
FAULT AWARE LOAD BALANCING AND LEARNING

BASED RESOURCE ALLOCATION IN CLOUD

Thesis submitted in fulfillment of the requirements for the Degree of

Doctor of Philosophy

By

Punit Gupta

under the supervision of

Prof. Dr. S. P. Ghrera

Department of Computer Science and Engineering

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

Waknaghat, Solan, H.P

September 2016

ii

Table of Contents

PAGE NO.

DECLARATION v

SUPERVISOR’S CERTIFICATE vi

ACKNOWLEDGEMENT vii

ABSTRACT xi

LIST OF ABBREVIATIONS xii

LIST OF TABLES xiii

LIST OF FIGURES xiv

1. INTRODUCTION 1-10

 1.1. Characteristics of cloud 2

 1.2. Business Models 3

 1.3. Issues in Cloud Computing 4

 1.3.1. Resource Allocation 4

 1.3.2. Load Balancing 5

 1.3.3. Migration 6

 1.3.4. Power efficient resource allocation and load balancing

algorithms
6

 1.3.5. Cost efficient resource allocation and load balancing

algorithms
6

 1.3.6. Fault tolerant algorithms 7

 1.3.7. Behavior-based algorithms 7

 1.3.8. Trust management 7

 1.4. Problem statement 9

 1.5. Parameters Used 9

 1.6. Performance Parameters 10

 1.7. Outline of the Thesis 10

2. LITERATURE REVIEW 12-24

 2.1. Resource Allocation 12

 2.2. Load Balancing Algorithms 15

iii

 2.3. Power Efficient Algorithms 16

 2.4. Cost Efficient Algorithms 19

 2.5. Behavior based algorithm 21

 2.6. Trust Models 22

3. FAULT AND DEADLINE AWARE LOAD BALANCING 25-50

 3.1. Approach 1: Fault and Load Aware Load Balancing in Cloud

Storage
27-36

 3.1.1. Problem Statement 26

 3.1.2. Problem Approach 27

 3.1.3. Proposed Model 30

 3.1.4. Experiment and Result 33

 3.2. Approach 2: Deadline Aware Load Balancing of Distributed Servers

in Distributed
36-45

 3.2.1. Proposed Approach 36

 3.2.2. Proposed Model 39

 3.2.3. Experiment and Result 42

 3.3 Approach 3: Load Balancing Algorithm for Hybrid Cloud IaaS 45-50

 3.2.1. Proposed Approach 46

 3.3.2. Experiment and Results 48

 3.4. Conclusion 50

4. LEARNING BASED FAULT WARE RESOURCE ALLOCATION
51-91

 4.1. Approach 1: Fault and QoS based Genetic Algorithm for Task

Allocation in Cloud Infrastructure
52-61

 4.1.1. Proposed algorithm 52

 4.1.2. Experiment and Results 57

 4.2. Approach 2: Task Allocation Using Big Bang-Big Crunch in Cloud

Infrastructure
62-73

 4.2.1. Proposed Algorithm 62

 4.2.2. Experiment and Results 67

 4.3. Approach 3: Fault Tolerant Big Bang-Big Crunch for Task

Allocation in Cloud Infrastructure
74-84

 4.3.1. Proposed Algorithm 74

iv

 4.3.2. Experiment and Results 80

 4.4. Approach 4: Load and Fault Aware Honey Bee Scheduling

Algorithm for Cloud Infrastructure
85-89

 4.4.1 Proposed Algorithm 85

 4.4.2 Experiment and Result 87

 4.5. Comparative Analysis of Learning Based Algorithms 89

 4.6. Conclusion 91

5. FAULT AWARE POWER EFFICIENT SCHEDULING 92-103

 5.1. Approach 1: Power and Fault Aware Reliable Resource Allocation

for Cloud Infrastructure
93-97

 5.1.1. Proposed algorithm 94

 5.1.2. Experimental and Results 95

 5.2. Approach 2: Trust and Deadline-Aware Scheduling Algorithm for

Cloud Infrastructure Using Ant Colony Optimization
98-103

 5.2.1. Proposed Algorithm 100

 5.2.2. Experiment and Results 101

 5.3. Conclusion 103

6. CONCLUSION AND FUTURE SCOPE 104-105

 6.1. Conclusion 104

 6.2. Future Scope 105

7. REFERENCES 106-115

8. LIST OF PUBLICATIONS 116-117

xiii

List of Tables

Table No. Title Page No.

Table 3.1 Experimental parameters used for simulation environment 35

Table 3.2 Experimental parameters used for simulation environment 45

Table 3.3 Servers Parameters 52

Table 4.1 Experimental parameters used for simulation environment 62

Table 4.2 Experimental parameters used for simulation environment 73

Table 4.3 Experimental parameters used for simulation environment 86

Table 4.4 Server fault rate 93

Table 4.5 Request failure count 94

Table 4.6 Request completion count 94

Table 5.1 Experimental parameters used for simulation environment 102

Table 5.2 Experimental parameters used for simulation environment 109

xiv

List of Figures

Figure No. Title Page No.

Figure No. 1.1 Cloud system characteristics and properties 2

Figure No. 2.1 Taxonomy for resource allocation in cloud 15

Figure No. 2.2 Energy aware allocation taxonomy 19

Figure No. 2.3 The trust cloud framework. 23

Figure No. 2.4 The logical structure diagram of TCMCS. 24

Figure No. 3.1 (a) Problem statement for load balancing (a) at time t=0,

servers receive equal amount of client requests.

29

Figure No. 3.1 (b) Problem statement for load balancing (b) at time t=2,

scenario of servers after processing the receive requests.

29

Figure No. 3.2 Organization of distribute storage servers. 30

Figure No. 3.3 (a) Proposed load balancing algorithm. 33

Figure No. 3.3 (b) Find a neighbor server algorithm 34

Figure No. 3.4 Proposed algorithms flow diagram 34

Figure No. 3.5 Number of request completed 36

Figure No. 3.6 Number of sent requests vs. No. Of failed requests. 37

Figure No. 3.7 Overall response time. 37

Figure No. 3.8 Average utilization of system 38

Figure No. 3.9 Organization of distribute data servers. 40

Figure No. 3.10 (a) Load balancing algorithm. 43

Figure No. 3.10 (b) Find a neighboring server algorithm 43

Figure No. 3.11 Proposed algorithms flow diagram 44

Figure No. 3.12 Comparison between no. Of sent requests vs. No. Of

completed requests.

45

Figure No. 3.13 Comparison between no. Of sent requests vs. No. Of

postponed requests.

46

Figure No. 3.14 Overall response time. 46

Figure No. 3.15 Average utilization of system 47

Figure No. 3.16 Proposed trust based algorithm 52

xv

Figure No. 3.17 Total number of request completed in faulty environment 53

Figure No. 3.18 Total number of request Failed in faulty 53

Figure No. 4.1 Proposed FGA algorithm initialization 60

Figure No. 4.2 Proposed fault aware genetic algorithm 60

Figure No. 4.3 Proposed FGA valuation phase 60

Figure No. 4.4 Proposed FGA allocation phase 51

Figure No. 4.5 Proposed FGA flow diagram 51

Figure No. 4.6 Comparison of improvement in request completed 53

Figure No. 4.7 Comparison of improvement in request failed 53

Figure No. 4.8 Comparison of failure probability with variable resources 64

Figure No. 4.9 Comparison of failure probability with variable request 64

Figure No. 4.10 Comparison of reliability with variable resources 65

Figure No. 4.11 Comparison of reliability with variable requests 66

Figure No. 4.12 Comparison of execution time with variable resources 66

Figure No. 4.13 Proposed BBC algorithm initialization 70

Figure No. 4.14 Proposed genetic algorithm 70

Figure No. 4.15 Proposed evaluation phase 71

Figure No. 4.16 Big crunch phase 71

Figure No. 4.17 Allocation phase 71

Figure No. 4.18 Proposed big bang big crunch algorithm flow diagram 72

Figure No. 4.19 Comparison of improvement in execution time 73

Figure No. 4.20 Comparison of improvement in execution time with

changes in population size.

74

Figure No. 4.21 Comparison of execution time of individual requests. For

1000 request count

74

Figure No. 4.22 Comparison of execution time of individual requests. For

1500 request count

75

Figure No. 4.23 Comparison of execution time of individual requests. For

2000 request count

75

Figure No. 4.24 Comparison of execution time of individual requests. For

2500 request count

76

Figure No. 4.25 Comparison of execution time of individual requests. For

3000 request count

76

xvi

Figure No. 4.26 Comparison of execution time of individual requests. For

3500 request count

77

Figure No. 4.27 Comparison of Average Start time of system with increase

in request count.

77

Figure No. 4.28 Comparison of Average Finish time of system with

increase in request count

78

Figure No. 4.29 Proposed FBBC algorithm initialization 82

Figure No. 4.30 Proposed FBBC algorithm 83

Figure No. 4.31 Proposed FBBC evaluation phase 83

Figure No. 4.32 Get Fittest with least difference from Center of mass 83

Figure No. 4.33 Get Fittest with least fitness value 84

Figure No. 4.34 Big crunch phase 84

Figure No. 4.35 Proposed FBBC allocation phase 84

Figure No. 4.36 Proposed fault aware big bang big crunch algorithm 85

Figure No. 4.37 Comparison of improvement in scheduling time 86

Figure No. 4.38 Comparison of improvement in request failed 87

Figure No. 4.39 Comparison of improvement in request completed 87

Figure No. 4.40 Comparison of failure probability with variable request

count

88

Figure No. 4.41 Comparison of reliability with variable request count 88

Figure No. 4.42 Comparison of execution time with variable request count 89

Figure No. 4.43 Proposed fault aware honey bee algorithm 92

Figure No. 4.44 Comparison of request failure count. 93

Figure No. 4.45 Comparison of request completed count. 94

Figure No. 4.46 Comparison of scheduling delay 95

Figure No. 4.47 Comparison of failed request count 95

Figure No. 4.48 Comparison of completed request count 96

Figure No. 5.1 Proposed PFARA algorithm initialization 100

Figure No. 5.2 Proposed PFARA algorithm resource allocation 101

Figure No. 5.3 Power consumption 102

Figure No. 5.4 Comparison of request failure count 103

Figure No. 5.5 Comparison of request completed count 103

Figure No. 5.6 Proposed PFARA algorithm initialization 107

xvii

Figure No. 5.7 Proposed TDARPA algorithm (2) 108

Figure No. 5.8 Comparison of request completed 109

Figure No. 5.9 Comparison of request failed 110

Figure No. 5.10 Comparison of power consumed in Kwh 110

1

CHAPTER 1

INTRODUCTION

Cloud computing is a most widespread and popular form of computing, promising

high reliability for customers and providers both at the same point of time from many fields

of sciences or industry. Clients from the different field are served by datacenters in cloud

environment geographically spread over the world. Cloud serves a large number of requests

coming from various sources over datacenter with high power consumption. However, to

provide such a large computing power required a huge power, leading to high power

consumption and cost. Request types in cloud system also affect the services which are public

and private requests whose proportion is random in nature. A survey in 2006 over the

performance of cloud environment in the USA shows datacenter consumed 4.5 billion kWh

units of power, which is 1.5% of total power consumed in the USA and this power

requirement is increasing 18% every year [1]. In general, cloud computing deals with various

issues live poor resource utilization and load balancing and many more. Some of the issues

are discoursed as follows: 1) as cloud computing tools are used by industry and they have

issues with the rapidly growing request and a number of servers deployed, increasing the

power consumption. 2) Task allocation of request among datacenter without having

knowledge of QoS provided by servers. 3) Current task allocation algorithms only focus on

balancing the request and improve unitization of the system but not the failure probability of

system. 4) High loaded data centers have high failure probability and due to high load, this

may lead to slow down of datacenter and poor QoS (Quality of service) to the client and

client provider. 5) While few of the servers are overloaded and some of them are idle or

under loaded. 6) Some request needs to be computed with QoS but due to high load and fault

rate they may the QoS promised which is not appropriate to the user and will be a critical

2

issue. 7) As per recent study [2-5], utilization of data centers is a major problem because 60%

data centers are idle and most of 20% data centers are utilized and waste of the resources.

This shows the poor utilization of resources but this shows the importance of a new approach

that has sufficient strategy to minimize wastes of resources and increasing reliability by

allocating task over resources which in the case of Cloud is VM with low failure probability

to provide high QoS to users. The existing algorithms only take into consideration cloud as

non-faulty in nature and fail to provide specific QoS when a fault occurs. So to overcome

these issues and improve the performance of the system, we have proposed approaches for

resource load balancing and allocation. Figure 1.1 shows cloud computing features, type and

various other properties [6]

Figure 1.1 Cloud system characteristics and properties

1.1. Characteristics of Cloud

Cloud is a distributed environment, where the servers are placed at various geographical

locations but seems to a user as a single entity. Cloud computing provides better

performance than any other distributed system line Grid computing or cluster computing and

3

many more. There are various characteristics of cloud computing which makes is superior

than any other system which are as follows [6, 17];

a) High Availability

One of the most important features of the cloud is all time availability of resources in

form of storage, computational capability and high network resources. This property also

states that the resources are available in overloading conditions also.

b) Pay per use model

This feature made cloud computing popular in the industry due to affordable nature of

cloud by an industry with high infrastructure or a business holder with the small

requirement can easily manage and have its own infrastructure and high computing

system at a low cost. Cloud computing allows a user to pay for only those resources,

which are used by him for that specific period of time rather than purchasing a complete

server or private infrastructure.

c) Elasticity

Cloud is said to be flexible and scalable at the same time. This feature allows the cloud to

scale its resources up or down based on the user or business needs for a period of time.

This allows the cloud to have high availability under overloaded condition also and

provided uninterrupted services to the user without failure and high quality of service.

d) Reliability

Cloud computing ensures to provide high reliable computing services and resources to

the user which means that the user will be provided with uninterrupted services with the

quality of services as assured to the client.

1.2. Business Models

Cloud computing provides various service driven business models to provide a different

level of computation to the users. Cloud computing provides 3 type of service models listed

as:

Software as a Service (SaaS), platform as a Service (PaaS), and Infrastructure as a Service

(IaaS). Our work focuses on improving the performance of cloud infrastructure as a service

in a faulty cloud environment [17]. The fault is a behavior of every distributed system

because fault may occur any time that may be due to system failure, network failure or disk

failure.

4

1.3. Issues in Cloud Computing

Cloud computing deals with various issues to maintain above discoursed characteristics

and quality of serves assured to the user by cloud providers in term of high resource

availability, computational capability [7-8]. Some or the issues dealing with resource

management, resource scheduling, and managing system performance are discoursed below.

 Resource allocation

 Load balancing

 Migration

 Power efficient resource allocation and load balancing algorithms

 Cost efficient resource allocation and load balancing algorithms

 Fault tolerant algorithms

 Behavior-based algorithms

 Trust management

1.3.1. Resource Allocation

Resource Allocation strategy (RAS) in the cloud is all about the scheduling of tasks or

requests by cloud provider in such a manner to balance the load over all the servers and

provide high Quality of Service to clients. It also includes the time required to allocate the

resources and the resources available. The main aim is to improve the utilization of resources

and complete all the request within the deadline and with least execution time [9].

An optimal RAS should avoid the following criteria as follows:

a) Resource contention situation arises when two applications try to access the same resource

at the same time.

b) The scarcity of resources arises when there are limited resources.

c) Resource fragmentation situation arises when the resources are isolated

d) Over-provisioning of resources arises when the application gets surplus resources than the

demanded one.

e) Under-provisioning of resources occurs when the application is assigned with fewer

numbers of resources than the demand.

Resource allocation algorithm can be categorized into three subcategories as from the

literature review conducted over existing proposed algorithms.

5

Categorization is as follows:

1) Static

2) Dynamic

3) Learning-based.

