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Chapter 1

Introduction

Complex Networks acquired a huge popularity and represent one of the most important

social and Computer Science phenomena of these years. Analysis of complex network

involves several methods ranging from statistical analysis of network features, to graph-

theoretical models and finally machine learning techniques, from a quantitative and quali-

tative perspective. The origin, distribution and sheer size of the data involved makes each

of them quite inapplicable to the required scale. The aim of this thesis is development,

analysis and applications of complex network under the constrained of approximate data

and the distance based model. A comprehensive study of the process of mining infor-

mation from large complex networks and analyzing the structure of the networks using

synopsis of real network is the objective of the work. Various data approximation meth-

ods like, sampling and sketching are considered here for creating data synopsis of social

media. New methods will be developed and their effectiveness will be assessed against

relevant data synopsis.
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1.1 Introduction

With the rise of on-line networking communities like Facebook and Twitter along with

the popularization of the notions of ”six degrees of separation” [42] and the ”Kevin Bacon

game” [7], the complex network gain lot of research interest in recent years. A complex

network is simply a structure consisting of entities embedded in a social context, with a

relationship among those entities that represents interaction, collaboration, or influence

between entities. (One can consider a variety of types of this relationship: the mutual

declaration of friendship, an email sent from one person to the other, the co-authorship of

a scientific paper, and so forth.) [11] A large number of examples are available for real life

complex networks like, citation graphs: (directional) edge (X,Y) exists if paper X cites

paper Y, collaboration graphs: (bidirectional) edge (X,Y) if person X worked with person

Y, semantic graphs: dictionaries, thesaurus; edge (X,Y) exists if word X is associated

with word Y, biological graphs: edge (X,Y) exists if process X is related to process Y (e.g.

protein interactions, predators, food webs), communication graphs: computer networks

or telephone networks, news graphs: relationship of events, words, or people in the news,

the Internet and the worldwide web is a directed graph and social networks(facebook,

twitter, google+,...) to name a few.

complex networks present fascinating patterns and properties [53] like, the degree

distribution follow power-law, the average distance between the nodes of the network

is short (the small-world phenomenon), unlike a random graphs it has high clustering

coefficients [31].

Community detection in complex network aims to identify the modules and, possi-

bly, their hierarchical organization, by only using the information encoded in the graph

topology [54, 74]. First attempt dates back to 1955 by Weiss and Jacobson searching for
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Figure 1.1: An example of communities in complex network

work groups within a government agency [78]. Network community detection has wide

variety of application on several domains. Social communities have been studied for a

long time. In biology - protein-protein interaction networks, communities are likely to

group proteins having the same specific function within the cell. In World Wide Web the

communities correspond to groups of pages dealing with the same or related topics. In

metabolic networks communities may be related to functional modules such as cycles and

pathways whereas, in food webs they may identify compartments. A detailed of the cases

are given in later section of this chapter.

The observations and motivation to our approaches in this thesis are briefed in this

paragraph. Network community detection is not easy NP-Hard like data clustering due to

3



the lack of good heuristics. Both, Graph traversal based methods and spectral methods

are computationally overloaded due to the verification of objective function value, required

to guide next iteration. Rich literature of clustering are not suitable for graph data. These

observations motivates us for a transformation from complex network to Metric Space.

But the metrics developed so far on graph (like Shortest path, Jaccard similarity and

Euclidean distance between adjacency vectors) are less successful for network community

detection in terms of conductance and modularity so there is a need for development of a

good metric which works better on complex network.

1.2 Complex networks

Complex network analysis is a large and growing body of research on the measurement

and analysis of relational structure. The complex network field is an interdisciplinary

research program which seeks to predict the structure of relationships among social and

natural entities, as well as the impact of said structure on other social phenomena. The

elements of this research are built around the concepts and methods for the measurement,

representation, and analysis of network structure. These techniques referred to as the

methods of complex network analysis are applicable to a wide range of domains, ranging

from the analysis of concepts within mental models to the study of war between nations.

Several examples of real life complex networks are discussed in the following subsections.

1.2.1 Communication graphs

One automatic way to extract complex networks is to define friendship in terms of com-

munication and extract edges from records of that communication. Call graphs are one

natural basis for deriving a communication-based network. Here nodes are telephone

4



numbers, and a (directed) edge is recorded from u to v, with a timestamp t, if a call

is placed from u to v at time t. There are some problems of node conflation here, as

more than one person may be associated with the same phone number, and call data are

not always readily available outside of telecommunications companies. One can also use

email networks to record social interactions, analogously to call graphs. Here there are

issues of privacy, so most studies have taken place on relatively limited email datasets that

are not publicly available. An interesting recent development on this front was the late

2003 release by the Federal Energy Regulatory Commission of around 1.5 million emails

from the top executives at Enron, containing about 150 Enron users and about 2000 total

people.

1.2.2 Collaboration networks

Another source of data on interactions is collaboration networks: an (undirected) edge

exists between u and v if they have collaborated on a mutual project. One can consider

many different types of projects, but the most-studied collaboration networks are based

on the Hollywood-actor collaboration graph, where actors who jointly appear in a movie

are connected by an edge, and the academic collaboration graph, where researchers who

coauthor an academic paper are connected by an edge. (Citation networks, in which the

nodes are papers connected by directed edges from each paper to the papers that it cites,

are not complex networks, in that their edges point only backwards in time, and do not

really represent a social relationship between their endpoints.) A collaboration network

as we have described it here is a derived structure that loses some of the information

present in the original data. For a lossless representation of a collaboration network, a set

of collaborations can be represented by a bipartite graph of people and projects, where

5



a person u is connected to a project p if and only if u worked on p. The collaboration

graph as described above looks only at the people in the bipartite graph, connecting u to

v exactly if there is a length-two path connecting u and v in the bipartite graph.

1.2.3 The www and blogs

The web itself has the link structure to form a complex network where the pages are the

node of the network and links are directed edges. Particular types of web pages, though,

have much more purely social link structure. A blog (an abbreviation of web-log) is an

on-line diary, often updated daily (or even hourly), typically containing reports on the

user’s personal life, reactions to world events, and commentary on other blogs. Links on

blog pages are often to other blogs read by the author, or to the blogger’s friends, and

thus the link structure within blogging communities is an essentially social relationship.

Thus complex networks can be derived from blog-to-blog links on a blogging community

website.

1.3 Properties of complex networks

Researchers have concentrated particularly on a few properties that seem to be common

to many networks: the small-world property, power-law degree distributions, and network

transitivity. Small world effect is the finding that the average distance between vertices

in a network is short, usually scaling logarithmically with the total number n of vertices.

Right-skewed degree distribution is another property that many networks possess. The

degree of a vertex in a network is the number of other vertices to which it is connected,

and one finds that

there are typically many vertices in a network with low degree and a small number

6



with high degree, the precise distribution follow a power-law or exponential form. A

third property that many networks have in common is network transitivity, which is

the property that two vertices that are both neighbors of the same third vertex have a

heightened probability of also being neighbors of each other. In the language of complex

networks, two of your friends will have a greater probability of knowing one another

than will two people chosen at random from the population, on account of their common

acquaintance with you. Now that we have defined the social-network models most relevant

for the remainder of this thesis, we turn to a brief survey of some important properties of

complex networks that have been discussed in the literature. Mathematically, a complex

network is a graph G = (V,E) , where the nodes represent entities, and an edge (u, v) ∈ E

denotes some type of relationship between the entities u and v. We use graph-theoretic

terminology in this thesis, but readers whose background is in a different field can mentally

translate node into vertex, actor, or site, and edge into arc, tie, link, or bond.

1.3.1 Diameter

There are short chains of friends that connect a large fraction of pairs of people in a com-

plex network. That is, complex networks have a small diameter in the graph-theoretic

sense of the longest shortest path. Unfortunately, the literature on complex networks

tends to use the word ”diameter” ambiguously in reference to at least four different quan-

tities: (1) the longest shortest-path length, which is the true graph theoretic diameter

but which is infinite in disconnected networks, (2) the longest shortest-path length be-

tween connected nodes, which is always finite but which cannot distinguish the complete

graph from a graph with a solitary edge, (3) the average shortest-path length, and (4) the

average shortest-path length between connected nodes. A wide variety of other intrigu-
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ing networks have been shown to have small average shortest-path length, of which we

highlight the world-wide web, for which the average (directed) shortest-path length was

estimated to be under twenty [29].

1.3.2 Navigability

A further characteristic observed in real complex networks is that they are navigable small

worlds: not only do there exist short paths connecting most pairs of people, but using

only local information and some knowledge of global structure, for example, each person u

in the network might know the geographic layout of the United States and the geographic

locations of only some target individual and each of u’s own friends, the people in the

network are able to construct short paths to the target. Although no rigorous theoretical

analysis of it has been given, we would be remiss if we proceeded without mentioning the

small-world model defined by Watts, Dodds, and Newman, in which navigation is also

possible. Their model is based upon multiple hierarchies (geography, occupation, hobbies,

etc.) into which people fall, and a greedy algorithm that attempts to get closer to the

target in any dimension at every step. Simulations have shown this algorithm and model

to allow navigation, but no theoretical results have been established.

1.3.3 Clustering coefficients

The clustering coefficient of complex networks is much higher than is predicted in a

random graph. Informally, the clustering coefficient measures the probability that two

people who have a common friend will themselves be friends or not, in graph theoretic

terms, the fraction of triangles in the graph that are closed. There are a handful of

different ways to measure the clustering coefficient in a graph formally; here we mention
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just one, for concreteness. The clustering coefficient for a node u ∈ V of a graph G =

(V,E) is the fraction of edges that exist within the neighborhood of u, i.e., between

two nodes adjacent to u. The clustering coefficient of the entire network is the average

clustering coefficient taken over all nodes in the graph. (Other formalizations compute

the probability that the third edge {v, w} exists when we choose an ordered triple (u, v, w)

such that {u, v}, {u,w} ∈ E is chosen uniformly at random from the set of all such triples;

the formalization described above gives relatively less weight to high-degree nodes than

in this alternative approach.) Typical complex networks have clustering coefficients on

the order of 10 to 1 , which is orders of magnitude greater than the clustering coefficient

that a random graph.

1.3.4 Degree distributions

The small-world models that we have discussed up until now have contained essentially

homogeneous nodes; variations among nodes are relatively minor. In particular, the degree

distribution of the network, that is, the proportion of nodes in the network who have a

particular degree δ (i.e., the fraction of people with exactly δ friends), for every degree

δ > 0, has been essentially constant in the random graphs of Erdos and Rinyi, Watts and

Strogatz, and Kleinberg. Real social networks, however, show a wide heterogeneity in the

popularity of their nodes, and their degree distributions are extremely poorly predicted by

any of the models discussed above. In a typical complex network, the proportion of nodes

with degree at least δ is reasonably well approximated by the power-law distribution

P (δ) varies with δ−β , for a constant β > 0, usually where β ranges between 2.1-2.5.

(Others have referred to networks exhibiting a power-law degree distribution as scale-free

networks, or as exhibiting Pareto, heavy-tailed, or Zipfian degree distributions.) This
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phenomenon was noted for the degree distribution of the world-wide web, and has also

been observed in other complex networks.

1.4 Network community detection

Community detection in real networks aims to capture the structural organization of

the network using the connectivity information as input [54, 74]. Early work on this

domain was attempted by Weiss and Jacobson while searching for a work group within a

government agency [78]. Most of the methods developed for network community detection

are based on a two-step approach. The first step is specifying a quality measure (evaluation

measure, objective function) that quantifies the desired properties of communities and

the second step is applying an algorithmic techniques to assign the nodes of graph into

communities by optimizing the objective function. Several measures for quantifying the

quality of communities have been proposed, they mostly consider that communities are

set of nodes with many edges between them and few connections with nodes of different

communities. Some of the community evaluation measures are described in the next

subsection.

1.4.1 Evaluation measures of network communities

Several measures for quantifying the quality of communities have been proposed, they

mostly consider that communities are set of nodes with many edges between them and

few connections with nodes of different communities. Some of the community evaluation

measures are described in the next subsection.

Modularity: The notion of modularity is the most popular for the network community

detection purpose. The modularity index assigns high scores to communities whose inter-
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nal edges are more than that expected in a random-network model which preserves the

degree distribution of the given network.

Internal Density: Density is defined by the number of edges (ms) in subset S divided

by the total number of possible edges between all nodes (ns(ns − 1)/2). The ”2” is there

to cancel out duplicated edges. Internal Density = ms/(ns(ns − 1)/2)

Edges Inside: Somewhat useless by itself since it is not related to any other attributes

of subset S. The total number of edges (ms) present in subset S. Edges Inside = ms

Average degree: The average internal degree across all nodes (ns) in subset S. Average

Degree = 2ms/ns

Fraction over median degree: Determines the number of nodes that have an internal

degree greater than the median degree of nodes in Subset S.

Triangle Participation Ratio: The best measure for density, cohesiveness, and clus-

tering within the goodness scales. Robust under random and expand perturbations. The

fraction of nodes in S that belong to a triad. TPR = (number of nodes belonging to a

triad)/n.

Expansion: This measure of separability gives the average of number of external con-

nections (cs) per node (ns) in subset S has with graph G. It can be thought of external

degree. Expansion = cs/(ns(n− ns)).

Cut Ratio: This metric is a measure of separability and can be thought of as external

density. It is the fraction of external edges (cs) of subset S out of the total number of

possible edges in graph G.

Conductance: Ratio of edges inside the cluster to the number of edges leaving the cluster

(captures surface area to volume). Measures best in separability (goodness scale) mea-

sures well separated non-overlapping communities. Robust under node swap and shrink

perturbation. Community like sets of nodes have lower conductance.
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Normalized Cut: Represents how well subset S is separated from graph G. It sums up

the fraction of external edges over all edges in subset S (conductance) with the fraction

of external edges over all non-community edges.

Maximum Out Degree Fraction: This metric first finds the fraction of external con-

nections to internal connections for each node (ns) in S. It then returns the fraction with

the highest value.

Average Out Degree Fraction: The sum of the individual fraction of edges outside of

the community over the total connections of a node in subset S. It is then divided by the

total number of nodes (ns) in subset S.

Flake Out Degree Fraction: This is a fraction of the number of nodes that have fewer

internal connections than external connections to the number of nodes (ns) in subset S.

There are several other measures of quality determination for network community.

However, the most widely used measures are modularity and conductance. Majority of

the algorithms are developed using either of the measure as their optimization criteria.

1.4.2 Community detection algorithms

Identifying communities in a network is an important issue for many real-world appli-

cations in various scientific fields. Over the years, many methods have been devised to

provide efficient community discovery algorithms. As the spectrum is wide, building tax-

onomy of solutions is not easy. They can be classified in different ways, and depending

on the selected criteria, one algorithm can belong to more than one category. Here, we

choose to focus on the process implemented by the algorithms. We consider this as their

main characteristic, since it directly affects the nature of the detected communities. As

a result, we group the algorithms in six different categories. In this section, we describe
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these categories and the representative set of algorithms we selected.

Centrality based algorithms

The algorithms based on link-centrality measures rely on a hierarchical divisive approach.

Initially the whole network is seen as a single community, i.e. all nodes are in the same

community. The most central links are then repeatedly removed. The underlying as-

sumption is that these particular links are located between the communities. After a few

steps, the network is split in several components which can be considered as communities

in the initial network. Iterating the process, one can split each discovered community

again, resulting in a finer community structure. This eventually leads to a network in

which each node is isolated, and therefore constitutes its own community. By considering

the communities detected at each step of the process, one obtains a hierarchy of com-

munity structures. The choice of the best one is generally performed using a measure

estimating the quality of community structures, such as the modularity [52]. Algorithms

of this category differ in the way they select the links to be removed. The first and most

known algorithm using this approach was proposed by Newman [55], and relies on the

edge-betweenness measure. It estimates the centrality of a link by considering the pro-

portion of shortest paths going through it in the whole network. As the complexity of

this algorithm is high, it is not well suited for very large networks. Radicchi et al. [66]

proposed a variation based on link transitivity instead of edge- betweenness. This mea-

sure is defined as the number of triangles to which a given link belongs, divided by the

number of triangles that might potentially include it. Its lower complexity makes it more

appropriate for large networks.
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Modularity Optimization Algorithms

Modularity is a prominent measure of the quality of a community structure introduced

by Newman and Girvan [34]. It measures internal connectivity of identified communities

with reference to a randomized null model with the same degree distribution. Modularity

optimization algorithms try to find the best community structure in terms of modularity.

