complexity of heap sort is O(1). i.e. it is having constant

space complexity.
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1.3.5 Shell Sort

Shell sort [3] is the diminishing increment sort. Shell sort is a generalization of

bubble sort or insertion sort. The shell sort makes many passes through the data

in to array, and each time sort the numbers that are equally distanced. The shell

sort algorithm is similar to bubble sort in the sense that, it also moves elements by

the exchanges. It begins by comparing elements that are at a distance‘d ’. In each

pass of shell sort the value of ‘d ’ is reflected to half i.e. in each pass, we compare

the each element that is located ‘d ’ position away from it, after comparing the

element exchanges are made if required. In the next iteration the value of ‘d ’ will

get change, the algorithm terminates when d=1.

The example of shell sort is explained in Figure 1.3 to Figure 1.5.

12, 9, -10, 22, 2, 35, 40

d = n/2 = 7/2 = 3

Figure 1.3: Example of shell sort

Pass 1 is completed in Figure 1.3. Now the value of d = 2
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Figure 1.4: Example of shell sort

Pass 2 is completed in Figure 1.4. Now the value of d = 1.

Figure 1.5: Example of shell sort

Pass 3 is completed, and the algorithm got terminated as d = 1. Finally,

we got the sorted list -10, 2, 9, 12, 22, 35, and 40 Shell sort is no preserved the

stability. It is an adaptive algorithm: it takes O(nlogn) time when data is nearly

sorted. The shell sort algorithm can be depicted as follows:

Algorithm 6 Shell Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

for each(gap in gaps) do

for m = gap; m < n; m + = 1 do

temp = a[m]

end for

end for

for q= m; q > = gap and a[q - gap] > temp; q - = gap do

a[q] = a[q - gap]

a[q] = temp

end for
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Time Complexity of Shell Sort

• Best Case: Shell sort have best case, when the data is already sorted, because

the number of passes will be less in this case. Passes = n, for 1 sorts with item 1

apart (last step) 3 × n/3, for 3 sorts with items 3 apart (next-to-last step. 7 ×
n/7, for 7 sorts with items 7 apart. 15 × n/15, for 15 sorts with items 15 apart

+.....Each term is ‘n’. The question arise how many terms are there. The value

of ‘k ’ such that 2k - l < n. So k < log (n + 1), meaning that the sorting time in

the best case is less than

n× log(n+ 1) = Ω(nlogn) (1.3.9)

• Average Case: The average case time complexity of shell sort is depends on

the gap sequences between the elements.

•Worst Case: The worst case is similar as average, but overall computation is

differ. Passes ≤ n2, for 1 sort with item 1 apart (last step). 3 × (n/3)2, for 3

sorts with items 3 apart (next-to-last step). 7 × (n/7)2, for 7 sorts with items

7 apart. 15 × (n/15)2, for 15 sorts with items 15 apart +.... So the number of

passes is bounded by

n2 ×
(

1 +
1

3
+

1

5
+

1

7
+ ....

)
< n2 ×

(
1 +

1

2
+

1

4
+

1

8
+ ....

)
= n2 × 2 = O(n2)

(1.3.10)

Space Complexity of Shell Sort

The auxiliary space complexity of shell sort is O(1). i.e. it is having constant

space complexity.

1.3.6 Counting Sort

Counting sort [16] is a linear time sorting, counting sort is an algorithm that

sorts the items according to keys. Counting sort is used to sort those items,

when they belong to a fixed and finite set. Example of items belongs to a fixed
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interval are m1 to m2, and example of items belongs to finite set will be no limit.

The algorithm makes two passes one for ‘A’ and one for ‘B ’. If the size of items

belongs to fixed interval range ‘m’ will be less than size of input ‘n’, then time

complexity will be O(n). Counting Sort preserves the stability. The efficiency

of counting sort is better for the number of objects, when its range is less than

input data. The algorithm of counting sort is as follows:

Algorithm 7 Counting Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

for i = 1 to m do

X [i ] = 0

end for

for j = 1 to length[A] do

X [A[j ]] = X[A[j ]] + 1

X [i ] here elements equal to i contains by X [i ]

end for

for i = 2 to m do

X [i ] = X [i ] + X [i-1]

X [i ] here number of elements less than or equal to i contains by X [i ]

B [C [A[j ]]] = A[j ]

X [A[j ]] = X[A[j ]] - 1

end for

Time Complexity of Counting Sort

• Best Case: If the size of items belongs to fixed interval range ‘m’ will be less

than size of input ‘n’, then time complexity will be T (n) = Ω(n).

• Average Case:

Θ(n) + Θ(k) = Θ(n+ k) (1.3.11)

•Worst Case:

O(n) +O(k) = O(n+ k) (1.3.12)

Space Complexity of Counting Sort

The auxiliary space complexity of counting sort is O(n+k), because the count-

ing sort needs O(n) auxiliary space for the array and ‘k ’ is the number of key
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elements.

1.3.7 Quick Sort

Quick sort [11] use the divide and conquer technique[38]. Quick sort first divides

the given array of data into two smaller sub-arrays: the low elements and the

high elements, sub-arrays are recursively sorted. The steps of quick sort are[39]:

1. Quick sort first chooses the pivot from the list.

2. Reorder the array, and in the array the values which are less than the pivot

come before the pivot and the values which are greater than the pivot come after

the pivot and the equal values can go either way.

3. The above two steps are recursively applied to the sub-array of data with

smaller data and separately to the sub-array of data with greater values.

Quick sort is not a stable sorting algorithm. Quick sort is not an adaptive

sorting algorithm; it is a comparison based sorting. The quick sort algorithm can

be depicted as follows. Partitioning the array: The main thing in the algorithm

is the partition procedure, which rearranges the sub array A[p....r ].

Algorithm 8 Quick Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

if p < r then

q = Partition(A, p, r)

Quick sort(A, p, q - 1)

Quick sort(A, q + 1, r)

end if

Partition(A, p, r)

x = A[r ]

i = p - 1

for j = p to r - 1 do

if A[j ] ≤ x then

i = i + 1

Exchange A[i ] with A[j ]

Exchange A[i+ 1] with A[r ]

return i + 1

end if

end for
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Time Complexity of Quick Sort[17]

• Best Case: Best case of quick sort occurs when the sub arrays are completely

balanced every time. Each sub array has ≤ n/2 elements. Get the recurrence:

T (n) = 2T
(n

2

)
+ Ω(n) (1.3.13)

Where Ω(n) time is the partitioning cost . By case 2 of master theorem [11] the

equation (1.2.1) has the solution:

T (n) = Ω(nlogn) (1.3.14)

• Average Case: In average case, we produce the good and bad splits by

partition the sub array.

Figure 1.6: Split of n on two consecutive levels

Figure 1.7: Split of n on two consecutive levels

Figure 1.6 shows the division of recursion tree at two consecutive levels. The

partitioning cost shown by root of tree ‘n’, and the size of sub array produced

m -1 and ‘0 ’, which is the worst case of quick sort. And next level have , the
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sub array of size m-1 undergoes best case partitioning into a sub array of size

(m-1)/2-1 and (m-1)/2. So if we combine the bad split and the good split then it

produces three sub array and the size of sub array is 0, (m-1)/2-1, and (m-1)/2

at a total partitioning cost of:

Θ(n) + Θ(n− 1) = Θ(n) (1.3.15)

Figure 1.7 shows a single level partitioning that produces two sub arrays of size

(m-1)/2 at a cost of Θ(n) Both figures result in Θ(nlogn) time, though the

constant for the figure on the left is higher than that of the figure on the right.

So

T (n) = Θ(nlogn) (1.3.16)

• Worst Case: Unbalanced sub-array produces the worst case of quick sort. It

has ‘0’ element in one sub-array and n-1 element in the other sub-array. Then

the recurrence:

T (n) = T (n− 1) + T (0) +O(n) (1.3.17)

T (n) = T (n− 1) +O(n) (1.3.18)

T (n) = O(n2) (1.3.19)

Where O(n) is the partitioning cost, which is same as insertion sort. Quick sort

have worst case, when the input is in sorted manner, but insertion sort runs in

O(n) time in this case. Worst case of quick sort also occurs when the array is in

reverse sorted order and also when all elements are same.

Space Complexity of Quick Sort

Quick sort uses the constant additional space with unstable partitioning before

making any recursive call. Constant amount of information is stored by quick

sort for every nested recursive call. As the best case of quick sort takes at most

O(logn) many nested recursive calls, it uses O(logn) space. However, if we limit

the recursive calls, without Sedgwick’s trick then the worst case of quick sort

could make O(n) nested recursive calls and need O(n) auxiliary space.
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1.3.8 Radix Sort

There are two types of radix sorting [19]:

1. MSD radix sort starts sorting from the beginning of strings (Most Signicant

Digit).

2. LSD radix sort starts sorting from the end of strings (Least Signicant Digit).

Example of radix sort explained in Figure 1.8 to Figure 1.12.

Ex. 0712, 21171, 00120, 43589, 73641, 31975, 60433

i. Padding used to make all numbers 5-digits.

ii. Start from the last most digit.

iii. We can use the buckets.

Figure 1.8: Example of Radix Sort

Now reassemble the list according to the buckets of Figure 1.8.

00120, 21171, 73641, 60433, 07125, 31975, 43589
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Figure 1.9: Example of Radix Sort

Now reassemble the list again according to the buckets of Figure 1.9.

We will get 00120, 07125, 60433, 73641, 51455, 21171, 31975, 43589.

Figure 1.10: Example of Radix Sort

Now reassemble the list again according to the buckets of Figure 1.10, we

will get 00120, 07125, 21171, 60433, 51455, 43589, 73641, 31975.
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Figure 1.11: Example of Radix Sort

Now reassemble the list again according to the buckets of Figure 1.11, we

will get 00120, 60433, 21171, 51455, 31975, 43589, 73641, 07125.

Figure 1.12: Example of Radix Sort

Now see the 5th digit from the right. Rearrange the list again according to

the buckets; we will get 00120, 07125, 21171, 31975, 43589, 51455, 60433, and

73641. This is the final sorted list.

Radix sort preserves the stability. Radix sort [20] is not an adaptive sort. The

radix sort algorithm can be depicted as follows:
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Algorithm 9 Radix Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

RADIX SORT(X, n)

for i = 1 to n do

Any stable sort algorithm is used to sort array X one digit i.

end for

Time Complexity of Radix Sort

• Best Case: Radix sort algorithm requires ‘k ’ to pass over the list of ‘n’

numbers. So the radix sort complexity = Ω(nk), where ‘k ’ is the input number

of elements which is used for sorting in the algorithm, and ‘k ’ is the number

of digits in the longer input number. We don’t know that how ‘k ’ big can be,

sometimes ‘k ’ can be large and it can be small. When the ‘k ’ is small then Ω(nk)

= Ω(n).

• Average Case: The average case time complexity of radix sort is Θ(kn),

which is same as the worst case of radix sort.

• Worst Case: We don’t know whether ‘k ’ is large or ‘n’ is large, so we keep

them both. So radix sort worst case complexity = O(kn).

Space Complexity of Radix Sort

Auxiliary Space Complexity of radix sort is O(k + n), where ‘k ’ is the number

of buckets and ‘n’ is the input elements.
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1.3.9 Bucket Sort

Figure 1.13: Example of Bucket Sort

A Bucket sort [20] is not really a sorting algorithm because it’s not really sorts

anything. It partitions an array of elements into a number of buckets, and then

buckets are individually sorted, either recursively or we use some other algorithm.

Bucket sort preserves the stability. Bucket sort is not an adaptive sorting algo-

rithm. It is non-comparison based sorting algorithm. The bucket sort algorithm

can be depicted as follows: In the algorithm length[B ] = n, where ‘n’ is the input

number of elements which is used for sorting in the algorithm.

Algorithm 10 Bucket Sort Algorithm
INPUT: Unsorted list of n items

OUTPUT: Sorted list of n items

n ← length[B ]

for i = 1 to n do

Insert B [i ] into list A[B [i ]/b], where b is the bucket size.

end for

for i = 0 to n-1 do

Sort list A with Insertion sort

Concatenate the lists A[0], A[1], ....A[n-1] together in order.

end for

21



Time Complexity of Bucket Sort

• Best Case: We have a list of ‘n’ elements. Going through the list and put the

elements in the correct bucket = Ω(n). Merging the buckets = Ω(k), where ‘k ’

is the number of buckets.

Ω(n) + Ω(k) = Ω(n+ k) (1.3.20)

• Average Case:

Θ(n) + Θ(k) = Θ(n+ k) (1.3.21)

• Worst Case: If every element belongs to the same buckets, then what will

happen? In the worst case, this would imply that we would have O(n2) perfor-

mance, because if all the element belongs to the same bucket, then use insertion

sort on ‘n’ elements which is O(n2).

Space Complexity of Radix Sort

The auxiliary space complexity of bucket sort is O(nk), because the bucket sort

needs O(n) auxiliary space for the array and ‘k ’ is the number of buckets.

1.4 Introduction to GPU

GPU stands for Graphics Processing Unit. In the 1999-2000 computer scientist

started using the GPU to extend the range of scientific domain [21]. The term

GPU was familiarize in 1999 by NVIDIA. The world first GPU was a Geforce

256. To do the GPU programming, we require the use of graphics APIs such

as OpenGL and WebGL [22]. In 2002 James Fung developed OpenVIDIA. It is

used for parallel GPU computer vision. The projects of OpenVIDIA implement

computer observation algorithms run on graphics hardware such as OpenGL, Cg

and CUDA-C [23]. In November 2006 NVIDIA launched CUDA (Compute Uni-

fied Device Architecture) [24]. It is an API (Application Programming Interface)
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that allows coding the algorithms for execution on Geforce GPUs using C as a

high level programming language [25]. CUDA can use with other languages also

see with the help of a diagram in Figure 1.14 [26].

Figure 1.14: CUDA support the various languages

The parallel execution of sorting algorithms using graphics processing unit

(GPU) is allowed by general purpose computing, on graphics processing unit

(GPGPU) [32]. Parallel sorting algorithms having highly code are handled by

GPU as a co-processor. The framework of NVIDIAs compute unified device

architecture (CUDA) release that provides free programmability of GPUs [23].

The number of stream processors are used for floating point calculations with

CPUs. Parallelism is limited in a stream processor like ALUs [33]. Stream pro-

cessor acts as an ideal in parallelism of floating point operations. For example,

NVIDIA GTX 260 contains 250 on-board stream processors. The GPU has a

much greater computation throughput compared with a CPU. NVIDIA imple-

mented their GPGPU architecture through extensions to the C programming

language to allow for simple integration with existing applications. Unlike for

code running on the host supplied by full ISO C++ through NVIDIA’s CUDA

[34] compiler, functions executed on the device only supports CUDA C. So we

are going to develop the parallel version of merge and quick sort using GPU in

the framework of NVIDIA’s CUDA C [35].

The parallel computing with CUDA organizes concepts of Grid, Block and

Thread which can be defined as:

• Grid: this is the group of blocks. There is no synchronization between the

blocks.
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• Block: This is the group of threads.

• Thread: This is the execution of the kernel.

Nowadays GPU is a big domain in parallel computing [27]. GPU works in many

spheres of our daily lives. The architecture of GPU is shown in Figure 1.15.

Figure 1.15: GPU Architecture

1.4.1 Scalable Programming Model

The scalable programming model [28] allows the GPU architecture to span a

wide market range by simply scaling the number of multiprocessors and memory

partitions. A scalable programming model is shown in Figure 1.16.
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Figure 1.16: Scalable Programming Model

1.5 Motivation to our approaches

Nowadays GPU is in big demand in parallel computing. Numerous researchers

are working on the GPU. The programmability of the GPU is rising in the world.

The rising GPU has enabled the threshold. The following point makes the user

to work on the GPU rather than the CPU.

• GPUs are faster than the CPU.

• GPUs are commercially successful.

• GPUs have a disruptive innovation path.

• The GPU programming model emerging.

• GPU is massively parallel.

• It has hundreds of cores.

• It has thousands of threads.

• It is cheap.

• It is highly available.
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1.6 Sorting Benchmark and Standard Dataset

In this thesis, sorting benchmark and standard dataset are used to test both the

versions (sequential and parallel) of sorting algorithms. Six types of test cases are

used by sorting benchmark which are Uniform, Sorted, Zero, Bucket, Gaussian,

and Staggered [24][29][30]. The size of input data is varied from 100 to 10000000

and the thread in the multiple of 2 from 1 to 1024.

1. Uniform test case: Input values are picked randomly from 0 to 232.

2. Gaussian test case: This test case consists the distribution of data created

by taking the average of four randomly values picked from the uniform distribu-

tion.

3. Zero test case: A constant value is used as input by this test case.

4. Bucket test case: For p∈n, the input of size n is split into p blocks, such

that the first n/p2 elements in each of them are random numbers in [0, 231/p-1],

the second n/p2 elements in [231/p, 231/p - 1], and so forth.

5. Staggered test case: For p ∈ n, the input of size n is split into p blocks

such that if the block index is i≤ p/2 all its n/p elements are set to a random

number in [(2i -1)231/p, (2i)(231/p - 1)].

6. Sorted test case: Sorted uniformly distributed value has been taken as

input.

Some Sorting algorithms are evaluated on four cases of standard dataset [31].

The dataset contains the 1010228 items. The four cases of dataset are:

1. Random with repeated data (Random data). 2. Reverse sorted with repeated

Data (Reverse sorted data). 3. Sorted with repeated data (Sorted data). 4.

Nearly sorted with repeated data (Nearly sorted data)

1.7 Hardware

In order to run proposed and designed algorithms Window 7 32-bit operating

system Intel core i3 processor 530@ 2.93 GHz machine is used. System build
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with GeForce GTX 460 graphic processor with (7 multiprocessors × (48) CUDA

cores\MP) = 336 CUDA cores. System body consists 1536 threads per multipro-

cessor and 1024 threads per block. CUDA runtime version of the system is 6.0.

The total amount of global memory present in the system is 768 Mbytes and the

total amount of constant memory is 65536 bytes. The total amount of shared

memory per block is 49152 bytes. Total number of registers available per block is

32768 and warp size is 32. Maximum sizes of each dimension of a block are 1024

× 1024 × 64 and maximum size of each dimension of a grid is 65535 × 65535 ×
65535.

1.8 Thesis road map

The main contribution of the thesis is explained via the following chapters:

1. Performance Enhancement of Existing Sorting Algorithms using GPU Com-

puting.

2. Performance enhancement of parallel OETSN using GPU computing.

3. Performance Enhancement of Library Sort Algorithm with Uniform Gap Dis-

tribution.

4. Performance Enhancement of Library Sort Algorithm with Non-Uniform Gap

Distribution.

5. Performance Enhancement of Bucket Sort using Hybrid Algorithm.

6. Performance Enhancement of Bubble Sort using GPU Computing.
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Chapter 2

Performance Enhancement of

Existing Sorting Algorithms

using GPU Computing

2.1 GPU Count Sort using CUDA

At this time multi core CPUs [56] are available in the market. The multi core

CPUs are not satisfactory to solve the high data computation task. So, recently

GPU [57-58] introduced to solve these problems. The GPU is having the multi

core processors thousands of threads running concurrently [59]. To program a

GPU the basic need is the parallel platform like NVIDIAs CUDA. The prime

difference between OpenCL and CUDA is that: 1) the cuda is specifically for

Nvdia hardware, but opencl is run on different hardware which conforms to its

standard [60-61]. There are GPU and CPU available, but for to achieve high

performance, primarily focuses on the GPUs. Count sort is a non-comparison

based sorting algorithm [62-63]. The contribution of the paper is as follows.

• The main content of this section is based on count sort. The problem with

count sort is that, it is not recommended for larger sets of data because it de-

pends on the range of key elements.
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• The drawback of count sort has been taken as research aspect.

• Sorting benchmark is used to test the parallel and sequential count sort.

• The speedup achieved by parallel count sort is also measured in this chapter.

Bajpai et al presented the modified version of counting sort called E-Counting

sort. In E-Counting sort some efficiency has been improved by author and exe-

cution time with original one [66].

Svenningsson et al investigated two sorting algorithms which are counting sort

and a variation occurrence sort. The suggested algorithms are used to remove

duplicate elements and examine their suitability running on the GPU [67].

Sun et al depicted the design issue of data parallel implementation of count sort

using GPU with CUDA. The parallel version is more efficient than sequential

[68].

Objective

Sorting is considered a very important application in many areas of computer

science. Nowadays parallelization of sorting algorithms using GPU computing,

on CUDA hardware is increasing rapidly. The objective behind using GPU com-

puting is that the users can get, the more speedup of the algorithms.