Static scheduling algorithms are referred to algorithms which are not affected by system and

behavior of cloud some of the algorithms line SJF, FCFS, Round robin etc [11]. On the other

hand, dynamic algorithms are those whose objective function depends on the system

parameters line deadline, available resources, resource utilization of host and many more

example of these algorithms is a deadline-based algorithm, cost-based algorithm, utilization

based algorithm [5-10]. The problem with these algorithms is that they do not take into

consideration the previous performance of host and system as a whole. Moreover, the past

faulty nature of the system is not taken into consideration and leads to large request failure.

Dynamic algorithms deal with the issue of local minima these algorithms are not able to find

a global best solution and stuck in local best solution.

1.3.2. Load Balancing

Load balancing aims to distribute load across multiple resources, such as server, a server

cluster, central processing. Load balancing aims to optimize resource use, maximize

throughput, minimize response time, and avoid overload of any single resource

Goal of Load Balancing [12] are as follows:

1) To improve the performance substantially.

2) To improve system stability.

3) To have scalability in the system.

4) To improve the system condition under high load or request rate.

Types of Load balancing algorithms [13]

Sender-Initiated: When load balancing algorithm is triggered by the sender.

Receiver Initiated: When load balancing algorithm is triggered by the receiver.

Symmetric: It is the combination of both sender initiated and receiver initiated.

6

Load balancing is also used to manage the average utilization of the system as a whole to

avoid creation of hot spots i.e. the request should not be clustered on a single datacenter

rather should be spread over the servers. So it aims it find an underloaded server and move

the requests to that selected server. This makes a requirement of a load balancing algorithm to

fulfill these requirements taking into consideration system utilization and quality of service

without failure.

1.3.3. Migration

Migration in cloud infrastructure plays an important role in cloud Infrastructure under

system overloading condition. In cloud infrastructure when the server gets overloaded i.e., the

utilization is beyond a threshold is considered to be overloaded, in such condition we need to

migrate a virtual machine from overloaded server to an under loaded or neutral server [14].

This help to balance the load and prevent the server from any failure. So there is a

requirement of an intelligent and efficient migration algorithm or balance the condition and

improve the performance of the system.

1.3.4. Power efficient resource allocation and load balancing algorithms

The power efficiency of a cloud environment is an important issue for a green cloud

environment. As 53% of the total expense of a datacenter is spend on cooling i.e. power

consumption [15].

In a survey in 2006 on datacenters established U.S consumed more than 1.4% of total power

generated during the year [16]. Therefore we require improving the power efficiency of

infrastructure. The problem can be solved in various ways and various proposal are been

made to solve and improve the performance. So to do this we need to design power-aware

resource allocation and load balancing algorithm to improve the total power consumption of

the system and any such algorithm will result in a reduction of overall power consumption.

1.3.5. Cost efficient resource allocation and load balancing algorithms

Cloud computing uses pay-per-use model to ensure least cost and payment only for

the resources used. To maintain this feature cloud controller algorithms like resource

allocation migration and load balancing are responsible for maintaining this characteristic by

offering the resources which can complete the client request on time and within the budget of

client and have least cost that can be offered. So we require cost aware algorithm which are

cost efficient and can provide the best system performance by improving utilization and

7

power consumption all at the same time [10, 15]. These type of algorithm are referred to as

multi-objective algorithms, there are many proposals made for improving the performance of

the system but they only take into consideration either power or cost, so cannot guarantee the

best performance.

1.3.6. Fault tolerant algorithms

Cloud computing environment is a type of distributed environment like grid

computing and cluster computing. Existing algorithms consider cloud as nonfaulty but faults

are a part of distributed environment which may be due to hardware or software failure at any

point of time [93, 99, 100]. There are many fault aware and fault prediction algorithms been

proposed for grid environment to improve the reliability of the system. So similarly we

require fault aware algorithms to make system fault aware reduce the failure probability of

the system and increase the reliability of the system.

1.3.7. Behavior-based algorithms

Most of the resource allocation and load balancing algorithm proposed for cloud

infrastructure are dynamic algorithms like min-min, max min and many more. These

algorithms take into consideration only the current behavior \ status or the server and system

for selection of server. The problem with these algorithms is that they do not take into

consideration the previous performance of the system for prediction of the better solution

rather than stuck in local minima. Behavior-based algorithm lists genetic algorithm, ant

colony, particle swan optimization, monkey search and many more. So there is a need of

algorithms taking into consideration the previous and present performance of the system for

decision making.

1.3.8. Trust management

Trust models are been used in all form of distributed environments ranging from

MANETS (Mobile ad hoc network), Sensor network and Grid computing to validate the

reliability of nodes over distributed network. In grid computing, various trust models are

been proposed to ensure trust in term of security and reliability of the server or the node.

Trust models are to resolve the problem of reliability in any heterogeneous environment,

which contributed of nodes having different configuration spread over a network. There are

many models being proposed in a cloud computing environment.

8

What is Trust?

Trust can be defined as an entity based on reliability and firm belief based on an attribute of

the entity. Trust is the firm belief in the competence of an entity to act as expected, such that

this firm belief is not a fixed value associated with the entity, but rather it is subjected to the

entity’s behavior and applies only within a specific context at given time [18]. The definition

simply means that trust is a variable changing believe, based on both static and dynamic

parameters.

Trust can also be defined as “the subjective probability by which an individual expects that

another individual performs a given action on which its welfare depends” [19-20].

 Trust can be categorized into three major classifications which are as follows [21]:

a) Blind trust: This is the default trust before any event in the system, and which would

include an agent to initiate a relationship with unknown entities.

b) Conditional trust: This is a classic state of trust during the life of the agent. This

condition trust is likely to evolve, and can be subject to some sets of constraints or

condition.

c) Unconditional trust: Such a trust is the probability be configured directly by an

administrator, and would not be sensitive to successful/unsuccessful interaction and

external recommendation of any other sources of evolution of the conditional trust.

1.4. Problem statement

The aim of this work is to make system fault tolerant and more reliable computing

system with improved performance in cloud infrastructure environment. A number of

algorithms have been worked out for long period of time but they assumed cloud as non-

faulty. So in our work, we have proposed various fault tolerant algorithms to resolve various

issues as follows:

9

1) To design a fault and deadline aware load balancing algorithms for private and hybrid

cloud, which aim to improve QoS of load balancing algorithm and minimize the faults,

resource utilization, minimize response time and avoiding overloading of any single resource

in cloud.

2) To design learning based fault aware resource allocation algorithms, to provide a global

best schedule with least scheduling time complexity.

3) Designing fault aware and power-efficient scheduling algorithms for improving power

efficiency and request failure count in the cloud.

1.5. Parameters Used

Fault rate: defined as the total count of request failed over a period of time T

Failure Probability: as the probability of request to fail on a specific host or system.

Reliability of a system: This feature of a system can derived from the failure probability of

system which can be defined as:

%_Pr100%Re obabilityFailureliability (1.1)

Power Efficiency: The ratio of the output power over the input power i.e. the percentage

power consumed over a period of time.

Utilization: this is the capability of the host to be used out of total available resources.

Average Resource Utilization: This is an average of utilization of resources over the whole

system i.e. all available hosts.

Average start time: Average waiting time of request before been scheduled or allocated.

Average Finish time: Average of finishing time of all the request executed by system.

Scheduling Delay: Total time to find a suitable resource for a set of tasks.

MakeSpan: Total execution time of system including scheduling delay for set of requests

/Task

1.6. Performance Parameters

To study the performance of proposed algorithm over existing algorithm we require to

compare these parameters listed below:

10

Average utilization: Average utilization is the average percentage of time during which the

server is busy processing jobs during a simulation

Power Utilization: Power utilization can be defined as the power consumed in kWh during

the simulation.

Average queue length: This is the average size of the queue of a server during a simulation.

Request failure count: Total count of requests failed during a simulation.

Request completion count: Total count of requests Completed during a simulation.

Average start time: This the average of the start time of all the requests generated during the

simulation.

Average finish time: This the average of finish time of all the requests generated during the

simulation.

Scheduling delay: The times taken to find a suitable server for a set of given requests.

Makespan: The time taken to complete all requests over a given cloud environment.

Failure probability: the probability of failure of each request is a given system.

Reliability: Reliability of a system can be defined as the probability of the system being

reliable, which can be defined as (1- failure probability).

1.7. Outline of the Thesis

The thesis has been organized into 6 chapters and out of that CHAPTER 1 presents

Introduction comprises problem statement and various issues in cloud computing.

CHAPTER 2 presents the existing proposed work to solve the problem of resource allocation

and load balancing with different combinations of authors taking different performance

matrices. This chapter also discussed the various methods power efficient, cost efficient

algorithms and algorithms inspired by nature. The preliminary notations are introduced to

keep the clarity of usage throughout the thesis. CHAPTER 3 presents three techniques for

load balancing for cloud storage in faulty environment to improve the fault tolerant behavior

and reliability of cloud. The approaches are proposed for private and hybrid cloud

environment. CHAPTER 4 presents a set of learning based techniques for the faulty cloud to

find global best solution and shows improvement in scheduling delay, failure count, failure

probability and the reliability of the system, CHAPTER 5 presents a set of power efficient

and fault aware approaches inspired from nature like honey bee and ant colony algorithms to

find best suitable resource. Finally, followed by the conclusion and future scope of the

research work for further research are provided in CHAPTER 6.

11

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

In this section, we have discoursed various existing approaches from the field of resource

allocation, load balancing, green computing and trust management. This section aims to

identify the research gaps and focus on the current state of artwork in the field of resource

allocation, load balancing, cost efficiency and green computing.

2.2. Resource Allocation

Many researchers have done research and introduce us some beneficial and optimal

scheduling algorithm. [22] Proposed a modified Min-Min algorithm, this chooses the task

with least completion time and schedule to serve accordingly. Author has proposed load

balancing Min-Min algorithm which having basic properties of Min-Min algorithm and

consider minimizing completion of all request. In this proposal three level of service models

are used.

1. Request manager- To take request and forward to Service managers.

2. Service manager- various manger works or task and dispatch them to respective service

node.

3. Service Node- Service node provide service to request which came to request mode

They have merged two approaches (OLB Opportunistic load balancing and load balance min-

min) scheduling algorithms in this model. The main focus of combined approaches is to

12

distribute the request or dispatched task basis of their completion time to suitable service

node via an agent. This approach not saying about main system, suppose if request are

somehow moving or scheduled in the same server and due to lots of load sever need more

power to complete these request and more physical heat will generate and to stop heating

system need an external cooling system which also lead to extra power source and one more

important thing is due to overheating system performance slow down The same way [23]

proposed and another algorithm for task scheduling, this paper proposed VM resource

allocation basis on genetic algorithm to avoid dynamic VM migration to completion of

request. They have proposed a strategy to share or allow resource equally to VM so it can

work fast and minimize response time to subscribe. They also proposed hotspot memory

(virtual memory) assignment and dispose that after completion of request via remapping of

VM migration. Here VMware distribution tool is used to schedule computation work in a

virtual environment. As genetic algorithm characteristics is to find best, fittest VM in terms

of Cloud computation.

This paper checks fitness of each VM and schedule task accordingly. When creating a VM a

process executes to create that and increase process work that also lead to more process and

increase energy consumption. Hu, Jinhua et al.[24] Proposed another scheduling algorithm,

this paper proposed an approach for collective collaborative computing on trust model. The

trust value taking as a factor for task scheduling, trust value mutually took from consumers as

well service provider, which make it fail free execution environment. Here they have

proposed a mathematical equation to calculate the Reputation point which enhances the

reputation of VM in terms of fast execution and type of task. If the reputation of VM is high

them more task allocation will be happening to that VM. To calculate Reputation many

factors have to consider which also reflect QoS of cloud computing. This paper also proposed

a way to serve a request reliability, as well trust management with a reputation of VM factor

which are lead to trustworthy. Trust has calculated by a mathematical equation and schedule

accordingly.

Hu, Jinhua et al. [25] proposed a live VM migration algorithm, this paper proposed a method

for VM live migration with various resource reservation system. VM migration is taking

place on the basis of source machine load, if the load is high then it can wear, during

execution of the request it migrates the VM to another server or data centers to complete the

task without interruption for better performance. Resource reservation done both sides, i.e.,

13

Source machine and target machine as well will in such manner CAP (maximum availability

of CPU) allocate them and adjust memory resource dynamically. At the end of target

machine, they properties time bound program which will keep monitoring for cup resource

utilization. Memory Reservation done by allocating crating certain number of VM and when

the migration process comes into existence these VM got shut down to evacuate the space to

migrate VM. Sometime it may be possible that target machine not having enough space to

migrate in such condition that physical machine should remove from candidate machine for

migration and which physical machine having the capability or enough space will lead to

migrate VM. This paper implemented and simulated using Xen Virtualization.

Barroso et al.[26] This paper proposed an algorithm, dynamic and integrated resource

scheduling algorithm for cloud data center which balance load between servers in overall run

time of request, here they are migrating an application from one data center to another

without interruption. Here they are introducing some measurement to ensure load balancing.

They have given a mathematical reputation to calculate imbalance load to calculate average

utilization to its threshold value to balance load. To implement DAIRS they have used

physical server with physical cluster and Virtual servers with virtual cluster. Application

migration saves time instead of migrating whole VM data. Zhanjie Wang [27] proposed an

dynamic algorithm for resource allocation in cloud using fuzzy logic and pattern recognition

based on power and storage parameters. The propose algorithm is derived from FastBid

algorithm. The algorithm tries to improve the network traffic and communication load over

the system. The algorithm shows better result than Min- Min algorithm in term of makespan

and network load

Parvathy S. Pillai [28] et al. proposed a novel resource allocation algorithm derived from

game theory for resource allocation in cloud. In this work author has used uncertainty

principle of game theory for allocation of virtual machines in cloud. This work improves the

communication cost and resource wastage over the system. Abdullah Yousafzai [29] et al.

surveyed and reviewed resource allocation algorithm in cloud. This work contributed an

review and comparative study or current state of art cloud resource scheduling and allocation

algorithms for cloud. Moreover this article proposes an taxonomy for resource allocation in

cloud environment, which shows various ways to solve the issue of resource allocation and

different aspects of resource allocation. Figure given below shows the taxonomy.

14

Many other resource allocation algorithm are been proposed [88 -97] using various dynamic

techniques to improve the performance of the system are been studied.

Figure 2.1 Taxonomy for resource allocation in cloud [29]

2.3. Load Balancing Algorithms

 Various load balancing tactics have been proposed till now which can also be classified

into static and dynamic in nature [30]. Yamamoto et al. [31] proposed a disbursed strategy to

balance the load using replication of data. Authors have proposed two replication approaches

1) in the route random replication procedure, replicas saved within the peers along the trail of

soliciting for to look. 2) In the course adaptive replication procedure replicas saved most

effective within the peers in step with their likelihood of replication. This paper does not use

the knowledge about the ability of servers for selection of server.

In [32] Rao et al. have offered a framework for load balancing in distributed environment,

named as HiGLOB. Right here, authors have used two principal add-ons 1) histogram

supervisor - generates a histogram to preserve a global information regarding the distribution

of the load within the system, and 2) load-balancing manager - reallocates the load at any

time when the node becomes overloaded or under loaded. Nevertheless, there's overhead

associated at the same time setting up and preserving the histograms.

Zeng et al. [33] have proposed a load re-balancing algorithm to work out the crisis of load

balancing in distributed environment. They have additionally ensured the reliability of the

process where one chunk of a file and two duplicate copies are allocated in three exceptional

15

different servers at a time. In this algorithm author uses the master server periodically for

checking of chunk servers and to differentiate which chunk server is over- loaded and which

is not. Nonetheless, this master server turns into a single-point failure for the load balancer.