They diverge on the optimization process they are based on. As this approach is very

influential in the community detection literature we consider three algorithms for inves-

tigation. FastGreedy developed by Newman et al. [55] relies on a greedy optimization

method applied to a hierarchical agglomerative approach. The agglomerative approach is

symmetrical to the divisive one described in the previous subsection. In the initial state,

each node constitutes its own community. The algorithm merges those communities step

by step until only one remains, containing all nodes. The greedy principle is applied

at each step, by considering the largest increase (or smallest decrease) in modularity as

the merging criterion. Because of its hierarchical nature, FG produces a hierarchy of

community structures like the divisive approaches. The best one is selected by compar-

ing their modularity values. Another optimization algorithm [70] is an improvement of

fastgreedy, introducing a two-phase hierarchical agglomerative approach. During the first

phase, the algorithm applies a greedy optimization to identify the communities. During

the second phase, it builds a new network whose nodes are the communities found during

the first phase. The intra-community links are represented by self-loops, whereas the

inter-community links are aggregated and represented as links between the new nodes.

The process is repeated on this new network, and stops when only one community re-

mains. Spinglass by Reichardt and Bornholdt [68] relies on an analogy between a very

popular statistical mechanic model called Potts spin glass, and the community structure.
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It applies the simulated annealing optimization technique on this model to optimize the

modularity.

Spectral Algorithms

Spectral algorithms take advantage of various matrix representations of networks. Classic

spectral graph partitioning techniques focus on the eigenvectors of the Laplacian ma-

trix. They were designed to find the partition minimizing the links lying in-between

node groups. However, these methods were designed for slightly different contexts (e.g.

user-specified number of communities). For real-world complex networks, the community

number is unknown. Thus, these methods are not efficient in our case. The methods we

selected are variants adapted to complex networks analysis. Leading Eigenvector algo-

rithm [81] applies the classic graph partitioning approach, but to a so-called modularity

matrix instead of the Laplacian. Doing so, it performs an optimization of the modularity

instead of the objective measures used in classic graph partitioning, such as the minimal

cut. Commfind is developed by Donetti and Munoz [24]. It combines the analysis of the

Laplacian matrix eigenvectors used in classic graph partitioning with a cluster analysis

step. Instead of using the best eigenvector to iteratively perform bisections of the network,

it takes advantage of the ÝĽ best ones. Communities are obtained by a cluster analysis

of the projected nodes.

Graph traversal based algorithms

Several algorithms use random walks in various ways to partition the network into com-

munities. We retain two of them in our comparisons. Walktrap (WT) by Pons and

Latapy [65] uses a hierarchical agglomerative method like fast greedy but with a different

merging criterion, which relies on the modularity measure, WT uses a node-to- node dis-
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tance measure to identify the closest communities. This distance is based on the concept

of random-walk. If two nodes are in the same community, the probability to get to a third

one located in the same community through a random walk should not be very different

for both of them. The distance is constructed by summing these differences over all nodes,

with a correction for degree.

Information based algorithms

Information-Based algorithms use tools derived from the information theory to estimate

the best partition of the network. The main idea of those approaches is to take advan-

tage of the community structure in order to represent the network using less information

than that encoded in the full adjacency matrix. We selected two algorithms from this

category. Infomod and Infomap was proposed by Rosvall and Bergstorm [70]. It is based

on a simplified representation of the network focusing on the community structure: a

community matrix and a membership vector. The former is an adjacency matrix defined

at the level of the communities (instead of the nodes), and the latter associates each

node to a community. The authors use the mutual information measure to quantify the

amount of information from the original network contained in the simplified representa-

tion. They obtain the best partition by considering the representation associated to the

maximal mutual information. The community structure is represented through a two-

level nomenclature based on Huffman coding in Infomap: one to distinguish communities

in the network and the other to distinguish nodes in a community. The problem of find-

ing the best partition is expressed as minimizing the quantity of information needed to

represent some random walk in the network using this nomenclature. With a partition

containing few inter-community links, the walker will probably stay longer inside com-

munities, therefore only the second level will be needed to describe its path, leading to a
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compact representation. The authors optimize their criterion using simulated annealing.

Other algorithms

A number of algorithms do not fit in the previously described approaches. We selected

the Label Propagation (LP) algorithm by Raghavan et al. [67], which uses the concept

of node neighborhood and simulates the diffusion of some information in the network

to identify communities. Initially, each node is labeled with a unique value. Then an

iterative process takes place, where each node takes the label which is the most spread

in its neighborhood (ties are broken randomly). This process goes on until convergence,

i.e. each node has the majority label of its neighbors. Communities are then obtained

by considering groups of nodes with the same label. By construction, one node has more

neighbors in its community than in the others.

There are more algorithms developed to solve network community detection problem

a complete list can be obtained in several survey articles [29, 46, 80]. Some interesting

recent articles are [1, 4, 22,23,44,58,81].

1.5 Thesis road map

Aim of this work is the development of fast and accurate algorithms for community

detection of large network. Competitiveness of the several approximation methods being

analyzed with respect to their modularity value and computational complexity. The

main contribution of the thesis is explained via the following chapters: 1) Chapter 2:

Network community detection on metric space 2) Chapter 3: Nearest Neighbor search in

Complex Network for Community Detection, 3) Chapter 4: Low rank approximations for

community detection of very large networks, and 4) Chapter 5: Optimal evaluation of
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network community.

1.5.1 Network community detection on metric space

Nodes of the graph does not lies on a metric space. e.g. edges does not reflect the Eu-

clidean distance between the nodes. In this work, we have tried to develop the notion of

similarity among the vertices using some new matrices derived from adjacency matrix and

degree matrix of the graph. Let A be the adjacency matrix and D the degree matrix of

the graph G = (V,E) then Laplacian L = D − A. The standard Euclidean distance and

spherical distance define over the matrices above failed to capture similarity information

among the nodes of G. Algorithms developed based on shortest path or Jaccard similar-

ity are computationally inefficient and have less success in terms of standard evaluation

criteria(like, conductance and modularity)

1.5.2 Nearest Neighbor search in Complex Network for Com-

munity Detection

The nearest neighbor search is a basic computational tool used extensively in almost

research domains of computer science specially when dealing with large amount of data.

However, the use of the nearest neighbor search is restricted for the purpose of algorithmic

development by the existence of the notion of nearness among the data points. The recent

trend of research is on large complex networks and their structural analysis. In complex

network, nodes represent entities and edges represent any kind of relation between entities.

Community detection in complex network is an important problem of much interest. In

general, a community detection algorithm represents an objective function and captures

the communities by optimizing it to extract the interesting communities for the user. In
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this article, we have studied the nearest neighbor search problem in complex network

via the development of a suitable notion of nearness. Initially, we have studied and

analyzed the exact nearest neighbor search using the metric tree on proposed metric space

constructed from complex network. The approximate nearest neighbor search problem is

studied using locality sensitive hashing. For evaluation of the proposed nearest neighbor

search on complex network, we applied it in community detection problem. The results

obtained using our methods are very competitive with most of the well known algorithms

exists in the literature and this is verified on a collection of real networks. On the other-

hand, it can be observed that the time taken by our algorithm is quite less compared

to popular methods. Achievements of using Approximate Nearest Neighbor search on

complex networks are 1)Compute sub-linear time metric query, O(Log(n)) and 2) it hardly

degrade the results of actual algorithms.

1.5.3 Low rank approximations for network community detec-

tion

In this work we will explore the two low rank approximation methods, Nystrom sampling

and random sketching. The Nystrom methods approximate any SPSD matrix in terms

of a subset of its columns. Specifically, given an m × m SPSD matrix A, they require

sampling c(< m) columns of A to construct an m× c matrix C. We always assume that

C consists of the first c columns of A without loss of generality. We partition A and C as

A =

 W AT21

A21 A22

 and C =

 W

A21
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where W and A21 are of size c× c and m− c× c respectively [43]. Since the running time

complexity of SVD on W is in O(kl2) and matrix multiplication with C takes O(kln), the

total complexity of the Nystrom approximation computation is in O(kln) [2, 25].

Random sketching is described by the use of Johnson-Lindenstrauss theorem, thar

there is a distribution over random linear mappings A : Rd → Rk, (k < d) such that

for any vector x we have ||Ax|| = (1 ± ε)||x|| with probability 1 − e−Ckε2 The Johnson

Linderstrauss theorems [40] for sketches ensures the preservation of distance during lower

dimensional approximation and provide minimum lower bound of approximation.

Achievements of low rank methods are 1) they are very fast to compute massive data

and 2) results approximated with moderate lower bound.

1.5.4 Optimal evaluation of network community

In this chapter, we compare communities of complex networks determined by several

algorithms using Rough Sets theory and tried to combine them to obtain an optimally

community structure of the network.

Rough set (developed by Polish mathematician Zdzislaw I. Pawlak in 1991) is a formal

approximation of a concept in terms of a pair of sets, the lower and the upper approxima-

tion derived from the available instances [64]. Formally, an information system is defined

as I = (U,A, V, f), where U is a nonempty and finite set of objects, called the universe;

A is a nonempty and finite set of attributes; V is the union of attribute domains, i.e.,

V = ∪Va, where Va denotes the domain for each attribute a ∈ A; and f is an information

function which associates a unique value of each attribute with every object belonging to

U . An arbitrary attribute set B ⊆ A determines a binary relation IND(B), called indis-

cernibility relation. IND(B) = {< x, y >∈ U×U |∀b ∈ B, f(x, b) = f(y, b)}. Equivalence
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partition denoted as U/B and blocks are written as [x]B = {y ∈ U | < x, y >∈ IND(B)}.

Let C ⊆ U be a concept, the lower and upper approximations with respect to B ⊆ A are

denoted as B(X) = {x ∈ U | [x]B ⊆ X} & B(X) = {x ∈ U | [x]B ∩X 6= Φ}

1.6 Conclusion

In this work the fast and optimal algorithms for community detection on large network

is described and analyzed. We demonstrated and analyzed a new approaches to network

community detection via metric space induced by the complex network. The interest-

ing problem of the nearest neighbor within the nodes of a complex networks are studied

and applied for community detection. We have used geometric framework for network

community detection instead of traditional graph theoretic approach or spectral methods.

We presented the efficient computation of network community detection using low rank

approximation. Our techniques can be applied for quick analysis of very large complex

network. Finally the theoretical upper bound of network community detection algorithms

is analyzed using the notion of data complexity and tried to estimate the optimal bound

by heterogeneous combination of communities. Competitiveness of the several approxi-

mation methods being analyzed with respect to their modularity value and computational

complexity and found very promising with respect to time gain.
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Chapter 2

Network Community Detection on

Metric Space

Community detection in complex network is an important problem of much interest in

recent years. In general, a community detection algorithm chooses an objective function

and captures the communities of the network by optimizing the objective function and

then one uses various heuristics to solve the optimization problem to extract the inter-

esting communities for the user. In this chapter we have demonstrated the procedure to

transform a graph into points of a metric space and developed the methods of community

detection with the help of metric defined for pair of points. We have also studied and

analyzed the community structure of the network therein. The results obtained with our

approach are very competitive with most of the well known algorithms in the literature

and this is justified over the large collection of datasets. On the other-hand, it can be

observed that time taken by our algorithm is quite less compared to other methods and

justify the theoretical findings.
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2.1 Introduction

The rise of on-line networking communities in real-world graphs such as large social net-

works, web graphs, and biological networks have initiated the important direction of

network community detection [11, 31, 56, 66]. A network community (also known as a

module or cluster) is typically a group of nodes with more interactions among its mem-

bers than the remaining part of the network [29, 74, 78]. To extract such group of nodes

of a network one typically selects an objective function that captures the intuition of a

community as a set of nodes with better internal connectivity than external [49,54]. The

objective is generally NP-hard to optimize [54, 74], heuristics [18, 19] or approximation

algorithms [74] are used in practice to find sets of nodes that approximately optimize the

objective function, which is interpreted as real communities.

Another important approach is to define communities as output of an algorithm which

converges automatically, with some intuitive hope to extract good communities [46, 67].

Identified communities have some different importance in different domain. In social

network community means an organizational unit, in biochemical network a functional

unit, in collaboration network a scientific discipline and so. on. [80].

Our observations regarding the development of network community detection algo-

rithms are as follows: 1) the network community detection is not easy NP-Hard like data

clustering due to the lack of good heuristics, 2) both, graph traversal based methods and

spectral methods are computationally overloaded due to the verification of objective func-

tion value, which is required to guide next iteration, and 3) rich literature of clustering

are not very suitable for graph data.

Some methods are available for network community detection which tries to develop

similarity or distance function among the nodes of a complex network and use that simi-
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larity or distance for partitioning the network [8,9,12,26,47,50,65]. Most of the methods

of community detection, based on similarity or distance, mainly use shortest path, Jaccard

similarity, set similarity or Euclidean distance and they are less successful for network com-

munity detection in terms of conductance and modularity. In some cases weighted graph

are requirement which is not always obtained naturally in the real networks. Complex

networks are characterized by small average path length and high clustering coefficient

the way the metric is defined should be able to capture the crucial properties of complex

networks. Therefore, we need to create the metric very carefully so that it can explore

the underlying community structure of the real life networks.

In this work, we have developed the notion of metric among the nodes using some new

matrices derived from modified adjacency matrix of the graph which is flexible over the

networks and can be tuned to enhance the structural properties of the network required

for community detection. The main contributions of this work include:

• Detailed study of the community detection algorithms.

• Transforming a graph to metric space preserving its structural properties.

• Studying the complex properties of real world networks on induced metric space.

• Developing community detection algorithms on induced metric space.

• Analyzing the results and complexities of the developed algorithms.

• Comparing the community detection algorithms with other existing methods.

The rest of this chapter is organized as follows: Section 2.2 described the state of the

art of network community detection literature. In Section 2.3, the problem of transform-

ing a graph into a metric space is discussed and the properties of real complex network is
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studied. In Section 3.5.2, the problem of network community detection is formulated and

several possible solutions are presented in the induced metric space. Also, the initializa-

tion procedures, termination criteria, convergence are discussed in detail. The results of

comparison between community detection algorithms are illustrated in Section 2.5. The

computational aspects of the proposed framework are also discussed in this section.

2.2 Network community detection

Community detection in real networks aims to capture the structural organization of

the network using the connectivity information as input [54, 74]. Early work on this

domain was attempted by Weiss and Jacobson while searching for a work group within a

government agency [78].

Most of the methods developed for network community detection are based on a

two-step approach. The first step is specifying a quality measure (evaluation measure,

objective function) that quantifies the desired properties of communities and the second

step is applying an algorithmic techniques to assign the nodes of graph into communities

by optimizing the objective function.

Several measures for quantifying the quality of communities have been proposed, they

mostly consider that communities are set of nodes with many edges between them and

few connections with nodes of different communities. Some of the community evaluation

measures are already described in the previous chapter.

2.2.1 Popular algorithms

In this subsection we have given a brief list of the algorithms developed for network

community detection purposes. The basic approach and the complexity of execution 2.1

26



is also briefed in this subsection.

• Fast Greedy Algorithm: This algorithm was developed by Newman et al. [17, 55].

It is modularity-based and uses a hierarchical agglomerative approach. It is called

fastgreedy because it is significantly faster than older algorithms and use greedy

method,.

• Walktrap Algorithm: This algorithm by Pons and Latapy [65] uses a hierarchical

agglomerative method. Here, the distance between two nodes is defined in terms of

random walk process. The basic idea is that if two nodes are in the same community,

the probability to get to a third node located in the same community through a

random walk should not be very different. The distance is constructed by summing

these differences over all nodes, with a correction for degree.