Methods

In this chapter, we have focused on count sort. It is very efficient sort with time

complexity O(n). The problem with count sort is that, it is not recommended

for larger sets of data because it depends on the range of key elements. In this

chapter this drawback has been taken for the research concern and we parallelized

the count sort using GPU computing with CUDA.
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Findings

We have measured the speedup achieved by the parallel count sort over sequen-

tial count sort. The sorting benchmark has been used to test and measure the

performance of both the versions of count sort (parallel and sequential). The

sorting benchmark has six types of test cases which are uniform, bucket, Gaus-

sian, sorted, staggered and zero. In this chapter, our finding is that we have

tested the parallel and sequential count sort on a larger sets of data which vary

from n=1000 to n=10000000.

2.1.1 Implementation of Sequential Count Sort

In this section the implementation results of the sequential count sort has been

shown. We have implemented the algorithm on the sorting benchmark using six

types of test cases. We have calculated execution time in milliseconds of the

algorithm which is shown in Table 2.1. In Table 2.1 we have shown that the

algorithm recommended for the large data sets as the data size has been varied

from 100 to 10000000. By analyzing the Table 2.1. We can see that zero test

case is more efficient compare to other test cases.

Table 2.1: Execution time in milliseconds of sequential count sort
n/Test case Uniform Sorted Zero Bucket Gaussian Staggered

100 1418 1248 0.001 1529 1336 1581

1000 1472 1527 0.002 1539 1368 1599

10000 1691 1679 1 1541 1461 1641

100000 1765 1868 2 1642 1763 1689

500000 1773 1968 11 1734 1861 1742

1000000 1831 1971 19 1883 1896 1795

2500000 1993 1975 41 1959 1917 1863

5000000 2342 1995 97 1994 1974 1888

7500000 2379 2096 109 1997 1991 1959

10000000 2427 2159 129 2177 2059 1999
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2.1.2 Implementation of Parallel Count Sort

In the Tables 2.2 to 2.7, we have shown the parallel execution time using six types

of test cases with varying data and thread size.

Table 2.2: Execution time in milliseconds of parallel count sort using uniform

test case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.044 0.040 0.040 0.039 0.036 0.036 0.035 0.034 0.033 0.031

1000 0.100 0.066 0.054 0.051 0.049 0.049 0.048 0.046 0.045 0.044

10000 0.678 0.368 0.231 0.203 0.192 0.176 0.173 0.172 0.169 0.167

100000 8.293 3.497 2.117 1.784 1.639 1.491 1.450 1.416 1.395 1.387

500000 37.467 20.145 11.708 8.796 8.007 7.816 6.997 6.923 6.814 6.711

1000000 74.799 40.351 23.544 19.053 15.985 14.724 14.358 14.188 13.149 13.362

2500000 184.719 100.631 58.557 47.843 43.137 35.742 34.434 33.035 32.907 31.596

5000000 367.033 199.474 117.197 94.633 83.796 71.566 68.537 66.966 65.874 64.917

7500000 549.743 297.629 174.571 144.056 126.228 106.157 102.674 99.820 98.722 97.298

10000000 732.190 396.518 232.582 189.154 166.405 140.392 137.161 134.435 133.611 132.594

The thread size has been varied from T = 1 to 1024 but we have drawn

the graph of execution time using T = 1024 as it is not possible to show all

the graphs using all the possible value of thread given in the table. In all the

Figures 2.1 to 2.6, X -axis shows the execution time in milliseconds and the Y -

axis shows the increasing data size. We have calculated the execution time using

varying sizes of data and threads, but in the graphs, we have only shown the

execution time comparison between parallel and sequential count sort using the

thread value 1024. The remaining graph can be drawn in the similar manner

using the possible values of threads listed in the tables.

The Table 2.3 shows the execution time in milliseconds of the parallel count

sort using sorted test case. The parallel version of sorted test case is more efficient

than sequential. We can see this effect in Table 2.3 and in Figure 2.2.

31



Figure 2.1: Execution time comparison between parallel and sequential count

sort using uniform test case

Table 2.3: Execution time in milliseconds of parallel count sort using sorted test

case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.032 0.034 0.030 0.030 0.030 0.030 0.029 0.029 0.029 0.027

1000 0.101 0.069 0.052 0.041 0.035 0.035 0.034 0.034 0.034 0.034

10000 0.653 0.391 0.376 0.293 0.195 0.177 0.140 0.119 0.119 0.105

100000 8.206 5.695 5.493 5.424 5.298 4.634 4.481 4.354 4.223 3.950

500000 37.570 20.002 18.936 17.401 16.488 15.458 15.069 14.444 13.945 13.756

1000000 75.269 51.859 43.502 39.172 34.869 33.946 33.162 33.056 32.979 32.887

2500000 188.816 150.414 121.414 101.414 91.414 87.414 82.746 82.338 81.712 81.283

5000000 379.675 267.187 228.859 209.285 199.285 181.872 174.953 163.719 163.148 162.836

7500000 569.112 406.415 478.981 493.749 380.549 345.386 315.310 245.196 244.701 243.381

10000000 754.410 671.365 611.044 521.194 416.709 453.242 497.458 380.816 326.293 323.284

The Table 2.4 shows the execution time in milliseconds of the parallel count

sort using zero test case. The parallel version of zero test case is not efficient

than the sequential version of zero test case. It is because the zero means one

unique number and to sort this, the sequential count sort take one count only as

it is already sorted and unique. It is not in the case of the parallel count sort

because in parallel, we always divide the number into a number of blocks and
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threads, whether the data are unique or sorted. In the Table 2.4 and Figure 2.3

we can see that sequential count is more efficient than parallel when the test case

is zero.

Figure 2.2: Execution time comparison between parallel and sequential count

sort using sorted test case

Table 2.4: Execution time in milliseconds of parallel count sort using zero test

case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.025 0.024 0.024 0.023 0.022 0.022 0.020 0.020 0.020 0.020

1000 0.081 0.055 0.053 0.051 0.050 0.050 0.046 0.044 0.043 0.041

10000 0.631 0.361 0.336 0.336 0.334 0.324 0.319 0.300 0.300 0.299

100000 4.780 4.713 3.270 3.244 3.240 3.226 3.208 3.104 3.015 3.010

500000 38.029 21.117 18.222 17.526 16.580 15.519 14.255 14.229 13.434 13.187

1000000 75.887 42.284 36.134 34.456 32.989 31.032 30.364 30.261 30.129 30.105

2500000 188.004 105.031 90.246 86.356 85.136 83.355 82.661 81.714 80.822 80.503

5000000 373.451 207.937 180.223 171.998 167.729 166.847 163.299 162.962 162.520 161.926

7500000 559.198 311.249 270.726 259.670 251.825 247.898 244.596 243.982 241.184 240.215

10000000 745.075 413.768 360.978 343.993 334.753 330.347 324.874 323.811 322.980 321.848
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Figure 2.3: Execution time comparison between parallel and sequential count

sort using zero test case

Table 2.5: Execution time in milliseconds of parallel count sort using bucket test

case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.041 0.036 0.034 0.033 0.033 0.031 0.030 0.030 0.030 0.029

1000 0.099 0.065 0.051 0.049 0.048 0.047 0.045 0.044 0.043 0.043

10000 0.677 0.368 0.232 0.200 0.188 0.169 0.169 0.168 0.161 0.160

100000 8.340 3.510 2.123 1.785 1.701 1.400 1.371 1.357 1.354 1.342

500000 37.902 21.378 10.715 8.783 7.979 6.882 6.694 6.627 6.620 6.605

1000000 75.584 42.820 21.642 18.170 15.945 14.748 14.465 14.173 14.000 13.476

2500000 187.064 107.055 100.112 95.294 85.750 35.635 34.978 33.510 31.774 30.618

5000000 371.482 211.861 107.769 89.266 79.266 69.266 68.388 66.388 61.807 60.807

7500000 556.547 316.744 160.419 137.144 117.144 106.133 102.549 101.275 98.349 97.349

10000000 740.812 421.667 213.901 180.264 140.374 137.022 136.350 135.485 126.532 125.519

The Table 2.5 shows the execution time in milliseconds of the parallel count

sort using bucket test case. The parallel version of the bucket test case is more

efficient than sequential. We can see this effect in Table 2.5 and in the Figure

2.4. The Figure 2.4 tells us that parallel bucket test case is having the very much

less execution time in comparison to the sequential bucket test case. So in this

way speedup is also increased.
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Figure 2.4: Execution time comparison between parallel and sequential count

sort using bucket test case

Table 2.6: Execution time in milliseconds of parallel count sort using Gaussian

test case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.069 0.066 0.061 0.060 0.049 0.038 0.034 0.030 0.030 0.029

1000 0.099 0.066 0.050 0.042 0.036 0.033 0.032 0.030 0.030 0.026

10000 0.678 0.373 0.225 0.142 0.095 0.073 0.063 0.061 0.059 0.053

100000 8.334 3.565 2.060 1.192 0.712 0.461 0.358 0.323 0.322 0.316

500000 37.792 20.576 11.450 5.907 3.475 2.204 1.677 1.503 1.404 1.220

1000000 75.471 41.073 22.872 12.979 6.902 4.398 3.321 3.986 2.056 1.607

2500000 186.491 102.587 57.103 32.703 20.177 13.192 8.304 7.945 7.582 6.068

5000000 370.635 202.987 114.191 64.945 37.993 25.003 18.469 15.911 14.150 13.442

7500000 555.043 303.311 169.633 97.741 57.609 35.837 26.336 24.296 22.644 20.694

10000000 738.959 403.503 226.569 129.902 75.493 47.312 36.312 32.531 31.158 30.824

The Table 2.6 shows the execution time in milliseconds of the parallel count

sort using Gaussian test case. The parallel version of the Gaussian test case is

more efficient than sequential. We can see this effect in Table 2.6 and in Figure

2.5. The Figure 2.5 tells us that parallel Gaussian test case is having the very

much less execution time in comparison to the sequential Gaussian test case.
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Figure 2.5: Execution time comparison between parallel and sequential count

sort using gaussian test case

Table 2.7: Execution time in milliseconds of parallel count sort using staggered

test case
n/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.061 0.054 0.051 0.051 0.050 0.050 0.040 0.040 0.030 0.031

1000 0.099 0.066 0.052 0.045 0.044 0.044 0.043 0.042 0.041 0.040

10000 0.649 0.572 0.454 0.430 0.429 0.401 0.398 0.395 0.380 0.321

100000 7.753 5.684 4.302 3.965 3.864 3.570 3.389 3.291 3.266 3.226

500000 35.234 19.543 9.162 8.583 7.532 6.983 6.845 6.731 6.431 6.231

1000000 73.652 40.752 19.654 17.875 16.986 15.877 14.865 14.542 14.362 14.123

2500000 183.755 101.766 95.864 88.885 81.777 32.876 31.886 30.766 29.654 29.123

5000000 365.754 208.676 105.665 85.754 79.765 65.888 64.886 63.999 62.665 61.664

7500000 551.886 303.768 156.776 134.776 114.976 101.765 97.544 95.765 94.765 94.123

10000000 735.766 417.655 208.654 175.433 132.876 128.654 125.876 121.765 115.764 104.654

The Table 2.7 shows the execution time in milliseconds of the parallel count

sort using Gaussian test case. The parallel version of the staggered test case is

more efficient than sequential. We can see this effect in Table 2.7 and in Figure

2.6.
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Figure 2.6: Execution time comparison between parallel and sequential count

sort using staggered test case

2.1.3 Measurement of Speedup

Now we will show the speedup of parallel count sort in comparison to the sequen-

tial. As the speedup measures performance gain achieved by parallelizing a given

application over sequential application [69]. We have implemented the count sort

using the varying data size and number of threads. Here we have only shown the

speedup achieved by parallel count sort with n = 10000000, n = 7500000, n =

5000000, n = 2500000 and n = 1000000 data size, for the remaining values of ‘n’

we can find out speedup in the similar manner.

Table 2.8: Speedup achieved by parallel count sort using different types of test

cases with n=7500000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

Sorted 3.689 4.158 4.376 4.586 5.508 6.069 6.648 8.549 8.666 8.786

Gaussian 3.587 6.564 11.737 20.371 34.561 55.556 75.599 81.947 87.926 96.213

Uniform 4.327 7.993 13.628 16.514 18.847 22.411 23.171 23.833 24.098 24.451

Bucket 3.588 6.305 12.449 14.561 17.047 18.816 19.474 19.719 20.305 20.514

Staggered 3.549 6.449 12.496 14.535 17.038 19.251 20.083 20.456 20.672 20.899
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Figure 2.7: Speedup achieved by parallel count sort using different types of test

cases with n=7500000

In the Tables 2.8, 2.9, 2.10, 2.11 and 2.12, we have measured the speedup

achieved by the parallel count sort using the different types of test cases. In all

the Tables, we can see that zero test case is not taken to measure the speedup. It

is because the parallel zero test case is less efficient than sequential. The reason is

explained earlier. The Figures 2.7, 2.8, 2.9, 2.10 and 2.11 have been drawn using

the Tables 2.8-2.12. In all the Figures X -axis represents the speedup achieved by

the algorithm and Y -axis represents the number of threads. By analyzing all the

Figures, we can see that if we increase the number of threads the speedup is also

increases. And in all the Figures Gaussian test case has achieved more speedup

compared to other test cases.

Table 2.9: Speedup achieved by parallel count sort using different types of test

cases with n=10000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

Sorted 2.862 3.216 3.534 4.152 5.182 5.764 5.892 5.998 6.617 6.679

Gaussian 2.787 5.103 9.088 15.851 27.274 43.519 56.703 63.293 66.081 66.798

Uniform 3.315 6.121 10.435 12.831 14.585 17.287 17.695 18.053 18.165 18.304

Bucket 2.939 5.163 10.178 12.077 15.509 15.888 15.967 16.068 17.201 17.344

Staggered 2.717 4.786 9.581 11.395 15.044 15.538 15.881 16.417 17.268 18.123
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Figure 2.8: Speedup achieved by parallel count sort using different types of test

cases with n=10000000

Table 2.10: Speedup achieved by parallel count sort using different types of test

cases with n=5000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

Sorted 5.254497 7.466667 8.717176 9.532443 10.01077 10.96927 11.40304 12.18551 12.22819 12.25157

Gaussian 5.325988 9.724768 17.28682 30.39504 51.95757 78.9505 106.8822 124.0665 139.5039 146.8582

Uniform 6.38089 11.74089 19.98341 24.74813 27.94895 32.72502 34.17155 34.97321 35.55292 36.07679

Bucket 5.367693 9.411845 18.50262 22.3378 25.15589 28.78768 29.15716 30.03555 32.2617 32.79226

Staggered 5.161934 9.047536 17.86779 22.01647 23.66953 28.65469 29.09719 29.50055 30.12846 30.61754

Figure 2.9: Speedup achieved by parallel count sort using different types of test

cases with n=5000000
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Table 2.11: Speedup achieved by parallel count sort using different types of test

cases with n=2500000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

Sorted 10.45991 13.1304 16.26662 19.47458 21.60494 22.59357 23.86822 23.98663 24.17038 24.2977

Gaussian 10.2793 18.68656 33.57112 58.61777 95.00785 145.3139 230.841 241.2967 252.8213 315.9162

Uniform 10.78939 19.80505 34.03518 41.65739 46.20117 55.76106 57.87844 60.32947 60.5649 63.07805

Bucket 10.47238 18.29901 19.56813 20.55748 22.8456 54.97427 56.00727 58.45935 61.65334 63.98287

Staggered 10.13851 18.30676 19.43378 20.95957 22.78159 56.66748 58.4269 60.55465 62.82458 63.97006

Figure 2.10: Speedup achieved by parallel count sort using different types of test

cases with n=2500000

Table 2.12: Speedup achieved by parallel count sort using different types of test

cases with n=1000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

Sorted 26.18623 38.00683 45.30774 50.317 56.52545 58.063 59.43467 59.62546 59.765 59.93167

Gaussian 25.12211 46.16132 82.89624 146.0799 274.7189 431.0753 570.8532 475.6324 922.222 1179.738

Uniform 24.47887 45.37677 77.77023 96.09797 114.5477 124.3513 127.526 129.0489 139.2475 137.0302

Bucket 24.91273 43.97504 87.00669 103.633 118.0935 127.6792 130.1749 132.8559 134.5037 139.7292

Staggered 24.37133 44.04681 91.33187 100.4179 105.6728 113.06 120.7534 123.4356 124.9826 127.0976
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Figure 2.11: Speedup achieved by parallel count sort using different types of test

cases with n=1000000

The main conclusion of this section is that parallel count sort has better ex-

perimental results over sequential using five types of test case which has explained

earlier. We have implemented our code of the sequential count sort algorithm in C

language. And the parallel count sort algorithm has done using GPU computing

with CUDA hardware.

2.2 GPU Merge Sort using CUDA

Parallel merge sort consists of three phases. In the first phase, we split the input

data into ‘p’ equally sized blocks. In the second phase, all ‘p’ blocks are sorted

using ‘p’ thread blocks. In the final phase, sorted blocks are merged into the final

sequence. Let’s understand the concept of parallel merge sort with the help of an

example. In a first phase assign each thread to a number in the unsorted array

example of parallel merge sort is shown in Figure 2.12, we have used the two

blocks and 4 threads per block. Now we will see the CUDA function of merge

sort:

The function sortBlocks() is used to sort the blocks. To do this each block is
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first compared with the adjacent element and the elements are sorted after doing

this. So the group is made of the four elements and the third process continues

till we have got the sorted elements in the block.

The function mergeBlocks() is used to merge the blocks. We merge the blocks

to make a larger size block, but arranged in such way that the elements in the

resultant array are sorted. As the size of block doubles so this function is called

until we are left with the single block.

Figure 2.12: Example of parallel merge sort

2.3 GPU Quick Sort using CUDA

Previously quick sort was not an efficient sorting solution for graphics processors,

but we show that using CUDA with C on the NVIDIA’s programming platform

GPU-Quick sort [29] performs better than the fastest known sorting implemen-

tations for graphics processors. Parallel partition of quick sort is as follows; we

use the deterministic pivot selection in our approach and used the different pivot

selection scheme in two phases. During the first phase, value of pivot is calculated

based on the average of minimum and maximum value of the sequence. In the

next phase, the choice of pivot element is based on the median of the first, middle
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and last element [29].

Phase I

• Threads to be assigned to the several blocks.

• All the thread blocks will be working on the different parts of the same sequence

of the elements to be sorted.

• After that we have to synchronize all the thread blocks.

• Different subsequences are formed by merging results of the different blocks.

• Still, we need to have a thread block barrier function between the partition

iterations because blocks might be executed sequentially and we have no idea to

know that in which order threads will be run.

• So, there is only one way to synchronize thread blocks are to wait until all

blocks have finished executing. So user can assign new sequence to them.

Phase II

• In this phase, thread block is assigned its own subsequence of input data so,

need of synchronization between thread and block will be eliminated.

• This means the second phase can run entirely on the GPU.

• Finally, we will get sorted list of items.

2.3.1 Parallel Time Complexity of Merge and Quick Sort

Merge Sort

Let p be the number of processes and p < n. Initially, each process is assigned a

block of n/p elements which it sort internally in O((n/p)log(n/p)) time. During

each phase O(n) comparisons are performed and time O(n) is spent in communi-

cation [40]. So the formal representation of parallel run time is shown in equation

(2.3.1).

Tp = O

(
n

p
log

n

p

)
+O(n) +O(n) (2.3.1)

43



Quick Sort

The parallel time depends on the split and merges time, and the quality of the

pivot. For optimized results the primary focus is on the choice of pivot element.

The algorithm executes in four steps.

(i) Choose the pivot and broadcast.

(ii) Rearrange the array and locally assigned to each process.

(iii) Rearrange the array globally and determine the locations in that array for

the local elements will go.

(iv) Perform the global rearrangement.

Quick sort takes time O(logp) to choose the pivot, it will take O(n/p) in the

second step, the third step takes time O(logp), and the fourth step takes time

O(n/p). So the formal representation of parallel run time of quick sort is O(n/p)

+ O(logp). The algorithm will work until the lists are sorted locally for p lists.

Therefore, the overall parallel runtime time of the parallel quick sort is shown in

equation (2.3.2).