Fan et al. [34] have proposed an adaptive load optimization algorithm (AFLBA) for the

Hadoop distributed file procedure which uses two modes: 1) disk utilization expense system

and 2) carrier blocking off rate system. The proposed algorithm uses the storage average

utilization of each data node and probability of blocking consumer request of each knowledge

node. Since this algorithm isn't disbursed so it creates a performance bottleneck node within

the HDFS.

Hasio et al. [35] and Chung et al [36] have proposed an improved load balancing algorithm

for distributed file system to overcome the issue of bottleneck and improve the performance

of system. They have proposed to use CHORD protocol for creation the node server.

Many other load balancing approaches are been proposed to avoid the condition of over

loading [101, 102] using max-min, min-min and dynamic strategy.

2.4. Power Efficient Algorithms

Several researchers have introduced various models and methods to conserve energy. Some

of them are discoursed below.

Louis Rilling et al. [37] proposed a virtual infrastructure optimization solution using the ant

colony optimization algorithm for finding better paths through graphs. The most common

approach while performing workload consolidation is that the workload is allotted to a

physical machine (e.g. CPU) and those resources which require excessive provisioning are

converted into a lower power state.

Osvaldo Adilson de Carvalho Junior et al. proposes the use of a function that can ensure the

most appropriate behaviour to the principles of Green IT but not the quality of service. For

this he proposes the use of GreenMACC (Meta-scheduling Green Architecture) and its

module LRAM (Local Resource Allocation Manager) to automate the execution of all

scheduling policies implemented in the Scheduling Policies Module so as to provide Quality

of Service in Cloud Computing and determine its flexibility. [38] Task consolidation is an

efficient method which is used to reduce power consumption by increasing the resource

utilization but due to task consolidation resources may still draw power while being in the

idle state. Young Choon Lee et al. has introduced two algorithms to maximize the utilization

16

of resources of the cloud. The two algorithms are ECTC and MaxUtil. ECTC works on the

premise of calculating the energy which is being used by a particular task when there are

simultaneous tasks running parallel with it, and then it is compared with the optimal energy

which is required. MaxUtil focuses more on the mean usage of a particular task when it is

being processed. [39]

Dzmitry Kliazovich et al. presented a simulation environment for data centers to improve

their utilization of resources. Apart from working on the distribution of the tasks, it also

focuses on the energy used by the data center components. The simulation outcomes are

obtained for various architectures of data centers. In [40] Robert Basmadjian et al. proposed

the use of proper optimization policies reducing the power usage and increasing the resource

utilization without sacrificing the SLAs. He developed a model which worked on

incrementing the capability of the processor to process tasks. [41] Zhou Zhou et al proposes a

Three Threshold Energy Saving Algorithm [TESA] which has three thresholds to divide hosts

between heavy load, light load & middling load. Then based on TESA 5 VM migration

policies are suggested which significantly improves energy efficiency. [42].

Dung H Plan et al. proposed GreenMonster protocol which improves renewable energy

consumption while maintaining performance by dynamically moving services across IDCs.

GreenMonster uses Evolutionary Multi-objective Optimization Protocol [EMOA] to make

service placement and migration decisions. [43]. Liang Liu et.al. proposed a new VM

architecture which has capabilities of Live Virtual Machine Migration, VM placement

optimization and online VM Monitoring. This architecture gives us a considerable energy

saving. [44]. Aman Kansal et al. proposes a power metering solution for virtual machines.

The proposed solution has a very small runtime overhead and provides accurate and practical

information for power capping to improve the energy efficiency of the datacenters. [45].

Abbas Horri et al. [46] proposed a novel approach to improve the power efficiency of system

for cloud infrastructure based on the resource utilization history of virtual machines in cloud.

The first work in large-scale virtualized datacenters has been proposed by Nathuji and

Schwan [47]. In their proposed method, the resource management is split into local and

global managers. Local manager coordinates power management methods of VMs in each

host because the authors assumed that VM guests have a power aware OS. Global manager

monitors the performance of multiple hosts and selects the appropriate host for requested VM

migration. However, in situation that the guest OS is non-power-aware, this power

17

management method may be inefficient [47]. Salimi and Sharifi in [48] proposed an approach

to schedule a set of VMs on a shared PM. The goal of the scheduling algorithm was to

minimize the execution times (Makspan) of batch applications running on VMs based on

considering the interferences of concurrent VMs. To identify the interference, they first

presented an interference model in terms of number of concurrent VMs, processing

utilizations of VMs and also the network latency. Nasrin Akhter & Mohamed Othman [49]

surveyed and reviewed energy aware resource allocation algorithm in cloud. This paper

reviews lasted proposal made for improving the energy efficiency of system. Major

contribution this work is the broad study and classification of various ways to improve power

consumption in cloud environment. The figure below shows the taxonomy proposed

Figure 2.2 Energy aware allocation taxonomy

2.5. Cost Efficient Algorithms

Li Chunlin et al. [50] proposed and const and energy aware resource provisioning algorithm

for cloud. This paper presents the cost and energy aware service provisioning scheme for

mobile client in mobile cloud. Proposed work proves to be cost optimal and energy efficient

18

as compares to simply cost aware allocation algorithms. Ehsan Ahvar et al. [51] has

proposed an network aware cost optimal algorithm. This algorithm takes into consideration

network performance and cost for resource allocation and selection of best server, using

artificial algorithm to perform better than typical greedy heuristics. Khaled Metwally et al.

[52] proposed a Mathematical modeling based on Integer Linear Programming (ILP)

technique to solve optimally the resource allocation problem. However, ILP technique is

knows for solving well known problem of scheduling in operating system. Author has

proposed a model to use linear programming for selection of appropriate resource. Balaji

Palanisamy et al. [53] proposed a cost aware allocation algorithm for MapReduce in cloud.

This article presents a new MapReduce service model for cloud named Cura. Cura is cost

efficient MapReduce model and cloud service to select the resource at run time for

distributed problem with least cost and most efficient resource. Cura is also responsible for

creation and selecting of cluster for dealing with workload. It also includes, VM-aware

scheduling and online virtual machine reconfiguration, for better management and

reconfiguration resources.

2.6. Behavior based algorithm

Behavior are the algorithm which are inspired from behavior of nature and behavior of

animals and other living organism around us and their hierarchical evolvement over the

decades. These behaviors inspires us to make decisions based on previous behaviors or the

environment for making better decision that may be prediction or forecasting. Some of these

algorithms proposed in the field of cloud computing are discoursed below.

Bei Wang &Jun Li [54] proposed a genetic algorithm based load balancing algorithm. In

order to boost the search efficiency, the min-min and max-min algorithm are used for the

population initialization. But these may stuck in local minima and to find best solution

genetic algorithm is proposed. Proposed algorithm proves to provide better solution but the

scheduling delay to find best solution is much higher than min-min and max-min algorithms.

Keke Gai [55] proposed and cost efficient data / storage allocation algorithm using genetic

algorithm for video and metadata storage over cloud. This algorithm aims to provide

heterogeneous memory storage space over cloud with least cost using genetic programming

to select cheapest service provider. Output proves that the proposed algorithm proves to

provide improved communication costs, data move operating costs and energy performance.

19

Lizhen Cui [56] proposed a genetic algorithm based replica management algorithm for cloud.

Author has proposed a tripartite graph based model to formulate the data replica placement

problem and propose a genetic algorithm based data replica placement strategy for scientific

applications to reduce data transmissions. The proposal provides better performance that

random selection policy in Hadoop Distributed File System. Jasraj Meena [57] proposed a

cost efficient genetic algorithm to optimize the cost for work flow schedule rather than for

single tasks. The proposed algorithm proves to execute the workflow with least cost. The

algorithm is been tested over popular workflow like Montage, LIGO, CyberShake, and

Epigenomics.

Anjuli Garg [58] proposed a honey bee life cycle based task scheduling strategy for cloud.

Author has taken into care utilization and task size to schedule the task and select the server

which can execute with least execution time. Anqi Xu [59] proposed an Particle Swarm

Optimization for task scheduling for cloud infrastructure to improve the Quality of Service of

system. The author has taken into consideration multi objective to improve Makespan and

cost. The algorithm proves to perform better than ACO and min-min algorithm. Bohrer et al.

[60] proposed a most known base scheduling algorithm ACO (ant colony optimization) they

proposed ant colony optimization algorithm to load balance by distributing request in a cloud

computing environment. This paper proposed LBACO with dynamic load balancing strategy

to distribute load among the node. The problem with traditional ACO in cloud is that it's a

schedule task to most frequent (high pheromone intensity) node, if what if node is bearing

heavy load in such situation may create a problem of overhead. This paper proposed and

LBACO algorithm to reduce such problem. In this algorithm decrease the time of

computation and monitor load on each VM with tracking previous scheduling. Xiaobo et al.

[61] proposed and Real-time VM provisioning model, which is based on energy models

which follow a Min-Price RT-VM Provisioning to allocate VM.Suraj, S. Rin et al. [62]

proposed a genetic algorithm for task allocation in cloud environment with least execution

time and maximum resource utilization.

Many other proposal made [82-86] using ACO, genetic algorithm and other learning based

algorithm are been studied. Jaradat [87] proposed a Big Bang-Big Crunch optimization

algorithm to solve the problem of scheduling classed for a timetable. This algorithm has

proved to perform better than existing GA based algorithm.

20

2.7. Trust Models

Numerous trust models have been proposed in cloud. MohdaIzua Mohd Saad proposed a

novel data provenance trusted model to provide secured access to data provenance via a

secured communication channel [63]. This model also proposes consolidation storage with

logging for virtual storage at physical layer in cloud environment. As shown in figure 1.

Figure 2.3. The trust cloud framework.

 WenAn Tan proposed a trust service-oriented workflow scheduling algorithm [64]. The

scheduling algorithm uses a trust metric that is combination of direct trust and

recommendation trust. Proposed model also provided balancing policy to balance user

requests, based on time, cost, and trust. Rizwana A.R. Shaikh proposes a trust based solution

in terms of a trust model that can be used to calculate the security strength of a particular

cloud service [365]. Proposed algorithm uses trust value for selecting a trusted cloud service.

[66] Xiaodong Sun introduces a trust management model based on fuzzy set theory and

named TMFC including direct trust measurement and computing, connecting, and trust chain

incorporating where the issue of recommended trust has been addressed to find the miss

behavior of intermediate middle nodes. And this proposed model is designed for the cloud

users to make decision on whether to use the services of some cloud computing providers by

using trust value sets about providers and then finding trust relationships among them.

QiangGuo introduced a definition of trust in cloud systems and the properties of trust are

analyzed [67]. Based on the properties of trust of a server, a trust evaluation model called

ETEC is proposed. Proposed trust model includes a time based comprehensive evaluation

21

method for calculation of direct trust and a space evaluation method for calculating

recommendation trust of server. For computing the trust in cloud, an algorithm based on the

trust model is given. Experimental analysis shows that the proposed model can calculate the

trust vale of server effectively and reasonably in cloud computing environments. Xiaoqiong

Yang also proposed A Statistical User-Behavior Trust Evaluation Algorithm Based on Cloud

Model for statistic behaviors. Proposed algorithm used threshold for each type of behaviors

and each user’s performance and its membership status in cloud [68]. Then the membership

degree and the behavior weight will be used to calculate the user’s trust using a simple

normalization function. Proposed algorithm uses the evaluated domain trust and

recommendation trust, behavior trust for users’ further dynamic authorization of access

control and request load balancing. Junfeng Tian proposed a Trusted Control Model of Cloud

Storage with access control (TCMCS) to handle all the interactions between a client and

cloud storage to ensure the secure user access and data manipulation. The proposed trust

model is responsible for managing different cloud storage and manages security and integrity

of user data over the cloud. Since users only need to care about their own business logic and

the development of application program is greatly simplified [69]. Proposed model can be

specified as shown in figure 2.

 Figure 2.4 The logical structure diagram of TCMCS.

In [70] gupta has proposed a QoS Based Trust Management Model for Cloud IaaS that is

suitable for trust value management for the cloud IaaS parameters. Proposed a scheduling

algorithm based on trust value is done for better resources allocation and enhance the QoS

provided to the users. In this paper, an approach for managing trust in Cloud IaaS is

proposed.

22

Various other trust models are also been proposed [103 -106] to improve the system

performance and reliability of reliable computing.

2.8. Conclusion

From above discussion, this can be seen that various resource allocation and load balancing

algorithms fall short with problem of request scheduling using dynamic techniques to

improve the performance of system. These algorithms do not consider load over the system

or faults that may occur periodically over system, and also lack into consideration of previous

performance history of the machines/servers.

In section 2.3, various load balancing algorithms are discoursed but these proposals consider

only current load over the servers and do not search for global solution that can be based on

performance of the server. These algorithms have considered only the current performance

and not the physical capability of servers. Moreover, existing load balancing algorithms have

assumed system as non faulty that leads to a large number of faults over the system.

In section 2.3 and 2.4 discourses about energy and cost efficient allocation and load balancing

algorithms for cloud but they are not suitable for real-time systems because they do not take

into consideration physical aspects of servers, deadline of requests, and considers cloud as

non faulty. So proves to provide poor performance for request with tight deadline and if the

system is faulty in nature i.e. the server may have high capability in terms of number of cores

and RAM but may be faulty in nature, in that case existing algorithm goes under worst case

performance. These algorithms also do not provide support for the reliability of the

distributed systems.

Above discoursed behavior based algorithms in section 2.5 are inspired from nature which

are used for resource allocation and load balancing but they only take into one parameters at a

time like utilization, cost or power efficiency so cannot improve the performance of the

system in all. Moreover, these algorithms do not consider the faulty nature of cloud, deadline,

physical aspects of servers and previous performance of servers i.e. request failure count that

had occurred or load over the serves, so cannot guarantee a high reliability and fault tolerant

of the system. This may lead to large request failure counts due to overloading, deadline

failure, and faults over the system which results in poor performance, and low reliability of

the system.

23

This chapter identifies various techniques and issues and provide future directions to propose

new methodologies for efficiency improvement, and fault tolerance in the cloud computing.

24

CHAPTER 3

FAULT AND DEADLINE AWARE

LOAD BALANCING

With the rapid growth in technology, there is a huge proliferation of data requests in

cyberspace. Distributed system/servers play a crucial role in the management of request in

cloud which are distributed among the various geographical zones. Many of time the system

gets over loaded due to few of servers with high number of request and some of servers being

idle. This leads to degradation of performance of over loaded servers and failure of requests.

On these over loaded servers average response time of server increases. So there is a

requirement to design a load balancing algorithm to optimize resource utilization, response

time and avoid overload on any single resource.

The management of data in cloud storage requires a special type of file system known

as distributed file system (DFS), which had functionality of conventional file systems as well

as provide degrees of transparency to the user, and the system such as access transparency,

location transparency, failure transparency, heterogeneity, and replication transparency [71].

DFS provides the virtual abstraction to all clients that all the data located closest to him.

Generally, DFS consists of master-slave architecture in which master server maintains the

global directory and all metadata information of all the slave servers. Whereas, slave

represents a storage server that stores the data connected to master server and other storage

servers as well. This storage server handles the thousands of client requests concurrently, in

DFS. The load distribution of requests on these storage servers is uneven and lead to

performance degradation overall. Resources are not exploited adequately, because some

25

server gets too many requests and some remain idle. In a distributed storage system, load can

be either in terms of requests handled by a server or storage capacity of that server or both.

In this section, we have proposed a set of approaches that balances the load of servers

and effectively utilizes the server capabilities and resources. The main contribution of this

work is to improve the average resource utilization of system and removing hot spots and

cold spots in the system i.e. the unbalancing of requests over the system should be removed.

3.1. Approach 1: Fault and Load Aware Load Balancing in Cloud Storage

In this approach, we have proposed a Fault and Load based Load balancing algorithm

(FLBLBA) that can balance a load of servers dynamically by considering its parallel

processing capability, processing time and its request queuing capacity. Proposed algorithm

aims to improve the performance cloud storage system by reducing request failure count,

Average queue length, average utilization, total execution time.