• Eigenvector Algorithm: This algorithm by Newman [52] is modularity-based, and

it uses an optimization method inspired by graph partitioning techniques. It relies

on the eigenvectors of a so-called modularity matrix, instead of the graph Laplacian

traditionally used in graph partitioning.

• Label Propagation Algorithm: This algorithm by Raghavan et al. [67] uses the

concept of node neighborhood and the diffusion of information in the network to

identify communities. Initially, each node is labeled with a unique value. Then an

iterative process takes place, where each node takes the label which is the most

spread in its neighborhood. This process goes on until one of several conditions is

met, for in-stance no label change. The resulting communities are defined by the

last label values.

• Spinglass Algorithm: This algorithm by Reichardt and Bornholdt [68] is an opti-
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mization method relying on an analogy between the statistical mechanics of complex

networks and physical spin glass models

There are more algorithms developed to solve network community detection problem

a complete list can be obtained in several survey articles [29, 46, 80]. Some interesting

recent articles are [1, 4, 22,23,44,58,81].

A partial list of algorithms developed for network community detection purpose is

tabulated in 2.1. The algorithms are categorized into three main group as spectral (SP),

graph traversal based (GT) and semi-definite programming based (SDP). The categories

and complexities are also given in the table 2.1.

2.2.2 Observations and motivations

Community detection is an extensively studied research problem of network science. How-

ever, a good algorithm for large real network is still in demand for research communities.

Two major criteria to be satisfied by the good algorithms are: 1) it must find a partition

of the network which is optimal with respect to modularity or conductance, and 2) the

algorithm should be computationally efficient on large networks. The notable pitfalls of

the existing algorithms are, most of the algorithms developed based on spectral meth-

ods on semi-definite programming relies on global optimization and need to compute the

costlier functions under the evaluation criteria in each iteration and increase the burden

of computation drastically, thus become inefficient for large networks. On the other-hand,

graph based algorithms relies on local heuristic method or exhaustive search. The algo-

rithms based on exhaustive search are not suitable for large networks. However the local

methods are computationally good but fails achieve close value from optimal modularity

for large networks.
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A good alternative is to transform a network to a metric space, where we can achieve

good optimality along with automatic convergence, thus lead to less computational burden

for large networks, but we need to create the metric very carefully so that it can explore

the underlying community structure of the real life networks.

2.3 Graph to metric space transformation

In this section we have demonstrated the procedure to transform a graph into points of a

metric space and developed the methods of community detection with the help of metric

defined for pair of points. We have also studied and analyzed the community structure

of the network therein.

As discussed in subsection 2.2.2, the nodes of the graph do not lie on a metric space,

e.g. edges does not reflect the Euclidean distance between the nodes. The standard Eu-

clidean distance and spherical distance define over the adjacency or Laplacian matrices

above failed to capture similarity information among the nodes of a complex network.

On the other-hand, the algorithms developed based on shortest path or Jaccard similar-

ity are computationally inefficient and have less success in terms of standard evaluation

criteria(like, conductance and modularity).

In this work, we have tried to develop the notion of similarity among the nodes using

some new matrices derived from adjacency matrix and degree matrix of the graph. Let A

be the adjacency matrix and D the degree matrix of the graph G = (V,E). The Laplacian

L = D−A. We have defined two diagonal matrix of same size D(λ) and D(λx) where λ is

a parameter determine from the given graph and can be optimized from the optimization

criteria of the problem under consideration. In D(λ) a fixed optimally determine value is

used in the diagonal entries of the matrix D and in D(λx) a variable value also optimally
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determine is used in the diagonal entries of the matrix D. The similarities are defined on

matrices L1 and L2, where L1 = D(λ) +A and L2 = D(λx) +A respectively as spherical

similarity among the rows and determine by applying a concave function φ over the

standard notions of similarities like, Pearson coefficient(σPC), Spacerman coefficient(σSC)

or Cosine similarity(σCS). φ(σ)() must be chosen using the chord condition to obtain a

metric.

2.3.1 Graph to metric space algorithm

In this subsection we have demonstrated the algorithm to convert the nodes of the graph

to the points of a metric space preserving the community structure of the graph. The

algorithm depends on the sub modules 1) construction of Lx (L1 or L2) and 2) obtaining

a structure preserving distance function. The algorithm works as picking pair of nodes

from Lx and and computing distance defined in the second module.

Lx construction

The L1 is defined as L1 = D(λ)+A, where A is the adjacency matrix of the given network

and D(λ) is a diagonal matrix of same size with diagonal values equal to a non negative

constant λ.

The L2 is defined as L2 = D(λx) + A, where A is the adjacency matrix of the given

network and D(λx) is a diagonal matrix of same size with diagonal values determine by

a non negative function λx of the node x.

The choice of λ and λx plays a crucial role in combination with the function chosen

in the second module for determination of a suitable metric and is discussed later part of

this subsection.
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Function selection

The function selection module determine the metric for pair of nodes. The function selec-

tor φ converts a similarity function (Pearson coefficient(σPC), Spacerman coefficient(σSC)

or Cosine similarity(σCS)) into a distance matrix. In general the similarity function sat-

isfies the positivity and similarity condition of metric but not triangle inequality. φ is a

metric preserving (φ(d(xi, xj) = dφ(xi, xj)), concave and monotonically increasing func-

tion. The three conditions above refer to as chord condition. The φ function is chosen to

have minimum internal area with chord.

Choice of λ and φ(σ)()

The choices in the above sub modules play a crucial role in the graph to metric trans-

formation algorithm to be used for community detection. The complex network is char-

acterized by small average diameter and high clustering coefficient. Several studies on

network structure analysis reveal that there are hub nodes and local nodes characterizing

the interesting structure of the complex network. Suppose we have taken φ = arccos, σCS

and constant λ ≥ 0. λ = 0 penalize the effect of direct edge in the metric and is suitable

to extract communities from highly dense graph. λ = 1 place the similar weight of direct

edge and common neighbor reduce the effect of direct edge in the metric and is suitable

to extract communities from moderately dense graph. λ = 2 set more importance to

direct edge than common neighbor (this is the common case of available real networks).

λ ≥ 2 penalize the effect of common neighbor in the metric and is suitable to extract

communities from very sparse graph.

The choice of λ depends on the DCC value (2.4.4) of the input graph, i.e. whether it

is sparse or dense and its cluster structure.
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The algorithm for transforming a graph to the points of a metric space is given below

1.

Algorithm 1 Mapping a graph into Metric space
Require: G = (V,E)
Ensure: M = (V, d)

1: Dλ
(n×n) =

0 if i 6= j

λ ≥ 0 if i = j

2: A = Dλ + E
3: for i = 1 to n do
4: for j = 1 to n do
5: d(vi, vj) = φ(1− ai·aj

|ai||aj |), where vi, vj ∈ V and ak is the kth row of A and φ is an
affine function.

6: end for
7: end for
8: return M = (V, d)

Theorem 2.3.1 M = (V, d) constructed in the above algorithm 1 is a metric space with

respect to the metric d, i.e.

The proof of the theorem is straight forward and satisfies the following metric properties.

• d(vi, vj) ≥ 0 & d(vi, vi) = 0

• d(vi, vj) = d(vj, vi)

• d(vi, vj) ≤ d(vi, vk) + d(vk, vj)

2.4 Community detection on induced metric space

In this section we have explore k partitioning algorithm for the purpose of network com-

munity detection by using the metric space constructed above for each graph. We have
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also studied and analyzed the advantages of the k partitioning method over the standard

algorithm for network community detection.

2.4.1 k-partitioning

The community detection methods based on K-partitioning of graph is possible using

newly defined node distance, because the nodes of the graph are converted into the points

of a metric space. The k-partitioning of graph using this distance converges automati-

cally and does not compute the value of objective function in iterations therefore reduce

the computation compared to standard graph partitioning methods. The results of k-

partitioning of graph using metric are competitive on a large set networks shown in

section 2.5. The algorithm for community detection using k-partitioning and its details

analysis is given below. Before that we need to determine the value of k and is discussed

in the next subsection.

2.4.2 Initialization

Determining the optimal number of k is an important problem for community detection

researchers. An extensive analysis can be found in the work of Leskovec et al. [45]. The set

of initial nodes are also very important problem for k partitioning algorithm.The standard

practice is to solve an optimization equation with respect to k for which the optimal value

of the objective function is achieved. Another method based on farthest first traversal is

also very useful in terms of computational efficiency [35]. For small networks the global

optimization works better and for very large network the second choice give the faster

approximate solution.

• Input: graph G = (V,E), with the node similarity sim(xa, xb) defined on it

34



• Output: A partition of the nodes into k communities C1, C2, ..., Ck

• Objective function: Maximize the minimum intra community similarity

minj∈{1,2,..,k}maxxa,xb∈Cj
sim(xa, xb)

Algorithm 2 k-center partitioning algorithm
Require: M = (V, d)
Ensure: T = {C1, C2, . . . , Ck} with minimum cost(T )

1: Initialize centers z1, . . . , zk ∈ Rn and clusters T = {C1, C2, . . . , Ck}
2: repeat
3: for i = 1 to k do
4: for j = 1 to k do
5: Ci ← {x ∈ V s.t. |zi − x| ≤ |zj − x|}
6: end for
7: end for
8: for j = 1 to k do
9: zi ← mean(Ci)

10: end for
11: until |cost(Tt)− cost(Tt+1)| = 0
12: return T = {C1, C2, . . . , Ck}

2.4.3 Convergence

Convergence of the network community detection algorithms are the least studied research

areas of network science. However, the rate of convergence is one of the important issues

and low rate of convergence is the major pitfall of the most of the existing algorithms.

Due to the transformation into the metric space, our algorithm equipped with the quick

convergence facility of the k-partitioning on metric space by providing a good set of

initial points. Another crucial pitfall suffer by majority of the existing algorithms is the

validation of the objective function in each iteration during convergence. Our algorithm
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Figure 2.1: Block diagram of k-central algorithm for complex network via metric space
transformation
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converges automatically to the optimal partition thus reduces the cost of validation during

convergence.

Theorem 2.4.1 During the course of the k center partitioning algorithm, the cost mono-

tonically decreases.

Proof Let Zt = {zt1, . . . , ztk} , T t = {Ct
1, . . . , C

t
k} denote the centers and clusters at the

start of the tth iteration of k partitioning algorithm. The first step of the iteration assigns

each data point to its closest center; therefore cost(T t+1, Zt) ≤ cost(T t, Zt)

On the second step, each cluster is re-centered at its mean; therefore cost(T t+1, Zt+1) ≤

cost(T t+1, Zt)

Theorem 2.4.2 If T is the solution returned by farthest-first traversal, and T o is the

optimal solution, then cost(T o) ≤ cost(T ) ≤ 2cost(T o)

Proof The proof of the theorem can be obtained in the article [35].

2.4.4 Data complexity

The key characteristics of complex network are ”high clustering coefficient” and ”small

average path length”. The first property justifies the community structure of the network

whereas the second property justifies the small world phenomena of real networks. Given

a network, that is, given number of nodes and number of edges what are the bounds

of average distance and clustering coefficient? The two properties of Optimal Complex

Network (OCN) are 1) minimum possible average distance and 2) maximum possible

clustering coefficient. There is usually a unique graph with the largest average clustering,

which at the same time has the smallest possible average distance. In contrast, there are

many graphs with the same minimum average distance, ignoring their average clustering.
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The objective of this work is to measure the community detectability of the complex

network, G(N,m,L,C), where N is the number of vertices, m is the number of edges, L

is the average path length and C is the average clustering coefficient.

Average path length: LN,m The smallest possible average distance of a graph with N

vertices and m edges, which we denote LN,m = 1
m

∑
u,v∈E d(u, v).

Clustering coefficient: If du(> 1) is the degree of a vertex u, and tu is the number of

edges among its neighbors, its clustering coefficient is, C(u) = tu/

 du

2


In some graph community detection is easy and most of the algorithms work very

well(e.g. disjoint cliques). On the other-hand, in some graph community detection is very

difficult rarely some algorithms work well (e.g. circular graph)

Data complexity of community detection: Informally, Given a graph with N vertices

and m edges G(N,m), with what extent we can reveal the community structure, is the

data complexity for community detection of that graph. Data complexity for community

detection (DCC) is denoted as (α(G(N,m,L,C))), α(G(N,m,L,C)) near to 0 for a graph

easy to detect community and α(G(N,m,L,C)) near to 1 no community structure. DCC

is calculated as the ratio between common edges of G∗(N,m,L,C) and G(N,m,L,C)

with m the number of edges of G or G∗, where G∗(N,m,L,C) is a graph with same

average path length constructed by adding minimum number of edges to an empty graph

of N nodes followed by addition of more edges to obtain total number m by maximizing

clustering coefficient.

Higher value of DCC for a particular network signifies that we can extract good com-

munity structure of the network; however a lower value of DCC signifies that none of the

algorithms are very much useful to capture community structure of the network. Other

advantage of DCC is that it can assess the quality of an algorithm. When DCC is high
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and value of evaluation measure is low it simply signifies that there are enough room to

improve the algorithm.

2.5 Experiments and results

We performed many of experiments to test the proposed network detection method via

induced metric space over several real networks2.2. Objective of the experiment is to

verify behavior of the algorithm and the time required to compute the algorithm. One of

the major goals of the experiment is to see the behavior of the algorithm with respect to

the change of values of the crucial limits of the data and the parameters of the algorithm.

Experiments are also conducted to compare the results (tables 2.3, 2.4 and 2.5) of

our algorithm with the state of the art algorithms (table 2.1) available in the literature

in terms of common measures mostly used by the researchers of the domain of network

community detection. The details of the several experiments and the analysis of the

results are given in the following subsections.

2.5.1 Experimental designs

Experiment for comparison: In this experiment we have compared several algorithms for

network community detection with the one constructed using proposed distance. Exper-

iment is performed on a large list of network data sets. Two version of the experiment

is developed for comparison purpose based on two different quality measure conductance

and modularity. The results are shown in the tables 2.3 and 2.4 respectively.

Experiment on performance and time: In this experiment we have evaluated our

algorithm for performance on the network collection2.2. We have evaluated the time

taken by our algorithm on different size of networks and is shown in the table 2.5.
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2.5.2 Performance indicator

Modularity: The notion of modularity is the most popular for the network community

detection purpose. The modularity index assigns high scores to communities whose inter-

nal edges are more than that expected in a random-network model which preserves the

degree distribution of the given network.

Conductance: Conductance is widely used for graph partitioning literature. The con-

ductance of a set S with complement SC is the ratio of the number of edges connecting

nodes in S to nodes in SC by the total number of edges incident to S or to SC (whichever

number is smaller).

2.5.3 Datasets

A list of real networks taken from several real life interactions is considered for our ex-

periments and they are tabulate 2.2 below. We have also listed the number of nodes,

number of edges, average diameter, data complexity for community detection (DCC) and

the k value used (2.4.2). The values of the last column can be used to assess the quality

of detected communities as discussed in the subsection 2.4.4.

2.5.4 Computational results

In this subsection we have compared two groups of algorithms for network community

detection with our proposed algorithm based on metric space. Experiment is performed on

a large list of network data sets. Two version of the experiment is developed for comparison

purpose based on two different quality measure conductance and modularity. The results

based on conductance is shown in the table 2.3 and the results based on modularity is

shown in the table 2.4, respectively. Regarding the two groups of algorithms; first group
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Table 2.2: Complex network datasets and values of their parameters

Name Type # Nodes # Edges Diameter DCC k
Facebook U 4,039 88,234 4.7 0.72498 164
Gplus D 107,614 13,673,453 3 0.50073 457
Twitter D 81,306 1,768,149 4.5 0.57072 213
Epinions1 D 75,879 508,837 5 0.14001 128
LiveJournal1 D 4,847,571 68,993,773 6.5 0.27432 117
Pokec D 1,632,803 30,622,564 5.2 0.10971 246
Slashdot0811 D 77,360 905,468 4.7 0.05884 81
Slashdot0922 D 82,168 948,464 4.7 0.06340 87
Friendster U 65,608,366 1,806,067,135 5.8 0.16231 833
Orkut U 3,072,441 117,185,083 4.8 0.16689 756
Youtube U 1,134,890 2,987,624 6.5 0.08090 811
DBLP U 317,080 1,049,866 8 0.63307 268
Arxiv-AstroPh U 18,772 396,160 5 0.65841 23
web-Stanford D 281,903 2,312,497 9.7 0.60034 69
Amazon0601 D 403,394 3,387,388 7.6 0.41890 92
P2P-Gnutella31 D 62,586 147,892 6.5 0.00710 35
RoadNet-CA U 1,965,206 5,533,214 500 0.40458 322
Wiki-Vote D 7,115 103,689 3.8 0.17048 21
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contain algorithms based on semi-definite programming and the second group contain

algorithms based on graph traversal approaches. For each group, we have taken the best

value of conductance in table 2.3 and best value of modularity in table 2.4 among all the

algorithms in the groups. The results obtained with our approach are very competitive

with most of the well known algorithms in the literature and this is justified over the

large collection of datasets. On the other hand, it can be observed that time taken (table

2.5) by our algorithm is quite less compared to other methods and justify the theoretical

findings described in sections 2.3 and 3.5.2.