Tp = O

(
n

p
log

n

p

)
+O

(
n

p
logp

)
+O(log2p) (2.3.2)

2.3.2 Algorithms Used

We have compared the GPU quick and merge sort with CPU quick and merge

sort. We have tested the merge and quick sort on a dataset [T10I4D100K(.gz)]

[31].

Table 2.13: Sequential and parallel execution time in seconds of merge and quick

sort using the four cases of the dataset.

Algorithms Random Nearly Sorted Sorted Reverse Sorted

Sequential Merge Sort 0.172 0.125 0.124 0.125

Parallel Merge Sort 0.0300016 0.02000154 0.01000151 0.02000167

Sequential Quick Sort 1.043904 1.219802 1.26322 72.089548

Parallel Quick Sort 0.080012 0.085014 0.085013 0.085014
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Figure 2.13: Execution time comparison between sequential and parallel merge

sort

By analysing the Table 2.13, we can see that parallel merge and quick sort

performs better results in comparison to the sequential merge and quick sort. We

can see this effect with the help of graphs. In the Figure 2.13 and 2.14, the X -axis

represents the type of dataset and the Y -axis represents the execution time in

seconds. The sequential quick sort having the performance gap for reverse sorted

data versus other datasets. It is because of the depth of recursion, but it is not

in the parallel case because in the parallel case we are taking the median value as

a pivot. The performance gap of sequential quick sort can be overcome by using

the median as a pivot.

Figure 2.14: Execution time comparison between sequential and parallel quick

sort
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2.3.3 Memory Occupied by Merge and Quick Sort

We have calculated the space complexity for the every case of a dataset of merge

and quick sort algorithm. In the Figure 2.15 and 2.16, X -axis represents the type

of dataset and the Y -axis represents the memory in bytes.

Merge Sort

Space complexity of sequential merge sort is 18023234 bytes. It will be a replica of

the dataset having four cases. Space complexity of parallel merge sort is 18159366

bytes. It is also a replica of the dataset having four cases. It is shown in Table

2.14.

Table 2.14: Sequential and parallel memory in bytes of merge sort using the

random dataset.
Algorithms Mip Mis Mop Mos Mc Mw Total

Sequential Merge Sort 4040924 4932283 4 4932283 76800 4040940 18023234

Parallel Merge Sort 4040924 4932283 4040924 4932283 110592 102360 18159366

Figure 2.15: Memory comparison between sequential and parallel merge sort
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Quick Sort

Space complexity of quick sort is shown in Table 2.15 using all the four cases of

the dataset .

Table 2.15: Sequential and parallel memory in bytes of quick sort
Data Set Sorting Algorithms Mip Mos Mop Mos Mc Mw Total

Random
Sequential Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538

Parallel Quick Sort 4040924 4932283 4040924 4932283 675840 1422912 20045166

Nearly Sorted
Sequential Quick Sort 4040924 4932283 4 4932283 76288 97468 14079250

Parallel Quick Sort 4040924 4932283 4040924 4932283 675840 1590880 20213134

Sorted
Sequential Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538

Parallel Quick Sort 4040924 4932283 4040924 4932283 675840 1590880 20213134

Reverse Sorted
Sequential Quick Sort 4040924 4932283 4 4932283 76288 99366 14081148

Parallel Quick Sort 4040924 4932283 4040924 4932283 675840 1590880 20213134

Figure 2.16: Memory comparison between sequential and parallel quick sort

By analysing the Figure 2.15 and 2.16 and Table 2.14, 2.15, we found that

the memory occupied by the sequential merge and quick sort is less in comparison

to the parallel merge and quick sort. It is because we need more space to make

parallel copies in parallel algorithms, but in sequential algorithms we do the

sorting directly on the array.
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2.4 Existing Sorting Algorithms on a Standard

Dataset

The goal of this section is to test the various existing sorting algorithms and

to evaluate the total space complexity of various sorting algorithms on a stan-

dard dataset. Sorting algorithms are evaluated on four cases of standard dataset

[T10I4D100K(.gz)][31].

2.4.1 Execution time testing of various sorting algorithms

The execution time in seconds of various sorting algorithms using the standard

dataset is represented in Table 2.16.

Table 2.16: Execution Time of various sorting algorithm in seconds
Algorithms Random Reverse Sorted Nearly Sorted

Insertion sort 228.136 663.768 0.005 1.196

Selection sort 479.999 460.756 415.082 422.247

Bubble sort 1457.88 2561.09 0.002 3.96

Heap sort 0.374 0.26 0.223 0.235

Shell sort 0.514 0.314 0.119 0.275

Count sort 0.114 0.109 0.088 0.104

Quick sort 2.403 72.52 1.32 2.444

Merge sort 0.327 0.161 0.14 0.151

Radix sort 0.197 0.156 0.151 0.385

Insertion Sort

We have plotted the Figure 2.17 by using the Table 2.16. By examining this

figure, we can see that insertion sort takes less time when data is in sorted and

nearly sorted order. And the insertion sort takes more time when the data is

reverse sorted.
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Figure 2.17: Execution time of insertion sort

Selection Sort

We have plotted the Figure 2.18 by using the Table 2.16. By examining this

figure, we can see that selection sort takes less time when data is sorted and

takes more time when data is in random order.

Figure 2.18: Execution time of selection sort

Bubble Sort

We have plotted the Figure 2.19 by using the Table 2.16. By examining this

figure, we can see that bubble sort takes less time when data is in sorted order,

and it takes more time when data is in random order.
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Figure 2.19: Execution time of bubble sort

Figure 2.20: Execution time of heap sort

Heap Sort

We have plotted the Figure 2.20 by using the Table 2.16. By examining this

figure, we can see that heap sort takes less time when data is in nearly sorted

order, and it takes more time when data is in a random order.

Shell Sort

We have plotted the Figure 2.21 by using the Table 2.16. By examining this

figure, we can see that shell sort takes less time when data is in sorted order, and

it takes more time when data is in random order.
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Figure 2.21: Execution time of shell sort

Count Sort

We have plotted the Figure 2.22 by using the Table 2.16. By examining this

figure, we can see that count sort takes less time when data is in random order,

and it takes more time when data is in sorted order.

Figure 2.22: Execution time of count sort

Quick Sort

We have plotted the Figure 2.23 by using the Table 2.16. By examining this

figure, we can see that quick sort takes less time when data is in sorted order,

and it takes more time when data is in reverse sorted order i.e. the worst case of

quick sort occur when data is in reverse sorted order.
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Figure 2.23: Execution time of quick sort

Merge Sort

We have plotted the Figure 2.24 by using the Table 2.16. By examining this

figure, we can see that merge sort takes less time when data is in nearly sorted

order, and it takes more time when data is in random order.

Figure 2.24: Execution time of merge sort

Radix Sort

We have plotted the Figure 2.25 by using the Table 2.16. By examining this figure,

we can see that radix sort takes less time when data is in sorted order, and it takes

more time when data is in reverse sorted order. In the entire Figure 2.17 to Figure

2.25, the X -axis represented the four cases of dataset in which we have tested
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Figure 2.25: Execution time of radix sort

the various sorting algorithms, and the Y -axis represented the execution time in

seconds of various sorting algorithms. All the above discussed sorting algorithms

implemented in C-language. The programs is designed at Borland C++ 5.02

compiler and executed on Intel I5 processor, and the programs running at 2.2

GHz clock speed.

2.4.2 Memory testing of various sorting algorithms

In Table 2.17 we have summarized the auxiliary space complexity of the various

sorting algorithms. On the basis of the results obtained after the execution of the

sorting algorithms we have concluded the stability and adaptivity of the various

sorting algorithms. In Table 2.17, we have shown the auxiliary space complexity

taken by the various sorting algorithms, but the space complexity is not only lim-

ited to auxiliary space. It is the total space taken by the program which includes

the following.

1. Primary memory required to store input data (Mip).

2. Secondary memory required to store input data (Mis).

3. Primary memory required to store output data (Mop).

4. Secondary memory required to store output data (Mos).

5. Memory required to hold the code (Mc).

6. Memory required to working space (temporary memory) variables + stack
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(Mw)

Mip: For Mip, we have to allocate memory of four bytes for each variable (ele-

ment) as we are having total of 1010228 elements so it will consume 1010228 × 4

= 4040912 bytes, again to input these items in an array we have an index variable

‘a’ will of four bytes so it will be total of 4040912 bytes + 4 bytes of file pointer

= 4040916 bytes , and 8 bytes are used for variable declared in the program so

total space complexity taken by the Mip = 4040924 bytes. And the Mip will be

same for all the discussed sorting algorithms in all four cases of dataset, because

we are using the 1010228 elements for all the four cases of dataset and for all the

discussed sorting algorithms.

Mis: We will get this input as storage file in secondary storage , but in file we

store this data a stream of bytes in character for this it will have slightly larger

memory in comparison to primary memory. And the Mis are same for all the

discussed sorting algorithms in all four cases of dataset, because we are using the

1010228 elements for all the four cases of dataset and for all the discussed sorting

algorithms.

Mop: As we get the result either in input variable or in temporary variable so it

will not require the storage in primary memory, but as we have to write this data

in to secondary storage so it will require file pointer of 4 bytes. And the Mop is

same for all the discussed sorting algorithms in all four cases of dataset, because

we are using the 1010228 elements for all the four cases of dataset and for all the

discussed sorting algorithms.

Mos: As we get the result either in input variable or in temporary variable i.e.

in borland C++ the output store in str file and the size of Mos will be the size of

str file and it will same for all the discussed sorting algorithms in all four cases

of dataset, because we are using the 1010228 elements for all the four cases of

dataset and for all the discussed sorting algorithms.

Mc: To calculate this space, we have to find out the size of .exe files created in

windows for the discussed sorting programs, as these program will be stored in

main memory for their execution. The size of .exe file depends on the sorting

algorithms.
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Mw: The space complexity of Mw of an algorithm depends on the variable de-

clared for the allocation, temporary variables and size taken by the stack.

Table 2.17: Total memory occupied by various sorting algorithms using dataset

Algorithms Mip Mis Mop Mos Mc Mw Total

Insertion sort 4040924 4932283 4 4932283 76288 8 13981790

Selection sort 4040924 4932283 4 4932283 76288 8 13981790

Bubble sort 4040924 4932283 4 4932283 76288 12 13981794

Heap sort 4040924 4932283 4 4932283 76800 16 13982310

Shell sort 4040924 4932283 4 4932283 75776 20 13981290

Counting sort 4040924 4932283 4 4932283 76288 4000 13985782

Quick sort 4040924 4932283 4 4932283 76288 97468 14079250

Merge sort 4040924 4932283 4 4932283 76800 4040940 18023234

Radix sort 4040924 4932283 4 4932283 76800 4040972 18023266

Figure 2.26: Memory occupied by various sorting algorithms

We have plotted the Figure 2.26 using Table 2.17 and it shows the total

space complexity taken by the various discussed sorting algorithms in all four

cases of dataset. In this figure the X -axis represents the various discussed sorting

algorithms, and Y -axis represents the total memory in bytes.

By overall best case time complexity analysis, it is found that the count sort

is comes out to be best sorting algorithm among other sorting algorithms in three
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cases of dataset, which are random, nearly sorted, reverse sorted. And the bubble

sort is the best sorting algorithm when data is sorted.

And by overall worst case time complexity analysis, it is found that bubble

sort is comes out to be worst sorting algorithm among other sorting algorithms

when data is random, nearly sorted, reverse sorted. And the selection sort is the

worst sorting algorithm when data is sorted.

By overall memory analysis, it is found that the shell sort is the best sorting

algorithms in all the four cases of dataset, and radix sort is comes out to be worst

sorting algorithm in all the four cases of dataset.

2.5 Conclusion

Final conclusion of this chapter is that, some existing sorting algorithms have

been tested using GPU computing and compared with existing sequential sorting

algorithms. The final outcome shows that more speedup is achieved by parallel

sorting algorithms using GPU computing.

We have also tested the various sorting algorithms on a standard dataset.

There are four cases of the dataset and every case of dataset contains the 1010228

items. We apply the various sorting algorithms in the four cases of dataset and

compare the performance in each case. And also we have found out the total

space complexity taken by all discussed sorting algorithms.
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Chapter 3

Performance enhancement of

odd-even transposition sorting

network(OETSN) using GPU

computing

In sorting networks comparators [70] are used to compare and exchange the data.

Compare and Exchange operation is used in sorting networks [71]. There are two

types of comparators available first is increasing (low to high) and the second is

decreasing (high to low) comparator. Two types of comparator [72] are shown

in the Figure 3.1. Odd-Even transposition sorting is an extension of bubble sort

technique [73-74]. The algorithm is designed for network model and in network

models comparators are used to rearrange the numbers. In odd-even transposition

sorting network, increasing comparator is used to compare and exchange the data.

The OETSN algorithm performs n/2 iteration and each iteration has two phases,

first phase is the odd-even exchange and the second phase is even-odd exchange.

We will understand the concept of OETSN with the help of an example.
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Figure 3.1: (a) Increasing Comparator (b) Decreasing Comparator.

Figure 3.2: Example of OETS network

The example of OETSN is shown in Figure 3.2. After n phases of odd-even

exchange, the sequence is sorted. Each phase of the algorithm either odd or even

requires O(n) comparisons, and there is a total of n phases; thus the sequential

complexity of OETSN is O(n2).
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3.1 Objective

Odd-even transposition sorting is designed for networks. In networks compare-

exchange operation is used to compare the elements. We have found that the

time taken for sorting by OETSN is same for all test cases such as uniform,

sorted, zero, gaussian, staggered and bucket. The sequential and parallel time

complexity is O(n2) and O(n) respectively, of OETSN using any kind of test

cases.

In our approach, we reduced the time complexity O(n) to O(1) over two types

of test case which are sorted and zero. We have motivated from the bubble sort

technique. If the data is sorted and unique, bubble sort requires only one pass

and terminate the program. In our approach we have also used this technique.

In this way, we have reduced the number of levels in the network and the time

complexity for sorted and zero test cases.

3.2 Parallel OETSN Algorithm

It is easy to parallelize OETSN algorithm [24]. Compare-exchange operations

performed simultaneously on each pair of elements. There can be two cases first

case if n = p where ‘p’ is the number of processing elements and ‘n’ is the

number of elements to be sorted. In both the phases odd and in even phases

compare-exchange operation will be performed on its right neighbour elements.

This requires time Θ(1). A total of ‘n’ phases is performed. So the parallel

run time of this formulation will be Θ(n). Second case if p<n or p>n then

Initially, each process is assigned a block of n/p elements which it sort internally

in Θ((n/p)(n/p)) time. After this the processes execute ‘p’ phases (p/2 odd and

p/2 even). During each phase Θ(n) comparisons are performed and time Θ(n) is

spent in communication. We are not using any local sort before odd-even phase.

Thus the parallel run time of this formulation is:

Tp = Θ

(
n2

p2

)
+ Θ (n) + Θ (n) (3.2.1)
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Since the sequential complexity of sorting is Θ(n2), the speedup(S ) and effi-

ciency(E ) of this formulation as follows:

S =
Θ (n2)

Θ
(
p2

n2

)
+ Θ (n)

(3.2.2)

E =
Θ (n2)

p[Θ
(
p2

n2

)
+ Θ (n)]

(3.2.3)

3.3 Proposed Modified Parallel OETSN Algo-

rithm

Algorithm 11 Proposed Modified OETSN Algorithm
INPUT: Unsorted List A, Number of threads T.

OUTPUT: Sorted List A

for i= 1 to n/2 do

Initialize the P array to zero for GPU

OddPhase(A, P, n)

EvenPhase(A, P, n)

end for

if (i==0 OR i== n/16 OR i== n/8 OR i== n/4) then

Evalute(P)

Read sum from GPU

end if

if sum == 0 then

break

end if

The proposed sorting algorithm has been inspired from the traditional bubble

sorting algorithm. In the traditional bubble sort algorithm, we compare the

adjacent elements. If the elements are sorted, no swapping is done, otherwise the

elements need to be swapped. Traditional bubble sort has taken ‘n’ passes to

complete the sorting in the best case.

In the modified version of bubble sort, we have the flag variable to keep

the track of swapping. If the variable highlights swapping, the next pass is
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executed. The same concept has been applied to the odd even transposition

sorting algorithm using GPU. Here instead of using a single variable array we use

two variable arrays, i.e. ‘P ’ and ‘T ’. ‘T ’ is equal to the number of threads and

‘P ’ is the sum of total swapping performed in the proposed algorithm. Now the

odd-even pass is executed. If there is no swapping then the sum of ‘P ’ comes to

be zero and we got the sorted array. This gives an added advantage for the sorted

and unique test case need not to execute the code on a GPU unnecessary in the

case when the data is sorted or unique. On the other hand, a slight increase in

the execution time for the uniform, staggered, bucket, Gaussian test cases. This

makes them unable to take the advantage of the above propose approach.

We have done same observations on n/2, n/4 and n/8 of the data. We have

used the GPU NVDIA GeForce GTX 460 with compute capability 2.1 but the

new version of GPU cards come up with the compute capability 3.0 which have

got the unified memory for the GPU and CPU which can further enhance the

performance of the suggested algorithm.

Future enhancements may possible to get a further speedup like we can use

scan function to make the sum up faster. The functionality of the proposed

algorithm is described through the flowchart shown in Figure 3.3. The green

colored box shows the modules running on GPU. The proposed algorithm is

more efficient in comparison with the existing techniques using two types of test

case i.e. zero and sorted test cases.

61



Figure 3.3: Flowchart for the proposed modified parallel OETSN

3.4 Experimental Results of Sequential and Par-

allel OETSN Algorithm

Sorting benchmark has been used for testing the algorithms. We have tested

the sequential and parallel OETSN algorithms on six types of test cases using

GPU computing having CUDA hardware. Table 3.1 shows the execution time

in seconds of the sequential OETSN algorithm. The ‘n’ is the size of the data

used for the particular cases here for the performance analysis of the algorithm.

The value ‘n’ is varied from 1000 to 2500000. Table 3.2 shows the execution time

62



in seconds of the parallel OETSN algorithm using different types of test cases.

The size of the is denoted by ‘n’. The number of threads is denoted by ‘T ’. The

values of ‘T ’ vary from 1 to maximum 1024. The threads increase in the power

of 2.

The CUDA hardware version 2.1 has the total of 1024 threads per block so

the maximum value of thread is selected as 1024. In Table 3.1, the sequential

execution time shows for the six types of test cases. If we analyse the Table 3.1,

zero test case has less execution time in comparison to others. It has less execution

time for all the values of ‘n’. After that sorted test case has less execution time

in comparison to the bucket, staggered, uniform and Gaussian for all the values

of ‘n’. The remaining test cases have nearly equal execution time as shown in

Table 3.1. It is because in the test case zero and sorted only the comparison is

performed to the adjacent element and the swapping is not required in both. The

comparison and swapping is performed by remaining test cases.

Next, we have evaluated the speedup achieved by parallel OETSN over the

sequential OETSN. Speedup measures performance gain achieved by parallelizing

a given application over sequential application. In the Table 3.1 and 3.2, we have

evaluated the execution time in seconds of sequential and parallel OETSN. By

equation (3.2.2) and results from Table 3.1 and 3.2, the speedup is calculated.

The speedup results described in Table 3.3. From Table 3.2 and 3.3, it can

be observed that the execution time is minimum when the number of threads are

512. The speedup is increased by 8 times than the sequential code when T = 512.

The performance of algorithm got degraded at T = 1024. The reason behind this

is that, the data we have taken is not evenly divided over the threads. So, some

of the threads are executed ideally and degrading the overall performance of the
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Table 3.1: Execution time in sec of sequential OETSN using different types of

test cases

n Uniform Gaussian Zero Staggered Bucket Sorted

1000 0.016 0.016 0.001 0.015 0.016 0.015

5000 0.062 0.062 0.015 0.078 0.063 0.031

10000 0.203 0.187 0.078 0.187 0.234 0.062

50000 4.602 4.681 0.905 4.145 5.704 0.842

100000 18.86 19.282 3.26 16.645 22.687 3.292

500000 496.988 501.091 82.681 425.274 584.469 101.713

1000000 2067.263 2050.446 400.33 1861.966 2734.954 577.812

1500000 4671.309 5135.357 912.34 4843.285 6035.218 1342.607

2000000 8095.204 7666.997 2072.224 7958.578 11156.45 4119.251

2500000 17099.89 17128.84 3719.095 16171.63 15732.54 6368.703

algorithm.

The speedup for all the six mentioned test cases is shown in Figure 3.4 to 3.9.

The X -axis represents the number of threads, the Y -axis represents the speedup

achieved by the parallel OETSN and the Z -axis represents the size of the dataset.