The work is devided into various sections, where section 1 focusses on basic

discription of problem. Section 2 & 3 describes the proposed approach and algorithm. In

section 4 we have presented experimental results and comparitive study of proposed

algorithm.

3.1.1. Problem Statement

Distributed file systems provide a common virtual file system interface to all users as

in DFS storage servers are distributed geographically and because of this load dis- tribution

of client’s requests to these servers become uneven. This problem can be illustrated clearly

through Figure 3.1. Here, we have taken five storage servers S1, S2, S3, S4 and S5 with their

respective service rate (S_r) present in the system. Service rate of a server signifies the

number of requests processed by a server in a given time. Initially at time t=0, we assume that

each server receives an approximately equal amount of requests as shown in Figure 3.1(a).

We have taken total 8 requests to illustrate the scenario of our problem statement. In the

second case as shown in Figure 1(b) after time t=2, each server process the client’s requests

as per its service rate and server S1 requests gets over much earlier than other servers and S1

becomes idle. Server S3 and S5 are fully loaded and takes their time to process all requests.

From this scenario, we can say that distributed file system does not utilize each server

26

efficiently. In real- world situation, these requests are too large as compare to server service

rate.

So in order to increase the system performance some requests which are in queue

must be migrated to the idle servers or least loaded server and completes the request without

failure. Our aim is to avoid queue like situations, utilizing the capability of each server

efficiently and fulfill maximum request without failure.

Figure 3.1 Problem statement for load balancing (a) at time t=0, servers receive equal amount

of client requests. (b) at time t=2, scenario of servers after processing the receive requests.

3.1.2. Problem Approach

Here, we have proposed a Fault and Load based Load balancing algorithm (FLBLBA)

that can balance the load of servers dynamically by considering its parallel processing

capability, processing time and its request queuing capacity. Proposed approach takes four

main parameters of a server 1) Server request queue size - buffer space to store the client

requests to be handled by the server. 2) Server service rate (λ) - the number of CPUs

available for processing the client request in a server. 3) Processing time (S_T) – time takes

to process a request which differs from server to server.4) Fault rate. Modern servers are

equipped with many features like multiple CPUs, large storage, high I/O capability etc. We

have chosen the multiple CPUs feature as a main parameter for load balancing of our

proposed approach.

Following are the few assumptions that we have considered for our proposed approach:

27

 It is assumed that all the servers belong to same organization which can be

geographically apart from each other. So each server maintains the replica of every

server data.

 It is also assumed that all servers are strongly connected with each other through high

bandwidth medium.

 Each server maintains global view which contains the information of its neighbors

through master server.

Figure 3.2 Organization of distribute storage servers.

Figure 3.2 shows the general scenario of distributed storage servers. In figure 2, there could

be N connected servers where N €{1,2,3 ….. n-1}, in the system. Each server has following

properties such as request queue, number of CPUs, storage capacity. Clients send their

requests to the respective server. Many times the incoming request rate (ρ) increases

exponentially to a particular server. This is because of the series of client’s requests to that

data that is stored within the server. In case, when a server gets too many requests than server

buffers them in their request queue and the size of request queue gets increases dynamically

only upto its predefined threshold limit. Once, the request queue breaches the threshold limit

than server is considered as overloaded server and triggers the load balancer. Load balancer

classifies the least loaded server on the basis of their request queue and processing capacity.

As soon as the least loaded server gets classified than overloaded server migrate its load to

that server and balances the load. Various notations are used in the proposed approach and

represented as follows:

ρ - Current queue size of server.

28

λi - Service rate that is number of request processed simultaneously on a server.

S_T -Service time is the time taken by server to process the request

Q_LCurrent -Current queue length of server

Q_LThreshold - Threshold limit of server request queue.

∆Li - additional load on server i.

Wi - Waiting time for a request at server i.

FTi - Count of request failed.

FRi -Fault rate that is the numbe of request failed due to system failure over time t.

Fj - Fitness value of neighbors of server i. (j €{1,2,3 ….. n-1}

We have considered the real world scenario where the server request queue size and service

rate changes with respect to time t dynamically and represented as and respectively

 (3.1)

Fault rate of a server can be given as:

FRi = FTi / time (3.2)

Storage server is said to be overloaded if:

 (3.3)

When server i where i €{1,2,3 ….. n-1} is overloaded then it calculates the amount of extra

load i on that server which can be calculated as follow:

 (3.4)

The condition when a load balancer module gets triggered on the overloaded server i is given

below:

 (3.5)

 = Triggering function.

29

Once, the load balancer module is triggered, server i find the least loaded or idle server that

can accommodate its load and adequately process the service requests without failure. For

this load balancer calculates the fitness value Fj that can be calculated using the following

fitness function:

 (3.6)

Here, ∆Mj is free request queue of server j. If ∆Mj is negative, then server j request queue is

overloaded otherwise it is least loaded.

 (3.7)

Here, α1 and α2 are constants and may vary according to scenario such that

 α1 + α2 +α3+ α4 =1 (3.8)

For our proposed scenario, we have considered the value of α1 and α2 is 0.5 it is be- cause

both the parameters play the equal role in load balancing. In this way, load balancer

calculates the fitness value for each neighbors of server i. and select that server which has

maximum fitness Fj value, i.e. fault rate of server less than migrating server and migrate the

∆Mj amount of load to server j. Selecting the server with maximum fitness value in turn

decreases the failure probability of request and completes the request as soon as possible with

least waiting time.

3.1.3. Proposed Model

Proposed algorithms have been designed to balance the client requests over the

servers and distribute the load over the system uniformly. Here, load balancer as shown in

figure 3.3.(a) regularly exams for the request queue dimension of server and tries to restrict

the problem of overloading of any server with the aid of migrating the extra request to other

idle or least loaded and least faulty neighboring server in cloud. Proposed load balancing

algorithm is divided into two stages. In first stage list of idle servers is created, and in second

stage the server with highest fitness value and which can fulfill the request with least failure

probability.

30

Stage I

Algorithms checks and calculate the fitness value for the neighbor server to store them in a

list shown in figure 3.3(b). Load balancer utilizes this list to select the server that has highest

fitness value. Load balancer calculates the waiting time over each server from above list

which can be given as:

λ
 (3.9)

Equation 1 shows the Wk waiting time of i
th

request at server ‘k’.

 Stage II

In second stage load balancer then finds the server with least waiting time, least fault rate and

highest service rate i.e. highest fitness value from the list.

A proposed algorithm also tries to improve the server response time by selecting the server

having least CPU utilization. In this way, proposed algorithm utilizes the idle or underutilized

server to increase the overall performance of the system and reduce requests failure over the

system by reducing the probability of request failure.

Figure 3.3 (a) Proposed load balancing algorithm.

31

Figure 3.3 (b) Find a neighbor server algorithm.

Figure 3.4 Proposed algorithms flow diagram

Figure 3.4 shows the flow of the algorithm with various phases of algorithm and interaction

among them to find the fittest server for each request.

3.1.4. Experiment and Result

32

Performance analysis of proposed FLBLBA algorithm is finished using CloudSim [11]

simulator where we now have thousands of requests to be completed by 12 storage servers.

All of the servers work concurrently with constant quantity of CPU cores to process the client

request rapidly. Each server has a request queue to buffer the incoming client requests,

storage ability to store the data and fulfill the client requests.

For the given problem statement in section 3 where the load is unbalanced, it is assumed that

half of storage servers get client requests and others remain idle. Our motive is to equally

distribute the received client requests among the servers to avoid the scenario of overloading.

In the simulation scenario numbers of storage servers are kept fixed with varying number of

requests handling. We have also compared the obtained results with the least load balancing

algorithm. Following table depicts the configuration parameter for our simulation

environment.

Table 3.1: Experimental parameters used for simulation environment

No. of client

requests

No. of

Servers

No. of CPU cores

available per

server

Storage capacity

of servers (GB)

Server queue

length

800 12 7 500 20

1000 12 7 500 20

1200 12 7 500 25

1800 12 7 500 25

2400 12 7 500 25

33

Figure 3.5 Number of request completed

Figure 3.5 shows the number of processed client requests by server in a given time. Here,

Figure 3.5 represents the graph between numbers of sent requests vs. numbers of completed

request whereas Figure 3.6 represents the graph between no. of sent requests vs. no. of failed

requests for the proposed and least load algorithms. In least loaded algorithm when any

server get overloaded then load balancer selects the server of which request queue is least

loaded without considering the CPU parameter. For the pro- posed algorithm we have

considered the CPU parameter and from obtained results as shown in Figure 3.5, Figure 3.6

and Figure 3.7 that the proposed algorithm perform much better over the least load algorithm.

Figure 3.8 shows that the proposed FLBLBA algorithm improves the average utilization of

the system drastically over increasing requests due to improvement in total request

completed. In all set of client requests, proposed algorithm process more number of client’s

request with better overall response time as shown in Figure 3.7.

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

500

1000

1500

2000

2500

3000

No. of Requests

N
o
.

o
f

C
o
m

p
le

te
d
 R

e
q
u
e
s
ts

FLBLBA Algo

LL Algo

34

Figure 3.6 Number of sent requests vs. no. of failed requests.

Figure 3.7 Overall response time.

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

50

100

150

200

250

300

350

400

450

500

Request Count

 R
e
q
u
e
s
t

F
a
ilu

re
 C

o
u
n
t

FLBLBA Algo

LL Algo

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

1

2

3

4

5

6

7

8

9
x 10

4

No. of Requests

O
v
e
ra

ll
T

im
e
 (

m
s
)

FLBLBA Algo

LL Algo

35

Figure 3.8 Average utilization of system

3.2. Approach 2: Deadline Aware Load Balancing of Distributed Servers in

Distributed

In this approach, we have proposed a Deadline based Load balancing algorithm

(DDLBA) that can balance the load of servers dynamically by considering its parallel

processing capability, processing time and its request queuing capacity. Proposed algorithm

aim to overcome the failures due to long waiting time rather than network or system failure.

Algorithm takes care of request which have small deadline and need to be assigned to a

server with high service rate that can fulfill the request within the deadline. Proposed

algorithm improves the performance of cloud storage system by reducing request failure

count, Average queue length, average utilization, total execution time.

The work is devided into various sections, where section 1 & 2 describes the proposed

approach and algorithm. In section 3 we have presented experimental results and comparitive

study of proposed algorithm.

3.2.1. Proposed Approach

Here, we have proposed a Deadline based Load balancing algorithm (DDLBA) that

can balance the load of servers dynamically by considering its parallel processing capability,

processing time and its request queuing capacity. Proposed approach takes three main

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

No. of Requests

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
 (

%
)

FLBLBA Algo

LL Algo

36

parameters of a server 1) Server request queue size - buffer space to store the client requests

to be handled by the server. 2) Server service rate (λ) - the number of CPUs available for

processing the client request in a server. 3) Processing time (S_T) – time takes to process a

request which differs from server to server. Modern servers are equipped with many features

like multiple CPUs, large storage, high I/O capability etc. We have chosen the multiple CPUs

feature as a main parameter for load balancing of our proposed approach.

Following are the few assumptions that we have considered for our proposed approach:

 It is assumed that all the servers belong to same organization which can be

geographically apart from each other. So each server maintains the replica of every

server data.

 It is also assumed that all servers are strongly connected with each other through high

bandwidth medium.

 Each server maintains global view which contains the information of its neighbors

through master server.

Figure 3.9 Organization of distribute data servers.

Figure 3.9 shows the general scenario of distributed storage servers. In figure 3.9, there could

be N connected servers where N €{1,2,3 ….. n-1} , in the system. Each server has following

properties such as request queue, number of CPUs, storage capacity. Clients send their

requests to the respective server. Many times the incoming request rate (ρ) in- creases

exponentially to a particular server. This is because of the series of client’s requests to that

data that is stored within the server. In case, when a server gets too many requests than server

buffers them in their request queue and the size of request queue gets increases dynamically

only upto its predefined threshold limit. Once, the request queue breaches the threshold limit

37

than server is considered as overloaded server and triggers the load balancer. Load balancer

classifies the least loaded server on the basis of their request queue and processing capacity.

As soon as the least loaded server gets classified than overloaded server migrate its load to

that server and balances the load. Various notations are used in the proposed approach and

represented as follows:

ρ - Current queue size of server.

λ - Service rate that is number of request processed simultaneously server.

S_T -Service time is the time taken by server to process the request

Q_L threshold - Threshold limit of server request queue.

Q_L Current - current capacity of server request queue at time t.

∆Li - additional load on server i.

DLi - Deadline time of request i

Fj - Fitness value of neighbors of server i.(j €{1,2,3 ….. n-1}

We have considered the real world scenario where the server request queue size and

service rate changes with respect to time t dynamically and represented as respectively

 (3.10)

 (3.11)

When server i where i , is overloaded then it calculates the amount of extra

load i on that server which can be calculated as follow:

 (3.12)

The condition when a load balancer module gets triggered on the overloaded server i is

given below:

 (3.13)

Once, the load balancer module is triggered, server i find the least loaded or idle server

that can accommodate its load and adequately process the service requests without deadline

failure. For this load balancer calculates the fitness value Fj that can be calculated using the

following fitness function:

38

 (3.14)

Here, ∆Mj is free request queue of server j. If ∆Mj is negative, then server j request queue

is overloaded otherwise it is least loaded.

 Fj = α1 ∆Mj + α2λ (3.15)

Here, α1 and α2 are constants and may vary according to scenario such that

 α1 + α2 =1 (3.16)

For our proposed scenario, we have considered the value of α1 and α2 is 0.5 it is because

both the parameters play the equal role in load balancing. In this way, load balancer

calculates the fitness value for each neighbors of server i.and select that server which has

maximum fitness Fj value and waiting time of request less than deadline of request and

migrate the ∆Mj amount of load to server j.

3.2.2. Proposed Model

Proposed algorithms have been designed to balance the client requests over the

servers and distribute the load over the system uniformly. Here, load balancer as shown in

Figure 3.10(a) is responsible for consistently assessment of the request queue dimension of

servers and tries to prevent the main issue of overloading of any server with the aid of

migrating the request to other idle or least loaded neighboring servers which can also

complete the request in deadline without failure in the system. Proposed load balancing

algorithm is divided into two stages. In first stage list of idle servers is created, and in second

stage the server with highest fitness value and which can fulfil the deadline in selected.

Stage I

Algorithms checks and calculate the fitness value for the neighbour server to store them in a

list shown in figure 3.10 (b). Load balancer utilizes this list to select the server that has

highest fitness value. Fitness value is evaluated based on deadline and the empty

Stage II

In second stage load balancer calculates the waiting time over each server from above list

which can be given as:

39

 (3.17)

 (3.18)

Equation 3.18 shows the waiting time of k
th

 request. DLi deadline of a request. Load balancer

then finds the server with waiting time less than request deadline and highest fitness value

from the list. Proposed algorithms also try to reduce the server response time by selecting the

server with least CPU utilization. In this way, we utilize the server to increase the overall

performance of the system and reduce request deadline failures over the system.

Figure 3.10 (a) Load balancing algorithm.

40

Figure 3.10 (b) Find neighboring server algorithm.

Figure 3.11.Proposed algorithms flow diagram

Figure 3.11 shows the flow of the algorithm with various phases of algorithm and interaction

among them to find the fittest server for each request.

41

3.2.3. Experiment and Result

Efficiency evaluation of proposed DDLBA algorithm is completed utilizing simulations the

place we've created hundreds of thousands of virtual machine requests to be served via 12

storage servers. All servers are deployed in distributed environment with unique count of

CPU cores complete the requests. Each server has a fixed request queue size to buffer the

incoming client requests and storage capacity. For the given main issue assertion in part 3

where the load is unbalanced, it is assumed that half of storage servers get client requests and

others stay idle. Our aim is to equally distribute the received requests among the many

servers to restrict the scenario of overloading. Within the simulation situation numbers of

storage servers are kept fixed with various quantities of requests handling. We've got

additionally compared the bought results with the least load balancing algorithm. Following

table depicts the configuration parameter for our simulation atmosphere.