Table 2.3: Comparison of our approaches with other best methods in terms of conduc-
tance, the number inside the brackets denotes the algorithm of the group

Name Spectral SDP GT Metric
Facebook 0.0097(5) 0.1074(3) 0.1044(7) 0.1082
Gplus 0.0119(5) 0.1593(3) 0.1544(7) 0.1602
Twitter 0.0035(5) 0.0480(3) 0.0465(7) 0.0483
Epinions1 0.0087(5) 0.1247(6) 0.1208(7) 0.1254
LiveJournal1 0.0039(5) 0.0703(6) 0.0680(7) 0.0706
Pokec 0.0009(4) 0.0174(3) 0.0168(7) 0.0175
Slashdot0811 0.0005(5) 0.0097(6) 0.0094(7) 0.0098
Slashdot0922 0.0007(4) 0.0138(3) 0.0133(5) 0.0138
Friendster 0.0012(5) 0.0273(1) 0.0263(7) 0.0273
Orkut 0.0016(5) 0.0411(3) 0.0397(7) 0.0412
Youtube 0.0031(5) 0.0869(3) 0.0838(7) 0.0871
DBLP 0.0007(4) 0.0210(3) 0.0203(7) 0.0211
Arxiv-AstroPh 0.0024(5) 0.0929(6) 0.0895(7) 0.0931
web-Stanford 0.0007(5) 0.0320(1) 0.0308(7) 0.0320
Amazon0601 0.0018(5) 0.0899(6) 0.0865(7) 0.0900
P2P-Gnutella31 0.0009(5) 0.0522(6) 0.0503(7) 0.0523
RoadNet-CA 0.0024(5) 0.1502(3) 0.1445(7) 0.1504
Wiki-Vote 0.0026(5) 0.1853(6) 0.1783(7) 0.1855
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Table 2.4: Comparison of our approaches with other best methods in terms of modularity,
the number inside the brackets denotes the algorithm of the group

Name Spectral SDP GT Metric
Facebook 0.4487(1) 0.5464(4) 0.5434(5) 0.5472
Gplus 0.2573(1) 0.4047(3) 0.3998(5) 0.4056
Twitter 0.3261(3) 0.3706(1) 0.3691(7) 0.3709
Epinions1 0.0280(1) 0.1440(3) 0.1401(5) 0.1447
LiveJournal1 0.0791(1) 0.1455(5) 0.1432(5) 0.1458
Pokec 0.0129(3) 0.0294(1) 0.0288(5) 0.0295
Slashdot0811 0.0038(1) 0.0130(4) 0.0127(7) 0.0131
Slashdot0922 0.0045(1) 0.0176(5) 0.0171(5) 0.0176
Friendster 0.0275(4) 0.0536(5) 0.0526(7) 0.0536
Orkut 0.0294(3) 0.0689(4) 0.0675(5) 0.0690
Youtube 0.0096(1) 0.0934(2) 0.0903(5) 0.0936
DBLP 0.4011(5) 0.4214(1) 0.4207(5) 0.4215
Arxiv-AstroPh 0.4174(3) 0.5079(3) 0.5045(5) 0.5081
web-Stanford 0.3595(5) 0.3908(4) 0.3896(7) 0.3908
Amazon0601 0.1768(1) 0.2649(4) 0.2615(7) 0.2650
P2P-Gnutella31 0.0009(1) 0.0522(2) 0.0503(5) 0.0523
RoadNet-CA 0.0212(3) 0.1690(4) 0.1633(5) 0.1692
Wiki-Vote 0.0266(1) 0.2093(1) 0.2023(5) 0.2095

Table 2.5: Comparison of our approaches with other best methods in terms of
time(second)

Algorithm Spectral SDP GT Metric
Minimum Time 884 910 871 869
Maximum Time 1386 1725 1641 869
Average Time 917 981 1338 869
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2.5.5 Parameter settings

The values of the several parameters are very crucial in our algorithm. Here we have

discussed the different settings of k, λ, DCC and affine function. For each data described

in table 2.2 the k value is obtained by optimizing the conductance value as described

in sub-section 2.4.2 and the values are provided in table 2.2. For small data sets (not

considered for our experiments) the results are very sensitive to k whereas, for large

networks (all of above list) the results are less sensitive to k. The value λ is taken λ = 2

in all the computation above, however the results can be improved more by optimizing

lambda. The DCC value provide us prior information about the community structure, it

can be observed that we obtained good community structure where DCC value is high.

In all the experiments described above the φ(σ)() is constructed with arccos function and

cosine similarity.

2.5.6 Results analysis and achievements

In this subsection, we have described the analysis of the results obtained in our experi-

ments shown above and also highlighted the achievements from the results. It is clearly

evident from the results shown in the tables 2.3, 2.4 and 2.5 that, proposed metric based

method for network community detection provide very good competitive performance

with respect to conductance modularity and time. However, a good community detection

algorithm must provide the results close to the unknown optimal community structure.

To assess the optimality we have considered the best results of each class of algorithms

and treated them as one of the best known estimate to the optimal community structure

of the network. It is also evident from the results that our method provide results very

close to considered estimates of optimal communities.
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2.6 Conclusions

Network community detection became an important research problem in recent years. In

this chapter we have demonstrated and analyzed a new approaches to network community

detection via metric space induced by the graph. The main achievement of the work was

to use the rich literature of clustering in metric space. Clustering is easy NP-Hard in

metric space, whereas network community detection is NP-Hard. The results obtained

with our approach were very competitive with most of the well known algorithms in the

literature and justified over the large collection of datasets. Our algorithm converges

automatically to optimal clustering. One important advantage of the proposed method is

no need to verify objective function value to guide next iteration, like popular approaches,

thus saving the time of computation.
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Chapter 3

Nearest Neighbor search in the

Metric Space of Complex Network

for Community Detection

The objective of this chapter is to bridge the gap between two important research direc-

tions, 1) nearest neighbor search, which is a fundamental computational tool for large data

analysis, and 2) complex network analysis, which deals with large real graphs but generally

studied via graph theoretic analysis or spectral analysis. In this chapter, we have studied

the nearest neighbor search problem in complex network by the development of a suitable

notion of nearness. The computation of efficient nearest neighbor search among the nodes

of a complex network using the metric tree and locality sensitive hashing(LSH) are also

studied and experimented. For evaluation of the proposed nearest neighbor search on

complex network, we applied it in network community detection problem. Experiments

are performed to verify the usefulness of nearness measures for the complex networks,

the role of metric tree and LSH to compute fast and approximate node nearness and
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the efficiency of community detection using nearest neighbor search. We observed that

nearest neighbor between network nodes is a very efficient tool to explore better commu-

nity structure of the real networks, several efficient approximation scheme are very useful

for large networks, which hardly made any degradation of results, whereas saves lot of

computational times and nearest neighbor based community detection approach is very

competitive in terms of efficiency and time.

3.1 Introduction

The nearest neighbor (NN) search is an important computational primitive for structural

analysis of data and other query retrieval purposes. NN search is very useful for dealing

with massive data sets, but it suffers with curse of dimension [72, 75]. Though nearest

neighbor search is a extensively studied research problem for low dimensional data, a

recent surge of results shows that it is most useful tool for analyzing very large data,

provided a suitable space partitioning data structure is used, like, kd-tree, quad-tree,

R-tree, metric-tree and locality sensitive hashing [20, 32, 38, 59]. One more advantage of

using nearest neighbor search for large data analysis is the availability of efficient ap-

proximation scheme, which provides almost same results in very less time [3,48]. Though

nearest neighbor search is very successful and extensively used across the research domains

of computer science, it is not studied rigorously in complex network analysis. Complex

networks are generally studied in graph theoretic framework or in spectral analysis frame-

work. One basic reason for this limitation may be the nodes of the complex networks are

not naturally lie on a metric space, thus restricting the use of nearest neighbor analysis

which is done using metric or nearness measures.

Other than graphs, the complex networks are characterized by small ”average path
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length” and high ”clustering coefficient”. A network community (also known as a module

or cluster) is typically a group of nodes with more interconnections among its members

than the remaining part of the network [29,74,78]. To extract such group of nodes from a

network one generally selects an objective function that captures the possible communities

as a set of nodes with better internal connectivity than external [49,54]. However, very less

research is done for network community detection, which tries to develop nearness between

the nodes of a complex network and use the nearest neighbor search for partitioning the

network [8,9,12,26,47,50,65]. The way metric is defined among the nodes should be able

to capture the crucial properties of complex networks. Therefore, we need to create the

metric very carefully so that it can explore the underlying community structure of the

real life networks [73].

Extracting network communities in large real graphs such as social networks, web,

collaboration networks and bio-networks is an important research direction of recent in-

terest [11,29,31,56,56,66]. In this work, we have developed the notion of nearness among

the nodes of the network using some new matrices derived from the modified adjacency

matrix of the graph which is flexible over the networks and can be tuned to enhance the

structural properties of the network required for community detection.

The main contributions of this work are, 1) development of the concept of nearness

between the nodes of a complex network, 2) comparing the proposed nearness with other

notions of similarities, 3) study and experiment on approximate nearest neighbor search

for complex network using M-tree and LSH, 4) design of efficient community detection

algorithm using nearest neighbor search. We observed that nearest neighbor between

network nodes is a very efficient tool to explore better community structure of the real

networks. Further several efficient approximation scheme are very useful for large net-

works, which hardly made any degradation of results, whereas saves lot of computational
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times.

The rest of this chapter is organized as follows. Section 3.2 describes the notion of

nearness in complex network and proposed method to compute distance between the

nodes of a complex network. Section 3.3 and 3.4 describe the algorithm of the nearest

neighbor search over complex network using of metric tree and locality sensitive hashing

methods respectively. In Section 3.5, the proposed algorithm for network community de-

tection using nearest neighbor search is discussed. The results of the comparison between

community detection algorithms are illustrated in Section 3.6.

3.2 Notion of nearness in complex network

The notion of nearness between the nodes of a graph, are used in several purposes in

the history of literature of graph theory. Most of the time the shortest path and edge

connectivity are popular choice to describe nearness of nodes. However, the edge count

does not give the true measure of network connectivity. A true measure of nearness

in complex network should able to determine how much one node can affect the other

node to provide a better measure of connectivity between nodes of a real life complex

network. Research in this direction need special attention in the domain of complex

network analysis, one such is proposed in this chapter and described in the following

subsections.

3.2.1 Definitions

Metric space of network Given, a graph G = (V,E) the metric is defined over the

vertex set V and d, a function to compute the distance between two vertices of V . Pair

(V, d) distinguished metric space if d satisfies reflexivity, non-negativity, symmetry and

50



triangle inequality.

Nearest neighbor search on network The nearest-neighbor searching problem in

complex network is to find the nearest node in a graph G = (V,E) between a query

vertex vq and any other vertex of the graph V {vq}, with respect to a metric space

M(V, d) associated with the graph G = (V,E).

Approximate nearest neighbor search on network For any vq ∈ V , An ε approx-

imate NN of vq ∈ V is to find a point vp ∈ V {vq} s.t. d(vp, vq) ≤ (1 + ε)d(v, vq) ∀

v ∈ V {vq}.

3.2.2 Nearness in complex network

Methods based on node neighborhoods. For a node x, let N(x) denote the set of neighbors

of x in a graph G(V,E). A number of approaches are based on the idea that two nodes

x and y are more likely to be affected by one another if their sets of neighbors N(x) and

N(y) have large overlap.

Common neighbors: The most direct implementation of this idea for nearness compu-

tation is to define d(x, y) := |N(x) ∩ N(y)|, the number of neighbors that x and y have

in common.

Jaccard coefficient: The Jaccard coefficient, a commonly used similarity metric, mea-

sure the probability that both x and y have a feature f , for a randomly selected feature

f that either x or y has. If we take features here to be neighbors in G(V,E), this leads

to the measure d(x, y) := |N(x) ∩N(y)|/|N(x) ∪N(y)|.

Preferential attachment: The probability that a new edge involves node x is propor-

tional to |N(x)|, the current number of neighbors of x. The probability of co-authorship

of x and y is correlated with the product of the number of collaborators of x and y. This
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corresponds to the measure d(x, y) := |N(x)| × |N(y)|.

Katz measure: This measure directly sums over the collection of paths, exponen-

tially damped by length to count short paths more heavily. This leads to the measure

d(x, y) := β × |paths(x, y)| where, paths(x, y) is the set of all length paths from x to y.

(β determines the path size, since paths of length three or more contribute very little to

the summation.)

Commute time: A random walk on G starts at a node x, and iteratively moves to a

neighbor of x chosen uniformly at random. The hitting time H(x, y) from x to y is the

expected number of steps required for a random walk starting at x to reach y. Since the

hitting time is not in general symmetric, it is also natural to consider a commute time

C(x, y) := H(x, y) +H(y, x).

PageRank: Random resets form the basis of the PageRank measure for Web pages, and

we can adapt it for link prediction as follows: Define d(x, y) to be the stationary proba-

bility of y in a random walk that returns to x with probability α each step, moving to a

random neighbor with probability 1− α.

Most of the methods are developed for different types of problems like information

retrieval, ranking, prediction e.t.c. and developed for general graphs.

3.2.3 Nearness in complex network:

In this subsection, we developed the notion of nearness among the nodes of the network

using some linear combination of adjacency matrix A and identity matrix of same dimen-

sion for the network G = (V,E). The similarities between the nodes are defined on matrix

L = λI +A as spherical similarity among the rows and determine by applying a concave

function φ over the standard notions of similarities like, Pearson coefficient(σPC), Spac-
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erman coefficient(σSC) or Cosine similarity(σCS). φ(σ)() must be chosen using the chord

condition, i.e., metric-preserving (φ(d(xi, xj) = dφ(xi, xj)), concave and monotonically-

increasing, to obtain a metric. It works by picking a pair of rows from L and comput-

ing the distance defined in the φ(σ)(). The function φ converts a similarity function

(Pearson coefficient (σPC), Spacerman coefficient (σSC) or cosine similarity (σCS)) into

a distance matrix. In general, the similarity function satisfies the positivity and simi-

larity condition of the metric, but not the triangle inequality. φ is a metric-preserving

(φ(d(xi, xj) = dφ(xi, xj)), concave and monotonically-increasing function. The three con-

ditions above are referred to as the chord condition. The φ function is chosen to have

minimum internal area with the chord.

The choice of λ and φ(σ)() in the above sub-modules play a crucial role in the graph

to metric transformation algorithm to be used for community detection. The complex

network is characterized by a small average diameter and a high clustering coefficient.