From Figure 3.4, the speedup for the uniform test case is observed. The 7

times more speedup is achieved when thread T =512 and data size n=2500000 in

comparison to the sequential OETSN. We have also found that for T =1024, the

speedup got decreased. It is because the data is not evenly distributed over the

threads and in which some threads are ideal hence degrade the performance of

the algorithm.
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Table 3.2: Execution time in sec of parallel OETSN using different types of test

cases
n/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.019 0.014 0.009 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.005

Gaussian 0.019 0.014 0.009 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.006

Zero 0.019 0.014 0.009 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.005

Staggered 0.019 0.014 0.009 0.007 0.005 0.004 0.004 0.004 0.003 0.003 0.005

Bucket 0.019 0.014 0.009 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.007

Sorted 0.019 0.014 0.009 0.006 0.006 0.005 0.005 0.005 0.004 0.004 0.005

5000

Uniform 0.441 0.322 0.173 0.096 0.056 0.035 0.026 0.023 0.023 0.023 0.025

Gaussian 0.442 0.321 0.173 0.096 0.055 0.034 0.026 0.025 0.024 0.024 0.026

Zero 0.441 0.321 0.167 0.091 0.051 0.031 0.021 0.021 0.021 0.021 0.022

Staggered 0.441 0.322 0.171 0.093 0.052 0.033 0.029 0.023 0.022 0.021 0.025

Bucket 0.442 0.322 0.169 0.092 0.052 0.033 0.025 0.023 0.023 0.023 0.025

Sorted 0.439 0.319 0.168 0.168 0.091 0.054 0.024 0.024 0.023 0.023 0.032

10000

Uniform 1.742 1.265 0.667 0.358 0.197 0.114 0.071 0.066 0.062 0.061 0.079

Gaussian 1.744 1.263 0.667 0.359 0.197 0.115 0.072 0.064 0.061 0.061 0.079

Zero 1.733 1.257 0.643 0.336 0.182 0.104 0.065 0.056 0.053 0.052 0.071

Staggered 1.744 1.271 0.657 0.345 0.188 0.108 0.067 0.06 0.058 0.058 0.074

Bucket 1.744 1.265 0.649 0.339 0.185 0.108 0.07 0.065 0.062 0.062 0.079

Sorted 1.733 1.256 0.643 0.335 0.182 0.104 0.065 0.057 0.054 0.054 0.072

50000

Uniform 43.438 31.472 16.462 8.602 4.499 2.410 1.353 1.094 1.090 1.080 1.235

Gaussian 43.452 31.433 16.430 8.588 4.492 2.406 1.351 1.093 1.091 1.083 1.235

Zero 43.328 31.338 15.931 8.020 4.089 2.160 1.204 0.943 0.925 0.919 1.078

Staggered 43.574 31.690 16.276 8.273 4.249 2.247 1.255 0.999 0.988 0.984 1.134

Bucket 43.573 31.535 16.081 8.092 4.127 2.228 1.240 1.110 1.090 1.080 1.231

Sorted 43.248 31.282 15.884 7.996 4.073 2.153 1.195 0.939 0.919 0.916 1.069

100000

Uniform 213.99 130.446 70.589 36.806 19.111 9.994 5.457 4.151 4.129 4.125 4.948

Gaussian 213.996 130.335 70.571 36.805 19.119 9.995 5.459 4.151 4.131 4.131 4.951

Zero 213.105 129.583 69.112 34.693 17.491 9.063 4.882 3.579 3.547 3.539 4.378

Staggered 213.938 130.885 70.171 35.605 18.077 9.373 5.069 3.786 3.757 3.751 4.564

Bucket 213.831 130.282 69.621 34.961 17.626 9.991 4.975 3.735 3.811 3.133 4.947

Sorted 213.189 129.580 69.117 34.681 17.491 9.053 4.877 3.578 3.543 3.535 4.366

500000

Uniform 4770.3 3349.3 1749.8 914.91 472.11 244.11 130.31 98.141 97.991 96.471 119.91

Gaussian 4755.1 3340.3 1749.6 914.91 472.11 243.81 130.21 98.071 98.112 96.431 119.91

Zero 4686.2 3264.3 1683.6 862.11 432.12 220.21 116.11 83.841 83.651 82.021 105.81

Staggered 4705.3 3295.6 1705.1 878.7 438.91 228.21 120.51 88.861 88.781 87.211 110.21

Bucket 4694.9 3287.8 1694.3 869.1 435.11 226.31 117.41 92.651 91.151 90.201 119.91

Sorted 4686.2 3264.4 1683.6 861.9 431.81 220.12 115.91 83.781 83.591 83.096 105.81

1000000

Uniform 18833.7 13246.5 6886.4 3698.0 1799.5 921.41 488.11 359.71 359.61 358.11 476.81

Gaussian 18805.3 13215.4 6855.2 3578.4 1799.5 922.31 488.11 359.61 359.41 358.71 476.41

Zero 18716.1 13055.2 6755.8 3505.9 1719.1 873.71 459.21 331.31 330.91 330.92 420.71

Staggered 18759.6 13170.4 6844.5 3556.4 1746.9 890.11 468.61 341.41 341.21 340.71 438.31

Bucket 18746.3 13105.1 6821.3 3544.3 1724.8 884.5 461.91 334.81 332.31 331.61 476.71

Sorted 18736.3 13095.8 6798.5 3526.7 1718.9 872.8 459.41 333.61 332.91 332.11 420.51

1500000

Uniform 60324.2 31243.2 15348.8 8155.1 4299.8 2078.1 1096.3 808.1 807.81 806.61 1071.5

Gaussian 60297.8 31199.2 15329.7 8134.3 4255.2 2072.6 1096.3 807.91 807.81 806.31 1071.8

Zero 60155.4 31056.2 15255.4 8005.8 4150.9 1964.2 1031.3 744.71 743.61 743.11 946.21

Staggered 60266.4 31178.3 15299.8 8099.2 4239.3 1999.3 1052.4 766.81 766.61 765.17 985.81

Bucket 60243.8 31141.2 15279.4 8055.3 4199.7 2070.6 1039.1 752.31 751.91 750.31 995.31

Sorted 60196.4 31098.3 15299.4 8023.3 4162.9 1964.1 1030.9 744.21 743.51 743.31 946.21

2000000

Uniform 90655.3 46143.2 24199.3 12693.9 6678.4 3688.1 1948.4 1435.5 1435.1 1434.5 1903.5

Gaussian 90605.4 46099.4 24210.3 12649.9 6648.9 3689.8 1948.5 1435.4 1434.7 1433.9 1902.7

Zero 90395.3 45905.3 24065.4 12544.4 6533.5 3494.9 1833.7 1322.1 1321.2 1321.1 1681.6

Staggered 90555.4 46055.3 24188.5 12627.9 6633.4 3556.4 1869.1 1361.7 1361.7 1360.4 1855.9

Bucket 90498.9 45999.4 24148.8 12599.5 6598.9 3520.1 1842.6 1342.2 1340.2 1340.1 1806.9

Sorted 90445.4 45972.8 24105.4 12555.2 6555.3 3494.1 1832.9 1321.8 1320.2 1318.7 1742.9

2500000

Uniform 165205.3 82815.4 42674.4 23139.4 12349.2 7299.8 3041.9 2241.6 2241.6 2221.1 2797.2

Gaussian 165193.3 82793.5 42648.8 23099.8 12344.7 7291.4 3043.1 2241.4 2241.1 2241.1 2796.7

Zero 164560.8 82555.3 42556.4 23005.3 12259.8 7233.3 2866.2 2063.6 2063.1 2060.7 2623.4

Staggered 165149.3 82740.1 42631.9 23089.1 12316.4 7266.3 2917.1 2126.7 2126.5 2022.9 2677.5

Bucket 165105.9 82693.3 42599.3 23049.8 12299.2 7249.4 2881.5 2084.3 2027.1 2021.6 2680.1

Sorted 165060.8 82649.8 42574.7 23019.4 12268.5 7238.7 2862.1 2064.2 2072.1 2077.5 2622.1
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Table 3.3: Speedup achieved by parallel OETSN using different types of test cases
n/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.84 1.14 1.78 2.67 3.2 3.2 4 4 4 4 3.2

Gaussian 0.84 1.14 1.78 2.67 3.2 3.2 3.2 4 4 4 2.67

Zero 0.05 0.07 0.11 0.17 0.2 0.2 0.25 0.25 0.25 0.25 0.2

Staggered 0.79 1.07 1.67 2.14 3 3.75 3.75 3.75 5 5 3

Bucket 0.84 1.14 1.78 2.67 3.2 4 4 4 4 4 2.29

Sorted 0.79 1.07 1.67 2.5 2.5 3 3 3 3.75 3.75 3

5000

Uniform 0.14 0.19 0.36 0.65 1.11 1.77 2.38 2.7 2.7 2.7 2.48

Gaussian 0.14 0.19 0.36 0.65 1.13 1.82 2.38 2.48 2.58 2.58 2.38

Zero 0.03 0.05 0.09 0.16 0.29 0.48 0.71 0.71 0.71 0.71 0.68

Staggered 0.18 0.24 0.46 0.84 1.5 2.36 2.69 3.39 3.55 3.71 3.12

Bucket 0.14 0.2 0.37 0.68 1.21 1.93 2.52 2.74 2.74 2.74 2.52

Sorted 0.07 0.1 0.18 0.18 0.34 0.57 1.29 1.29 1.35 1.35 0.97

10000

Uniform 0.12 0.16 0.3 0.57 1.03 1.78 2.86 3.08 3.27 3.33 2.57

Gaussian 0.11 0.15 0.28 0.52 0.95 1.63 2.6 2.92 3.07 3.07 2.37

Zero 0.05 0.06 0.12 0.23 0.43 0.75 1.2 1.39 1.47 1.5 1.1

Staggered 0.11 0.15 0.28 0.54 0.99 1.73 2.79 3.12 3.22 3.22 2.53

Bucket 0.13 0.18 0.36 0.69 1.26 2.17 3.34 3.6 3.77 3.77 2.96

Sorted 0.04 0.05 0.1 0.19 0.34 0.6 0.95 1.09 1.15 1.15 0.86

50000

Uniform 0.11 0.15 0.28 0.53 1.02 1.91 3.4 4.21 4.22 4.26 3.73

Gaussian 0.11 0.15 0.28 0.55 1.04 1.95 3.46 4.28 4.29 4.32 3.79

Zero 0.02 0.03 0.06 0.11 0.22 0.42 0.75 0.96 0.98 0.98 0.84

Staggered 0.1 0.13 0.25 0.5 0.98 1.84 3.3 4.15 4.2 4.21 3.66

Bucket 0.13 0.18 0.35 0.7 1.38 2.56 4.6 5.14 5.23 5.28 4.63

Sorted 0.02 0.03 0.05 0.11 0.21 0.39 0.7 0.9 0.92 0.92 0.79

100000

Uniform 0.09 0.14 0.27 0.51 0.99 1.89 3.46 4.54 4.57 4.57 3.81

Gaussian 0.09 0.15 0.27 0.52 1.01 1.93 3.53 4.65 4.67 4.67 3.9

Zero 0.02 0.03 0.05 0.09 0.19 0.36 0.67 0.91 0.92 0.92 0.74

Staggered 0.08 0.13 0.24 0.47 0.92 1.78 3.28 4.4 4.43 4.44 3.65

Bucket 0.11 0.17 0.33 0.65 1.29 2.27 4.56 6.07 5.95 7.24 4.59

Sorted 0.02 0.03 0.05 0.09 0.19 0.36 0.68 0.92 0.93 0.93 0.75

500000

Uniform 0.1 0.15 0.28 0.54 1.05 2.04 3.81 5.07 5.07 5.15 4.15

Gaussian 0.11 0.15 0.29 0.55 1.06 2.06 3.85 5.11 5.11 5.2 4.18

Zero 0.02 0.03 0.05 0.1 0.19 0.38 0.71 0.99 0.99 1.01 0.78

Staggered 0.09 0.13 0.25 0.48 0.97 1.86 3.53 4.79 4.79 4.88 3.86

Bucket 0.12 0.18 0.34 0.67 1.34 2.58 4.98 6.31 6.41 6.48 4.88

Sorted 0.02 0.03 0.06 0.12 0.24 0.46 0.88 1.21 1.22 1.21 0.96

1000000

Uniform 0.11 0.16 0.3 0.56 1.15 2.24 4.24 5.75 5.75 5.77 4.34

Gaussian 0.11 0.16 0.3 0.57 1.14 2.22 4.2 5.7 5.71 5.72 4.3

Zero 0.02 0.03 0.06 0.11 0.23 0.46 0.87 1.21 1.21 1.21 0.95

Staggered 0.1 0.14 0.27 0.52 1.07 2.09 3.97 5.45 5.46 5.46 4.25

Bucket 0.15 0.21 0.4 0.77 1.59 3.09 5.92 8.17 8.23 8.25 5.74

Sorted 0.03 0.04 0.08 0.16 0.34 0.66 1.26 1.74 1.74 1.74 1.37

1500000

Uniform 0.08 0.15 0.3 0.57 1.09 2.25 4.26 5.78 5.78 5.79 4.36

Gaussian 0.09 0.16 0.33 0.63 1.21 2.48 4.68 6.36 6.36 6.37 4.79

Zero 0.02 0.03 0.06 0.11 0.22 0.46 0.88 1.23 1.23 1.23 0.96

Staggered 0.08 0.16 0.32 0.6 1.14 2.42 4.6 6.32 6.32 6.33 4.91

Bucket 0.1 0.19 0.39 0.75 1.44 2.91 5.81 8.02 8.03 8.04 6.06

Sorted 0.02 0.04 0.09 0.17 0.32 0.68 1.3 1.8 1.81 1.81 1.42

2000000

Uniform 0.09 0.18 0.33 0.64 1.21 2.19 4.15 5.64 5.64 5.64 4.25

Gaussian 0.08 0.17 0.32 0.61 1.15 2.08 3.93 5.34 5.34 5.35 4.03

Zero 0.02 0.05 0.09 0.17 0.32 0.59 1.13 1.57 1.57 1.57 1.23

Staggered 0.09 0.17 0.33 0.63 1.2 2.24 4.26 5.84 5.84 5.85 4.29

Bucket 0.12 0.24 0.46 0.89 1.69 3.17 6.05 8.31 8.32 8.32 6.17

Sorted 0.05 0.09 0.17 0.33 0.63 1.18 2.25 3.12 3.12 3.12 2.36

2500000

Uniform 0.1 0.21 0.4 0.74 1.38 2.34 5.62 7.63 7.63 7.7 6.11

Gaussian 0.1 0.21 0.4 0.74 1.39 2.35 5.63 7.64 7.64 7.64 6.12

Zero 0.02 0.05 0.09 0.16 0.3 0.51 1.3 1.8 1.8 1.8 1.42

Staggered 0.1 0.2 0.38 0.7 1.31 2.23 5.54 7.6 7.6 7.99 6.04

Bucket 0.1 0.19 0.37 0.68 1.28 2.17 5.46 7.55 7.76 7.78 5.87

Sorted 0.04 0.08 0.15 0.28 0.52 0.88 2.23 3.09 3.07 3.07 2.43
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Figure 3.4: Speedup achieved by parallel OETSN using uniform test case

The Figure 3.5 shows speedup for the Gaussian test case. Here we have

achieved the 7 times more speedup for the thread T =512 and data size n=2500000

in comparison to the sequential OETSN. The speedup difference can be seen at

larger input or we can say that speedup is directly proportional to the number

of threads and size of the input.

Figure 3.5: Speedup achieved by parallel OETSN using Gaussian test case

The Figure 3.6 shows the speedup for a zero test case. By analysing Figure

3.6 found that nearly 2 times speedup is achieved at T =512 & n=2500000 in

comparison to the sequential OETSN. This is achieved by the zero test case.
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Figure 3.6: Speedup achieved by parallel OETSN using zero test case

The Figure 3.7 shows the speedup for the staggered test case. In this test

case, 8 times speedup is achieved at T =512 & n=2500000 in comparison to the

sequential OETSN.

Figure 3.7: Speedup achieved by parallel OETSN using staggered test case

The Figure 3.8 shows the speedup for the bucket test case. The speedup

is increased 8 times at T =512 & n=2000000 in comparison to the sequential

OETSN. The speedup is achieved less at n=500 due to the reason of less amount

of data.
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Figure 3.8: Speedup achieved by parallel OETSN using bucket test case

The Figure 3.9 shows the speedup for sorted test case. The speedup is

achieved 3 times at T =512 & n=1000 in comparison to sequential OETSN. But

in other test cases more speedup is achieved at n=2500000 or 2000000. It is

because in the sorted test case comparison is performed to the adjacent element

only. There is no swapping performed as the data is already sorted.

Figure 3.9: Speedup achieved by parallel OETSN using sorted test case

In conclusion, we found that speedup is directly proportional to the number

of threads and size of data in most of the cases. The maximum speedup is

achieved by bucket and staggered test case, i.e. 8 times in comparison to the

sequential OETSN. The minimum speedup is achieved by the zero test case, i.e.

2 times. We have also found that in some cases good speedup is also achieved at
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n=1000 and 5000 nearly 7 and 8 times.

3.5 Experimental Results of Proposed Modified

Parallel OETSN Algorithm

Testing of proposed modified parallel OETSN algorithm has been done on the

sorting benchmark using GPU computing on CUDA hardware. Table 3.4 shows

the execution time in seconds of proposed modified parallel OETSN algorithm

using different types of test cases. By examining the Table 3.4, we found that

proposed approach is very efficient in comparison to the parallel OETSN only for

zero and sorted test case.

The execution time comparison for the sorted and zero test cases of paral-

lel and proposed modified parallel OETSN has been shown in Figure 3.10 and

3.11. The Results obtained in Table 3.4 are justified with the proposed algorithm

discussed above. In the zero and sorted test case data does not require any swap-

ping. In the odd-even module an evaluation function is being called after one

pass. It is a serial function which added the number of swaps after every function

has been performed.

The number of swaps is zero for the sorted and zero test case so the algorithm

is terminated. Now in the case of other test cases, we do not know how the data

have been placed, but still we have tried to take advantage of the proposed

approach. But it has added an extra overhead on the execution time of the

program of remaining test cases.

The Figure 3.10 and 3.11 has been shown with the sub-figures from (a) to (j ).
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In all the sub-figures the X -axis represents the number of threads and the Y-axis

represents the execution time in seconds. The execution time comparison of zero

and sorted test case of parallel OETSN and proposed modified parallel OETSN

is shown in Figure 3.10 and 3.11. We have analysed from Figure 3.10 and 3.11,

that the execution time of the proposed modified parallel OETSN algorithm is

very less as compared to the existing parallel OETSN algorithm. The scale of

the Y -axis has been taken in logarithmic, using base to the power 2, because

the execution time of the proposed approach is very less in comparison to the

existing one.

The Figure 3.10 describes the execution time comparison of existing parallel

OETSN and proposed modified parallel OETSN over zero test case. As the

modified parallel OETSN is exploiting the nature of data so we are getting better

results in all the cases of data size from n=1000 to 2500000. For the small data

set we can see that the execution time of modified parallel OETSN is trending

towards existing parallel OETSN. This is due to the fact that each treads have

very few data elements to sort.