Table 3.2: Experimental parameters used for simulation environment

No. of client

requests

No. of

Servers

No. of CPU cores

available per

server

Storage

capacity of

servers (GB)

Server

queue

length

800 12 7 500 15

1000 12 8 500 15

1200 12 9 500 20

1800 12 10 500 20

2400 12 11 500 20

42

Figure 3.12 Comparison between no. of sent requests vs. no. of completed requests.

Figure 3.13 Comparison between no. of sent requests vs. no. of postponed requests.

800 1000 1200 1400 1600 1800 2000 2200 2400
60

80

100

120

140

160

180

200

220

240

260

No. of requests

N
o.

 o
f c

om
pl

et
ed

 re
qu

es
ts

DDLBA algo

LL algo

800 1000 1200 1400 1600 1800 2000 2200 2400
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

No. of requests

N
o.

 o
f

de
la

ye
d

re
qu

es
ts

DDLBA algo

LL algo

43

Figure 3.14 Overall response time.

Figure 3.15 Average utilization of system

Figure 3.12 shows the number of processed client requests by server in a given time. Here,

figure 3.12 represents the graph between numbers of sent requests vs. numbers of completed

800 1000 1200 1400 1600 1800 2000 2200 2400
2

4

6

8

10

12

14
x 10

4

No. of requests

O
ve

ra
ll

tim
e(

m
s)

DDLBA algo

LL algo

800 1000 1200 1400 1600 1800 2000 2200 2400
16

17

18

19

20

21

22

23

No. of requests

A
ve

ra
ge

 U
til

iz
at

io
n(

%
)

DDLBA algo

LL algo

44

requests. Whereas figure 3.13 represents the graph between numbers of sent requests vs.

numbers of postponed requests for the proposed and least load algorithms. In least loaded

algorithm when any server get overloaded then load balancer selects the server of which

request queue is least loaded without considering the CPU parameter. For the proposed

algorithm we have considered the CPU parameter and from obtained results as shown in

figure 3.12 & 3.14 that the proposed algorithm perform much better over the least load

algorithm. Figure 3.15 shows that the proposed DDLBA algorithm improves the average

utilization of the system drastically over increasing requests due to improvement in total

request completed. In all set of client requests, proposed algorithm process more number of

client’s request with better overall response time as shown in figure 3.14.

3.3. Approach 3: Load Balancing Algorithm for Hybrid Cloud IaaS

Data confidentiality and trust formation are the major security concerns in the cloud.

Therefore, there is a firm need to establish an Inherent trust on cloud service provider in order

to assure the cloud behavior, data protection and make cloud technology globally acceptable

and reliable for users. Data protection deals with protecting the individual or organization’s

private data which is shared over the cloud. It is possible only when the security and

trustworthiness of both the service provider and user is ensured. Therefore there is a need to

establish trust between both and hence we need to develop a trust management model.

Trust models are been used in all form of distributed environments ranging from

MANETS (Mobile ad hoc network), Sensor network and Grid computing to validate the

reliability of nodes over distributed network. In grid computing various trust models are

been proposed to insure trust in term of security and reliability of the server or the node. Trust

models are to resolve the problem of reliability in any heterogeneous environment, which

contributed of nodes having different configuration spread over a network. There are many

models being proposed in a cloud computing environment. Mostly trust models are proposed

for cloud, SaaS (Software as a service) to overcome security issues. Some of the trust models

proposed are being discussed in section II. The models proposed do not fit the cloud IaaS

(Infrastructure as a Service) environment because they do not take into consideration the

performance of datacenter for trust and also most of the trust models proposed uses direct

trust based on the static parameters but the trust vale may change as the performance of

datacenter changes.

45

So in this approach, we have proposed a hybrid trust management model to overcome

this problem, by taking into consideration datacenter characteristics which vary from

datacenter to datacenter. In proposed trust model we have used direct trust and recommended

trust value to evaluate the variable trust value over the period of time. These trust value are

been used by the scheduling algorithm proposed to improve the scheduling of the resources

for hybrid cloud.

3.3.1. Proposed Approach

The Trust Model we are proposing here will work for Private, Public and Hybrid Cloud. It

will take into consideration both the Direct and Indirect Trust or recommended trust. For the

Calculation of Trust Value we will take Memory (RAM), MIPS (Million Instruction per

Cycle), Frequency (Frequency of data center) and Fault Rate. We will initially calculate only

Direct Trust and as the time will evolve we will also consider the indirect trust. We will

initiate the parameter MIPS and Fault with zero and Memory and MIPS will be according to

the datacenter. With these we will calculate the Trust Value and initial load balancing will be

done according to that. As the Time will evolve, we will calculate the Indirect or

Recommended Trust also using Fault Rate which we initially considered zero and Response

Time. Now, since the request from both public and private cloud will start arriving, we

assume that some of them will not be accomplished due to technical faults and hence the

parameter Fault Rate will have some value other than zero.

After Calculating Values for both we will rate the datacenters according to the trust

value calculated, This Trust value will be combined of Direct and Indirect Trust. And hence

allocate the private request to a server with high trust value since the request has lower

chances of going down and allocate the public request to a server with low trust value since

the request has higher chances of going down. We will keep this dynamic process going in

order to ensure a Trust Based Load Balancing.

Steps for load balancing algorithm.

Pseudo Code

• Start by Calculating individual trust values of each data center.

• Consider only direct trust initially and as the time evolve indirect trust will also come in

consideration.

• Take these factors into consideration for calculation of trust value for Direct Trust:

46

 RAM (Memory)

 MIPS

 Frequency of data center

 Fault Rate (initially 0)

• Now, according the size of request start dividing them into public or private.

• Send the private cloud requests to a data center with high trust value since they are less

likely to fail.

• Send the public cloud requests to data center with low trust value as they are more likely to

fail.

• Meanwhile calculate the Indirect Trust, which is based on:

Fault Rate (number of task failed/total tasks)

Response Time (Time taken to accomplish a standard request.)

• Update the trust value with the values from Indirect Trust and now allocate the load

accordingly.

We will initially calculate only Direct Trust and as the time will evolve we will also consider

the indirect trust. We will initiate the parameter MIPS and Fault with zero and Memory and

MIPS will be according to the datacenter. With these we will calculate the Trust Value and

initial load balancing will be done according to that. As the Time will evolve we will

calculate the Indirect or Recommended Trust also using Fault Rate which we initially

considered zero and Response Time. Now since the request from both public and private

cloud will start arriving we assume that some of them will not be accomplished due to

technical faults and hence the parameter Fault Rate will have some value other than zero.

RAM: flash memory of the server.

MIPS: Millions of instructions per second of server.

Initial_Trust : Trust value of the server based on the executional power i.e. RAM and MIPS.

Fault_Rate : Number of faults in an server over a period of time ‘t’.

Updated_Trust : Updated Trust value based on initial trust and fault occurred over a period of

time.

α1, α2 & α3: Constants

Initial_Trust= α1*RAM + α2*MIPS; (3.19)

47

Where

α1+ α2+ α3=1 (3.20)

 (3.21)

Figure 3.16 Proposed trust based algorithm

Figure 3.16 shows the pseudo code for proposed algorithm with various steps to find the

fittest server for each request.

3.3.2. Experiment and Results

Proposed trust model is simulated using Cloudsim API [24]. Cloudsim basically support cost

estimation, and Random Load balancing of resource and has no support to study behaviour of

datacenter and trust model. So to study the datacenter behaviour trust parameter is introduces

as datacenter property, which depends on parameter defined in Cloudsim. Based on this

attribute we have computed the result to show the real problem. For this we have considered

two classes of budget range, with 3 datacenters and 300 user requests.

48

Table 3.3: Servers Parameters

Server Name Fault

rate

Hard disk

(MB)

RAM (MB) MIPS Cores

Server1 0.143 1000000 20048 10000 4

Server2 0.125 1000000 20048 10000 6

Server3 0.5 1000000 20048 10000 4

Figure 3.17 Total number of request completed in faulty environment

Figure 3.18 Total number of request failed.

49

Figure 3.17 and 3.18 represents the improvement in request failure and completed count

using proposed algorithm as compared to existing algorithm without trust management.

3.4. Conclusion

The main achievement of this work is to find the rich literature and solve the issue of

load balancing in fault aware cloud environment. In distributed file system, data is dispersed

among different storage servers located geographically far away from each other. To provide

the desired quality of service to the clients, performance of the distributed file system matters

a lot. Response time is the major parameter that may affect the performance of the any

distributed file system. Proposed approach 1 & 2 claims to reduce the delayed requests and

also reduces the overall system response time. Approach 1 also considers the physical aspects

of a server like available number of CPU cores in a server, request queue size or buffer to

store the incoming client requests. Moreover approach 2 also considers the deadline of client

requests to reduce request failure due to deadline. Obtained result shows the improvements

over previously worked least loaded algorithm and more number of client requests are

processed by the system without delay and in case of overloading and failure the load balance

distribute the requests accordingly to neighbor servers. In this approach 3 different type of

trust models and load balancing algorithm are been discussed with their drawbacks. To

overcome the drawbacks a trust based fault aware load balancing algorithm is proposed

which perform better them load balancing algorithm implemented in CloudSim. For future

work this trust model may be compared with other models and see the improvement in the

QoS.

The results obtained from our approaches are very competitive with most of the well

known algorithms in the literature and justified over the large collection of requests. Proposed

load balancing algorithm proves to provide better fault tolerance as compared to existing

algorithm with least request failure, reduced average utilization, average delay and high

request completion count.

50

CHAPTER 4

LEARNING BASED FAULT AWARE

RESOURCE ALLOCATION

Distributed and cloud computing environments are presently slanting and more

prevalent for computation by various organizations like Google, Amazon, Microsoft etc. as

the cloud size increase there is huge expansion in power consumption over the server farms.

Also with increase in request load over a datacenter increases the request failure probability.

To overcome these issues request should be scheduled in more efficient manner, improving

resource utilization, request failure count and reliability of system. Recent studies show that

the failure probability of a server increases linearly with the increase of independent resources

(processors), and result into request failure at datacenters. So to resolve this issue various

approaches have been proposed to improve the performance of cloud environment.

In this section, we have proposed a set of learning based algorithms for task allocation to

minimize the request failure and to improve QoS (Quality of Service) over a data center.

Proposed approaches aim to provide a global best schedule with least scheduling time

complexity. Proposed algorithms has proven to have better performance in term of load and

request failure rate as compared to previously proposed task allocation algorithm for cloud

IaaS.

51

4.1. Approach 1: Fault and QoS based Genetic Algorithm for Task

Allocation in Cloud Infrastructure

To overcome these issues a fault aware learning based resource allocation algorithm is

been proposed using Genetic algorithm. Genetic algorithm helps us to find a solution, which

cannot be, achieved my any static or dynamic algorithm. More over fault tolerant genetic

algorithm help to find a fittest solution in term of least makespan (Time taken to complete a

request) and least request failure probability. Proposed algorithm uses Poisson probability

distribution for random request failure at virtual machine i.e. at host and datacenter level. On

the other hand, request failure over a datacenter may occur randomly due to storage, network

failure or VM crashes. Based on fault over a datacenter and computing capability of a system,

we have proposed a task allocation policy to minimize the total makespan over the system and

reduce request failure probability. According to algorithm collect the information of data

center resources and capability, and the count of failure occurred over a period of time on a

datacenter.

4.1.1. Proposed algorithm

Proposed FGA (Fault aware Genetic Algorithm) is divided into four phases which are as

follows:

a) Initialization

b) Evaluation and selection

c) Crossover

d) Mutation

a) Initialization

In this phase we have a set of tasks (T1, T2,T3,T4,T5,T6…. T n) and a set of resources in term of

virtual machine (VM1,VM2,VM3,VM4,VM5…. VM m) are pre allocated on hosts in distributed

datacenters. Here we initialize asset of sequences or schedules allocated randomly, each

sequences act a chromosomes for genetic algorithm. The complete set of chromosomes is said

to be a population, acting as an input for algorithm. Next population is initialized which is a

52

set of schedules generated randomly, by allocating tasks randomly to virtual machines

available.

b) Evaluation and selection

In this phase we evaluate the fitness value for each schedule in a population or chromosome,

which depends up on the computing capability, total time taken to complete the schedule,

average utilization and the failure probability of complete schedule. Fitness value is evaluated

using a fitness function defined below.

Where

Fi : Faults occurred on a system over the time T

FRi : Fault rate that is the number of request failed due to system failure over time t.

FPi : Failure probability over a Host i.

REi : Reliability of a Host i.

 : Fault rate over a time T

Since faults over a datacenter are random in nature and follows Poisson distribution, which

over a period of time t and t+ ∆ Tcan be defined as:

 (4.1)

FPi (t) =1 – exp(- t) (4.2)

mtt eeRPi /
 (4.3)

If

VM_MIPS i: MIPS of i
th

 virtual machine

T_Lengi: Length of i
th

 Task

Then the predicted time to complete a task Ti is defined:

iMIPSVM
ExeiT

_

T_Lenght
_ i

 (4.4)

ni iMIPSVM

timeTotal
1

i

_

T_Length
_ (4.5)

53

The fitness value for a chromosome is defined by the fitness function gives as:

)()_(_ iii FPtimeTotalchromosomeFitness

(4.6)

Where

1 (4.7)

Based on the fitness value of chromosome the fittest one is selected having least fitness value.

The population is sorted based on the fitness value and best two are selected for next phase.

c) Crossover

In this step two fittest solutions based on least make span and failure probability is selected.

We have used multi point crossover to generate new fittest schedule/ chromosome. This

module is responsible for generation of new schedule/ chromosome by combining to selected

having least fitness value and interchange two or more scheduled tasks between selected

fittest schedules. The new generated schedule ins added to the existing population.

Steps to generate crossover are as follows.

1. The two fittest chromosomes are selected

2. A new fittest chromosome is generated using multi point cross over by interchanging the

set of schedules between two chromosomes.

3. The new chromosome replaces the chromosome with highest fitness value.

d) Mutation

In this phase new merging the new offspring, and modifying the existing chromosomes with

new solution. This forms a new set of schedules and population which form a better solution

after each iteration. After specific count of iteration predefined as an input to genetic

algorithm, best chromosome is selected i.e. the chromosome with least fitness value is

selected for schedule.

54

Proposed algorithm

Figure 4.1 Proposed FGS algorithm Initialization

Figure 4.2 Proposed fault aware genetic algorithm.

Figure 4.3 Proposed FGA evaluation phase

55

Figure 4.4 Proposed FGA allocation phase

Proposed algorithm provides a benefit over existing static scheduling algorithm, that it can

search for best global solution rather than assuming the local best solution as the best solution.

Moreover, the proposed algorithm takes into consideration the faulty behavior of cloud, which

helps in find a solution with similar high utilization and least failure probability.

Figure 4.5 Proposed FGA flow diagram

56

4.1.2. Experiment and Results

For simulation CloudSim 3.0 API is used. CloudSim 3.0 [72] provides linear power model

simulation to find the power consumption in cloud. Proposed fault aware genetic task

allocation algorithm is implemented in CloudSim replacing existing task scheduling to find

the global best schedule. Proposed algorithm is being tested over various test cases with 10

servers D0-D9 and Poisson distribution model for random request and fault model in

distributed environment.

Testing of proposed algorithm is done with basic Genetic algorithm proposed by Suraj, S. Rin

[62]. Testing is done for 1000, 1500, 2000, 2500, 3000, 3500 requests with population size

been 100, 200, 300, 400. Iteration for simulation of each simulation is 100. Results are shown

in figures below. Table 4.1 shows the environment specification and parameters used for

simulation.