Several studies on network structure analysis reveal that there are hub nodes and local

nodes characterizing the interesting structure of the complex network. Suppose we have

taken φ = arccos, σCS and constant λ ≥ 0. λ = 0 penalizes the effect of the direct edge

in the metric and is suitable to extract communities from a highly dense graph. λ = 1

places a similar weight of the direct edge, and the common neighbor reduces the effect of

the direct edge in the metric and is suitable to extract communities from a moderately

dense graph. λ = 2 sets more importance for the direct edge than the common neighbor

(this is the common case of available real networks). λ ≥ 2 penalizes the effect of the

common neighbor in the metric and is suitable for extracting communities from a very

sparse graph.
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3.3 Nearest neighbor search on complex network us-

ing metric tree

There are numerous methods developed to compute the nearest neighbor search for points

of a metric space. However, finding the nearest neighbor search on some data where

dimension is high suffer from curse of dimension. Some recent research on this direction

revealed that dimension constrained can be tackled by using efficient data structures like

metric tree and locality sensitive hashing. In this section we have explored metric tree to

perform the nearest neighbor search on complex network with the help of metric mapping

of complex network described in the previous section.

3.3.1 Metric-tree

A metric tree is a data structure specially designed to perform the nearest neighbor query

for the points residing on a metric space and perform well on high dimension particularly

when some approximation is permitted. A metric tree organizes a set of points in a spatial

hierarchical manner. It is a binary tree whose nodes represent a set of points. The root

node represents all points, and the points represented by an internal node v is partitioned

into two subsets, represented by its two children. Formally, if we use N(v) to denote the

set of points represented by node v, and use v.lc and v.rc to denote the left child and the

right child of node v, then we have N(v) = N(v.lc) ∪N(v.rc) φ = N(v.lc) ∩N(v.rc) for

all the non-leaf nodes. At the lowest level, each leaf node contains very few points.

An M-Tree [15] consists of leaf node, internal node and routing object. Leaf nodes

are set of objects Nv with pointer to parent object vp. Internal nodes are set of routing

objects NRO with pointer to its parent object vp. Routing object vr store covering radius
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r(vr) and pointer to covering tree T (vr), Distance of vr from its parent object d(vr, P (vr)).

Feature values stored in the object vj are object identifier oid (vj) and distance of vj from

its parent object d(vj, P (vj))

The key to building a metric-tree is how to partition a node v. A typical way is as

follows: We first choose two pivot points from N(v), denoted as v.lpv and v.rpv. Ideally,

v.lpv and v.rpv are chosen so that the distance between them is the largest of all distances

within N(v). More specifically, ||v.lpv − v.rpv|| = maxp1,p2∈N(v)||p1 − p2||. A search on a

metric-tree is performed using a stack. The current radius r is used to decide which child

node to search first. If the query q is on the left of current point, then v.lc is searched

first, otherwise, v.rc is searched first. At all times, the algorithm maintains a candidate

NN and there distance determines the current radius, which is the nearest neighbor it

finds so far while traversing the tree. The algorithm for nearest neighbor search using

metric tree is given below 3.

3.3.2 Nearest Neighbor search algorithm using M-Tree

algorithm

Algorithm 3 NN search in M-Tree
Require: M = (V, d) & q
Ensure: d(q, vq)

1: Insert root object vr in stack
2: Set current radius as d(vr, q)
3: Successively traverse the tree in search of q
4: PUSH all the objects of traversal path into stack
5: Update the current radius
6: If leaf object reached
7: POP objects from stack
8: For all points lying inside the ball of current radius centering q, verify for possible

nearest neighbor and update the current radius.
9: return d(q, vq)
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The theoretical advantage of using metric tree as a data structure for nearest neighbor

search is: Let M = (V, d), be a bounded metric space. Then for any fixed data V ∈ Rn

of size n, and for constant c ≥ 1, ∃ε such that we may compute d(q, V )|ε with at most

c · dlog(n) + 1e expected metric evaluations [16].

3.4 Nearest neighbor search on complex network us-

ing locality sensitive hashing

Metric trees, so far represent the practical state of the art for achieving efficiency in

the largest dimension possible. However, many real-world problems consist of very large

dimension and beyond the capability of such search structures to achieve sub-linear ef-

ficiency. Thus, the high-dimensional case is the long-standing frontier of the nearest-

neighbor problem. The approximate nearest neighbor can be computed very efficiently

using Locality sensitive hashing.

3.4.1 Approximate nearest neighbor

Given a metric space (S, d) and some finite subset SD of data points SD ⊂ S on which

the nearest neighbor queries are to be made, our aim to organize SD s.t. NN queries

can be answered more efficiently. For any q ∈ S, NN problem consists of finding single

minimal located point p ∈ SD s.t. d(p, q) is minimum over all p ∈ SD. We denote this by

p = NN(q, SD).

An ε approximate NN of q ∈ S is to find a point p ∈ SD s.t. d(p, q) ≤ (1 + ε)d(x, d) ∀

x ∈ SD.
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3.4.2 Locality Sensitive Hashing (LSH)

Several methods to compute first nearest neighbor query exists in the literature and

locality-sensitive hashing (LSH) is most popular because of its dimension independent

run time [51,60]. In a locality sensitive hashing, the hash function has the property that

close points are hash into same bucket with high probability and distance points are hash

into same bucket with low probability. Mathematically, a family H = {h : S → U} is

called (r1, r2, p1, p2)-sensitive if for any p, q ∈ S

• if p ∈ B(q, r1) then PrH [h(q) = h(p)] ≥ p1

• if p /∈ B(q, r2) then PrH [h(q) = h(p)] ≤ p2

where B(q, r) denotes a hyper sphere of radius r centered at q. In order for a locality-

sensitive family to be useful, it has to satisfy inequalities p1 > p2 and r1 < r2 when

D is a distance, or p1 > p2 and r1 > r2 when D is a similarity measure [33, 39]. The

value of δ = log(1/P1)/log(1/P2) determines search performance of LSH. Defining a LSH

as a(r, r(1 + ε), p1, p2), the (1 + ε) NN problem can be solved via series of hashing and

searching within the buckets [21,32,41].

3.4.3 Locality sensitive hash function for complex network

In this sub-section, we discuss the existence of locality sensitive hash function families for

the proposed metric for complex network. The LSH data structure stores all nodes in hash

tables and searches for nearest neighbor via retrieval. The hash table is contain many

buckets and identified by bucket id. Unlike conventional hashing, the LSH approach tries

to maximize the probability of collision of near items and put them into same bucket. For

any given the query q the bucket h(q) considered to search the nearest node. In general
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k hash functions are chosen independently and uniformly at random from hash family H.

The output of the nearest neighbor query is provided from the union ok k buckets. The

consensus of k functions reduces the error of approximation. For metric defined in the

previous section 3.2 we considered k random points from the metric space. Each random

point ri define a hash function hi(x) = sign(d(x, ri)), where d is the metric and i ∈ [1, k].

These randomized hash functions are locality sensitive [5, 13].

Algorithm 4 NN search in LSH
Require: M = (V, d) & q
Ensure: d(q, V )

1: Identify buckets of query point q corresponding to different hash functions.
2: Compute nearest neighbor of q only for the points inside the selected buckets.
3: return d(q, V )

The theoretical advantage of using locality sensitive hashing as a data structure for

nearest neighbor search is: Let M = (V, d), be a bounded metric space. Then for any fixed

data V ∈ Rn of size n, and for constant c ≥ 1, ∃ε such that we may compute d(q, V )|ε

with at most mnO(1/ε) expected metric evaluations, where m is the number of dimension

of the metric space. In case of complex network m = n so expected time is nO(2/ε) [16,37].

3.5 Proposed community detection based on nearest

neighbor

In this section we have described the algorithm proposed for network community detec-

tion using nearest neighbor search. Our approach differs from the existing methods of

community detection. The broad categorization of the available algorithms is generally

based on graph traversal, semidefinite programming and spectral analysis. The basic ap-
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proach and the complexity of very popular algorithms are already listed in the previous

chapter.

3.5.1 Distance based community detection

There exist no algorithms in the literature of network community detection which compute

direct nearest neighbor between nodes to the best of our knowledge, however concepts of

nearness used in some of the algorithms and they are described below.

Walktrap Algorithm(WT): This algorithm by Pons and Latapy [65] uses a hierarchical

agglomerative method. Here, the distance between two nodes is defined in terms of

random walk process. The basic idea is that if two nodes are in the same community, the

probability to get to a third node located in the same community through a random walk

should not be very different. The distance is constructed by summing these differences

over all nodes, with a correction for degree. The complexity of the algorithm is O(n3) as

reported in Latapy & Pons (walktrap, 2004 [65]).

Label Propagation Algorithm(LP): This algorithm by Raghavan et al. [67] uses the

concept of node neighborhood and the diffusion of information in the network to identify

communities. Initially, each node is labeled with a unique value. Then an iterative

process takes place, where each node takes the label which is the most spread in its

neighborhood. This process goes on until the conditions, no label change, is met. The

resulting communities are defined by the last label values with the complexity O(n+m)

for each iteration as reported in Raghavan et al. (label propagation, 2007 [67]).

Geometric Brownian motion(GBM): This concept was borrowed from statistical

physics by Zhou et al. [82]. This method develops the notion of Brownian motion on

networks to compute the influences between the nodes, which used to discover communi-
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ties of social networks. The complexity of the algorithm is O(n3).

3.5.2 Proposed algorithm for network community detection us-

ing nearest neighbor search

In this subsection we have described k-central algorithm for the purpose of network com-

munity detection by using the nearest neighbor search on complex network. The commu-

nity detection methods based on partitioning of graph is possible using nearest neighbor

search, because the nodes of the graph are converted into the points of a metric space.

This algorithm for network community detection converges automatically and does not

compute the value of objective function in iterations therefore reduce the computation

compared to standard methods. The k-central algorithm for community detection is given

below. Block diagram of the algorithm is given in Fig. 3.1.

3.5.3 Complexity and convergence

Complexity of the network community detection algorithms are the less studied research

topic of network science. However, the rate of convergence is one of the important issues

of algorithmic complexity and low rate of convergence is the major pitfall of the most of

the existing algorithms. Due to the transformation into the metric space, our algorithm

equipped with the quick convergence facility of the k-partitioning on metric space by

providing a good set of initial points. Another crucial pitfall suffer by majority of the

existing algorithms is the validation of the objective function in each iteration during

convergence. Our algorithm converges automatically to the optimal partition thus reduces

the cost of validation during convergence.
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Figure 3.1: Block diagram of k-central algorithm using approximate neaarest neighbor
search with metric tree or locality sensitive hashing
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3.6 Experiments and results

In this section we described in details several experiments to asses the, proposed near-

ness measure for the nodes of the network, efficiency of several approximation scheme

to compute node nearness and performance of proposed algorithm for community detec-

tion. Several experiments conducted in this regards are detailed below along with their

parameter settings, results and conclusions.

3.6.1 Experimental Designs

We performed three different experiments to asses the performance of the proposed net-

work nearest neighbor search for community detection. First experiment is designed to

evaluate the nearness measure, second experiment is designed to explore the effectiveness

of approximate nearest neighbor search for network community detection and the third

experiment is designed to verify behavior of the algorithm and the time required to com-

pute the algorithm. One of the major goals of the last experiment is to verify the behavior

of the algorithm with respect to the performance of other popular methods exists in the

literature in terms of standard modularity measures. Experiments are conducted over

several real networks2.2 to compare the results (tables 3.3 and 3.4) of our algorithm with

the state-of-the-art algorithms (table 2.1) available in the literature in terms of modular-

ity most preferred by the researchers of the domain of network community detection. The

details of the several experiments and the analysis of the results are given in the following

subsections.
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3.6.2 Datasets

A list of real networks taken from several real life interactions is considered for our ex-

periments and they are shown in Table 2.2 (previous chapter). We have also listed the

number of nodes, number of edges, average diameter, and the k value used (3.5.2). The

values of the last column can be used to assess the quality of detected communities.

3.6.3 Exp1: Experiment with nearness measure

In this experiment we tried to asses the usefulness of proposed nearness measure between

the nodes of complex network. For this purpose we have equiped our algorithm with

different measures of nearness along with our measure. Experimental steps are as follows:

Nearness measures: Six different measures are taken for construction the distance based

community detection. They are jaccard coefficient(JA), preferential attachment(PA),

Katz measure(KM), commute time(CT), page rank(PR) and proposed metric(PM). de-

tails of the measures are already discussed in sub-sec. 3.2.2 and proposed metric is detailed

in sub-sec. 3.2.3.

Algorithm: The community detection algorithm proposed in sec. 3.5 is used and exact

nearest neighbor between nodes are considered and computed communities besed on those

different nearness measures.

Network data: Different types of real network data is taken, small, large, very sparse

and relatively dense and they are discussed in sub-sec. 2.2.

Results: Compared the community structure obtained by algorithms, equipped with

different measures of node nearness, in terms of modularity and shown in table 3.1.

Observation: It can be observed from table 3.1 that algorithm based on proposed metric

(shown in column PA) provides better modularity than other for community detection.
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Table 3.1: Exp1: Experiment with nearness measure

Name JC PA KM CT PR PM
Facebook 0.4806 0.4937 0.5037 0.4973 0.5206 0.5434
Gplus 0.3061 0.3253 0.3411 0.3309 0.3671 0.3998
Twitter 0.3404 0.3465 0.3508 0.3481 0.3582 0.3691
Epinions1 0.0667 0.0816 0.0943 0.0861 0.1150 0.1401
LiveJournal1 0.1010 0.1097 0.1167 0.1122 0.1284 0.1432
Pokec 0.0183 0.0205 0.0222 0.0211 0.0251 0.0288
Slashdot0811 0.0066 0.0080 0.0087 0.0082 0.0101 0.0127
Slashdot0922 0.0086 0.0105 0.0116 0.0109 0.0137 0.0171
Friendster 0.0360 0.0395 0.0422 0.0405 0.0467 0.0526
Orkut 0.0424 0.0476 0.0518 0.0491 0.0587 0.0675
Youtube 0.0375 0.0483 0.0574 0.0515 0.0724 0.0903
DBLP 0.4072 0.4103 0.4118 0.4110 0.4148 0.4207
Arxiv-AstroPh 0.4469 0.4590 0.4682 0.4624 0.4837 0.5045
web-Stanford 0.3693 0.3738 0.3765 0.3749 0.3815 0.3896
Amazon0601 0.2057 0.2174 0.2266 0.2207 0.2419 0.2615
P2P-Gnutella31 0.0180 0.0246 0.0302 0.0266 0.0394 0.0503
RoadNet-CA 0.0701 0.0893 0.1051 0.0949 0.1312 0.1633
Wiki-Vote 0.0874 0.1109 0.1308 0.1179 0.1633 0.2023

3.6.4 Exp2: Experiment on approximation

In this experiment we explore the effectiveness of several approximation techniques of

nearest neighbor search on complex network designed via metric tree and locality sensitive

hashing. For this purpose we have equiped our algorithm with different data structures

(metric tree and LSH) with varying approximation ratio. Experimental steps are as fol-

lows:

Metric and algorithm: The algorithms considered in this experiment used proposed

measures of node nearness detailed in sub-sec. 3.2.3. The community detection algorithm

proposed in sec. 3.5 is used in this experiment.
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Approximation: Computed communities using approximate nearest neighbor via met-

ric tree and locality sensitive hashing. Different precision of approximation is considered

ranges from 0−0.5 and computed five times each over both the scheme of approximation.

Network data: Different types of real network data is taken to verify the acceptablity

of degradation over the networks and is shown in table 3.2.

Results: Compared the community structure obtained by algorithms, equipped with

approximate nearest neighbor instead of exact measures of node nearness, in terms of

modularity and shown in table 3.2.

Observations: Observed that both the approximation schemes are very good for com-

munity detection and slightly degrade the results under ranges of approximations. 3.2

3.6.5 Exp3: Experiment to evaluate proposed algorithm

In this experiment we have compared several algorithms for network community detection

with our proposed algorithm developed using the nearest neighbor search in complex

network, which is discussed in sec.3.5. Experiment is performed on a large list of network

data sets 2.2. Two version of the experiment is developed for comparison purpose based on

modularity and time taken. The results are shown in the tables 3.3 and 3.4 respectively.

Experimental steps are as follows:

Design of experiment: In this experiment we have compared three groups of algorithms

for network community detection with one based on nearest neighbor search, described

above. Two version of the experiment is developed for comparison purpose based on mod-

ularity and time taken in seconds.