The Figure 3.11 compares the execution time comparison of parallel OETSN

and modified parallel OETSN over sorted test case. The zero test case is the

special case of the sorted data. There is no swapping in both the cases, thats

why the trends of modified OETSN are almost similar to zero test case.
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Table 3.4: Execution time in seconds of modified parallel OETSN using different

types of test cases
n/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.039 0.03 0.012 0.008 0.007 0.006 0.006 0.006 0.005 0.005 0.005

Gaussian 0.029 0.019 0.012 0.008 0.006 0.004 0.004 0.004 0.004 0.004 0.006

Zero 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0005

Staggered 0.029 0.02 0.012 0.008 0.007 0.006 0.006 0.005 0.004 0.004 0.006

Bucket 0.029 0.019 0.011 0.008 0.006 0.004 0.004 0.003 0.003 0.003 0.005

Sorted 0.00017 0.00016 0.00009 0.00008 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00009

5000

Uniform 0.656 0.435 0.234 0.128 0.072 0.042 0.031 0.027 0.026 0.025 0.028

Gaussian 0.657 0.437 0.235 0.129 0.072 0.042 0.033 0.026 0.025 0.024 0.029

Zero 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0006

Staggered 0.657 0.462 0.24 0.129 0.07 0.042 0.032 0.032 0.028 0.029 0.029

Bucket 0.656 0.43 0.227 0.122 0.069 0.041 0.033 0.026 0.025 0.025 0.029

Sorted 0.00032 0.00025 0.00021 0.00013 0.00011 0.00008 0.00007 0.00007 0.00006 0.00006 0.00014

10000

Uniform 2.598 1.72 0.909 0.483 0.263 0.146 0.091 0.081 0.074 0.073 0.095

Gaussian 2.597 1.718 0.909 0.484 0.263 0.147 0.091 0.082 0.075 0.074 0.096

Zero 0.0005 0.0004 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007

Staggered 2.6 1.825 0.932 0.483 0.259 0.142 0.088 0.078 0.072 0.072 0.094

Bucket 2.6 1.695 0.879 0.457 0.245 0.139 0.09 0.082 0.075 0.074 0.095

Sorted 0.00062 0.00037 0.00024 0.00013 0.00018 0.00009 0.00006 0.00007 0.00006 0.00006 0.00006

50000

Uniform 64.64 42.90 22.52 11.67 6.03 3.15 1.76 1.40 1.40 1.39 1.50

Gaussian 64.66 42.91 22.52 11.66 6.03 3.15 1.76 1.41 1.40 1.40 1.50

Zero 0.0025 0.0016 0.0009 0.0005 0.0003 0.0002 0.0001 0.0002 0.0002 0.0004 0.0007

Staggered 64.64 45.54 23.11 11.61 5.88 3.04 1.69 1.34 1.33 1.33 1.44

Bucket 64.64 42.25 21.81 11.00 5.58 2.89 1.62 1.40 1.40 1.40 1.50

Sorted 0.00255 0.00167 0.00087 0.00047 0.00026 0.00015 0.00013 0.00013 0.00011 0.00011 0.00013

100000

Uniform 225.65 174.34 94.25 48.95 25.27 13.12 7.10 5.33 5.31 5.31 6.04

Gaussian 223.12 174.21 94.24 48.96 13.12 7.11 5.34 5.34 5.32 5.31 6.04

Zero 0.006 0.0032 0.0018 0.0009 0.0005 0.0003 0.0002 0.0002 0.0003 0.0004 0.0007

Staggered 225.87 184.77 97.43 49.10 24.79 12.69 6.82 5.09 5.07 5.06 5.80

Bucket 224.53 171.30 92.32 46.70 23.57 12.04 6.51 4.98 4.18 4.02 6.04

Sorted 0.00584 0.00321 0.00178 0.00091 0.00054 0.00028 0.00017 0.00016 0.00015 0.00015 0.00024

500000

Uniform 4870.8 3550.6 1921.6 1217.1 625.3 321.5 170.3 126.2 126.1 126.0 146.3

Gaussian 4870.2 3521.9 1911.7 1216.8 624.5 320.4 170.2 126.4 126.3 126.2 146.3

Zero 0.0258 0.0162 0.0083 0.0044 0.0022 0.0012 0.0007 0.0006 0.0006 0.0008 0.0011

Staggered 4770.2 3421.9 1811.7 1116.8 613.0 310.8 163.2 120.4 120.3 120.3 140.3

Bucket 4690.2 3391.9 1791.7 1196.8 583.5 295.0 155.4 124.3 123.6 123.2 146.4

Sorted 0.02576 0.01631 0.0084 0.00435 0.00226 0.00116 0.00072 0.00052 0.00052 0.00049 0.00057

1000000

Uniform 18999.6 13446.8 6986.6 3749.7 1999.8 1288.9 688.4 504.7 506.4 505.6 593.4

Gaussian 18931.6 13412.7 6931.6 3721.6 1958.7 1231.6 612.6 484.3 481.6 478.6 521.3

Zero 0.0519 0.0327 0.0169 0.0088 0.0043 0.0023 0.0013 0.001 0.0011 0.0013 0.0016

Staggered 18998.6 13487.8 6998.5 3798.4 1998.9 1287.6 698.9 584.3 581.6 578.6 621.3

Bucket 18811.6 13337.8 6838.5 3658.4 1985.8 1197.6 658.8 524.4 511.4 508.6 611.3

Sorted 0.05187 0.03265 0.01701 0.0088 0.00432 0.00222 0.00132 0.00106 0.00101 0.00096 0.00113

1500000

Uniform 60576.7 31467.7 15587.6 8368.0 4599.6 2251.7 1264.8 1156.6 1145.9 1142.0 1333.6

Gaussian 60521.7 31421.7 15531.9 8315.7 4523.6 2121.7 1212.6 1115.7 1106.7 1101.7 1312.7

Zero 0.0761 0.049 0.0252 0.0132 0.0075 0.0033 0.0018 0.0015 0.0015 0.0016 0.0022

Staggered 60621.7 31496.6 15588.0 8393.9 4589.9 2179.7 1289.8 1198.8 1188.7 1179.7 1389.7

Bucket 60511.7 31336.6 15428.0 8283.9 4679.6 2119.7 1199.9 1088.8 1078.7 1069.7 1319.7

Sorted 0.07624 0.049 0.02521 0.01322 0.00751 0.00338 0.00175 0.00138 0.00137 0.0013 0.00162

2000000

Uniform 90841.8 46324.8 24343.8 12843.7 6834.9 3873.7 2052.7 1665.9 1645.9 1611.7 2012.6

Gaussian 90759.3 46289.6 24289.6 12789.5 6779.6 3812.6 2012.6 1612.7 1601.7 1589.6 1989.6

Zero 0.1021 0.0652 0.0336 0.0176 0.009 0.0044 0.0023 0.0019 0.002 0.0021 0.0026

Staggered 90859.3 46389.9 24389.5 12889.2 6879.6 3899.9 2079.9 1612.7 1609.7 1604.6 1999.6

Bucket 90710.3 46124.9 24249.5 12779.2 6789.6 3789.9 2010.8 1582.7 1579.7 1564.6 1919.6

Sorted 0.10196 0.06515 0.03359 0.01761 0.00896 0.00436 0.00242 0.00181 0.00179 0.0017 0.0021

2500000

Uniform 167205.5 83211.7 42817.7 23834.8 12887.7 7934.9 3476.5 2483.7 2454.9 2444.7 2984.9

Gaussian 165803.7 83204.8 42253.6 23765.6 12754.6 7911.6 3432.7 2426.5 2423.5 2422.5 2932.3

Zero 0.1281 0.0813 0.042 0.0221 0.0119 0.0069 0.0025 0.0019 0.0018 0.0017 0.0029

Staggered 165898.7 83298.8 42353.9 23865.2 12854.6 7997.6 3489.9 2432.5 2424.5 2422.5 2989.3

Bucket 165721.7 83198.8 42213.9 23745.2 12744.6 7867.7 3399.7 2329.5 2324.5 2322.5 2929.3

Sorted 0.12802 0.0816 0.04196 0.0221 0.01186 0.00687 0.00286 0.00233 0.00228 0.0022 0.00267
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(a) n=1000 (b) n=5000

(c) n=10000 (d) n=50000

(e) n=100000 (f) n=500000

(g) n=1000000 (h) n=1500000

(i) n=2000000 (j) n=2500000

Fig. 3.10. Execution time comparison of parallel and modified OESTN using

the zero test case
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(a) n=1000 (b) n=5000

(c) n=10000 (d) n=50000

(e) n=100000 (f) n=500000

(g) n=1000000 (h) n=1500000

(i) n=2000000 (j) n=2500000

Fig. 3.11. Execution time comparison of parallel and modified OESTN using

the sorted test case
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3.6 Conclusion

The overall conclusion of this chapter is described that, odd-even transposition

sorting is having the sequential time complexity O(n2). So, we have parallelized

the OETSN using GPU computing, on CUDA hardware. After this we have pro-

posed the modified parallel OETSN using GPU computing itself. In the proposed

modified parallel OETSN, we have reduced the number of levels of the network.

After testing, we found that number of levels and time complexity from O(n) to

O(1) of the OETSN has been reduced for two types of test cases i.e. zero and

sorted test cases.
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Chapter 4

Performance Enhancement of

Library Sort Algorithm with

Uniform Gap Distribution

Many authors have invented many sorting algorithms [41][62], among them in-

sertion sort is the one of the simplest algorithm used for sorting [42]. Insertion

sort [43] [75] is less efficient on large number of items as it takes O(n2) time in

worst case [44] [76], and the best case of insertion sorting occurs when data is

in sorted manner and it is O(n) in best case. Insertion sort is stable sorting

algorithm [45]. The improvement to the insertion sort algorithm was invented

by D.L Shell and the modified version is called shell sort [46]. Shell sort [47] is

more efficient for large items. Library sort is an adaptive sorting [49] and also

stable sorting algorithm [50]. If we leave more space, the fewer elements we move

on insertion. The author achieves the O(logn) insertions with high probability

using the evenly distributed gap, and the algorithm runs O(nlogn) with high

probability. O(nlogn) is better than O(n2). The idea of leaving gaps for inser-

tions in a data structure is used by Itai, Konheim, and Rodeh [52]. This idea has

found recent application in external memory and cache-oblivious algorithms in

the packed memory structure of Bender, Demaine and Farach-Colton and later
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used in [53-54-55].

4.1 Objective

Library sort has better run time than insertion sort, but the library sort also has

some issues.

The first issue is the value of gap which is denoted by ‘ε’, the range of gap is

given, but it is yet to be implemented to check that given range is satisfying the

concept of library sort algorithm.

The second issue is re-balancing which accounts the cost and time of library

sort algorithm.

The third issue is that, only a theoretical concept of library sort is given, but the

concept is not implemented. So, to overcome these issues of library sort, in this

section, we have implemented the concept of library sort and done the detailed

experimental analysis of library sort algorithm, and measure the performance of

library sort algorithm on a dataset.

4.2 Library Sort Algorithm

Library sort [48] is the formulation of insertion sort algorithm. The author has

given the theoretical concept about library sort. Author has given the gaps after

each insertion in the array and gaps denoted by the epsilon but he has not given

the value of epsilon. He used the re-balancing concept and he re-balanced the

array after inserting the 2i elements in the array, whether re-balancing is necessary

in the array, but it is also amounts cost and time. So we have to decide that is

re-balancing required after inserting the 2i elements in the array. These are the

some questions of library sort, So in this paper, we are going to overcome the

questions of library sort algorithm. The algorithm of library sort is as follows:

Algorithm of Library Sort: There are three steps of the algorithm.
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1. Binary Search with blanks

2. Insertion

3. Re-balancing

1. Binary Search with blanks: In library sort we have to search a number and

the best search for an array is found by binary search. The array ‘S ’ is sorted but

has gap. As in computer, gaps of memory will hold some value and this value is

fixed to sentential value that is ‘-1’. Due to this reason we cannot directly use the

binary search for sorting. So we have modified the binary search. After finding

the mid, if it comes out to be ‘-1’ then we move linearly left and right until we

get a non zero value. These values are named as m1 and m2. Based on these

values we define new low, high and mid for the working. Another difference of

the binary search presented below is that it not only searches the element in the

list but also reports the correct position where we have to insert the number.

2. Insertion: As we know, library sort is also known by the name ‘gapped

insertion sort’. If the value to be inserted is in the gap, then it is ok but if there

is an element in that particular position, we have to shift the elements till we find

the next gap.

Algorithm 13 Library Sort: Insertion
INPUT: Data to be sorted n and pass number i

OUTPUT: Sorted list but without gaps

if i = = 1 then

i1 = i - 1

c1 = 0

end if

S1 = pow(2,i)

if S1 > size then

S1 = size

end if

for j = (pow(2,i1-1) - c1) to S1 do

k = search(pow(2,i)+pow(2,i+1),a[j ])

if S [k ] != -1 then

managetill(k)

end if

S [k ] = a[j ]

end for
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Algorithm 12 Library Sort: Binary-Search with Blanks
INPUT: Data to be sorted n and Number to be searched k

OUTPUT: Position to enter the element d

while (low < high) do

mid = (low + high)/2

if (S [mid] = = -1) then

m1 = m2 = mid

if (m1 == 0 and m2 >= high+1) then

if (k < S [m1]) then

low = high = m1

else

low = high = m1+1

end if

end if

if (m1 > 0 and m2 < high+1) then

if (k <= S [m1]) then

if (k == S [m]) then

low = high = m1

else

high = m1-1

end if

if (k > S [m1] and k < S [m2]) then

low = m1 + 1

high = m2 - 1

end if

if (m2 < high) then

low = m2 + 1

else

low = m2

end if

end if

if (m1 == 0 and m2 <= high) then

if (k >= S [m2]) then

if (m2 <= high) then

low = m2 + 1

else

low = m2

end if

end if

end if

end if

else

if (S [mid] < k) then

low = mid + 1

end if

end if

end while
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3. Re-balancing: Re-balancing is done after inserting 2i elements. This

increases the size of the array. The increase in the size of array will depend on ε

(number of spaces to be inserted). To do this process we will require an auxiliary

array of same size so as to make a duplicate copy with a gap.

Algorithm 14 Library Sort:Re-balancing
INPUT:Sorted data but not uniformly gapped and re-balancing factor e.

OUTPUT:Sorted list of n items

while l < n do

if S [j ] ! = -1 then

reba[i ] = S [j ]

i++

j++

l++

for k=0 to e do

reba[i ] = -1

i++

end for

else

j++

end if

for k = 0 to i do

S [k ] = reba[k ]

end for

end while

4.3 Execution time based testing of library sort

algorithm

We have tested the library sort algorithm on a standard dataset [T10I4D100K

(.gz)] [31] by increasing the value of gap (ε) . The dataset contains the 1010228

items. We have tested on four cases. Table 4.1 shows the execution time in

microseconds of library sort algorithm using the standard dataset. By analyzing

the Table 4.1, we can see that when we increase the gap value between the

elements the execution time will decrease. By analyzing the Table 4.1, we can

see that when we increase the gap value between the elements the execution

time will decrease. The following figures show this effect. In all the figures X -
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axis represents the increasing value of the gap and the Y -axis shows the time in

microseconds.

Table 4.1: Execution Time of Library Sort Algorithm in Microseconds Based on

Gap Values

Epsilon Random Nearly Sorted Reverse Sorted Sorted

ε = 1 981267433 864558882 1450636163 861929937

ε = 2 729981576 620115904 1065247938 609647355

ε = 3 119727535 358670053 278810310 356489846

ε = 4 23003046 117188830 263693774 116590140

Figure 4.1: Execution time of random data using value of gaps

Figure 4.2: Execution time of nearly sorted data using value of gaps
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Figure 4.3: Execution time of reverse sorted data using value of gaps

Figure 4.4: Execution time of sorted data using value of gaps

We have plotted Figure 4.1 to 4.4 by using Table 4.1. By examining these

figures, we can see that how the execution time is decreasing when the gap value

between items is increasing. In Figure 4.1 to 4.4, we are representing the execution

time in microseconds in all the four cases of dataset.

The value of epsilon: when we increase the value of epsilon, the execution time

will decrease, but at some point, value of epsilon gets saturated point because

we are allocating more gaps, but these gaps are more than are actually required

for the operation, so it will only be an extra memory overhead because we need

more memory to store the elements. So in this way the space complexity of the
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algorithm increases linearly, when we increase the value of epsilon. The concept

of space complexity will be explained in the next section with the help of graph.

4.4 Memory based Testing of Library Sort

Auxiliary space complexity of library sort is O(n), but the space complexity is

not only limited to auxiliary space. It is the total space taken by the program

which includes the following.

1. Primary memory required to store input data (Mip)

2. Secondary memory required to store input data (Mis)

3. Primary memory required to store output data (Mop)

4. Secondary memory required to store output data (Mos)

5. Memory required to hold the code (Mc)

6. Memory required to working space (temporary memory) variables + stack

(Mw)

1) Mip: For Mip, we have to allocate memory of four bytes for each variable

(element). As we are having total of 1010228 elements, so it will consume 1010228

× 4 = 4040912 bytes, Again, to input these items in an array we will have an

index variable ‘a’ will of four bytes and 4 bytes for file pointer so it will be total

of 4040912 bytes + 4 bytes of file pointer = 4040916 bytes, and 16 bytes are used

for variable declared in the program so total space complexity taken by the Mip

= 4040932 bytes.

2) Mis: We will get this input as storage file in secondary storage, but in file

we store this data in a stream of bytes in character. For this, it will have slightly

larger memory in comparison to primary memory.

3) Mop: As we get the result either in input variable or in temporary variable,

it will not have requirement for storage on primary memory, but as we have to

write this data on to secondary storage it will require file pointer of 4 bytes.
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4) Mos: As we get the result in a temporary variable i.e. in Borland C++,

the output stored in str file and the size of Mos will be the size of str file and

it will be same for all four cases of dataset, because we are using the 1010228

elements for all the cases of dataset.

5) Mc: To calculate this space, we have to find the size of .exe files created in

windows for the discussed library sort program, as this program will be stored in

main memory for their execution. The size of the .exe file depends on the sorting

algorithms.

6) Mw: The space complexity of Mw of an algorithm depends on the variable

declared for the allocation. In our case we divided the memory in various parts

each having it own variables for specific functions.

Library Module: It is having its own three variable consuming up 4 × 3 = 12

Bytes of memory. In this function we have two functions called insertion and

re-balancing. The insertion module requires the maximum space (1 + ε)× n

× 4 bytes of memory to store the sorted data and temporary data during the

processing and 20 bytes for temporary variables. This module itself has two prime

modules: search and managetill, this modules consume the 20 bytes and 12 bytes

of memory. The re-balancing is also require extra space for adding the space in

the array which will again equal to (1 + ε) × n × 4 bytes of memory and 24

bytes of memory required for temporary variables. So the total memory will be

equal to = 2 × ((1+ ε) × n × 4 × 4 + 12 + 4 + 20 + 20 + 4 + 12 + 4 + 24 +

4). The details of these values have been described in the Table 4.2

In Table 4.2, we have seen the total space complexity taken by the library

sort using the dataset. From Table 4.2, we can see that there is no effect of

re-balancing factor, but there is an effect of epsilon values. When we increase

the gap value, the space taken by the program will also increase. We can see

this effect with the help of graph shown in Figure 4.5. In Figure 4.5, the X -axis

represents the value of epsilon and the Y -axis represents the memory occupied

by the library sort algorithm in bytes. We can see that space complexity of the

library sort algorithm increases linearly, when we increase the value of epsilon
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or gaps between the elements. It increases because we require more memory to

store the elements and it is directly proportional to the value of epsilon. Due to

this fact, the memory required is directly proportional to the value of epsilon,

where epsilon is (1 + ε)n.

Table 4.2: Total Memory in Bytes of Library Sort with Increasing Value of Gaps

and Re-balancing Factor

Re− balancing V alueofε Mip Mos Mop Mos Mc Mw Total

2

1 4040932 4932283 4 4932283 81920 16163752 30151174

2 4040932 4932283 4 4932283 81920 24245576 38232998

3 4040932 4932283 4 4932283 81920 32327400 46314822

4 4040932 4932283 4 4932283 81920 40409224 54396646

3

1 4040932 4932283 4 4932283 81920 16163752 30151174

2 4040932 4932283 4 4932283 81920 24245576 38232998

3 4040932 4932283 4 4932283 81920 32327400 46314822

4 4040932 4932283 4 4932283 81920 40409224 54396646

4

1 4040932 4932283 4 4932283 81920 16163752 30151174

2 4040932 4932283 4 4932283 81920 24245576 38232998

3 4040932 4932283 4 4932283 81920 32327400 46314822

4 4040932 4932283 4 4932283 81920 40409224 54396646

Figure 4.5: Memory occupied by library sort
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4.5 Re-balancing based Testing of Library Sort

As the re-balancing is done after inserting ai elements, this increases the size of

array. The size of array will depend on ε (number of spaces to be inserted). To

do this process we will require an auxiliary array of the same size so as to make

a duplicate copy with gap. Whether re-balancing is necessary afterai elements,

but it also amounts the cost and time of library sort algorithm and what will be

the suitable value for ‘a’ is the question. We have calculated re-balancing till a4

where a = 2,3,4 values with the value of gaps ε = 1,2,3,4. We have found that

when we increase the re-balancing factor ‘a’ from 2 to 4 then the execution time

of library sort algorithm will also increase. We can see this effect with the help

of Table 4.3 and graphs described in Figure 4.6 to Figure 4.9.