Table 4.1

Experimental parameters used for simulation environment

Server RAM MIPS Storage Core PE HOST

(Mb) (Gb)

D0 2000 10000 100000 4 6 2

D1 2000 10000 100000 4 6 2

D2 2000 10000 100000 4 6 2

D3 2000 10000 100000 4 6 2

D4 2000 10000 100000 4 6 2

D5 2000 10000 100000 4 6 2

D6 2000 10000 100000 4 6 2

D7 2000 10000 100000 4 6 2

D8 2000 10000 100000 4 6 2

D9 2000 10000 100000 4 6 2

57

Figure 4.6 Comparison of improvement in request completed

Figure 4.7 Comparison of improvement in request failed

Figure 4.6 & 4.7 compares the improvement in number of request failed and request

competed with increase in number of requests over the system. The failure count reduces over

the proposed system in increase in completed requests over the system.

1000 1500 2000 2500 3000 3500 4000 4500

0

100

200

300

400

500

600

700

Request Count

R
e

q
u
e

s
ts

C
o

m
p

le
te

d

 Proposed

 GA

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

200

400

600

800

1000

R
e

q
u

e
s

ts

F
a

il
e

d

Request Count

 Proposed

 GA

58

Figure 4.8 Comparison of failure probability with variable resources

Figure 4.9 Comparison of failure probability with variable request

5 10 15 20 25 30 35 40 45 50

20

25

30

35

40

45

50

55

60

F
a

il
u
re

 p
ro

b
a

b
il

it
y

 i
n
 %

No. of Virtual Machines

 Proposed

 GA

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2.46

2.48

2.50

2.52

2.54

2.56

2.58

F
a

il
u

re
 P

ro
b

a
b

ili
ty

Request Count

 Proposed

 GA

59

Figure 4.10 Comparison of reliability with variable resources

Figure 4.8 discourses the improvement in failure probability with increase in number of

resources since with increase in number of VM’s the probability of failure increases over the

system. Figure 4.9 shows the improvement in failure probability with increase number of

request count. Figure 4.10 & 4.11 shown the increase in reliability with increase number of

VM’s and request counts. Figure 4.11 shows improvement in reliability as the number of

requests increases. Figure 4.12 shows the drawback of proposed algorithm with small increase

in complete execution time as the number of request completed increases.

From experimental result section, it is clear that proposed fault aware GA (Genetic

Algorithm) provides better QoS (Quality of service) as compared to previous proposed GA

algorithm. The main idea of this algorithm in cloud computing is to complete maximum

number of requests with least failure probability, proposed algorithm shown that it can

maximize reliability and minimize the number of request failed. This strategy has proven that

it provides better QoS in term of high reliability with increase in number of requests and

resources with failure probability.

5 10 15 20 25 30 35 40 45 50

40

45

50

55

60

65

70

75

80

 R
e

li
a

b
il

it
y

 %

Virtual Machine Count

 Proposed
 GA

60

Figure 4.11 Comparison of reliability with variable requests

Figure 4.12 Comparison of execution time with variable resources

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

7.42

7.44

7.46

7.48

7.50

7.52

7.54

 R
e

li
a

b
il

it
y

 %

Request Count

 Proposed

 GA

61

4.2. Approach 2: Task Allocation Using Big Bang-Big Crunch in Cloud

Infrastructure

In this approach, we have proposed a task allocation algorithm based on Big Bang-Big

Crunch (BBC) algorithm. This algorithm is motivated from the physics behind creation of

universe theory in astrology. BBC algorithms refers to the evolution of universe and end of

universe which says universe is a finite space which once expanded with force binding it and

will end into a single point referred as a black hole. Algorithm also suggests that any element

of universe cannot be suggested as center of universe. Similar to this we have proposed a task

allocation algorithm to find a single best solution from a large set of solutions. Where

generation of universe is referred as Big Bang phase and dissipation of universe in black hole

near the center is said to big crunch phase.

Proposed algorithm uses Poisson probability distribution for random request at virtual

machine i.e. at host and datacenter level. Based on computing capability of a system, we have

proposed a task allocation policy to minimize the total makespan over the system and reduce

time complexity of solution. According to algorithm collect the information of data center

resources and its capability. Proposed algorithm is similar to Genetic algorithm (GA) but the

problem size reduces after each phase and will give you a single point solution i.e. the global

solution. But in existing GA the population size remain same and there is no guarantee that

the global best is achieved.

4.2.1. Proposed Algorithm

Existing proposed algorithms are either discus about task scheduling or resource

utilization and some of them talk about task or VM migrating to fulfill requests but the

existing algorithms are static or dynamic in nature and they may suffer from local minima

solution considering that as the best solution. But a better solution for task allocation may be

possible. So to overcome these learning based algorithms were proposed like Genetic

algorithm and PSO (particle swarm optimization). The issue with these algorithms is that they

have very high time complexity more over they depend upon the iteration and the initial;

population size, which affects their solution. If the population size of the iterations/generation

are less then there less probability to get best solution.

62

Proposed algorithm is divided into four phases which are as follows:

a) Big Bang / Initialization phase

b) Evaluation phase

c) Crossover / Center of mass

d) Big Crunch phase

a) Initialization

In this phase we have a set of tasks (T1, T2, T3, T4, T5, T6…. T n) and a set of resources in term

of virtual machine (VM1, VM2, VM3, VM4, VM5…. VM m) are pre allocated on hosts in

distributed datacenters. Here we initialize asset of sequences or schedules allocated randomly,

each sequences act a chromosomes for genetic algorithm. The complete set of chromosomes

is said to be a population, acting as a input for algorithm. Next population is initialized which

is a set of schedules generated randomly, by allocating tasks randomly to virtual machines

available.

b) Evaluation and selection

In this phase we evaluate the fitness value for each set of sequence or chromosome, which

depends up on the computing capability, total time taken to complete the schedule. Fitness

value is evaluated using a fitness function defined below.

Where

VM_MIPS i: MIPS of i
th

 virtual machine

T_Lengi: Length of i
th

 Task

Fitness_chomosomei : Fitness value of chromosome/sequence i

Then the predicted time to complete a task Ti is defined:

iMIPSVM
ExeiT

_

T_Lenght
_ i

 (4.8)

ni iMIPSVM

timeTotal
1

i

_

T_Lenght
_ (4.9)

63

The fitness value for a chromosome is defined by the fitness function gives as:

)_(_ ii timeTotalchromosomeFitness

(4.10)

Based on the fitness value of chromosome the fittest one is selected having least fitness value.

The population is sorted based on the fitness value and best two are selected from next phase.

c) Crossover

In this step two fittest solutions based on least make span are selected based on the center of

mass and the population sequence near to center of mass are selected for cross over.

The steps for selection are as follows:

1. Find Center of mass of fitness values of the sequences in population using mean.

2. Find the sequence having fitness value with least difference from the center of mass.

 We have used multi point crossover to generate new fittest sequences/ chromosome. Steps to

generate crossover are as follows.

4. The two fittest chromosomes are selected with least difference from center of mass

and one having least fitness value.

5. A new fittest chromosome is generated using multi point cross over by interchanging

the set of schedules between two chromosomes.

6. The new chromosome replaces the chromosome with highest fitness value.

()

_

_ 0

SizePopulation

chromosomeFitness

MassC

n

i

i

 (4.11)

d) Big Crunch phase

In this phase new merging the new offspring, which can be better solution from all other

chromosomes/sequences. A new population is generated with new offspring generated and

removing two chromosomes with least fitness value i.e. the worst solution from the

population, decreasing the population size by one. These steps are repeated for number of

iterations. After specific count of iteration of proposed algorithm stop the iterations, when the

64

population size is one. This is said to be the stopping condition of BBC and the last solution is

the best solution for a definite time interval and iteration. Each iteration can also be referred

as “generation” to create new fittest solution.

Proposed algorithm

Figure 4.13 Proposed BBC algorithm initialization

Figure 4.14 Proposed BBC Algorithm

65

Figure 4.15 Proposed Evaluation Phase

Figure 4.16 Big Crunch Phase

Figure 4.17 Allocation Phase

Proposed algorithm provides a benefit over existing static scheduling algorithm, that it can

search for best global solution rather than assuming the local best solution as the best solution.

Moreover, the proposed algorithm takes into consideration the faulty behavior of cloud, which

helps in find a solution with similar high utilization and less time complexity as compared to

Genetic algorithm. Figure 4.18 shows the flow diagram for proposed algorithm and

interaction between each module.

66

Figure 4.18 Proposed big bang big crunch algorithm flow diagram

4.2.2. Experiment and Results

Simulation has been performed on a simulation test bead using CloudSim 3.0 [72] tool kit for

cloud simulation. CloudSim provides a cloud infrastructure environment with all

environmental parameter to study the performance of cloud. Proposed Big Bang Big Crunch

algorithm for task allocation is implemented in CloudSim replacing existing Round Robin

algorithm. The algorithm aims to reduce the scheduling time and find an global best schedule

with least make span. Proposed algorithm is being tested over various test cases with 10

servers D0-D9 and Poisson distribution model for random request in distributed environment,

with each server having two hosts each.

Testing of proposed algorithm is done with basic Genetic algorithm proposed by Suraj, S. Rin

[62]. Testing is done for 1000, 1500, 2000, 2500, 3000, 3500 requests with population size

been 100, 200, 300, 400. Iteration for simulation of each simulation is 100. Results are shown

67

in figures below. Table 4.2 shows the environment specification and parameters used for

simulation.

Table 4.2: Experimental parameters used for simulation environment

Server RAM MIPS Storage Core PE HOST

(Mb) (Gb)

D0 2000 10000 100000 4 6 2

D1 2000 10000 100000 4 6 2

D2 2000 10000 100000 4 6 2

D3 2000 10000 100000 4 6 2

D4 2000 10000 100000 4 6 2

D5 2000 10000 100000 4 6 2

D6 2000 10000 100000 4 6 2

D7 2000 10000 100000 4 6 2

D8 2000 10000 100000 4 6 2

D9 2000 10000 100000 4 6 2

Figure 4.19 Comparison of improvement in execution time

1000 1500 2000 2500 3000 3500

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

E
x

e
c
u

ti
o

n
 t

im
e

Requests

 GA

 BBC

68

Figure 4.20 Comparison of improvement in execution time with

changes in population size.

Figure 4.19 compares the improvement in execution time with increase in number of requests

over the system. Figure 4.20 shows the improvement in execution time with increasing

population size. Execution time has reduced over the proposed system with increase in

completed request count over the system.

Figure 4.21 Comparison of execution time of individual requests.

For 1000 request count

100 150 200 250 300 350 400

0

100000

200000

300000

400000

500000

600000

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
il
li
s
e
c
o

n
d

s
)

Population size

 BBC

 GA

0 200 400 600 800 1000

-50

0

50

100

150

200

250

300

350

400

E
x

e
c
u

ti
o

n
 t

im
e

 (
m

il
li

s
e
c

o
n

d
s

)

Request ID

 GA

 BBC

69

Figure 4.22 Comparison of execution time of individual requests.

For 1500 request count

Figure 4.23 Comparison of execution time of individual requests.

For 2000 request count

-200 0 200 400 600 800 1000 1200 1400 1600

0

100

200

300

400

500

Request ID

E
x

e
c
u

ti
o

n
 t

im
e

 (
m

il
li

s
e
c

o
n

d
s

)

 GA

 BBC

-200 0 200 400 600 800 1000120014001600180020002200

0

200

400

600

800

E
x

e
c
u

ti
o

n
 t

im
e

 (
m

il
li

s
e
c

o
n

d
s

)

Request ID

 GA

 BBC

70

Figure 4.24 Comparison of execution time of individual requests.

For 2500 request count

Figure 4.25 Comparison of execution time of individual requests.

For 3000 request count

0 300 600 900 1200 1500 1800 2100 2400 2700

0

200

400

600

800

Request ID

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
il
li
s
e
c
o

n
d

s
)

 GA

 BBC

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

E
x

e
c
u

ti
o

n
 t

im
e

 (
m

il
li

s
e
c

o
n

d
s

)

Request ID

 GA

 BBC

71

Figure 4.26 Comparison of execution time of individual requests.

For 3500 request count

Figure 4.21, 4.22, 4.23, 4.24, 4.25 & 4.26 shows the improvement in distribution of exection

time for requests using proposed BBC nalgorith for task allocation over cloud. The execution

time of the requets has improved and majority of requests are completed in small execution

time as compared to genetic algorithm.

Figure 4.27 Comparison of Average Start time of system

 with increase in request count

-500 0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
il
li
s
e
c
o

n
d

s
)

Request ID

 GA

 BBC

1000 1500 2000 2500 3000 3500

50

100

150

200

250

300

A
v
e
ra

g
e
 S

ta
rt

 T
im

e

(m
il
li
s
e
c
o

n
d

s
)

Request Count

 GA

 BBC

72

Figure 4.28 Comparison of Average Finish time of system with

increase in request count

Figure 4.27 discourses the improvement in average start time with increase in number of

request over the system, which shows the proposed algorithm proves to provide better start

time them the conventional genetic algorithm. Figure 4.28 discourses the improvement in

average finish time which reduces with increasing requests over the system the experiment

has been performed over 1000, 1500, 2000, 2500, 3000 and 3500 request count. Proposed

algorithm proves to provide reduced finish time as compared to existing genetic algorithm.

From experimental result section, it is clear that proposed BB-BC provides better QoS

(Quality of service) as compared to previous proposed GA algorithm. The main idea of this

algorithm in cloud computing is to complete maximum number of requests with least

execution time, proposed algorithm shown that it can provide better execution time over large

requests with reduces average start time and average finish time over the system. Proposed

algorithm reduces the number of iteration required to achieve a global best solution with least

scheduling time. This strategy has proven that it provides better QoS in term of high

reliability with increase in number of requests and resources with least scheduling time with

decrease in execution time with increase in population size and number of requests. Proposed

algorithm insures the schedule achieve is global best solution.

1000 1500 2000 2500 3000 3500

50

100

150

200

250

300

Request Count

A
v
e
ra

g
e
 F

in
is

h
 T

im
e

(m
il
li
s
e
c
o

n
d

s
)

 GA

 BBC

73

4.3. Approach 3: Fault Tolerant Big Bang-Big Crunch for Task Allocation

in Cloud Infrastructure

In this approach, we have proposed a fault aware Big Bang-Big Crunch (BBC)

algorithm for task allocation in cloud infrastructure. The algorithm is motivated from Big

Bang-Big Crunch (BBC) theory of creation of universe in astrology. BBC algorithm is similar

to the algorithm as proposed n previous approach.. Similar to this we have proposed a task

allocation algorithm to find a single best solution from a large set of solutions but in a faulty

cloud environment. Where generation of universe is referred as Big Bang phase and

dissipation of universe in black hole near the center is said to big crunch phase. Proposed

algorithm aim to improve the performance of task allocation algorithm and reduce the request

failure count. Proposed algorithm improves the reliability or system and finds the global

schedule for tasks.

4.3.1. Proposed Algorithm

Existing algorithm and above proposed approached either take into consideration

improvement in scheduling delay or fault tolerant behavior of cloud. Some other existing

approaches take into consideration VM migration of better task management, cost

improvement and power efficiency, which are static or dynamic in nature. These algorithm

suffers from either cannot find global best solution or request failure in cloud. Proposed

algorithm tries to improve both the parameters together. Algorithm is been tested with

variable iterations and population sizes with different cloud infrastructures.