Best of literature: Regarding the three groups of algorithms; first group contain al-

gorithms based on semi-definite programming and the second group contain algorithms
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based on graph traversal approaches. For each group, we have taken the best value of

modularity in table 3.3 among all the algorithms in the groups. All the algorithms con-

sidered in this experiment are detailed in sec. 3.5.

Other distance based methods: Three different methods of network community de-

tection are also considered for our comparison which indirectly use the influence between

the nodes in their algorithms. These methods are walktrap(WT), label propagation(LP)

and geometric brownian motion(GBM) and already discussed in section 3.5 along with

their references and complexities.

Proposed methods: Three version of proposed algorithm is compared with other algo-

rithms, the proposed algorithm based on exact nearest neighbor, approximated nearest

neighbor computed using metric tree and approximate nearest neighbor computed using

locality sensitive hashing.

Network data: A long list of real network data is taken for evaluation of modularity

and timedescribed in table 3.2.

Efficiency and time: Compared the community structure obtained in terms of mod-

ularity and time (seconds) taken by the algorithms, shown in the tables 3.3 and 3.4

respectively.

6) The results obtained with our approach are very competitive with most of the well

known algorithms in the literature and this is justified over the large collection of datasets.

On the other hand, it can be observed that time (second) taken (table 3.4) by our algo-

rithm is quite less compared to other methods and justify the theoretical findings.
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0.1458
0.1450
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0.0288
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0.0045
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0.0171
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0.3908

0.3896
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0.3908
0.3890

0.3866
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0.1768
0.2649

0.2615
0.2336
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0.1999

0.2650
0.2637
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0.0009

0.0522
0.0503

0.0343
0.0301

0.0146
0.0523

0.0523
0.0523

R
oadN

et-C
A

0.0212
0.1690

0.1633
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0.1053
0.0603

0.1692
0.1680
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0.0266

0.2093
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0.2090
0.208
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Table 3.4: Comparison of our approaches with other best methods in terms of time

Name Spectral SDP GT WT LP GBM NN-search M-tree LSH
Facebook 6 7 11 13 7 8 6 4 1
Gplus 797 832 1342 1512 877 948 661 390 115
Twitter 462 485 786 886 509 554 398 235 68
Epinions1 411 419 667 749 452 475 292 174 56
LiveJournal1 1297 1332 2129 2394 1427 1514 969 576 179
Pokec 1281 1305 2075 2330 1410 1480 901 538 173
Slashdot0811 552 561 891 1000 608 636 382 228 74
Slashdot0922 561 570 906 1017 618 647 389 232 75
Friendster 2061 2105 3352 3766 2269 2390 1477 880 280
Orkut 1497 1529 2435 2736 1647 1735 1074 640 203
Youtube 829 844 1340 1505 913 957 578 345 111
DBLP 381 403 655 739 420 461 341 201 57
Arxiv-AstroPh 217 230 375 423 239 263 197 116 33
web-Stanford 498 525 852 960 549 600 437 258 74
Amazon0601 653 678 1089 1225 719 771 520 308 93
P2P-Gnutella31 182 184 293 328 200 209 124 74 24
RoadNet-CA 758 785 1261 1419 834 894 599 355 107
Wiki-Vote 54 55 88 99 59 63 39 23 7
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3.6.6 Results analysis and achievements

In this subsection, we have described the analysis of the results obtained in our exper-

iments shown. The results obtained in the first experiment justify that the proposed

distance is more useful for complex network to extract the community structure com-

pared to other measures of similarity. The results obtained in the second experiment

verify that the approximate distance is also useful for network community detection es-

pecially for large data where time is a major concern. The results obtained in the third

experiment justify that the proposed algorithm for community detection is very efficient

compared to other existing methods in terms of modularity and time.

3.7 Conclusions

In this chapter, we have studied the interesting problem of the nearest neighbor within

the nodes of a complex networks and applied this for community detection. We have

used geometric framework for network community detection instead of traditional graph

theoretic approach or spectral methods. Processing the nearest neighbor search in complex

networks cannot be achieved straightforward; we presented the transformation of graph

to metric space and efficient computation of the nearest neighbor therein using metric

tree and locality sensitive hashing. To validate the performance of proposed nearest

neighbor search designed for complex networks we applied our approaches on community

detection problem. Several experiments conducted in this regard and we found community

detection using nearest neighbor search is very efficient and time saving for large networks

due to good approximations. The results obtained on several network data sets prove the

usefulness of the proposed method and provide motivation for further application of other
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Chapter 4

Low rank approximations for

community detection in large

complex networks

In this chapter we have proposed an algorithm to reduce the dimensionality induced

matrices of large complex network via Nystrom sampling and random sketches, such that

after applying partitioning algorithm on reduced network we get almost same results of

community detection as the original network. In this work we will explore the two low rank

approximation methods, Nystrom sampling and random sketching and they are described

below. Low-rank methods are very fast to compute communities from massive networks

by preserving the approximated results with moderate lower bound For evaluation of the

proposed approaches on complex network we applied it in community detection problem.

The results obtained using our methods are very competitive with most of the well known

algorithms exists in the literature and this is verified on collection of real networks. On

the other-hand, it can be observed that time taken by our algorithm is quite less compared

73



to popular methods.

4.1 Introduction

Low rank approximation is a fundamental result of linear algebra. For any matrix A

and positive integer k, low rank approximation method find a matrix Ak of rank k by

minimizing ||A− Ak||. The existence of such an optimal rank k approximation, denoted

by Ak , and its efficient computation, follow from the Singular Value Decomposition of A,

a manner of writing A as a sum of decreasingly significant rank one matrices. Long in the

purview of numerical analysts, low rank approximations have recently gained broad pop-

ularity in computer science. For example, in areas such as computer vision, information

retrieval, and machine learning they are used as a basic tool for extracting correlations

and removing noise from matrix-structured data. However, applications of this technique

to massive matrices, such as those arising from web corpora and extended video sequences,

quickly run against prac- tical computational limits. Specifically, orthogonal iteration and

Lanczos iteration, the two most common algorithms for computing optimal low rank ap-

proximations, operate through repeated matrix-vector multiplication, thereby requiring

superlinear time and large working sets.

In this chapter, we will study community detection of large complex network in the

framework of loow rank approximation. Detecting clusters or communities in real-world

graphs such as large social networks, web graphs, and biological networks is a problem

of considerable practical interest that has received a great deal of attention [56, 66]. A

network community (also sometimes referred to as a module or cluster) is typically thought

of as a group of nodes with more and/or better interactions amongst its members than

between its members and the remainder of the network [29]. The objective is typically
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NP-hard to optimize exactly [54, 74], one employs heuristics [18, 19] or approximation

algorithms [74] to find sets of nodes that approximately optimize the objective function

and that can be understood or interpreted as real communities. Community detection

in real networks aims to capture the structural organization of the network using the

connectivity information as input [54, 74]. Most of the methods developed for network

community detection are based on a two-step approach. The first step is specifying

a quality measure (evaluation measure, objective function) that quantifies the desired

properties of communities and the second step is applying an algorithmic techniques to

assign the nodes of graph into communities by optimizing the objective function.

For all these methods, finding the exact solution requires optimizing a function of

the adjacency matrix A over (K,n) dimensional label matrix, which is an exponential

optimization problem. In another line of work, spectral decompositions have been used in

various ways to obtain approximate solutions that are much faster to compute. One such

algorithm is spectral clustering, a generic clustering method which became popular for

community detection. In spectral clustering, typically one first computes the normalized

Laplacian matrix L = D−1/2AD−1/2 , where D is a diagonal matrix with diagonal entries

being node degrees di. Then the K eigenvectors of the Laplacian corresponding to the

first K largest eigenvalues are computed, and their rows clustered using K-means into

K clusters corresponding to different labels. It has been shown that spectral clustering

performs better with further regularization, namely if a small constant is added either to

D or to A.

In this work, we have tried to develop the notion of approximate distance among the

nodes using some new matrices derived from adjacency matrix and degree matrix of the

graph. Let A be the adjacency matrix and D the degree matrix of the graph G = (V,E).

The Laplacian L = D − A. We have defined two diagonal matrix of same size D(λ) and

75



D(λx) where λ is a parameter determine from the given graph and can be optimized from

the optimization criteria of the problem under consideration. In D(λ) a fixed optimally

determine value is used in the diagonal entries of the matrix D and in D(λx) a variable

value also optimally determine is used in the diagonal entries of the matrix D.

A low rank approximation is performed on the matrices L1 and L2, where L1 =

D(λ) + A and L2 = D(λx) + A respectively using nystrom sampling and random sketch-

ing. The spherical similarity among the rows and determine by applying a concave func-

tion φ over the standard notions of similarities like, Pearson coefficient(σPC), Spacerman

coefficient(σSC) or Cosine similarity(σCS). φ(σ)() must be chosen using the chord condi-

tion to obtain a metric.

The rest of this paper is organized as follows: Section 4.3 described the problem of

computing low rank distance between the nodes of the large complex network. In Section

4.3.4, the algorithm of approximate network community detection is formulated and the

initialization procedures, termination criteria, convergence are discussed in detail. The

results of comparison between community detection algorithms are illustrated in Section

??. The computational aspects of the proposed framework are also discussed in this

section.

4.2 Low rank approximation of matrices

Traditional methods in information retrieval and machine learning deal with data in

vectorized representation. A collection of data is then stored in a single matrix A ∈ Rn×m

, where each column of A corresponds to a vector in the n dimensional space. A major

benefit of this vector space model is that the algebraic structure of the vector space can

be exploited. However, crucial information intrinsic in the data should not be removed
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under this simplification. A widely used method for this purpose is to approximate the

single data matrix, A, with a matrix of lower rank. Mathematically, the optimal rank-k

approximation of a matrix A, under the Frobenius norm can be formulated as follows:

Find a matrix B ∈ Rn×m with rank(B) = k., such that ||A−B|| is minimum. The matrix

B can be readily obtained by computing the Singular Value Decomposition (SVD) of A, as

stated by Golub and Van Loan, 1996. For any approximation M of A, we call ||A−M ||F

the reconstruction error of the approximation.

Computing a low-rank approximation using the SVD is appealing from a theoretical

point of view, since it provides the closest matrix with a given rank. For many applications

where the data matrix is large, calculating the SVD can be impractical since it requires

a large number of operations and it has large memory requirements. Recent research has

thus focused on algorithms that are suboptimal, in the sense that the low-rank matrices

that they calculate are not the closest possible to the original matrix. The advantage of

using such algorithms is that they are faster than the SVD-based algorithm and need less

memory, making them much more suitable for large scale applications.

Low-rank approximations have found numerous applications in various fields. Ex-

amples include Latent Semantic Indexing, Support Vector Machine training, Computer

Vision, and Web Search models. In this applications, the data consist of a matrix of pair-

wise distance between the nodes of a complex network and approximated by a low-rank

matrix for fast community detection using distance based partitioning algorithm. Calcu-

lating such a low-rank approximation can reveal the underlying structure of the data and

allow for fast computations.
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4.3 Network community detection using low rank ap-

proximation

In this section we have proposed an algorithm to reduce the dimensionality via Nystrom

sampling and random sketches, such that after applying partitioning algorithm on reduced

network we get almost same results as with the original network.

In this work we will explore the two low rank approximation methods, Nystrom sam-

pling and random sketching and they are described below. Low-rank methods are very fast

to compute communities from massive networks by preserving the approximated results

with moderate lower bound.

We used the approximate distance between nodes for network community detection

with the help of distance based partitioning algorithm.

4.3.1 Distance matrix of complex network

In this section we have demonstrated the algorithm to convert the nodes of the graph

to the points of a metric space preserving the community structure of the graph. The

algorithm depends on the sub modules 1) construction of Lx (L1 or L2) 2) approximating

Lx by low rank methods, and 3) obtaining a structure preserving distance function. The

algorithm works as picking pair of nodes from Lx and and computing distance defined in

the second module.

Lx construction

The L1 is defined as L1 = D(λ)+A, where A is the adjacency matrix of the given network

and D(λ) is a diagonal matrix of same size with diagonal values equal to a non negative
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constant λ.

The L2 is defined as L2 = D(λx) + A, where A is the adjacency matrix of the given

network and D(λx) is a diagonal matrix of same size with diagonal values determine by

a non negative function λx of the node x.

The choice of λ and λx plays a crucial role in combination with the function chosen

in the second module for determination of a suitable metric and is discussed later part of

this subsection.

Function selection

The function selection module determine the metric for pair of nodes. The function selec-

tor φ converts a similarity function (Pearson coefficient(σPC), Spacerman coefficient(σSC)

or Cosine similarity(σCS)) into a distance matrix. In general the similarity function sat-

isfies the positivity and similarity condition of metric but not triangle inequality.

Choice of λ and φ(σ)()

The choices in the above sub modules play a crucial role in the graph to metric trans-

formation algorithm to be used for community detection. The complex network is char-

acterized by small average diameter and high clustering coefficient. Several studies on

network structure analysis reveal that there are hub nodes and local nodes characterizing

the interesting structure of the complex network.

4.3.2 Nystrom approximation

The Nystrom methods approximate any SPSD matrix in terms of a subset of its columns.

Specifically, given an m×m SPSD matrix A, they require sampling c(< m) columns of A

79



to construct an m× c matrix C. We always assume that C consists of the first c columns

of A without loss of generality. We partition A and C as

A =

 W AT21

A21 A22

 and C =

 W

A21



where W and A21 are of size c× c and m− c× c respectively [43]

Definition Nystrom ApproximationThe standard Nystrom approximation of A is

Anysc =

 W AT21

A21 A21W AT21



Since the running time complexity of SVD on W is in O(kl2) and matrix multiplication

with C takes O(kln), the total complexity of the Nystrom approximation computation is

in O(kln) [2, 25].

4.3.3 Random Sketching

In random sketch, firstly relation is modelled as defining a vector or matrix, and then

the sketch is formed by multiplying the data by a vector. Figure 1 is demonstrating it in

which a fixed sketch matrix multiplies the data to generate the sketch (vector) [14]. Sketch

vector forms the synopsis of the entire data, which is much smaller than the original data.

Data mining algorithms can now be applied on the sketch vector.

Definition Johnson-Lindenstrauss Lemma 1 For any set of n points S ∈ Rd, there is a

(1 + ε)-distortion embedding of X into Rk(k < d), for k = O( log(n)
ε2

)
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Definition Johnson-Lindenstrauss Lemma 2 There is a distribution over random linear

mappings A : Rd → Rk, (k < d) such that for any vector x we have ||Ax|| = (1 ± ε)||x||

with probability 1− e−Ckε2

The Johnson Linderstrauss theorems [40] for sketches ensures the preservation of dis-

tance during lower dimensional approximation and provide minimum lower bound of

approximation.

In this algorithm we have used random sketch to reduce the dimensionality of the

dataset. Step 1 counts the number of attributes in the dataset and in step 2 sketch

matrix is generated which have rows equal to the number attributed in the dataset.

Sketch matrix have 3 sets of values (1) between 0 and 1 (2) 0 and 1 (3)between maximum

and minimum value of the dataset. Step 3 multiplies each row of the dataset with the

sketch matrix in order to generate sketch vector. Once the Sketch vector is generated

K-Means, Hierarchical clustering and K-Nearest Neighbour algorithms are applied on the

Sketch Matrix.

4.3.4 Approximate community detection

In this section we have described k-central algorithm for the purpose of network commu-

nity detection by using the nearest neighbor search inside complex network. We have also

studied and analyzed the advantages of the k-central method over the standard algorithm

for network community detection. Scalability is a major challenge faced by all the metric

based algorithms, as they require computation of the full distance matrix whose size is

quadratic in the number of data points. To the best of our knowledge, only a few attempts

have been made to scale community detection algorithms to large data sets.

81



Approximate k-central algorithm

The community detection methods based on partitioning of graph is possible using ap-

proximate nearest neighbor search, because the nodes of the graph are converted into the

points of a metric space. A pairwise distance matrix is computed between the nodes of the

network using the proposed metric. The low rank approximation is applied on the matrix

of pairwise distance. Two type of approximations are considered hare, Nystrom sampling

and random sketching. A modified k center algorithm is used to detect communities of the

network to use the approximate distance between nodes and to use approximate center of

the partition. This algorithm for network community detection converges automatically

and does not compute the value of objective function in iterations therefore reduce the

computation compared to standard methods. The approximate k-central algorithm for

community detection and its details analysis is given below.