Table 4.3: Time taken by Library Sort Algorithm in Microseconds during Re-

balancing

Re− balancing V alueofε Random NearlySorted ReverseSorted Sorted

2

1 981267433 864558882 1450636163 861929937

2 729981576 620115904 1065247938 609647355

3 119727535 358670053 278810310 356489846

4 23003046 117188830 263693774 116590140

3

1 2622591059 2214715182 2832112301 3011802732

2 2103580421 1964645906 2585747568 2651992181

3 2043974421 1728175857 2195021514 1962122927

4 1620914312 1600879365 2130261056 1620374625

4

1 2942693856 2467933298 3239333534 3281368964

2 2705332601 2510103530 3154811065 2923182920

3 2676681610 2613423098 3013676930 2378347887

4 2611656774 2157740458 2993363707 2222906193

From Table 4.3, we can see that execution time of library sort is increasing

when the re-balancing factor will increase in all the cases of dataset. The following

graph is showing this effect.
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Figure 4.6: Re-balancing of library sort using random dataset

From Figure 4.6, we can see that execution time of library sort is increasing

when the re-balancing factor is increasing using the random dataset.

Figure 4.7: Re-balancing of library sort using reverse sorted dataset

From Figure 4.7, we can see that execution time of library sort is increasing

when the re-balancing factor is increasing using the nearly sorted dataset.
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Figure 4.8: Re-balancing of library sort using sorted dataset

From Figure 4.8, we can see that execution time of library sort is increasing,

when the re-balancing factor is increasing using the reverse sorted dataset.

Figure 4.9: Re-balancing of library sort using nearly sorted dataset

From Figure 4.9, we can see that execution time of library sort is increasing

when the re-balancing factor is increasing using the sorted dataset.

From Figure 4.6 to Figure 4.9, X -axis represents the value of epsilon and Y -
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axis represents the execution time in microseconds when the re-balancing factor

value is 2i, 3i, 4i. By analyzing the figures, we can see that the nature of data has

marginally effected on the re-balancing factor. If the re-balancing factor is 2i i.e

we have to re-balanced the elements in the following manner 20, 21, ...2n. Then,

the performance of algorithm is good because in the array, proper space is there to

insert the new elements. But the performance of algorithm is degraded if the re-

balancing factor increases from 2i to 4i because if we use the re-balancing factor 3i

i.e we have to re-balance the elements in the following manner 30, 31, ...3n. Then,

in the array there is no proper space to insert the new elements in the manner of

3i and 4i. So shifting of data is required to insert the new elements and the spaces

between many elements have been already consumed so in this way performance

degrades have a larger number of swapping to generate the spaces which is same

as that in the case of traditional insertion sort.

4.6 Conclusion

By execution time analysis, we have found that as we increase the value of epsilon

then the execution time will decrease but at some point the value of epsilon get

to a saturated point because we will have the extra spaces for the data to be

inserted in between.

By space complexity analysis, we have found that space complexity of the

library sort algorithm increases linearly. That is, when we increase the value of

epsilon the memory consumption is also increases in the same proportion.

By execution time analysis of re-balancing, we have found that when we

increase the re-balancing factor ‘a’ from 2 to 4 then the execution time of library

sort algorithm will also increase as it moves towards traditional insertion sort.

So, to find out the better result of library sort algorithm, the value of epsilon

should be optimal and re-balancing factor should be minimum or ideally equal

to 2.
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Chapter 5

Performance Enhancement of

Library Sort Algorithm with

Non-Uniform Gap

Distribution(LNGD)

Library sort, or gapped insertion sort is a sorting algorithm that uses an insertion

sort, but with gaps in the array to accelerate subsequent insertions.

5.1 Objective

Bender et al has suggested the library sort algorithm with uniform gap distribu-

tion. But what happens if we have many elements that belongs to the same place

in the array and there is only one gap after that element. So to overcome this

problem, we have proposed the library sort with non-uniform gap distribution

(LNGD).

The proposed algorithm is considered the concept of mean and median. In the

proposed technique, non-uniform gap is given based on the property of insertion
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sort. This property tells that more updates should be done in the beginning

of an array for generating more gaps. LNGD algorithm consists three steps,

first two steps are same as LUGD but the third step is different.The LNGD

algorithm consists of three steps. The first two steps will be the same as the

LUGD algorithm [77], but the third step will be different.

Step1. Binary Search with blanks: Lets see the working of step 1 with the

help of example.

Example:

1 -1 3 -1 5 -1 7 -1 9 -1

In the following array ‘-1’ shows the gaps in the array. The array position is

start from 0 up to 9. Now let search an element say 5.

low = 0

high = 9

mid = (0+9)/2 = 4 = S [4]

here S [4] = 5 we got the element and terminate the search.

1 -1 3 -1 -1 -1 7 -1 9 -1

In this array, we do not have element 5 but we are going to search it.

Here also low = 0

High = 9

Mid == (0+9)/2 = 4 = S [4]

S [4] = S [mid] = -1

In this case, we have to find m1 and m2 as a mid which are represented by

S [m1] and S [m2] greater than ‘-1’ in both the direction limiting to low and high

respectively. Here the value of m1 = S [2] = 3 and the value of m2 = S [6] = 7.

According to m1 and m2 values, we update the low and high to perform binary

search.
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Step2. Insertion: Let’s see the working of step 2 with the help of example.

Example:

We insert the elements in the manner of 2i in the array. i.e in the power of 2 .

This is stored in S [i ].

S [i ] = pow(2, i) where ‘i ’ is the pass number i.e i = 0, 1, 2, 3... if i = 0 then

S1 = 20 = 1. Now we search the position for the insertion element in the array

and add the element at position returned by the search function. Next time i =

1 then S1 = 21 = 2, and S [i ] = pow(2, i -1) to pow(2, i) i.e the value of S1 is 1

to 2 and so on for all values of ‘i ’.

Step3. Re-balancing: Re-balancing is done after inserting 2i elements

where i = 1, 2, 3, 4... and the spaces are added when re-balancing is called. In the

previous approach, the gaps were uniform in nature. In the proposed technique,

non-uniform gap distribution is given based on the property of insertion sort.

This property tells that more updates should be done in the beginning of an

array for generating more gaps. Gaps are generated using the equation (5.1.2).

Ratio = n ∗ ((µ/σ) /2) (5.1.1)

Here µ is mean and σ is standard deviation.

ee = 2 ∗ (n/ratio) (5.1.2)

Initially we have e+ee gaps, but ‘ee’ is decreased when we have parsed number

equal to the ratio.
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Algorithm 15 LNGD Re-balancing
INPUT: List of elements n and re-balancing factor e.

OUTPUT: List with non-uniform gaps.

Compute µ and σ

Ratio← n∗( µ/σ)/2
ee←2∗n/ratio
if (j% ratio ==0 and j>0 and e+ee>0 ) then

ee–

end if

while (l < n) do

if (S [j ] != -1) then

reba[i ] = S [j ]

i++

j++

l++

for (k=0 to ee+e) do

reba[i] = -1

i++

end for

else

j++

end if

for (k = 0 to i) do

S [k ] = reba[k ]

end for

end while

5.2 Performance Evaluation

Execution Time Testing and Comparison of LUGD and LNGD

We have tested the LUGD and LNGD algorithms on a dataset [T10I4D100K(.gz)]

[31] by increasing the value of the gap (ε). The dataset contains 1010228 items.

We have tested four cases of the data set.

(1) Random with repeated data (Random data)

(2) Reverse sorted with repeated data (Reverse sorted data)

(3) Sorted with repeated data (Sorted data)

(4) Nearly sorted with repeated data (Nearly sorted data)

Table 5.1, shows the execution time of LUGD and LNGD algorithms in microsec-
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onds using the above mentioned cases.

Table 5.1: Execution Time of Library Sort Algorithm in Microseconds Based on

Gap Values
Dataset Random Nearly Sorted Reverse Sorted Sorted

Value of ε LUGD LNGD LUGD LNGD LUGD LNGD LUGD LNGD

ε = 1 981267433 862909204 864558882 306063385 1450636163 1328993502 861929937 313078205

ε = 2 729981576 708580455 620115904 230939335 1065247938 1022310950 609647355 234697961

ε = 3 119727535 101921406 358670053 185759986 278810310 125152235 356489846 195120953

ε = 4 23003046 10557332 117188830 107729204 263693774 116417058 116590140 106897060

The performance of the LUGD and LNGD are compared with random data,

nearly sorted data, reverse sorted and sorted data. The execution time in micro-

seconds are presented in Table 5.1. The Results are presented for different value

of ‘ε’. Epsilon (ε) is the minimum number of gaps between the two elements. The

execution time comparison of LUGD and LNGD algorithms has also been shown

in Figure 5.1 to 5.4. In all Figure 5.1 to 5.4, the X -axis represents the different

value of gap and the Y -axis represents the execution time in microseconds.

Figure 5.1: Execution time comparison between LUGD and LNGD using random

data

Figure 5.1 shows the comparison of LUGD and LNGD for different values of

gap. It can be seen from the graph that the LNGD has outperformed LUGD.
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The maximum improvement in execution time by LNGD is 36.7% for the value

of ε = 4.

Figure 5.2: Execution time comparison between LUGD and LNGD using nearly

sorted data

Figure 5.3: Execution time comparison between LUGD and LNGD using reverse

sorted data

Figure 5.2 describes the execution time of the two algorithms LUGD and

LNGD on the nearly sorted data. We found major improvement in the case of

ε = 1. We also observed that the improvement in execution time by LNGD

is 64.59% at ε = 1. With observations, we have found that execution time is
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inversely proportional to the value of ‘ε’. The execution time is calculated as 8%

in the case of ε = 4.

In the case of reverse sorted data the trend for execution time is reversed. It

is nearly 8% for the ε = 1, and it further decreases for ε = 2, ε = 3 and ε = 4

up to 55%. The same has been shown in Figure 5.3.

Figure 5.4: Execution time comparison between LUGD and LNGD using sorted

data

Figure 5.4 describes the execution time of both the algorithms on the sorted

data, the improvement can be seen from the ε = 1 to ε = 4. It is maximum at ε

= 1 that is 63.67% and minimum at ε = 4 that is 8%.

5.3 Re-balancing based Testing and Compari-

son of LUGD and LNGD

We use re-balancing after inserting ai element, which increases the size of the

array. The size of the array depends on ‘ε’. In this process, we require an

auxiliary array of the same size therefore an array having the same values with

gaps. We have calculated re-balancing till ai where a = 2, 3, 4 and i = 0, 1, 2,

3, 4.... with the value of gaps ε = 1, 2, 3, 4.
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(A). Example of re-balancing using LUGD algorithm

(1). Example for ε = 1 and a = 2.

2i = 20, 21, 22, 23, 24

= 1, 2, 4, 8, 16

(1.1). Re-balance for 20 = 1

1 -1

(1.2). Re-balance for 21 = 2

1 2

After re-balancing, this array is as follows:

1 -1 2 -1

(1.3). Re-balance for 22 = 4

1 2 3 4

After re-balancing, the array is:

1 -1 2 -1 3 -1 4 -1

(2). Example for ε = 1 and a = 3.

3i = 30, 31, 32, 33, 34 .....

= 1, 3, 9, 27.....

(2.1). Re-balance for 30 = 1

1 -1
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(2.2). Re-balance for 31 = 3

In the above array only one space is empty. This shows that only one element

can be inserted. On the other hand, according to re-balancing factor 31 = 3 we

require two spaces in the array. In this situation we need to shift the data to make

space for the new element. In this way performance of the algorithm degrades

as we are having the larger number of swapping to generate the spaces which is

same as that in the case of traditional insertion sort.

(B). Example of re-balancing using LNGD algorithm

(1). Example for a=2.

2i = 20, 21, 22, 23, 24 ....

= 1, 2, 4, 8, 16 .....

In the proposed algorithm we have used two parameters ‘ee’ and ‘ratio’ which is

defined prior in the algorithm along with the value of gaps. To understand this

concept, we consider an example; say the list to be sorted is 1, 2, 3, and 4. The

average and standard deviation are calculated first. The mean and standard de-

viation are calculated to 2.5 and 1.2 respectively. The ratio and ‘ee’ is calculated

using equation (5.1.1) and (5.1.2). Ratio = 3. ee = 8/3 = 2 as integer The total

gaps is 1+2 = 3

(1.1). Re-balance for 20 = 1

After re-balancing, the array is:

1 -1 -1 -1

(1.2). Re-balance for 21 = 2

In this case initially j = 1 that means we have e+ee gaps that is equal to 3. At

second iteration ‘j ’ is equal to 2, now we have the condition that is j = ratio so

we decrement the value of ‘ee’ by 1. Initially we have 3 gaps, then 2 gaps.

After re-balancing, the array is:
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1 -1 -1 -1 2 -1 -1

(1.3). Re-balance for 22 = 4

1 2 3 4

After re-balancing, this array is as follows:

1 -1 -1 -1 2 -1 -1 3 -1 -1 4 -1

Initially have 3 gaps for j =1.

• For j =2, j %ratio is equal to zero, therefore ‘ee’ will be decremented by 1.

• For j =3, the value remains unchanged to 2 gaps.

• For j =4, again the value is decremented by 1 so there is only single gap.

(2). Example for a = 3.

3i = 30, 31, 32, 33, 34 ....

= 1, 3, 9, 27......

(2.1). Re-balance for 30 = 1

After re-balancing, the array is described as:

1 -1 -1 -1

(2.2). Re-balance for 31 = 3

1 2 3
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After re-balancing, the array is as follows:

1 -1 -1 -1 2 -1 -1 3 -1 -1

The spaces are calculated using the equation (5.1.2). In the similar manner,

re-balancing of the array for the remaining value of the ‘a’ is held till the re-

balancing is not possible. The reason for re-balancing not being possible is that in

the array according to requirement spaces is not possible. In this way performance

of algorithm degrades as we have larger number of swaps to generate the spaces

which is same as that in the case of traditional insertion sort.

Table 5.2 describes the execution time of the LUGD and LNGD algorithm

using different type of data set that are random data, nearly sorted data, reverse

sorted data and sorted data. Along with the different dataset value, the table also

describes the value of ‘ε’ and re-balancing factor ‘a’. The re-balancing comparison

of LUGD and LNGD algorithms is shown in Figure 5.5 to 5.8. From Figure 5.5

to 5.8, the X -axis represents the value of gap (ε) and re-balancing factor(a) and

Y -axis represents the execution time in microseconds.

Table 5.2: Execution Time of Library Sort Algorithm in Microseconds Based on

Gap Values
Dataset Random Nearly Sorted Reverse Sorted Sorted

Re− balancing Value of ε LUGD LNGD LUGD LNGD LUGD LNGD LUGD LNGD

2

ε = 1 981267433 862909204 864558882 306063385 1450636163 1328993502 861929937 313078205

ε = 2 729981576 708580455 620115904 230939335 1065247938 1022310950 609647355 234697961

ε = 3 119727535 106921406 358670053 185759986 278810310 125152235 356489846 195120953

ε = 4 23003046 14557332 117188830 107729204 263693774 116417058 116590140 106897060

3

ε = 1 2622591059 869209660 2214715182 308010395 2832112301 1556949795 3011802732 339671533

ε = 2 2103580421 709709631 1964645906 231895871 2585747568 1280383725 2651992181 249815851

ε = 3 2043974421 666999939 1728175857 185620741 2195021514 1239442185 1962122927 206018101

ε = 4 1620914312 657130080 1600879365 155075390 2130261056 1263332585 1620374625 170410859

4

ε = 1 2942693856 912631839 2467933298 300698051 3239333534 1656255915 3281368964 367329723

ε = 2 2705332601 484314092 2510103530 227562280 3154811065 1545638611 2923182920 266428823

ε = 3 2676681610 327850683 2613423098 183893005 3013676930 1366501241 2378347887 210265375

ε = 3 2611656774 146342570 2157740458 153786055 2993363707 1270043884 2222906193 181557846
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Figure 5.5: Re-balancing execution time comparison between LUGD and LNGD

using random data

Figure 5.5 describes the plot at random data for the different values of ‘ε’ and

re-balancing factor ‘a’. It is observed from Figure 5.14, as if we increase the re-

balance factor in the case of LUGD the execution time also increases significantly,

but in the case of LNGD the improvement of execution time achieved upto 94%

in comparison to LUGD.

Figure 5.6: Re-balancing execution time comparison between LUGD and LNGD

using nearly sorted data

Figure 5.6 shows the comparison of LUGD with LNGD at different gaps and
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re-balancing factors. Again the improvement is upto 92% at a = 4 and ε = 4.

Figure 5.7: Re-balancing execution time comparison between LUGD and LNGD

using reverse sorted data

Figure 5.7 shows the comparison of execution time of reverse sorted data at

the different values of ‘ε’ and re-balancing factor ‘a’. Initially, in this case results

are improved by 8% but maximum upto 57% at ε = 4 and a = 4.

Figure 5.8: Re-balancing execution time comparison between LUGD and LNGD

using sorted data

Figure 5.8 represents the result on the sorted data with the different value

of gaps and re-balancing factor. The result shows that maximum improvement
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achieved is upto 91% in comparison to that of LUGD.

5.4 Conclusion

The final conclusion of this chapter is that, the proposed approach of LNGD

proved to be a better algorithm in comparison to that of LUGD. We have achieved

an improvement that ranges from 8% to 90%. The improvement of 90% has

been found in the cases where the LUGD was performing poorer. We have also

found that the performance of LNGD is better for different values of re-balancing

factor which was not achieved in the case LUGD. The LNGD and LUGD both

algorithms are implemented in C language.

In future, we will investigate the locality of data in more details. This will

help not only in allocating the spaces accurately, but may also reduce the extra

spaces which have been allocated and will act as an overhead both on the space

and execution time of the program.
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Chapter 6

Performance Enhancement of

Bucket Sort using Hybrid

Algorithm

The bucket sort is a simple and non-comparison sorting algorithm [78] [64].

Bucket sort is useful only when the input number is distributed over a range.

In another word, bucket sort works based on the key range. The bucket sort

is also called bin sort [62] [79]. The working of the bucket sort algorithm is as

follows:

(1). The first array is set up for initial empty buckets.

(2). From the original array scatter each element over the buckets.

(3). Sort each bucket using some other sorting approach.

(4). After sorting, gather the elements in order from each bucket in the original

array.

The same working of bucket sort is also explained with the help of example as

shown in Figure 6.1.
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Figure 6.1: Example of Bucket Sort

In this example the array A[1...10] and the array B [0....9]. The sorted output

is obtained from concatenated in the order of the list from B[0], B[1]....B [80].

6.1 Objective

The bucket sort has two issues (1) Firstly it has the dynamic nature and the

memory is allocated for each bucket at run time. (2) The second issue is based on

the data distribution over the buckets. If the data is not equally distributed over

the buckets, then managing of buckets is a bit difficult. This allows us to perform

two tasks. (a) Optimize the memory requirement according to the elements in

a buckets, in this way the wastage of memory resources will be reduced. (b)

Manage the buckets when data is not equally distributed.

The idea behind the hybrid sort is to save the space and can provide better

results in terms of time. We would defined the threshold (τ) in order to design

the hybrid sort. The threshold is calculated for each bucket and different size

of data sets. It will helpful to decide the nature of data and to reduce the

memory consumption. We have tested three algorithms acts as a local sort in

the buckets are merge sort, count sort and proposed merge count is hybrid sort.

The testing has been done using sorting benchmark which has six type of test

cases. The derived results show that the proposed algorithm achieved the success
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in comparison of bucket with merge sort in both aspects (space and time). The

splitting of buckets is shown in the picture as follows in Figure 6.2.

Figure 6.2: Distribution of buckets

We have solved this problem using the threshold (τ) for the size of buckets.

The threshold is calculated for each bucket and different size of data sets. It will

helpful to decide the nature of data and to reduce the memory consumption.

In this chapter, we have designed the hybrid sort in order to overcome this

problem of bucket sort. The main contribution of the proposed work is as follows:

(1). The hybrid sort is a mixture of count and merge sort which acts as a local

sort inside the buckets to sort the data.

(2). Count sort consumes more space so to overcome this, the term threshold is

defined which is represented by ‘τ ’.

(3). The value of ‘τ ’ depends on the range and number of buckets.

(4). In the hybrid sort, if the number of inputs in a bin is greater or equal to

the threshold than count sort will run otherwise merge sort will run. This will

reduce the amount of auxiliary memory required by the bins.