Proposed algorithm is divided into four phases which are as follows:

a) Big Bang / Initialization phase

b) Evaluation phase

c) Crossover / Center of mass

d) Big Crunch phase

74

a) Initialization

In this phase we have a set of tasks (T1, T2, T3, T4, T5, T6…. T n) and a set of resources in

term of virtual machine (VM1, VM2, VM3, VM4, VM5…. VM m) are pre allocated on hosts

in distributed datacenters. Here we initialize asset of sequences or schedules allocated

randomly, each sequences act a chromosomes for genetic algorithm. The complete set of

chromosomes is said to be a population, acting as a input for algorithm. Next population is

initialized which is a set of schedules generated randomly, by allocating tasks randomly to

virtual machines available.

b) Evaluation and selection

In this phase we evaluate the fitness value for each set of schedule or chromosome, which

depends up on the computing capability, total time taken to complete the schedule and the

failure probability of schedule.

Where

Fi : Faults occurred on a system over the time T

FRi : Fault rate that is the number of request failed due to system failure over time t.

FPi : Failure probability over a Host i.

REi : Reliability of a Host i.

 : Fault rate over a time T

Since faults over a datacenter are random in nature and follows Poisson distribution, which

over a period of time t and t+ ∆ Tcan be defined as:

 λ λ

 λ
 (4.12)

FPi (t) =1 – exp(- t) (4.13)

mtt eeRPi /

 (4.14)

Equation 4.12 shows the fault over a time T and t using Poisson probability distribution.

Equation 4.14 represents the evaluation of reliability for a system.

75

If

VM_MIPS i: MIPS of ith virtual machine

T_Lengi: Length of ith Task

Fitness_chomosomei : Fitness value of chromosome/sequence i

Then the predicted time to complete a task Ti is defined:

MIPSiVM
ExeiT

_

iT_Lenght
_

 (4.15)

ni MIPSiVM

timeTotal
1 _

iT_Lenght
_

 (4.16)

The fitness value for a chromosome is defined by the fitness function gives as:

)()_(_ FPitimeiTotalchromosomeFitness
i

 (4.17)

1 (4.18)

Based on the fitness value of chromosome the fittest one is selected having least fitness value.

The population is sorted based on the fitness value and best two are selected from next phase.

c) Crossover

In this step two fittest solutions based on least fitness value are selected based on the center of

mass and the population sequence near to center of mass are selected for cross over. The steps

for selection are as follows:

1. Find Center of mass from the sequences in population using mean.

2. Find the sequence having fitness value with least difference from the center of mass.

3. The selected sequence is used for generation of next fit element. The selected

sequence be S1.

4. Select a second best sequence having least fitness value. The selected sequence be S2.

 We have used multi point crossover to generate new fittest sequences/ chromosome. Steps to

generate new fittest sequence using crossover are as follows.

76

1. A new fittest chromosome is generated using multi point cross over by interchanging

the set of schedules between two chromosomes.

2. The new chromosome replaces the chromosome with highest fitness value

chromosome.

()

_

_ 0

SizePopulation

chromosomeFitness

MassC

n

i

i

 (4.19)

These steps help to find the global best solution as in each iteration the solution moves the

mean toward the best solution by using crossover and generation new best solution.

d) Big Crunch phase

In this phase the new offspring generated by merging the two best solutions, can be better

solution than all existing chromosomes/sequences. A new population is generated with new

offspring generated in previous step and removing the chromosomes with highest fitness

value i.e. the worst solution from the population, decreasing the population size by one.

Repeat steps b, c & d and stop the iterations, when the population size is one or the integration

count is zero. This is said to be the stopping condition of BBC and the last solution is the best

solution for a definite time interval and iteration. Each iteration can also be referred as

“generation” to create new fittest solution.

Proposed algorithm

Figure 4.29 Proposed FBBC algorithm initialization

77

Figure 4.30 Proposed FBBC algorithm

Figure 4.31 Proposed FBBC evaluation phase

 Fitness

Figure 4.32 Get Fittest with least difference from Center of mass

78

Figure 4.33 Get Fittest with least fitness value

Figure 4.34 Big Crunch Phase

Figure 4.35 Proposed FBBC allocation phase

Proposed algorithm provides a benefit over existing static scheduling algorithm, that it can

search for best global solution rather thanassuming the local best solution as the best solution.

Moreover, the proposed algorithm takes into consideration the faulty behavior of cloud, which

helps in find a solution with similar high utilization, least failure probability, high reliability

and less time complexity as compared to Genetic algorithm. Figure 4.36 shows the flow of

algorithm and interaction among various phases of task allocation.

79

Figure 4.36 Proposed fault aware big bang big crunch algorithm

4.3.2. Experiment and Results

Simulation has been performed on a simulation test bead using CloudSim 3.0 [72] tool kit for

cloud simulation. CloudSim provides a cloud infrastructure environment with all

environmental parameter to study the performance of cloud. Proposed fault aware Big Bang

Big Crunch algorithm for task allocation is implemented in CloudSim replacing existing

Round Robin algorithm. The algorithm aims to reduce the scheduling time and find an global

best schedule with least make span. Proposed algorithm is being tested over various test cases

with 10 servers D0-D9 and Poisson distribution model for random request in distributed

environment, with each server having two hosts each.

Testing of proposed algorithm is done with basic Genetic algorithm proposed by Suraj, S. Rin

[62]. Testing is done for 1000, 1500, 2000, 2500, 3000, 3500 requests with population size

been 100, 200, 300, 400. Iteration for simulation of each simulation is 100. Results are shown

80

in figures below. Table 4.3 shows the environment specification and parameters used for

simulation.

Table 4.3

Experimental parameters used for simulation environment

Server RAM MIPS Storage Core PE HOST

(Mb) (Gb)

D0 2000 10000 100000 4 6 2

D1 2000 10000 100000 4 6 2

D2 2000 10000 100000 4 6 2

D3 2000 10000 100000 4 6 2

D4 2000 10000 100000 4 6 2

D5 2000 10000 100000 4 6 2

D6 2000 10000 100000 4 6 2

D7 2000 10000 100000 4 6 2

D8 2000 10000 100000 4 6 2

D9 2000 10000 100000 4 6 2

Figure 4.37 Comparison of improvement in scheduling time

Figure 4.37 shows the improvement in time takes to find a best schedule to allocate resources.

In this figure both algorithms are learning based algorithm but proposed BBC algorithm

proves to have less scheduling time. Figure 4.38 & 4.39 compares the improvement in

1000 2000 3000 4000 5000

0

200000

400000

600000

800000

1000000

Request Count

S
c
h

e
d

u
li
n

g
 t

im
e

 (
m

 S
ec

)

 BBC

 GA

81

number of request failed and request competed with increase in number of requests over the

system. The failure count reduces over the proposed system with increasing request count and

proposed algorithm also shows improvement completed request count over the system.

Figure 4.38 Comparison of improvement in request failed

Figure 4.39 Comparison of improvement in request completed

Figure 4.40 discourses the improvement in failure probability with increase in number of

resources, since with increase in number of request the probability of failure increases over

82

the system. Figure 4.41 shows the improvement in reliability with increase number of request

count over a system.

Figure 4.40 Comparison of failure probability with variable request count

Figure 4.41 Comparison of reliability with variable request count

Figure 4.42 shows the drawback of proposed algorithm with small increase in total execution

time. Overall result shows that the proposed algorithm improves the fault tolerant behavior of

83

system by reducing the request failure count of the system and improving the reliability of the

system.

Figure 4.42 Comparison of execution time with variable request count.

From experimental result section, it is clear that proposed fault aware BBC provides better

QoS (Quality of service) as compared to previous proposed GA algorithm. The main idea of

this algorithm in cloud computing is to complete maximum number of requests with least

failure probability, proposed algorithm shown that it can maximize reliability and minimize

the number of request failed. This strategy has proven that it provides better QoS in term of

high reliability with increase in number of requests and resources with failure probability

84

4.4. Approach 4: Load and Fault Aware Honey Bee Scheduling Algorithm

for Cloud Infrastructure

There exist many load balancing algorithms proposed for grid and distributed

computing environments [30]. But they do not take into consideration cloud as non faulty and

QoS of datacenter. There are many cloud IaaS frameworks that provide cloud computing

services and virtualization services to the user like OpenNode [73], CloudStack [74],

Eucalyptus [75], CloudSigma [76], EMOTIVE (Elastic Management of Tasks in Virtualized

Environments) [77] and Archipel.[78]

There are many solution been proposed over the time based on priority, cost, rank

based which is used in OpenNebula [79] and round robin and power aware scheduling

algorithm used in Eucalyptus and many more. But they do not take in to consideration the

QoS parameters of the datacenters like fault rate, initialization time, MIPS and many more.

So to overcome this issue and make system more reliable, fault and load aware honey bee

scheduling algorithm is proposed.

4.4.1 Proposed Algorithm

Proposed algorithm is inspired for natural behavior of honey bee to find the best

solution for designing optimal scheduling algorithm. The algorithm requires a number of

parameters to be set, specifically: quantity of scout bees (n), quantity of nice websites out of

m selected sites (e), number of websites selected out of n visited sites (m), number of bees

recruited for high-quality e web sites, number of bees recruited for the opposite (m-e)

selected sites, initial size of patches which includes site and its neighborhood and stopping

criterion

Steps of proposed algorithm are as follows:

Step1. Initialize scout bees equal to number of datacenters.

Step2. Recruit scout bees for selected sites (more bees for best e sites) and evaluate fit nesses

value for datacenter.

Step4. Assign bees to search randomly and evaluate their fit nesses for a request.

Step4. Stop when all bees have arrived, else wait.

Step5. Select the fittest bee from each datacenter.

85

Step6. Assign remaining bees to search randomly and evaluate their fit nesses for each

request.

Step7. End While no request in queue.

In first step, the bee algorithm starts with the scout bees (n) being placed randomly in the

search space. In step 2, the algorithm conducts searches in the neighborhood of the selected

sites, assigning more bees to search near to the best ‘e’ sites i.e. search for new datacenters.

In step 3 the fit nesses of the datacenters visited by the scout bees are evaluated. In step 4

waiting until all bees are arrived. In step 5, 6 bees that have the highest fit nesses are chosen

as “selected bees” and sites visited by them are chosen for allocation of resources. In step 7

repeat all above steps until there is request in queue.

Most complicated part of this algorithm is fitness value calculation. Proposed algorithm take

into consideration parameters of datacenter which are used for calculating fitness value for a

datacenter are as follows.

a) Initiation Time: How long it takes to deploy a VM.

b) System load: Number of busy or allocated Machine Instruction per Second (MIPS) of

a datacenter.

c) Network load: Allocated network bandwidth out of total available bandwidth

provided.

d) Fault Rate: It is defined as the number of faults over a period of time.

In above mentioned parameters allocated MIPS (MP) and Bandwidth of a datacenter changes

as the number of virtual machine allocated on a datacenter changes, but fault rate,

initialization time that is the time taken to allocate resource at datacenter also increases as the

load increases. Fitness (FT), allocated MIPS (MP), Fault rate (FR), Initialization time (IT),

Network load (N_L).

 (4.20)

α1<1, α2<1 & α3<1 (4.21)

α1 +α2 +α3=1 (4.22)

86

Fault rate (FR) is:

FR(t)= f(MP , N_L) (4.23)

Where FR(t) is number of faults over the time t, which is function of system and network

load over the time t. α1, α2 and α3 are constant which represents the ratio of parameters

contribution to fitness value. Figure 4.43 is the pseudo code for proposed algorithm with all

its steps.

Figure 4.43 Proposed fault aware honey bee algorithm

4.4.2. Experiment and Result

Proposed fault aware honey bee algorithm is simulated using CloudSim 2.0 simulator [24].

CloudSim originally support Round robin, cost based algorithm, and FIFO algorithm for

scheduling the resource sequentially. Originally CloudSim 2.0 API does not support faults in

cloud environment. So firstly occurrence of fault is added as a parameter for datacenter which

responds to failure probability of the datacenter.

This CloudSim API is used to set up a cloud infrastructure environment for simulation. So

that environment includes all cloud IaaS request functions and environmental parameters,

host and datacenter parameters. Proposed algorithm is implemented in cloudsim changing

existing algorithm to study and improve the performance. Comparative study is made

between basic load aware honey bee (BLHB) and proposed fault based load aware honey bee

algorithm (FLBH). Figure 4.44 shows the improvement in number of requests failed over a

87

system with increasing request counts. Where we have considered 3 servers with 2 host each.

Table 4.4 shows the failure rate of respective server.

Table 4.4: Server fault rate

Server Name Fault rate FR(t)

Server1 0.143

Server2 0.125

Server3 0.5

Figure 4.44 Comparison of request failure count.

Figure 4.45 Comparison of request completed count.

88

Fig 4.44 shows the number of request failed using proposed and basic honey bee algorithm.

Experiment shows that proposed algorithm have less number of request failures as compared

to basic honey bee algorithm.

Fig 4.45 shows the number of request completed using proposed and basic honey bee

algorithm, proposed algorithm proves to improve the request completion count as compared

to existing algorithm. This graph shows the algorithm when tested with 60, 100, 200, 300,

400 requests. So the result shows the improvement of proposed algorithm over BLHB in fault

aware environment

Table 4.5: Request failure count

Request count

60 100 200 300 400

FLBH 8 15 28 48 68

BLHB 13 23 43 71 89

Table 4.6: Request completion count

 Request count

 60 100 200 300 400

FLBH 52 85 172 252 332

BLHB 47 77 157 229 311

4.5. Comparative Analysis of Learning Based Algorithms

In this section we have performed a comparative study over all proposed learning

based algorithm. The study is performed over various parameters like scheduling time, failed

request count and request completed count using exiting genetic algorithm (GA) and

proposed fault aware genetic algorithm, Big bang big crunch algorithm and fault aware big

bang big crunch algorithm.

89

Figure 4.46 Comparison of scheduling delay

Figure 4.47 Comparison of failed request count

Figure 4.46 shows the comparison of scheduling delay by all four stated algorithms. Figure

shows that Genetic algorithm, Fault aware GA takes same scheduling delay where as BBC

and fault aware BBC takes almost same delay. BBC proves to be better in term of having

least scheduling delay. Figure 4.47 compares the request failure count using all four

algorithms with varying request count. Comparison shows the order of improvement in

proposed algorithms which shows Fault aware BBC(FBBC) as best having least request

90

failures and the in the list is BBC, the is Fault aware GA(FGA). Existing GA proves to

perform worst with highest request failure count.

Figure 4.48 Comparison of completed request count

Figure 4.48 compares the performance in term of request completion count over all stated

algorithms. FBBC proves to perform best with highest request completion count and at

second number BBC proves to have better performance then FGA algorithm. GA algorithm

proves to perform worst with least number of requests completed.

4.6. Conclusion

The main achievement of this work is to find the rich literature and solve the issue of

resource allocation in fault aware cloud environment. The results obtained with our approach

were very competitive with most of the well known algorithms in the literature and justified

over the large collection of requests. Proposed resource allocation algorithm proves to

provide better fault tolerance as compared to existing algorithm with least request failure,

reduced average utilization, Scheduling delay, high request completion count, Failure

probability and improved reliability of system.

91

CHAPTER 5

FAULT AWARE POWER EFFICIENT

SCHEDULING

A Cloud computing is now a trending way of computing tasks and more general these

days. Cloud computing is adopted by many firms like Google, Amazon, Microsoft and many

more for reliable and efficient computing. But as the cloud size increases with expand in

number of datacenters and vigorously increasing consumption of power over a data center.

Also with increasing request load over a server the computing load on server’s increases,

leading high power consumption. So there is a need to balance the request load in such a

manner to effectively improve the resource utilization, load with reducing request failure and

power consumption.

Cloud computing has made it complicated with variable length request whose

proportion may increase or decrease effecting the cloud. Recent surveys show that the power

consumption of a datacenter increases linearly with increase in utilization due to request load

over a datacenter. This results in high request failure and decreasing power efficiency of

system. Resource allocation done without having knowledge of load and power efficiency of

a datacenter will increase the power consumption of system and high request failure count. So

to overcome these issues a fault and power aware resource allocation and scheduling

algorithms are proposed to improve the power efficiency, failure count and average load over

a datacenter. A proposed algorithm shows improved performance in term of average load and

power efficiency as compared to existing algorithms for cloud infrastructure.