Algorithm 5 approximate k-central algorithm
Require: M = (V, d)
Ensure: T = {C1, C2, . . . , Ck} with minimum cost(T )

1: Initialize centers z1, . . . , zk ∈ Rn and clusters T = {C1, C2, . . . , Ck}
2: repeat
3: for i = 1 to k do
4: for j = 1 to k do
5: Ci ← {x ∈ V s.t. |zi − x| ≤ |zj − x|}
6: end for
7: end for
8: for j = 1 to k do
9: zi ← Central(Ci) ; where Central(Ci) returns the node with minimum total

distance in the class of consideration.
10: end for
11: until |cost(Tt)− cost(Tt+1)| = 0
12: return T = {C1, C2, . . . , Ck}
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Figure 4.1: Block diagram of approximate k-central algorithm using om lowrank approx-
imation with Nystrom sampling or random sketching
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4.4 Experiments and results

We performed many of experiments to test the performance of low rank approximation

based community detection method for complex network over several real networks 2.2.

Objective of the experiment is to verify behavior of the algorithm and the time required to

compute the algorithm. One of the major goals of the experiment is to verify the behavior

of the algorithm with respect to the performance of other popular methods exists in the

literature with respect to the modularity.

4.4.1 Experimental designs

Experiment for comparison: In this experiment we have compared several algorithms

for network community detection with our proposed algorithm developed using nearest

neighbor search in complex network. Experiment is performed on a large list of network

data sets. Two version of the experiment is developed for comparison purpose based on

modularity and time. The results are shown in the table 4.1. In the first experiment we

have evaluated our algorithm for performance on the network collection 2.2 in terms of

modularity. In the second experiment we have evaluated the time taken by our algorithm

on different size of networks and is shown in the table 4.2.

4.4.2 Computational results

In this subsection we have compared two groups of algorithms for network community

detection with our proposed algorithm using nearest neighbor search. Experiment is

performed on a large list of network data sets. Regarding the two groups of algorithms;

first group contain algorithms based on semi-definite programming and the second group
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contain algorithms based on graph traversal approaches. For each group, we have taken

the best value of modularity in table 4.1 among all the algorithms in the groups. The

results obtained with our approach are very competitive with most of the well known

algorithms in the literature and this is justified over the large collection of datasets. On

the other hand, it can be observed that time taken (table 4.2) by our algorithm is very

less compared to other methods and justify the theoretical findings.

Table 4.1: Comparison of our approaches with other best methods in terms of modularity

Name Spectral SDP GT k-center Nystrom R-sketches
Facebook 0.4487 0.5464 0.5434 0.5472 0.5450 0.5421
Gplus 0.2573 0.4047 0.3998 0.4056 0.4041 0.4021
Twitter 0.3261 0.3706 0.3691 0.3709 0.3692 0.3669
Epinions1 0.0280 0.1440 0.1401 0.1447 0.1443 0.1437
LiveJournal1 0.0791 0.1455 0.1432 0.1458 0.1450 0.1439
Pokec 0.0129 0.0294 0.0288 0.0295 0.0292 0.0287
Slashdot0811 0.0038 0.0130 0.0127 0.0131 0.0129 0.0127
Slashdot0922 0.0045 0.0176 0.0171 0.0176 0.0174 0.0172
Friendster 0.0275 0.0536 0.0526 0.0536 0.0531 0.0525
Orkut 0.0294 0.0689 0.0675 0.0690 0.0685 0.0678
Youtube 0.0096 0.0934 0.0903 0.0936 0.0934 0.0930
DBLP 0.4011 0.4214 0.4207 0.4215 0.4196 0.4171
Arxiv-AstroPh 0.4174 0.5079 0.5045 0.5081 0.5061 0.5035
web-Stanford 0.3595 0.3908 0.3896 0.3908 0.3890 0.3866
Amazon0601 0.1768 0.2649 0.2615 0.2650 0.2637 0.2621
P2P-Gnutella31 0.0009 0.0522 0.0503 0.0523 0.0523 0.0523
RoadNet-CA 0.0212 0.1690 0.1633 0.1692 0.1680 0.1664
Wiki-Vote 0.0266 0.2093 0.2023 0.2095 0.2090 0.2083

4.4.3 Results analysis and achievements

In this subsection, we have described the analysis of the results obtained in our experi-

ments shown above and also highlighted the achievements from the results. It is clearly
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Table 4.2: Comparison of our approaches with other best methods in terms of time

Name Spectral SDP GT k-center Nystrom R-sketches
Facebook 6 7 11 6 4 1
Gplus 797 832 1342 661 390 115
Twitter 462 485 786 398 235 68
Epinions1 411 419 667 292 174 56
LiveJournal1 1297 1332 2129 969 576 179
Pokec 1281 1305 2075 901 538 173
Slashdot0811 552 561 891 382 228 74
Slashdot0922 561 570 906 389 232 75
Friendster 2061 2105 3352 1477 880 280
Orkut 1497 1529 2435 1074 640 203
Youtube 829 844 1340 578 345 111
DBLP 381 403 655 341 201 57
Arxiv-AstroPh 217 230 375 197 116 33
web-Stanford 498 525 852 437 258 74
Amazon0601 653 678 1089 520 308 93
P2P-Gnutella31 182 184 293 124 74 24
RoadNet-CA 758 785 1261 599 355 107
Wiki-Vote 54 55 88 39 23 7

evident from the results shown in the tables 4.1 and 4.2 that, proposed nearest neigh-

bor based method for network community detection using low rank approximation provide

very good competitive performance with respect to modularity and time taken in seconds.

4.5 Conclusions

In this chapter, we have studied the interesting problem of approximate community detec-

tion in large complex networks. We presented the transformation of network to distance

matrix and efficient computation of approximate nearest neighbor therein using low rank

approximation. Our techniques can be applied for quick analysis of very large complex

network. To validate the performance of proposed low rank approximate method for com-
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plex networks we applied our approaches on community detection problem. The results

obtained on several network data sets prove the usefulness of the proposed method and

provide motivation for further application of other structural analysis of complex network.

ïż£
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Chapter 5

Optimal consensus-community

detection for complex network

In this chapter, we present a comparative analysis of communities detected by several

algorithms to redefine new community structure using rough set theoretic framework.

Our approach enables the assessement of the structural discernibility among the output

of multiple community detection algorithms and between the output of algorithms and

communities that arise in practice. We have created an information system of communities

which are partitions on the set of nodes in a network. The outputs of different community

detection algorithms constitutes super partition of the set of nodes. The tasks of consensus

community detection is to determine a marged optimal partition, which provides minimum

discernibility with others. To demostrate this concept, we proposed an algorithm for

marging super partition until it constitutes desired number of communities. To asses

the quality of the extracted community, we further extended the information system of

communities into a decision system by considering the newly extracted communities as

the decision attribute and computed the support and confidence of each partition of the
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decision system.

Applied to a diverse collection of large scale network datasets, the analysis reveals

that (1) the different detection algorithms extract different structures with respective

constrained; (2) the structure of communities that arise in our method is closest to that

of communities of other algorithms in terms of mitual indecernibility; and (3) consensus

communities extracted from heterogeneous community detection algorithms determine

much better meta community of the same network in terms of modularity.

5.1 Introduction

Community structure captures the tendency of entities in a network to group together in

meaningful subsets whose members have a distinctive relationship to one another. The

identification of these subsets allows for the analysis of networks at different levels of

detail, which is instrumental in illuminating the structure underlying large scale systems.

Despite playing a fundamental role in the structure and function of networks, commu-

nity structure has proved to be very difficult to define, quantify, and extract. In addition

to challenges related to computational tractability, three major factors account for the

intricacies of community extraction. First, the application domain includes a wide variety

of networks of fundamentally different natures. Each of these networks possesses mean-

ingful communities that may possess their own distinctive structural profiles. Second,

the literature offers a multitude of disparate community detection algorithms. Due to

differences in concept and design, the output of these procedures exhibits high structural

variability across the collection. Last, there is no established consensus on the question of

what properties distinguish subgraphs that are communities from those that are not com-

munities. In this chapter, we present a comparative analysis of communities detected by
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several algorithms to redefine new community structure using rough set theoretic frame-

work. Our approach enables the assessement of the structural discernibility among the

output of multiple community detection algorithms and between the output of algorithms

and communities that arise in practice. We have created an information system of com-

munities which are partitions on the set of nodes in a network. The outputs of different

community detection algorithms constitutes super partition of the set of nodes. The tasks

of consensus community detection is to determine a marged optimal partition, which pro-

vides minimum discernibility with others. To demostrate this concept, we proposed an

algorithm for marging super partition until it constitutes desired number of communities.

To asses the quality of the extracted community, we further extended the information

system of communities into a decision system by considering the newly extracted commu-

nities as the decision attribute and computed the support and confidence of each partition

of the decision system. The combination of communities determined by different algo-

rithms are analyzed to decide minimal reduct. Now from the minimal reduct obtained

in the previous step we compute optimal consensus communities nusing rough set based

indercinibility measure. In order to realize the specified objectives, the paper introduces

rough set preliminaries in Section 5.2.1. Section 5.3 presents algorethmic foundation of

the proposed method to extract optimal communities in rough set paradigm. Section 5.4

covers theoretical results regarding the quality and optimality of the extracted consen-

sus communities. Finally, the performance and ecperimental results of the algorithm are

reported in Section 5.5.
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5.2 Rough Set Theory

5.2.1 Introduction to Rough Set Theory

Rough set theory was developed by Zdzislaw Pawlak in the early 1980’s [61]. It deals

with the classificatory analysis of data tables. The data can be acquired from measure-

ments or from human experts. The main goal of the rough set analysis is to synthesize

approximation of concepts from the acquired data. We initially describe how synthesis

takes place in an information system. In some instances, the aim may be to gain insight

into the problem at hand by analyzing the constructed model, i.e., the structure of the

model is itself of interest. In other applications, the transparent and explainable features

of the model may be of secondary importance and the main objective is to construct a

classifier that classifies unseen objects well. An important feature of rough sets is that

the theory is followed by practical implementations of toolkits that support interactive

model development [77].

Information systems and indiscernibility

A complete information system expresses all the knowledge available about the objects

being studied. More formally, an information system is a pair, S = (U,A) , where U is

a non-empty finite set of objects called the universe and A = {a1, a2, ...., aj} is a non-

empty finite set of attributes on U . With every attribute a ∈ A we associate a set

Va such that a : U → Va. The set Va is called the value set of a [61, 62]. This value

set equates to the range of values associated with a specific variable. The data set U

contained in the information system is used as the basis for the development of subsets

of it that are “coarser” than U . As with any data analysis technique, details are lost,
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but the removal of details are controlled to uncover the underlying characteristics of

the data. The technique works by, lowering the degree of precision in data, based on a

rigorous mathematical theory. A core concept of rough sets theory is that of equivalence

between objects (called indiscernibility). Objects in the information system about which

we have the same knowledge form an equivalence relation. If B ⊂ A there is an associated

equivalence relation, INDA(B), called the B-indiscernibility relation. It is defined as:

INDA(B) = {(x, x́) ∈ U2 | ∀a ∈ B, a(x) = a(x́)}. If(x, x́) ∈ INDA(B), then the objects

x and x́ are indiscernible from each other when considering the subset B of attributes.

Equivalence relations lead to the universe being divided into partitions, which can then

be used to build new subsets of the universe [63,77].

Lower and upper approximations

Let S = (U,A) be an information system, and let B ⊂ A and X ⊂ U . We can describe the

subset X using only the information contained in the attribute values from the subset B

by constructing two subsets, referred to as the B-lower and B-upper approximations of X,

and denoted as B∗(X) and B∗(X) respectively, where: B∗(X) = {x|[x]B ∈ X}, where [x]B

is an equivalence class corresponding to B and B∗(X) = {x|[x]B∩X 6= φ}, where [x]B is an

equivalence class corresponding to B. The lower approximation contains objects that are

definitely in the subset X and the upper approximation contains objects that may or may

not be in X. A third subset is also useful in analysis, the boundary region, which is the

difference between the upper and lower approximations. This definition of a rough (ap-

proximate) set in terms of two other sets is contributed by Pawlak [61–63]. Any partition

P of universe U defines an indiscernibility relation IND(P ) : xIND(P )y iff (x, y ∈ X)

for some X ∈ P . Let P = {P1, P2, ....., Pn}, Q = {Q1, Q2, ...., Qm} are partitions of U . We

define the P -lower approximation of Q and the P -upper approximation of Q, respectively
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by P∗Q = {P∗Q1, P∗Q2, ...., P∗Qm} where P∗Qi = {x ∈ U : x ∈ Pj ⊆ Qi for some Pj ∈ P}

for i = 1, 2, ...,m P ∗Q = {P ∗Q1, P
∗Q2, ...., P

∗Qm} where P ∗Qi = {x ∈ U : x ∈ Pj and

Pj ∩Qi 6= φ for some Pj ∈ P} for i = 1, 2, ...,m.

Reduct and core

In the previous section we investigated one natural dimension of reducing data which

is to identify equivalence classes, i.e., objects that are indiscernible using the available

attributes. Savings are to be made since only one element of the equivalence class is

needed to represent the entire class. The other dimension in reduction is to keep only those

attributes that preserve the indiscernibility relation and, consequently, set approximation.

The rejected attributes are redundant since their removal cannot worsen the partition.

There is usually several such subsets of attributes and those which are minimal are called

reducts. Computing equivalence classes is straightforward. Finding a minimal reduct

(i.e., reduct with a minimal cardinality of attributes among all reducts) is NP-hard. One

can also show that the number of reducts of an information system with m attributes may

be equal to m choose floor of m/2. This means that computing reducts it is a non-trivial

task that cannot be solved by a simple minded increase of computational resources. It

is, in fact, one of the bottlenecks of the rough set methodology. Fortunately, there exist

good heuristics (e.g., [GENETIC REDUCT]) based on genetic algorithms that compute

sufficiently many reducts in often acceptable time, unless the number of attributes is very

high.

Decision rules

To date, most of the published literature in rough sets has concentrated on a specific

type of information system, referred to as a decision system. In a decision system, at
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least one of the attributes is a decision attribute. This decision attribute partitions the

information system into concepts. The rule generation problem is expressed in rough

set theory as finding mappings from the partitions induced by the equivalence relations

in the condition attributes to the partitions induced by the equivalence relations in the

decision attribute(s). These mappings are usually expressed in terms of decision rules.

More formally we can associate a formal language L(S) with an information system S

= ( U, A ). Expressions in this language are logical formulas built up from attributes

and attribute-value pairs and standard logical connectives (Pawlak 1999). A decision

rule in L is an expression P → Q (read if P then Q ), where P and Q are respectively

the conditions and decisions of the rule. Each rule can be assigned a confidence factor,

which is the number of objects in the attribute subset that also satisfy the decision subset

(concept), divided by the total number of objects in the attribute subset.

5.3 Optimal community detection using rough set

Our algorithm to extract consensus community is designed to work on the output of

several community detection algorithms. Each community detection algorithm determine

a partition on the set of nodes of the network. Collection of different partition constitutes

a information system for the nodes of the network. Communities determined by the

individual algorithms are condition attributes of the information system. Our algorithm

analyse the information system to extract a suitable community structure of the network

with better quality then its constituents. Rough set based attribute reduction is performed

to determine core and minimal reduct. The attributes corresponding to minimal reduct

are then taken to extract the optimal communities.
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5.3.1 Description of method

Meta data generation

The outputs of the several community detection algorithms are required to create infor-

mation system for rough set theoretic analysis. The information system is created by meta

data because they are generated as output of the algorithms on input network. This meta

data represented in the form of information system is the input of rough set data analysis

task. Unlike the complex network, meta data has a simple brief format, where commu-

nities determined by the respective algorithm contribute the existence of an attribute,

values of this attribute can be a tag associated with a particular community determined

by the algorithm. So the number of attributes is the same as number of algorithms and

the number of objects is equal to the number of nodes in the actual network.