6.2 Proposed Hybrid Sort Algorithm

The idea behind the hybrid sort is to save the space and that can also provide

better results in terms of time. We know that the count sort is a fastest sorting

algorithm, but consumes more space which is based on the range of elements to

be sorted. So, to provide the competitive results of the proposed hybrid sort our
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firstly we have used the count sort. To overcome the drawback of the count sort

in terms of space we have defined the term named as threshold and is represented

by the symbol ‘τ ’. The value of ‘τ ’ depends on the range and number of buckets.

It is given by the equation described below:

τ = R/B (6.2.1)

In the above equation R is the range of the element that can be easily identified

or it is obtained from the prior knowledge of the problem. In general the value

R is calculated by the expression given below.

R = MAX(A)−MIN(A) (6.2.2)

Here A represents the set of elements that provides the input to the bucket sort

and B is the number of buckets that are used for sorting. Now ‘τ ’ will guarantee

that if the element in a bucket are n then the maximum space required is also

n. This is further proved in theorem 1. If the number of elements in a particular

bucket are less than the ‘τ ’ then we have selected the merge sort algorithm which

is a second most efficient algorithm. The Auxiliary space required by the merge

sort is O(n). So we can say that we have designed an approach which is limited

the space complexity O(n). Now in case of time complexity proposed hybrid sort

have the complexity limited to O(nlogn) in the worst case and limited to O(n)

in best case.

Theorem 1: The maximum space requires by hybrid sort is restricted to

the number of elements in the bucket.

Proof : We can have the following case to prove our statements

Case 1: When we have very few elements in the bucket.

If we have few elements, then ‘τ ’ is greater than count this implies that we are

using the merge sort algorithm and we know that the auxiliary space required by

merge space is ‘n’ .

Case 2: When we have more elements in the bucket. If we have more element

in the bucket then ‘τ ’ is less or equal to the number of elements in the bucket,

as the buckets are equispaced and depend on a range. This implies that we are
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using the count sort algorithm and count sort is depends on the range which is

less than elements that is n. Hence, based on the case 1 and case 2 we can say

that the memory required by our proposed hybrid sort algorithm is less than or

equal to ‘n’ .

Figure 6.3: Flowchart of Proposed Hybrid Sort
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Algorithm 16 Proposed Hybrid Sort
INPUT: Unsorted list (A, n, Max, Min, B)

OUTPUT: List with non-uniform gaps.

τ = R/B

Evaluate count [] that contains the count in each bucket

Evaluate Min [] that contains the Min in each bucket

Evaluate Max [] that contains the Max in each bucket

For each j representing bucket B REPEAT step 6 and 7

if (count[j] ≥ τ) then

call count sort

else

call merge sort

end if

6.3 Implementation and Experimental Details

of Execution Time

Sorting benchmark has been used to test the algorithms. The data size has

varied from n = 1000 to n = 10000000. We have executed the three algorithms

which are bucket with count, bucket with merge and proposed hybrid sort. The

proposed hybrid sort contain the bucket with merge and count sort in order to

sort the input data. The Table 6.1 summarize the execution time of bucket with

merge sort in microseconds. Table 6.1 consists the execution time evaluation of

six types of test cases.

Table 6.2 summarizes the execution time of bucket with count sort in mi-

croseconds. Here also we have evaluated the execution time using six types of

test cases using sorting benchmark. The zero test case has achieved the lesser

execution time among others. It is because we are using one unique value in this

test case.

Table 6.3 summarizes the execution time of proposed hybrid approach in

microseconds. Here also we have evaluated the execution time using six types of

test cases using sorting benchmark. The zero test case has achieved the lesser

execution time among others. It is because we are using one unique value in

this test case. The zero test case has the greater execution time at n=1000 in
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comparison to uniform test case. It is observed that as we increase the input

value the execution time also increases and it is measured and compared that

where algorithms time are more predictive. So, if we analyze the Table 6.3 then

we can see that zero test case is more efficient than others.

Table 6.1: Execution Time in Microseconds of Bucket with Merge Sort
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 288 288 255 369 299 157

5000 10 500 1561 1616 1871 893 1337 844

10000 10 1000 3187 3214 2345 1770 3847 1706

25000 10 2500 8301 8167 7453 7135 5971 4431

50000 10 5000 17326 17363 11407 13258 11804 10924

100000 10 10000 126330 45763 22332 23236 17315 21636

500000 10 50000 126330 96887 74469 44236 66083 78691

1000000 10 100000 202372 267329 106931 88435 195731 143183

2500000 10 250000 428226 411191 273599 229846 235101 263882

5000000 10 500000 921813 873912 476948 473334 540467 442345

10000000 10 1000000 1763002 1787513 1020353 979579 1031871 888723

Table 6.2: Execution Time in Microseconds of Bucket with Count Sort
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 210 209 126 328 104 105

5000 10 500 628 865 547 717 291 490

10000 10 1000 1992 1421 1055 1205 793 954

25000 10 2500 4164 3123 2197 3028 1979 2011

50000 10 5000 8030 6395 5282 5227 4090 4096

100000 10 10000 15658 8056 10737 10221 9380 9118

500000 10 50000 37869 38936 36503 22833 26704 26677

1000000 10 100000 66718 55180 54219 40114 45151 49566

2500000 10 250000 139848 132886 111055 103042 107318 70051

5000000 10 500000 277671 262354 233062 198703 190298 120295

10000000 10 1000000 546347 543388 462087 393468 378365 251691
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Table 6.3: Execution Time in Microseconds of Proposed Hybrid Approach
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 277 461 338 462 401 365

5000 10 500 1553 1610 1104 1025 952 860

10000 10 1000 2919 3020 2052 1728 1904 1063

25000 10 2500 5981 7333 3840 4265 3480 2057

50000 10 5000 12492 14164 6912 7958 6720 4016

100000 10 10000 20192 24604 12318 10201 12103 9312

500000 10 50000 64534 70311 48866 27132 31762 36509

1000000 10 100000 111528 117848 102161 53504 50300 54940

2500000 10 250000 231000 288767 137958 126048 122385 94768

5000000 10 500000 570573 625717 273679 294370 248762 149459

10000000 10 1000000 1135702 1251074 574789 606673 507880 285924

The Figure 6.4 to 6.9 are presented by using the values of Table 6.1, 6.2 and

6.3. In all the Figure 6.4 to 6.9.

• P stands for proposed hybrid approach.

• M stands for bucket with merge sort.

• C stands for bucket with count sort.

Figure 6.4: Execution time comparison of uniform test case

In Figure 6.4 to 6.9, the X -axis represents the size of the input data and

the Y -axis represents the execution time in microseconds. If we compare the
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algorithms at the small size of the input then we will not recognize that which

algorithm is more efficient. So to recognize the efficient algorithm we have tested

the algorithm at the large size of the input. In the Figure 6.4 to 6.9, we can see

that when the input size is small then all the discussed algorithms behave nearly

equal, but we can see the difference at large. The execution time comparison

of bucket sort using uniform test case is illustrated in Figure 6.4. The figure

infers that proposed approach achieved the execution time greater than bucket

with merge sort, but less than bucket with count sort. The proposed approach is

given 35 times faster results than bucket with merge sort.

Figure 6.5: Execution time comparison of bucket test case

The execution time comparison of bucket sort using bucket test case is il-

lustrated in Figure 6.5. The figure depicts that proposed approach achieved the

execution time greater than bucket with merge sort, but less than bucket with

count sort. In this test case proposed approach achieved 30 times faster results

than bucket with merge sort.
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Figure 6.6: Execution time comparison of gaussian test case

The execution time comparison of bucket sort using Gaussian test case is

illustrated in Figure 6.6. The figure infers that proposed approach achieved the

execution time greater than bucket with merge sort, but less than bucket with

count sort. In this test case proposed approach achieved the 43 times faster

results than bucket with merge sort.

Figure 6.7: Execution time comparison of sorted test case

The execution time comparison of bucket sort using sorted test case is il-
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lustrated in Figure 6.7. The figure depicts that proposed approach achieves the

execution time greater than a bucket with merge sort, but less than bucket with

count sort. Here proposed approach achieves the 38 times faster results than

existing one.

Figure 6.8: Execution time comparison of staggered test case

Figure 6.9: Execution time comparison of zero test case

The execution time comparison of bucket sort using staggered test case is

illustrated in Figure 6.8. The figure infers that proposed approach achieved the
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execution time greater than bucket with merge sort, but less than bucket with

count sort. The proposed approach achieved 50 times faster results in comparison

to bucket with merge using staggered test case. The staggered test case achieved

second most efficient results in comparison to other test cases.

The execution time comparison of bucket sort using zero test case is illus-

trated in Figure 6.9. The figure infers that proposed approach achieved the

execution time better than bucket with merge sort, but almost comparable to

bucket with count sort. Here proposed approach achieved 63 times faster results

in comparison to the existing one. It is the for most efficient test case among

others.

6.4 Implementation and Experimental Details

of Auxiliary Memory Occupied by The Al-

gorithms

Table 6.4: Auxiliary Memory Occupied by Bucket with Merge Sort in Bytes
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 4000 4000 4000 4000 4000 4000

5000 10 500 20000 20000 20000 20000 20000 20000

10000 10 1000 40000 40000 40000 40000 40000 40000

25000 10 2500 100000 100000 100000 100000 100000 100000

50000 10 5000 200000 200000 200000 200000 200000 200000

100000 10 10000 400000 400000 400000 400000 400000 400000

500000 10 50000 2000000 2000000 2000000 2000000 2000000 2000000

1000000 10 100000 4000000 4000000 4000000 4000000 4000000 4000000

2500000 10 250000 10000000 10000000 10000000 10000000 10000000 10000000

5000000 10 500000 20000000 20000000 20000000 20000000 20000000 20000000

10000000 10 1000000 40000000 40000000 40000000 40000000 40000000 40000000

In this section we have calculated the total auxiliary memory occupied by the

already discussed algorithms. The memory is calculated for all the six types of

test cases. We have varied the data from n = 1000 to n = 10000000 for memory
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calculation.

The Table 6.4 summarizes the results of memory occupied by the bucket

with merge sort in bytes. As we know that the space complexity of merge sort is

O(n). Here inside the bucket we are using the merge sort as a local sort in order

to sort the data. So, we can easily calculate the memory by using the input value

multiplied by the size of integer.

The Table 6.5 summarizes the results of auxiliary memory occupied by the

bucket with count sort in bytes. The memory occupied by count sort is based on

range of the key value. In this paper, we have used the range of the key value

of count sort from 0 to 65565. If the range of key is less then the memory will

be occupied by the count sort is less and vice versa. In Table 6.5, Zero test case

has very less memory in comparison to other test cases. It is because in Zero

test case we use only one unique value which comes in one range value. In Table

6.5 some values are repeated. It is because we have multiple entries for the same

element in the test case then the memory is calculated as the multiplication of

number of times the element occurs and size of integer.

Table 6.5: Auxiliary Memory Occupied by Bucket with Count Sort in Bytes
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 257912 257912 205096 257912 1548 4

5000 10 500 261544 261544 222884 261544 312 4

10000 10 1000 261884 261884 230908 261884 144 4

25000 10 2500 261976 261976 246196 261976 48 4

50000 10 5000 262064 262064 248040 262064 24 4

100000 10 10000 262084 262084 248836 262084 24 4

500000 10 50000 262096 262096 253488 262096 24 4

1000000 10 100000 262096 262096 254892 262096 24 4

2500000 10 250000 262096 262096 255840 262096 24 4

5000000 10 500000 262096 262096 255840 262096 24 4

10000000 10 1000000 262096 262096 257988 262096 24 4

The Table 6.6 summarizes the results of auxiliary memory occupied by the

proposed hybrid sort in bytes. The hybrid approach is a mixture of count and

merge sort. So in Table 6.6 some test cases have, the less memory and some have
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more memory in comparison to bucket with count sort. If we increase the range

of key, then bucket with count will occupy the more space and in this case our

proposed approach will be more efficient in both aspects (time as well as space).

Table 6.6: Auxiliary Memory Occupied by Proposed Hybrid Sort in Bytes
Data Size Buckets Threshold Uniform Bucket Gaussian Sorted Staggered Zero

1000 10 100 79136 2504 104160 79136 2260 4

5000 10 500 140140 2520 108400 140140 10052 4

10000 10 1000 128164 2520 111904 128164 20024 4

25000 10 2500 196328 2520 122368 196328 50008 4

50000 10 5000 223824 2520 139800 223824 100004 4

100000 10 10000 329596 2520 173480 329596 200000 4

500000 10 50000 955712 2520 449492 955712 1000000 4

1000000 10 100000 2127696 2520 793968 2127696 2000000 4

2500000 10 250000 4147604 2520 1828480 4147604 5000000 4

5000000 10 500000 12090312 2520 3550968 12090312 10000000 4

10000000 10 1000000 24083760 2520 6996692 24083760 20000000 4

The Figure 6.10 to 6.15 is represented by using the values of Table 6.4, 6.5

and 6.6. In all the Figure 6.10 to 6.15.

• P stands for proposed hybrid approach.

• M stands for bucket with merge sort.

• C stands for bucket with count sort.

In Figure 6.10 to 6.15, the X -axis represents the size of the input data and the

Y -axis represents the memory in bytes.

The memory comparison between proposed hybrid sort, bucket with merge

sort and bucket with count sort using Uniform test case is shown in Figure 6.10.

By analyzing this figure we found that proposed approach has taken less amount

of memory in comparison to bucket with merge sort. The hybrid sort achieved

39 times more efficient memory consumption than bucket with merge sort. The

suggested approach is not showing the better result in comparison to bucket with

count. It is because the range of key element is used from 0 to 65565. So the

elements in bucket with count sort are repeated so consumes less space, but if we

increase the range of key element then our proposed approach will be efficient.
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Figure 6.10: Memory comparison of uniform test case

Figure 6.11: Memory comparison of bucket test case

The memory comparison between proposed hybrid sort, bucket with merge

sort and bucket with count sort using Bucket test case is shown in Figure 6.11.

The hybrid sort has achieved more efficient memory results compared to bucket

with merge and count sort. It is because in bucket test case the nature of data is

random and repetition of data is less. So the bucket with count sort is not more
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efficient than proposed hybrid sort till the range of key element is not changed.

The hybrid sort gives 99 times more efficient results of memory in comparison to

bucket with merge sort in the case of memory.

The memory comparison between proposed hybrid sort, bucket with merge

sort and bucket with count sort using Gaussian test case is shown in Figure 6.12.

In this test case the proposed hybrid sort is more efficient than bucket with merge

and can be more efficient than bucket with count sort when we increase the range

of key element.The hybrid sort achieved 82 times more efficient results of memory

than bucket with merge sort.

The memory comparison between proposed hybrid sort, bucket with merge

sort and bucket with count sort using Sorted test case is shown in Figure 6.13.

The hybrid sort achieved 39 times more efficient results of memory than bucket

with merge sort. The hybrid sort will also be more efficient than bucket with

count sort when the range of key element will be high.

Figure 6.12: Memory comparison of gaussian test case

The memory comparison between proposed hybrid sort, bucket with merge

sort and bucket with count sort using Staggered test case is shown in Figure 6.14.

The hybrid sort achieved 50 times more efficient results of memory than bucket
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with merge sort. The hybrid sort will also be more efficient than bucket with

count sort when the range of key element is high.

Figure 6.13: Memory comparison of sorted test case

Figure 6.14: Memory comparison of staggered test case
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6.5 Conclusion and Future Work

The final conclusion of this chapter is that, the obtained results shows that hybrid

sort is efficient in terms of execution time and memory consumption than the

bucket with merge sort. In case of bucket with count sort algorithm the results

are always seen on top this is due to the reason that the range of the key elements

is fixed. The range of key element taken between 0 to 65565 still in some cases

we managed and got the space consumption almost equal to the count sort.

In future we can further classify other sorting algorithm like quick sort based

on the number of elements in bucket which will not only make the working faster

of bucket sort but also will reduce the time.
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Chapter 7

Performance Enhancement of

Bubble Sort using GPU

Computing

7.1 Objective

Bubble sort is a comparison based sorting algorithm. The analysis of bubble sort

using many core GPUs was previously unknown. The paper also presents the

speedup achieved by the parallel bubble sort over sequential. The bubble sort

(parallel & sequential) is tested using sorting benchmark. The sorting benchmark

consists various test cases which are Uniform, Gaussian, Zero, Bucket, Staggered

and Sorted test cases. On the basis of experimental analysis, parallel bubble sort

achieved 37229 times faster execution time using zero test case and 6375 times

faster using sorted test case at n = 2500000 and T = 512. The best case time

complexity of the parallel bubble sort is reduced O(n) to O(1) because of the

GPU.
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7.2 Roadmap of GPU Sorting Algorithms

Greb et al presented the parallel sorting based on stream processing architecture

in the year 2006. The proposed sorting is based on bitonic sort who is adaptive.

The optimal time complexity of proposed approach achieved O(nlogn)/p). The

proposed algorithm is faster than sequential sorting. The proposed algorithm is

designed on modern GPU, so the name GPU-ABiSort O(nlogn)/p)[81].

Inoue et al proposed the AA-sort which is parallel sorting algorithm. AA-

sort stands for Aligned-Access Sort. AA-sort proposed for shared memory mul-

tiprocessors. The sequential version of the AA-sort is more beneficial for IBMs

optimized sequential sorting using SIMD instructions[82].

Sintorn et al presented the fast algorithm to sort huge data using modern

GPU. The implementation of the algorithm is fast due to the GPU. The proposed

algorithm performed better than bitonic sort algorithms for the input list with

more than 512k elements. The suggested approach is 6-14 times quicker than the

single CPU quick sort of 1-8M elements [83].

Cederman et al presented the GPU Quick Sort. The proposed algorithm is

extremely capable and suitable for parallel multi-core graphics processors. GPU

quick sort performance represents the better performance than the fastest known

GPU based sorting algorithms such as radix and bitonic sort [84].

Rozen et al presented the adoption of the bucket sort algorithm. The pro-

posed algorithm is entirely run on the GPU. The proposed algorithm is imple-

mented on GPU using OpenGL API [85]

Baraglia et al showed that how the graphics processor used as a coprocessor

to speed up the algorithm and CPU also allowed doing the some other task. The

proposed algorithm is used to memory efficient data access pattern to maintain

the minimum number of access to the memory of the chip. The implementation

results show the improvement in the GPU based sorting in order to CPU based

sorting [86].
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Leischner et al presented the GPU sample sort algorithm. The sample merge

sort is the efficient comparison based sorting algorithm for distributed memory

architecture. Previously the sample sort algorithm was unknown for the GPU

[29].

Kukunas et al presented the GPU merge sort. In todays life high data

throughput and computational power are increasing. The GPGPU architecture

is created by NVIDIA. The GPU merge sort is highly efficient in comparison to

a sequential version [87].

Oat et al presented the technique for sorting data into spatial bins using

GPU. The proposed technique takes the unsorted data as input and scatters the

points in sorted order into the buckets. The author proposed method is used to

implement a form of bucket sort using GPU [88].

Huang et al proposed the empirical optimization technique. The empirical

optimization technique is also important for sorting routines using GPU. The

radix sort generated the highly productive code for NVIDIA GPU with a vari-

ety of architecture specification. The paper outcome showed that the empirical

optimization technique is quite successful. The resulting code was more efficient

than radix sort [89].

Ye et al presented GPU warp sort to carry out a comparison based parallel

sort on the GPU. The warp sort is nothing but contain the bitonic sort followed

by merge sort. The proposed algorithm achieved the high staging by depicting

the sorting task on the GPU. The experimental results of GPU- Warpsort work

well on various kinds of input distribution [90].

Peters et al presented the Batchers bitonic sorting network using CUDA

hardware with GPUs. The arbitrary numbers has been taken as input and as-

signed compare-exchange operation to threads using adapted bitonic sort. The

proposed algorithm has greatly increased the performance of implementation [91].

Peters et al presented the merge-based external sorting algorithm using

CUDA sanction GPUs. The production influence of memory transfer is reduced
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using GPU. The better utilization of the GPU and load balancing is achieved.

The performance of the algorithm is demonstrated by extended testing. The two

main problems occur when using external sorting on GPUs [92].

Satish et al reported the comparison and non-comparison based sorting al-

gorithms on CPUs and GPUs. The author has extended the work to the Intel

Many Integrated Core (MIC) architecture. The radix sort evaluated on Knights

Ferry and obtained the performance gain of 2.2X and 1.7 X. The production of

the GPU radix sort improves nearly 1.6X over previous outcomes [93].

Helluy presented the portable OpenCL implementation of the radix sort.

The algorithm was tested on several GPUs or CPUs in order to access the good

performance. The implementation was also applied to the Particle-In-Cell (PIC)

sorting. The application of the PIC is plasma physics simulations [94].