92

5.1. Approach 1: Power and Fault Aware Reliable Resource Allocation for

Cloud Infrastructure

 The problem with existing algorithm is that they used for simple task scheduling to

improve resource utilization or power efficiency in cloud and manage quality of service of a

datacenter. Existing algorithms also assumes cloud as non faulty in nature so do not takes

fault occurring in the system for scheduling and only taken load over da datacenter, which is

in sufficient to provide better QoS to the user. So to conquer these issues a power and fault

aware resource allocation algorithm is proposed. Proposed algorithm utilizes linear power

model or evaluation of power efficiency of datacenter. Failures over a datacenter occur

randomly that may be due to network or storage failure. Proposed VM allocation algorithm

aims to minimize the power consumption of the system and reduce request failure count.

Proposed algorithm is based on fitness value which is evaluated using power efficiency and

failure probability of datacenter.

Parameters to evaluate fitness value:

PDi: i
th

 Data center.

PEi : power efficiency of i
th

 host in a data center .

Ui : Current Utilization of i
th

 host in a data center.

FRi : Fault rate that is the number of request failed due to System failure over time t.

FPi : Failure probability over a Host i.

Fi : Fitness value of i
th

 host.

By Applying liner power utilization of PEi can be calculated.

100

 Ui*Pmin) -(Pmax
LineaPowerPEi (5.1)

Where Pmax & Pmin = maximum and minimum power consumed by PDi respectively.

Utilization of Data Center can be calculated by

Total_MPIS

MIPS)Allocated_ - S(Total_MIP
Ui (5.2)

Since faults over a data center are random in nature and follows Poisson distribution, which

over a period of time t and t+ ∆ T can be defined as:

93

 (5.3)

 t)- exp(- 1(t) FPi (5.4)

//Fitness value
(t) FPi + PEi Fi

 (5.5)

As in above formula of Ui is calculated by getting total utilization from total MIPS allocated

by data center PDi. Once calculate utilization of data centers then calculating power

consumed by these data centers and using linear power efficiency formula as above. To get

power efficiency of data centers as well to allocation resources for requests is done with

below steps. On the other end we need to calculate the fault rate over a data center PDi, which

depend on the number of request failed on a data center over a period of time ‘t’. Since fault is

random in nature so the probability of failure can be found using poison distribution as shown

in equation 5.3. Equation 5.3 defines the probability of failure at data center PDi. Base on the

above defined parameters fitness value of each datacenter is calculated, as shown in equation

5.5 which is sum of power efficiency and probability of failure in fraction which range from 0

to 1.

5.1.1. Proposed algorithm

Figure 5.1 Proposed PFARA algorithm initialization

94

Figure 5.2 Proposed PFARA algorithm resource allocation

Figure 5.1 & 5.2 shows the pseudo code of proposed trust and deadline aware ant colony

algorithm. Figures show various phases of algorithm of initialization and evaluation of fitness

value and final selection.

5.1.2. Experimental and Results

Proposed power and fault aware VM allocation algorithm is simulated using CloudSim 3.0

and power module package. CloudSim provides a benchmark for simulation of cloud platform

and also provides Linear power model for simulation of power model. Proposed algorithm is

being tested under various request count with 4 servers S1, S2, S3, S4 & S5. Linear power

model directly depend on utilization of servers. Proposed algorithm is compared with basic

DVFS (Dynamic voltage and frequency scaling) scheduling [80]. Compression of proposed

algorithm is performed for 200, 400, 600, 800, 1200 and 1400 set of requests. These set of

request contributes of various type of short, average and large requests sizes. System

configuration taken into consideration is as follows:

95

Table 5.1: Experimental parameters used for simulation environment

Server RAM(Mb) MIPS Storage

(Gb)

core PE HOST

S1 2000 10000 100000 4 10 2

S2 2000 10000 100000 6 10 2

S3 2000 10000 100000 6 10 2

S4 2000 10000 100000 6 10 2

S5 2000 10000 100000 6 10 2

Figure 5.3 Power consumption

96

Figure 5.4 Comparison of request failure count

Figure 5.5 Comparison of request completed count

Figure 5.3 shows the improvement in power consumption by proposed algorithm over DVFS.

Figure 5.4 shows the improvement in number of request failed by proposed algorithm over

DVFS in various test cases. Figure 5.5 shows the improvement in number of request

completed by proposed algorithm over DVFS in various test cases. From the experiment it is

shown that proposed algorithm performs better than DVFS in term of failed request , power

efficiency and completed request count.

97

5.2. Approach 2: Trust and Deadline-Aware Scheduling Algorithm for

Cloud Infrastructure Using Ant Colony Optimization

This paper proposed a trust and deadline aware algorithm that uses various parameters

to evaluate the trust value for a host, on that trust value we have proposed and VM allocation

policy to maximize the utilization of resources available in data center. Flow chart of

proposed algorithm is below. As can see in flow chart we begin with task pool, here we look

for task, if task pool is empty then do nothing but if there is some request in task pool for

completion then we proceed to collect the information of each data center .Trust can be

defined as an indirect reliability or a firm believe over a host based on its past performance

parameters.

Trust is based on:

Start time: Time taken by host to initialize a virtual machine (VM).

Processing Speed: Total number of MIPS of a machine i.e. Number of processor * number of

MIPS in each processor

Fault Rate: This can be defined as the total count of request failed over a period of time T

Utilization: this is the current utilization of that host in real time.

Power Efficiency: the ratio of the output power over the input power i.e. the percentage

power consumed over a period of time.

For scheduling algorithm, we have proposed an ant colony based VM allocation algorithm

which uses a fitness function based on above discussed trust value and deadline to find the

fittest host among all.

Steps for proposed algorithm are as follows:

Step 1: Initialize datacenters and host

Step 2: Initialize search ants equal to number of hosts.

Step 3: Assign ants to search randomly and evaluate their fit nesses for a request on each

host.

Step 4: Stop when all ants have arrived, otherwise wait for all ants for a fixed time.

Step 5: evaluate the trust value for each host and sort them in descending order.

Step 6: find the fittest host with highest trust value and can fulfill the task with deadline.

98

Step 7: if found, update pheromone value table with updated trust value that will be used for

evaluation of fitness function for other requests.

 Step 8: Assign bees to search randomly and evaluate their fitness and find new beast

solutions.

Step 9: Stop, when no more requests.

Trust value (Ti): Trust value for host i.

 (5.6)

α1<1, α2<1, α3<1, α4<1, α5<1 (5.7)

 α1 + α2 + α3 + α4 + α5 =1 (5.8)

where

Initiali : initialization time of host i.

PSi : PEi * MIPSi (5.9)

Faulti : fault rate over host i.

Utilization i : utilization oh host I at current point of time.

PFi : Power efficiency of host i.

Fitness function F(n):

F(n) = Min (Ti) & Dj < computation time I i=0…n (5.10)

j is request id and computation time is the time to compute the request over host ‘i’. Let take

PEi(power efficiency) and Ui (Utilization) of data Centers(i,e; i=1,2,3,4……….n). By

Applying liner power utilization of PEi can be calculated.

99

100

 Ui*Pmin) -(Pmax
LineaPowerPEi (5.11)

Where Pmax & Pmin = maximum and minimum power consumed by PDi respectively.

Ui=Utilization of Data Center can be calculated by

Total_MPIS

MIPS)Allocated_ - S(Total_MIP
Ui

 (5.12)

To get power efficiency of each data center first calculating utilization of PDi then using

Power Liner model to calculate power efficiency of that data center. The proposed algorithms

Pseudo is below, this Pseudo code shows that request allocation based on power efficiency of

data center minimize power loss and increase utilization of resource that implies, throughput

of data center is increasing.

Pseudo code of TDARP (Trust and Deadline Aware Resource Allocation Policy) algorithm

takes data centers list, queue length of task in task pool, Power Efficiency of data centers, as

shown in pseudo code if task pool is not empty, then calculate the power efficiency on the

basis of their utilization.

5.2.1. Proposed Algorithm

Figure 5.6. Proposed TDARPA algorithm (1)

100

Figure 5.7. Proposed TDARPA algorithm (2)

Figure 5.6 & 5.7 shows the pseudo code of proposed trust and deadline aware ant colony

algorithm. Figures show various phases of algorithm of initialization and evaluation of fitness

value and final selection.

5.2.2. Experiment and Results

Proposed power based trust and deadline aware allocation algorithm is simulated using

CloudSim 3.0 and power module package. Linear power model is used for simulation of

power model. Proposed algorithm is being tested under various request count with 4 servers

S1, S2, S3 & S4. Linear power model directly depend on utilization of servers. Proposed

algorithm is compared with basic DVFS (Dynamic voltage and frequency scaling) scheduling

[80]. Compression of proposed algorithm is performed for 1000, 1500, 2000, 2500 and 3000

set of requests. System configuration taken into consideration is as follows:

101

Table 5.2: Experimental parameters used for simulation environment

Server RAM MIPS Storage core PE HOST

 (Mb) (Gb)

S1 3000 2000 100000 4 10 4

S2 3000 2000 100000 6 10 4

S3 3000 2000 100000 4 10 4

S4 3000 2000 100000 4 10 4

Figure 5.8 Comparison of request completed

Figure 5.8 and 5.9 shows the improvement in number of request complited and failed using

proposed and ant colony based base algoithm [81]. Figure also proves that the proposed

algorithm completes more requests than existing algorithm . Figure 5.9 shows the

improvement in power comsumption when tested over 1000, 1500, 2000, 2500 and 3000 set

of requests. figure 5.10 compares the power efficiency of proposed algorithm over exeisting

algorithm over increasing request load. Proposed algorithm proves to consume less power as

compared to existing algorithm.

102

Figure 5.9 Comparison of request failed

Figure 5.10 Comparison of power consumed in Kwh

In performance section, it is clear that TDARP is giving high performance as compare to

previous proposed algorithm. The main of this algorithm in cloud computing is to complete

the request as possible as minimum power and full utilization of resource, proposed algorithm

shown that it can maximize throughput and minimize the requests failure count and

computation power.

5.3. Conclusion

The main achievement of this study and work was to study the rich literature and solve the

issue of resource allocation in fault aware cloud environment. The results obtained with our

approach were very competitive with most of the well known algorithms in the literature and

justified over the large collection of requests. Proposed resource allocation algorithm proves

to provide better fault tolerance as compared to existing algorithm with least request failure,

high request completion count, and Power consumption of system.

103

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1. Conclusion

The work puts its eye to achieve fast, optimal and fault tolerant algorithm for load and

resource allocation for cloud. Novel approaches to improve the performance of system in

variant load and cloud environment have been presented. The issues of resource optimization

with high resource utilization are optimized with proposed load balancing techniques.

Proposed algorithm also optimizes the scheduling time to allocate all resource with high

resource utilization by promising global best schedule with least failure probability. Finally,

as depicted by the experiments, proposed approaches are proven to be superior as compared

to existing algorithm. The efforts are made to design algorithms in such a way to improve

over system performance rather than improving a specific parameter like cost, deadline or

power. Proposed multi objective resource allocation algorithm reduces the request failure

count in fault aware environment and also resource utilization at the same time and improves

the reliability of the system in efficient way.

Proposed work for fault ware load balancing algorithm for storage cloud reduces the

deadline failure over the system and improves the reliability of the system, reduces the

waiting time of request and reducing the average queue length of each server. Average

utilization of system has improved in worst case scenario with high request rate. In an fault

aware storage cloud proposed system has better overall response time as compared to least

loaded algorithm. The power efficient learning based algorithms improves the reliability of

system and increasing power efficiency of system as compared to DVFS (Dynamic voltage

and frequency scaling) algorithm. The proposed algorithms for hybrid cloud provided better

QoS for private and public requests in hybrid cloud environment, makes its reach to different

business models in cloud.

104

The overall probability of request failure has decreased, improving the reliability of

system that may be private public or hybrid cloud environment. The research work also takes

into consideration improvement done by static, dynamic and learning based algorithms for

resource allocation and load balancing for reliable and energy efficient system for Green

Computing.

6.2. Future Scope

The advantages of fault aware and reliable algorithm has improved the performance

of cloud environment, this can further be improved by incorporating fault tolerant feature to

other algorithms like migration and replica management algorithm. This may improve the

performance of the system up to a great extend and shall increase the reliability of the system.

The proposed solutions for resource allocation and load balancing can further be

improved by introducing further parameter like cost and scalability to improve the system

performance. The proposed solutions are restricted to private cloud and can be extended to

public or hybrid cloud. The techniques of fault aware learning based algorithm can be used to

find better solution in replica management, scalable algorithms, migration algorithms and

many more.

115

LIST OF PUBLICATIONS

Journal Publications

[1] Gupta P, Ghrera SPLoad Balancing Algorithm for Hybrid Cloud IaaS. International

Journal of Applied Engineering Research (IJAER). 2015 10:69 :257-261. [SCOPUS,

EBSCOhost, GOOGLE Scholar] (SJR: 0.13) (Cite 1)

[2] Gupta P, Ghrera SP. Fault and Load Aware Load Balancing in Cloud Storage.

International Journal of Applied Engineering Research (IJAER). 2015 10:69 :280-285.

[SCOPUS, EBSCOhost, GOOGLE Scholar] (SJR: 0.13) (Cite 1)

[3] Gupta P, Ghrera SP. Deadline-Aware Load Balancing of Distributed Servers in

Distributed. International Journal of Applied Engineering Research (IJAER). 2015 10:69

:268-273[SCOPUS, EBSCOhost, GOOGLE Scholar] (SJR: 0.13)

[4] Gupta P, Ghrera SP. Fault and QoS based Genetic Algorithm for Task Allocation in

Cloud Infrastructure. Indian Journal of Science and Technology (IJST). [SCOPUS, ISI

Thomson Reuters, DOAJ, Copernicus Poland] (SJR: 1.3)(Accepted)

[5] Gupta P, Ghrera SP. Fault Task Allocation Using Big Bang-Big Crunch in Cloud

Infrastructure. Indian Journal of Science and Technology (IJST). [SCOPUS, ISI

Thomson Reuters, DOAJ, Copernicus Poland] (SJR: 1.3)(Accepted)

[6] Gupta P, Ghrera SP. Fault Tolerant Big Bang-Big Crunch for Task Allocation in Cloud

Infrastructure. International Journal of Advanced Intelligence

Paradigms,(Accepted).[SCOPUS, ACM Digital Library, DBLP, GOOGLE Scholar]

(SJR: 0.16)

[7] Gupta P, Ghrera SP. QoS Aware Grey Wolf Optimization For Task Allocation In Cloud

Infrastructure. . International Journal of Advanced Intelligence Paradigms,

(Communicated).[SCOPUS, DBLP, GOOGLE Scholar] (SJR: 0.12)

Conference Proceedings

[8] Gupta P, Ghrera SP. Load and Fault Aware Honey Bee Scheduling Algorithm for Cloud

Infrastructure. InProceedings of the 3rd International Conference on Frontiers of

Intelligent Computing: Theory and Applications (FICTA) 2014 2015 :135-143. Springer

International Publishing. [SCOPUS, ISI Thomson Reuter, DBLP](Cite 3)

116

[9] Gupta P, Ghrera SP. Power and Fault Aware Reliable Resource Allocation for Cloud

Infrastructure. Procedia Computer Science. 2016 Dec 31;78:457-63.[SCOPUS,

Proceedings Citation Index, GOOGLE Scholar] (Impact: 0.705)

[10] Gupta P, Ghrera SP. Trust and Deadline-Aware Scheduling Algorithm for Cloud

Infrastructure Using Ant Colony Optimization2016 International Conference on

Innovation and Challenges in Cyber Security (ICICCS) 2016 Feb.[SCOPUS]