Krueger et al presented a technique, differential updates which are used to

permit rapid modifications. The lead storage is allowed to the database to main-

tain data storage for accommodating the modifying queries. The author also

presented the parallel dictionary slice merge algorithm and also GPU parallel

merge algorithm that achieves 40% more throughput in comparison to CPU [95].

Misic et al represented an effort of sorting algorithms to analyze and imple-

ment in the graphics processing unit. Three sorting algorithms evaluated on the

CUDA architecture. The evaluated algorithms are quick, merge and radix sort.

CUDA platform used the NVIDIA GPU to execute applications [96].

Peters et al presented the novel optimal sorting algorithm which is similar

to the adaptive bitonic sort. The popular parallel merge based sorting algorithm

is the adaptive bitonic sort. It uses the tree like data structure to achieve the

optimal complexity called a bitonic tree. The author presented the execution of

the hybrid algorithm for GPUs based on bitonic sort [97].

Jan et al al presented examines three extensively used parallel sorting al-

gorithms. The algorithms are Odd-Even sort, rank sort and bitonic sort. The

comparative analysis is performed in terms of sorting rate, sorting time and
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speedup on CPU and different GPU architectures. The author achieved the high

speed-up of NVIDIA quadro 6000 GPU for min-max butterfly network reaching

much lower sorting for high data [98].

Munavalli developed a novel sorting algorithm on the GPU. Author focused

on the vital problem. Author presented an efficient sorting algorithm which is

Fine Sample Sort (FSS). The proposed algorithm extends and outperforms the

sample sort algorithm. The results have shown that FSS outperforms sample sort

by at least by 26% and on average 37% of data size ranging from 40 million and

above for various input distributions [99].

Thouti et al presented the comparative performance analysis of various sort-

ing algorithms. The algorithms are bitonic and parallel radix sort. Author im-

plemented both the algorithms in OpenCL and compared with the quick sort

algorithm. The author used the Intel Core2Due CPU 2.67 GHz and NVIDIA

Quadro FX 3800 as GPU for the implementation [100].

Zurek et al described the implementation results for a few diverse parallel

sorting algorithms using GPU cards and multi-core processors. The author pre-

sented the hybrid algorithm and executed on both platforms CPU and GPU. The

comparison of many core and multi-core is lacking. The threads are grouped in

blocks and the blocks are grouped in grids [37].

Panwar et al used the GPU architecture for solving the sorting problem.

The highly parallel computing nature of GPU architecture is utilized for sorting

purposes. The author considered the input array in the form of 2D matrix which

is used for sorting. The modified version of merge sort is applied in that matrix.

This work performed much efficient sorting algorithm with reduced complexity

[101].

Garcial et al presented the fast data parallel implementation of radix sort

using the Direct Compute software development kit (SDK). Author also discussed

the optimization strategies in detail that are used to increase the performance

of radix sort. The paper share the insights should be used in GPGPU (General
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Purpose Graphics Processing Unit). Finally the author discussed how radix sort

can be used to accelerate ray tracing [102].

Gluck et al introduced a method for fast quadtree construction on the GPU.

The level-by-level approach is used to construct a quadtree. Quadtree is used for

the spatial segmentation of lidar data points using a grid digital evaluation model

(DEM). The author introduced an algorithm which is suitable for quadtree con-

struction using GPU. The suggested algorithm reduces the construction problem

of bucket sort [103].

Ye et al presented the GPU based sorting algorithm which is GPUMemSort.

It achieved the highest performance in sorting. It has consisted two algorithms

[104].

Polok et al focused on the implementation of extremely productive sorting

routines for the sparse linear algebra operations. Testing results show that the

suggested approach outperforms the other similar implementations. Author im-

plementation is bandwidth efficient because sorting rate is achieved by it compare

to the theoretical upper bound on memory bandwidth [105].

Mu et al described the bitonic sort algorithm in detail and implementation

is done on CUDA architecture. The two effective optimization implementation

details are conducted at the same time using the characteristics of the GPU

which improves the efficiency. The experimental results show that GPU bitonic

sort have 20 times more speed up to the CPU quick sort [106].

Xiao et al proposed the high performance approximate sort algorithm based

on the CUDA parallel computing architecture running on multi-core GPUs. The

algorithm divides the input into distribution multiple small intervals. The results

showed that approximate sort is two times faster than radix sort and far exceeds

all the GPUs-based sorting [107].

Ajdari et al described the modification of the Odd-Even sort. The modifica-

tion of the algorithm consists in the ability to work with the blocks of elements

instead working with individual elements. The modification is done using the
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CUDA technology. The results showed that sorting of integers in CUDA envi-

ronment is dozens of times faster [108].

Neetu et al presented the GPU merge and quick sort. The objective of the

paper is to evaluate and analyze the achievement of merge and quick sort using

GPU technology. Author also evaluated the parallel time and space complexity

of both algorithms using dataset [63].

Table 7.1: Summary of the various articles
Author Year Work Done

Greb et al 2006 The authors proposed the ABiSort

Inoue et al 2007 The authors proposed the AA-sort

Centurion et al 2008 GPU-sorting using a hybrid algorithm

Cederman et al 2008 GPU quicksort for graphics processors

Rozen et al 2008 GPU bucket sort algorithm

Oat et al 2008 Efficient spatial binning on the GPU

Baraglia et al 2009 Sorting using bitonic network with CUDA

Leischner et al 2009 GPU sample sort

Kukunas et al 2009 GPGPU Parallel Merge Sort Algorithm

Huang et al 2009 An empirically optimized radix sort for gpu

Ye et al 2010 Comparison based sorting algorithm using GPU

Peters et al 2010 In-place sorting which is fast using cuda based on bitonic sort

Peters et al 2010 Parallel external sortusing CUDA-enabled GPU

Satish et al 2010 Fast sort which is based on cpus, gpus and intel mic architectures

Helluy 2011 Radix sort algorithm in OpenCL

Harada et al 2011 Introduction to GPU Radix Sort

Krueger et al 2011 Efficient Merge in In-Memory Databases using GPU

Misic et al 2011 Data sorting using graphics processing units

Peters et al 2012 Adaptive bitonic sort for many-core architecture

Jan et al 2012 Fast parallel sorting algorithms on GPUs

Munavalli 2012 Efficient Algorithms for Sorting on GPUs

Thouti et al 2012 Parallel Sorting Algorithms for GPU Architecture using Open Cl method

Zurek et al 2013 Parallel sorting compared with many hardware

Panwar et al 2014 GPU Matrix Sort (An Efficient Implementation of Merge Sort)

Garcia et al 2014 Fast Data Parallel Radix Sort

Gluck et al 2014 Fast GPGPU Based Quadtree Construction

Ye et al 2014 GPUMemSort

Polok et al 2014 Radix sort which is fast for sparse linear algebra on GPU

Mu et al 2015 The implementation and optimization of Bitonic sort algorithm based on CUDA

Xiao et al 2015 High Performance Approximate Sort Algorithm Using GPUs

Ajdari et al 2015 A Version of Parallel Odd-Even Sorting Algorithm Implemented in CUDA Paradigm

Neetu et al 2015 Merge and quick sort using GPU computing
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7.3 Experimental Analysis of Sequential and Par-

allel Bubble Sort

Sorting benchmark has been used for testing the bubble sort. We have practiced

the sequential and parallel bubble sort on six types of test cases using GPU com-

puting with CUDA hardware. Table 7.2, displays the execution time in seconds of

the sequential bubble sort. The ‘n’ is the size of the data used for the algorithm.

The value ‘n’ is varied from 500000 to 2500000.

Table 7.2: Execution time in seconds of sequential bubble sort

n Uniform Gaussian Zero Staggered Bucket Sorted

500000 499.956 506.071 86.671 429.294 588.499 107.913

1000000 2071.283 2057.546 408.43 1868.969 2739.964 582.816

1500000 4677.309 5139.387 918.44 4849.295 6039.228 1348.617

2000000 8099.214 7669.999 2079.229 7964.588 11159.55 4126.261

2500000 17099.99 17134.94 37229.195 16179.63 15738.54 6375.703

Table 7.3, displays the execution time in seconds of the parallel bubble sort

using different types of test cases. The input size is represented by ‘n’ and threads

is denoted by ‘T ’. The values of ‘T ’ vary from 1 to maximum 1024. The threads

increase in the power of 2. The CUDA hardware version 2.1 has the total of 1024

threads per block so the maximum value of thread is selected as 1024.

Next, we evaluated the speedup achieved by a parallel bubble sort over the

sequential bubble sort. Speedup measures performance gain achieved by paral-

lelizing a given application over sequential application. From Table II, it can be

observed that the execution time is minimum when the number of threads is 512.

The performance of algorithm got degraded at T = 1024. The reason behind this

is that, the data we have taken is not evenly distributed over the threads. So,

some of the threads are executed ideally and degrading the overall performance

of the algorithm. The speedup for all the six mentioned test cases is shown in

Table 7.3 and Figure 7.1 to 7.6. The X -axis represents the size of data and the

Y -axis represents the speedup achieved by the parallel bubble sort. We have
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calculated the speedup only for T = 512, similarly speedup can be calculated for

the remaining values of T.

Table 7.3: Execution time in seconds of parallel bubble sort
n/T Test case 1 2 4 8 16 32 64 128 256 512 1024

500000

Uniform 4874.8 3555.6 1925.6 1218.1 629.3 326.5 176.3 129.2 129.1 129 149.3

Gaussian 4875.2 3525.9 1915.7 1219.8 629.5 325.4 175.2 129.4 129.3 129.2 149.3

Zero 0.0358 0.0262 0.0093 0.0054 0.0032 0.0022 0.0017 0.0016 0.0016 0.0018 0.0021

Staggered 4775.2 3425.9 1815.7 1119.8 616 315.8 167.2 125.4 125.3 125.3 145.3

Bucket 4695.2 3394.9 1794.7 1198.8 585.5 298 159.4 129.3 129.6 129.2 149.4

Sorted 0.03576 0.02631 0.0094 0.00535 0.00326 0.00216 0.00082 0.00062 0.00062 0.00059 0.00067

1000000

Uniform 18989.6 13449.8 6989.6 3753.7 1999.8 1289.9 689.4 507.7 505.4 505.3 583.4

Gaussian 18935.6 13416.7 6935.6 3725.6 1959.7 1236.6 615.6 486.3 484.6 479.6 520.3

Zero 0.0619 0.0427 0.0269 0.0098 0.0053 0.0033 0.0023 0.002 0.0021 0.0023 0.0026

Staggered 18988.6 13477.8 6988.5 3788.4 1988.9 1277.6 688.9 574.3 571.6 568.6 611.3

Bucket 18815.6 13339.8 6839.5 3659.4 1989.8 1199.6 659.8 527.4 513.4 511.6 615.3

Sorted 0.06187 0.04265 0.02701 0.0098 0.00532 0.00322 0.00232 0.00206 0.00201 0.00099 0.00213

1500000

Uniform 60566.7 31457.7 15577.6 8358 4589.6 2241.7 1254.8 1146.6 1135.9 1132 1323.6

Gaussian 60511.7 31411.7 15521.9 8305.7 4513.6 2111.7 1202.6 1105.7 1102.7 1101.7 1310.7

Zero 0.0861 0.059 0.0352 0.0232 0.0085 0.0043 0.0028 0.0025 0.0025 0.0026 0.0032

Staggered 60521.7 31396.6 15488 8293.9 4489.9 2079.7 1189.8 1098.8 1088.7 1079.7 1289.7

Bucket 60411.7 30336.6 14428 8183.9 4579.6 2019.7 1099.9 1078.8 1068.7 1059.7 1309.7

Sorted 0.08624 0.059 0.03521 0.02322 0.00851 0.00438 0.00275 0.00238 0.00237 0.0023 0.00262

2000000

Uniform 90845.8 46329.8 24345.8 12845.7 6838.9 3875.7 2056.7 1668.9 1649.9 1616.7 2016.6

Gaussian 90659.3 46189.6 24189.6 12689.5 6679.6 3712.6 2002.6 1602.7 1600.7 1509.6 1909.6

Zero 0.2021 0.0752 0.0436 0.0276 0.0019 0.0054 0.0033 0.0029 0.012 0.0011 0.0036

Staggered 90759.3 46289.9 24289.5 12789.2 6779.6 3799.9 2069.9 1602.7 1509.7 1504.6 1899.6

Bucket 90610.3 45124.9 23249.5 11779.2 6689.6 3689.9 2000.8 1482.7 1479.7 1464.6 1819.6

Sorted 0.20196 0.07515 0.04359 0.02761 0.00996 0.00536 0.00342 0.00281 0.00279 0.0027 0.0031

2500000

Uniform 166205.5 82211.7 41817.7 22834.8 11887.7 7834.9 3376.5 2383.7 2354.9 2344.7 2884.9

Gaussian 155803.7 82204.8 41253.6 22765.6 11754.6 7811.6 3332.7 2326.5 2323.5 2322.5 2832.3

Zero 0.2281 0.0913 0.052 0.0321 0.0219 0.0079 0.0035 0.0029 0.0028 0.0027 0.0039

Staggered 155898.7 82298.8 41353.9 22865.2 11854.6 7897.6 3389.9 2332.5 2324.5 2322.5 2889.3

Bucket 155721.7 82198.8 41213.9 22745.2 11744.6 7767.7 3299.7 2229.5 2224.5 2222.5 2829.3

Sorted 0.22802 0.0916 0.05196 0.0321 0.02186 0.00787 0.00386 0.00333 0.00328 0.0032 0.00367

Table 7.4: Speedup achieved by parallel bubble sort at T =512
T n Uniform Gaussian Zero Staggered Bucket Sorted

512 500000 3.875628 3.389625 48150.56 3.426129 4.554946 161064.2

512 1000000 4.099115 4.290129 177578.3 3.286966 5.355676 588703

512 1500000 4.131898 4.664961 353246.2 4.491336 5.698998 586355.2

512 2000000 5.00972 5.080815 1890208 5.293492 7.619521 1528245

512 2500000 7.29304 7.3778 13788591 6.966471 7.814581 1992407
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Figure 7.1: Speedup achieved by parallel bubble sort using uniform test case

The speedup achieved by the parallel bubble sort over sequential using uni-

form test case is presented in Figure 7.1. The topmost speedup obtained 7 times

at n = 2500000.

Figure 7.2: Speedup achieved by parallel bubble sort using gaussian test case

The speedup acquired by the parallel bubble sort over sequential using Gaus-

sian test case is demonstrated in Figure 7.2. The maximum speedup achieved 7

times at n = 2500000.
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Figure 7.3: Speedup achieved by parallel bubble sort using zero test case

The speedup concludes by the parallel bubble sort over sequential using zero

test case is represented in Figure 7.3. The best case of bubble sort occurs, when

the data is sorted or unique. In zero test case, one unique value is picked as

input. So in this test case, we found major improvement.

The speedup gained by the parallel bubble sort over sequential using stag-

gered test case is described in Figure 7.4. The topmost speedup obtained nearly

7 times at n = 2500000.

The speedup acquired by the parallel bubble sort over sequential using bucket

test case is demonstrated in Figure 7.5. The maximum speedup obtained nearly

8 times.

Figure 7.4: Speedup achieved by parallel bubble sort using staggered test case
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Figure 7.5: Speedup achieved by parallel bubble sort using bucket test case

Figure 7.6: Speedup achieved by parallel bubble sort using sorted test case

The Figure 7.6 shows, the speedup acquired by the parallel bubble sort over

sequential using sorted test case. As the best case of bubble sort occur in the

sorted test case, so in this manner, it achieves maximal speedup among other

test cases.
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7.4 Execution Time Comparison of Sequential

and Parallel Bubble Sort

We have calculated the execution time of sequential and parallel bubble sort

using sorting benchmark which is listed in Table 7.2 & 7.3. The execution time

of parallel and sequential bubble sort is compared in the Figure 7.7 to 7.12. The

X -axis represents the value of ‘n’ and Y -axis represents the execution time in

seconds. The Figure 7.7 to 7.12, has been drawn from using the values of Table

7.2 & 7.3.

The Figure 7.7, represents the execution time comparison of parallel and

sequential bubble sort using uniform test case. The maximum improvement in

execution time by the parallel bubble sort is 7.29% for the value of n = 2500000

and T = 512 i.e. the parallel bubble sort is 7.29% more efficient than sequential.

Figure 7.7: Execution time comparison of parallel and sequential bubble sort

using uniform test case
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Figure 7.8: Execution time comparison of parallel and sequential bubble sort

using gaussian test case

The execution time comparison of parallel and sequential bubble sort using

Gaussian test case is represented in Figure 7.8. The maximum progress in execu-

tion time is achieved 7.38% at n = 2500000 and T = 512 i.e. the parallel bubble

sort is 7.38% more efficient than sequential.

Figure 7.9: Execution time comparison of parallel and sequential bubble sort

using zero test case

The execution time comparison of parallel and sequential bubble sort using

zero test case is listed in Figure 7.9. As in zero test case only one unique value is

used as an input so the parallel bubble sort obtained the O(1) time complexity.

135



Figure 7.10: Execution time comparison of parallel and sequential bubble sort

using staggered test case

The execution time comparison of parallel and sequential bubble sort using

staggered test case is listed in Figure 7.10. The maximum progress in execution

time is achieved 6.96% at n = 2500000 and T = 512 i.e. the parallel bubble sort

is 6.96% more efficient than sequential.

The execution time comparison of parallel and sequential bubble sort using

bucket test case is listed in Figure 7.11. The maximum progress in execution

time is achieved 7.08% at n = 2500000 and T = 512 i.e. the parallel bubble sort

is 7.08% more efficient than sequential.

Figure 7.11: Execution time comparison of parallel and sequential bubble sort

using bucket test case
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Figure 7.12: Execution time comparison of parallel and sequential bubble sort

using sorted test case

The execution time comparison of parallel and sequential bubble sort using

sorted test case is listed in Figure 7.12. As the bubble sort occur the best case

when the data is already sorted test case. So the parallel bubble sort obtained

the O(1) time complexity using sorted test case.

7.5 Conclusion

The parallel bubble sort achieved the O(1) time complexity, when data is not

requiring any swapping, i.e. when the data is zero or sorted. The parallel bubble

sort achieves 37229 times faster execution time using zero test case and 6375

times faster using sorted test case at n = 2500000 and T = 512. The best

case time complexity of bubble sort is reduced O(n) to O(1). It is because we

have executed the bubble sort using GPU computing with CUDA hardware. The

testing is done using sorting benchmark. The input value varied from n= 500000

to 2500000 and thread in the multiple of 2 from 1 to 1024.
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Chapter 8

Conclusions and Future Scope

8.1 Conclusion

In this thesis, the following algorithms have been tested using sorting benchmark

and standard dataset with GPU computing.

1. GPU Merge Sort using CUDA hardware.

2. GPU Quick Sort using CUDA hardware.

3. GPU Count Sort using CUDA hardware.

4. GPU Bubble Sort using CUDA hardware.

In this thesis, we have also tested the various sorting algorithms on a stan-

dard dataset. The various algorithms are following.

1. Insertion Sort

2. Selection Sort

3. Bubble Sort

4. Heap Sort

5. Shell Sort

6. Quick Sort

7. Merge Sort

8. Radix Sort
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9. Count Sort

The Following algorithms have been proposed.

1. Proposed Modified parallel OETSN algorithm.

2. Library sort algorithm with uniform gap distribution.

3. Library sort algorithm with non-uniform gap distribution.

4. Proposed Hybrid Sort Algorithm.

The performance measures have been done of all the listed algorithms in

terms of space and time complexity. In the future, the performance measures can

be tested of all the listed algorithms in terms of stability and adaptivity.

8.2 Future Scope

We can further classify other sorting algorithm like quick sort based on the num-

ber of elements in bucket which will not only make the working faster of bucket

sort but also will reduce the time.

We can still find a gap to use the knowledge about the data to implement

the sorting algorithm. Future research will refine the performance of sorting

algorithms using GPU architecture and Thrust library.

The parallel version of library sort using CUDA hardware can be designed in

future. The GPU LNGD (Library sort using non-uniform gap distribution) can

also be designed.

We have used the GPU computing using CUDA hardware having the com-

pute capability 2.1 to test the algorithms. But, if the same algorithms has been

used on the hardware having the compute capability 3.0, then it will give an

added advantage of unified memory architecture. The performance of GPU al-

gorithms can be enhance by using different CUDA hardware versions and using

Thrust Library.
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