Analysis of meta data

Rough set based attribute reduction techniques eliminate superfluous attributes and create

a minimal sufficient subset of attributes. Such minimal sufficient subset of attributes,

called a reduct, is an essential part which discern all examples discernible by the original

table and cannot be reduced any more. Given set of algorithms may have more than

one reduced set, all of which perform same as original. Once the reduct is computed

redundant for the further analysis are removed from the information system.

Extracting communities from meta data

In this step rough set theoretic analysis to extract meta community is described. The

outputs of different community detection algorithms constitutes super partition of the set

of nodes. The tasks of consensus community detection is to determine a marged optimal
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partition, which provides minimum discernibility with others. To demostrate this concept,

we proposed an algorithm for marging super partition until it constitutes desired number

of communities. The algorithms are given in 6 and 7.

Algorithm 6 Optimal community detection using rough discernibility
Require: G = (V,E), Π1,Π2,Π3,Π4, . . . ,Πk

Ensure: Πo - the optimal community
1: Let Πs be the super-partition of Π1,Π2,Π3,Π4, . . . ,Πk

2: Find Πx ⊂ Πs s.t. minki=1{|Πi|} ≤ |Πx| ≤ maxki=1{|Πi|}
3: Πo = Πx with minimum discernibility
4: return Πo

5.3.2 Consensus community determination

In the notion of rough set, let U be the set of all nodes in the network and P ∗ =

{C1, C2, ...., Ck} where Ci 6= φ for i = 1, 2, 3..., k, ∪ki=1Ci = U and Ci ∩ Cj = φ for

i 6= j and i, j = 1, 2, 3..., k be the extracted consensus communities of U which determines

the categories of U . Output of a community detection algorithm determines a new par-

tition on U . In rough set terminology each class of the given partition is a given concept

about node set and the output of algorithms determines new concepts about the same

data set. Now extracted concepts can be expressed approximately by upper approxima-

tion and lower approximation constructed by the generated concepts.

Example: Let S = {1, 2, 3, ........., 100} be a set with an optimal partition deter-

mined. P = {P01 = {1, 2, ..., 20},P02 = {21, 22, ..., 40}, P03 = {41, 42, ......, 60}, P04 =

{61, 62, ....., 80}, P05 = {81, 82, ....., 100}}

Let algorithm a1 generate a partition P1 = {P11 = {1, 2, ..., 10}, P12 = {21, 22, ..., 40},

P13 = {41, 42, ......, 60}, P14 = {61, 62, ....., 80}, P15 = {11, 12,

..., 20, 81, 82, ....., 100}}, algorithm a2 generate a partition P2 = {P21 = {1, 2, ..., 20}, P22 =
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Table 5.1: Expressing P by lower approximation and upper approximation of other par-
titions

P01 P02 P03 P04 P05
P1∗ P11 P12 P13 P14 φ
P ∗1 P11 ∪ P15 P12 P13 P14 P15
P2∗ P21 P22 P23 P24 φ
P ∗2 P21 P22 P23 P24 ∪ P25 P25
P3∗ P31 P32 P33 P34 φ
P ∗3 P31 ∪ P35 P32 ∪ P35 P33 ∪ P35 P34 ∪ P35 P35

(P1 ∩ P2)∗ P21 P12 P13 P14 P15 ∩ P25
(P1 ∩ P2)∗ P21 P12 P13 P14 P15 ∩ P25
(P1 ∩ P3)∗ P31 P12 P13 P14 φ
(P1 ∩ P3)∗ P11 ∪ P15 P12 P13 P14 P15 ∩ P35
(P2 ∩ P3)∗ P21 P22 P23 P34 φ
(P2 ∩ P3)∗ P21 P22 P23 P24 ∪ P25 P25 ∩ P35

{21, 22, ..., 40}, P23 = {41, 42, ......, 60}, P24 = {61, 62, ....., 70}, P25 = {71, 72, ..., 80, 81, 82, ....., 100}},

and algorithm a3 generate a partition P3 = {P31 = {1, 2, ..., 19}, P32 = {21, 22, ..., 39},

P33 = {41, 42, ......, 59}, P34 = {61, 62, ....., 79}, P35 = {20, 40, 60,80, 81, 82, ....., 100}}.

Error rates of algorithms a1, a2 and a3 are 10%, 10% and 5% respectively. The concept

of P has been represented in terms of lower approximation and upper approximation by

other partitions, P1, P2, P3, P1 ∪ P2, P1 ∪ P3 and P2 ∪ P3 in Table 5.1.

Since combination of P1 and P2 can express the given partition accurately, one does

not need to use any other partition with P1 and P2. If a case such as in the example is

occurred, i.e., each set of P is defined by some partition Pi, where i = 1, 2, 3 then one can

use this fact in consensus community determination.
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Algorithm 7 Consensus community determination function
Require: Πs be the super-partition of Π1,Π2,Π3,Π4, . . . ,Πk

Ensure: Πo = minki=1{|Πi|} ≤ |Πx| ≤ maxki=1{|Πi|}, with minimum discernibility
1: Let Πs be the super-partition of Π1,Π2,Π3,Π4, . . . ,Πk

2: Select pair of partition with minimum indistinguishability and marge them.
3: Replace both the partitions with their combined one.
4: Continue till desired number of partition is reached.
5: return Optimal partition

5.3.3 Significance of input algorithms

One of the first ideas is to consider as relevant features those in the core of an informa-

tion system, i.e., features that belong to the intersection of all reducts of the information

system. It is also possible to consider as relevant features those from some approximate

reducts of sufficiently high quality. As it follows from the considerations concerning reduc-

tion of attributes, they can be not equally important and some of them can be eliminated

from an information table without loosing information contained in the table. The idea

of attribute reduction can be generalized by an introduction of the concept of significance

of attributes, which enables an evaluation of attributes not only by a two-valued scale,

dispensable - indispensable, but by associating with an attribute a real number from the

[0,1] closed interval; this number expresses the importance of the attribute in the infor-

mation table. Significance of an attribute a in an information system A = (U,C) can be

evaluated by measuring the effect of removing of an attribute a ∈ C from the attribute set

C. The number γ(ai, aj) expresses the degree of dependency between attributes ai and aj,

or accuracy of approximation of U/ai by aj. The significance of an attribute ai ∈ C with

respect to aj is define as the normalized difference between γ(C, aj) and γ(C \ {ai}, aj).
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Figure 5.1: Block diagram of meta community detection algorithm using rough set theory
and optimization
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σ(C,aj)(ai) = (γ(C, aj)− γ(C \ {ai}, aj))
γ(C, aj)

Thus the coefficient σ(a) can be understood as the error of representation which occurs

when attribute a is dropped.

5.3.4 Relation between discernibility and diversity of input

communities

The measure of the diversity of two partition used here is dependency between attribute

at meta decision table. The smaller the dependency, the greater the diversity of the base-

level partition. A set of attributes D depends totally on a set of attributes C, denoted

C => D, if all values of attributes from D are uniquely determined by values of attributes

from C. In other words, D depends totally on C, if there exists a functional dependency

between values of D and C. Formally dependency can be defined in the following way. Let

D and C be subsets of A. We will say that D depends on C in a degree k (0 =< k =< 1),

denoted C ⇒k D, if k = γ(C,D) = |POSC(D)|/|U |, where POSC(D) = ∪X∈U/DC(X),

called a positive region of the partition U/D with respect to C, is the set of all elements

of U that can be uniquely classified to blocks of the partition U/D, by means of C.

Obviously

γ(C,D) =
∑

X∈U/D

|C(X)|
|U |

. (5.1)

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends

partially (in a degree k) on C. The coefficient k expresses the ratio of all elements of

the universe, which can be properly classified to blocks of the partition U/D, employing

attributes C and will be called the degree of the dependency. It can be easily seen that
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if D depends totally on C then IND(C) subset IND(D). This means that the partition

generated by C is finer than the partition generated by D, Let us notice that the concept

of dependency discussed above corresponds to that considered in relational databases.

Summing up: D is totally (partially) dependent on C, if employing C all (possibly some)

elements of the universe U may be uniquely classes to blocks of the partition U/D.

5.3.5 Achievements

Rough sets are used to select community detection algorithms based on their ability to

form a good combination independent of their individual accuracy. The prediction made

by a constituent classifier about the category of data instances is not considered to make

the decision but the way a constituent classifier makes the partition on data set is the main

consideration of the method. Usually, people deal with two kinds of partitions defined

by any classifier: the partition defined on a given sample and the partition on the whole

universe of objects (including unseen objects). The condition in the definition of fREC

is expressed using the partition on a sample but here it is assumed that the condition is

preserved on the partition of the whole universe too.

5.4 Theoretical results

Let P1 = {P11, P12, ...., P1k}, P2 = {P21, P22, ...., P2k}, ...., Pn = {Pn1, Pn2, ...., Pnk} be the

Partitions generated by community detection algorithms a1, a2, ...., ap on a given network

G = (V,E). Let SP = {X1, X2, ....Xt} be the super partition of P1, P2, ..., Pn.

Now an optimal community structure is an another partition P ∗ of size k, such that

P ∗ ⊂ SP and f(P ∗) is optimum with respect to certain criteria.

First a quality measure is defined for the considered set of algorithms producing parti-
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tions. Let us consider two partitions P,Q of U and an meta community extractor functions

f : Q→ P .

The error of f relative to P is defined as:

ErP (f) =
∑
x∈Q

|x|
|U |

(
1− |x ∩ f(x)|

|x|

)
= 1
|U |

∑
x∈Q

(
|x| − |x ∩ f(x)|

)
(5.2)

Optimality of f relative to P is defined as:

ErP (f) ≤ ErP (g) ∀ g : Q→ P (5.3)

Theorem 1: Newly obtained meta-partition is an estimation to the optimal commu-

nity structure of the network and converges towards optimal community structure with

increasing number of input partitions.

Proof: Let u ∈ A and u corresponds x ∈ SP Then error of f corresponding to u

is 1 − |x∩f(x)|
|x| To show that f is optimal, let g : SP → P be any other function. Let

x ∈ SP be arbitrary and f(x) = Ca and g(x) = Cb. By definition of f |x∩Ca| ≥ |x∩Cb|.

Therefore ∑x∈SP
|x|
|U |(1 −

|x∩Ca|
|x| ) ≤ ∑

x∈SP
|x|
|U |(1 −

|x∩Cb|
|x| ). Therefore Error(f) ≤ ErP (g)

i.e., f is optimal.

Theorem 2: Newly obtained meta-partition has better community structure than its

contributing partitions.

Proof: Let Pr = {Pr1, Pr2, ...., Prk} be a partition corresponding to a input commu-

nities determined by a particular algorithm ar. If ar performs better than f then there

exists a one to one correspondence of Pr, partition corresponding to algorithm ar, and P ,

partition corresponding to the given categories. Let h : Pr → P be this correspondence.

Since SP is a refinement of Pr, H : SP → P can be defined such that, for any x ∈ SP
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x is a proper subset of only one Pri and H(x) = h(Pri). Now Error(ar) is same as

Error(H), (by definition of H). But Error(H) can’t be less than Error(f). Therefore

no constituent classifier perform better than f .

Theorem 3: Newly obtained meta-partition converges towards optimal community

structure faster when input partitions have more mutual diversity.

Proof: The smaller the dependency, the greater the diversity of the input algorithms.

A set of attributes P ∗ depends totally on a set of attributes C, denoted C => P ∗, if all

values of attributes from P ∗ are uniquely determined by values of attributes from C. In

other words, P ∗ depends totally on C, if there exists a functional dependency between

values of P ∗ and C. Formally dependency can be defined in the following way. Let P ∗ and

C be subsets of A. We will say that P ∗ depends on C in a degree k (0 =< k =< 1), denoted

C ⇒k P
∗, if k = γ(C,P ∗) = |POSC(P ∗)|/|U |, where POSC(P ∗) = ∪X∈U/P ∗C(X), called

a positive region of the partition U/P ∗ with respect to C, is the set of all elements of U

that can be uniquely classified to blocks of the partition U/P ∗, by means of C. Obviously

γ(C,P ∗) =
∑

X∈U/P ∗

|C(X)|
|U |

. (5.4)

If k = 1 we say that P ∗ depends totally on C, and if k < 1, we say that P ∗ depends

partially (in a degree k) on C. The coefficient k expresses the ratio of all elements of

the universe, which can be properly classified to blocks of the partition U/P ∗, employing

attributes C and will be called the degree of the dependency. It can be easily seen that if

P ∗ depends totally on C then IND(C) subset IND(P ∗). This means that the partition

generated by C is finer than the partition generated by P ∗.
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5.5 Experiments and results

In this experiment, we combine the communities of complex networks determined by

several algorithms with Rough Sets theory to obtain a new optimal community structure

of the network. We obtained improved results of community detection in less time by

combining results of approximate algorithms and are shown in the tables 5.5.3 & 5.3.

5.5.1 Experimental Designs

We performed two different experiments to asses the performance of the proposed con-

sensus community detection algorithm. First experiment is designed to evaluate the

communities obtained by consensus method in terms of modularity and time. Second ex-

periment is designed to explore the usefulness of consensus community detection method

in terms of total gain in modularity and time compared to the exact algorithm, when

consensus of several approximate version of same algorithm is considered. Experiments

are conducted over several real networks 2.2 to compare the results of our algorithm in

terms of modularity and time computed in seconds. The details of the several experiments

and the analysis of the results are given in the following subsections.

5.5.2 Experimental setup to compare consensus community de-

tection

In this experiment we tried to asses the usefulness of proposed consensus community de-

tection method. For this purpose we have considered a group of community detection

algorithms and used their outputs. Experimental steps are as follows:

Algorithms: The community detection algorithm proposed in sec. 3.5 is used in the
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form of its three approximate variant, using LSH, using Nystrom sampling and using

random sketches. the consensus community is constructed based on the output of above

three variant.

Network data: Different types of real network data is taken, small, large, very sparse

and relatively dense and they are discussed in sub-sec. 2.2.

Results: Compared the community structure obtained by consensus algorithms, metric

based community detection algorithm and its three approximate versions. The results are

shown in terms of modularity and execution time(seconds) in table 5.5.3.

Observation: It can be observed from table 5.5.3 that consensus community detection

algorithm using approximate algorithms provides better modularity than the exact algo-

rithm in less time.

5.5.3 Experiment on optimal community structure estimation

5.5.4 Results analysis and achievements

In this subsection, we have described the analysis of the results obtained in our experi-

ments shown. The results obtained in the experiment justify that the consensus commu-

nity extracted by proposed method is more useful for complex network compared to other

community detection algorithms. The results obtained in the second experiment show

that any community detection algorithm which reveals different community structure

with different parameter setting can be improved by the consensus community method.

However it is possible for some algorithm to output approximate results in sub-linear

time, consensus community detection on a group of approximate algorithms can produce

better than exact results in less time than the actual algorithm.
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5.6 Conclusion

In this chapter, we present a comparative analysis of communities detected by several

algorithms to redefine new community structure using rough set theoretic framework. We

have created an information system of communities which are partitions on the set of nodes

in a network. The outputs of different community detection algorithms constitutes super

partition of the set of nodes. We described an algorithm for marging super partition until

it constitutes desired number of communities. Applied to a diverse collection of large

scale network datasets, the analysis reveals that (1) the different detection algorithms

extract different structures with respective constrained; (2) the structure of communities

that arise in our method is closest to that of communities of other algorithms in terms

of mitual indecernibility; and (3) consensus communities extracted from heterogeneous

community detection algorithms determine much better meta community of the same

network in terms of modularity. The optimal combination of the communities obtained

from several algorithms in-crease the modularity resultant community structure. This

combination method is computationally very efficient when approximate algorithms are

used.
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Table 5.3: Summary of results

Networks Exact(M) Exact(T) RO(M) RO(T) Modularity Gain Time Gain
Facebook 0.5472 6 0.5526 2 0.0054 5
Gplus 0.4056 661 0.4061 77 0.0005 584
Twitter 0.3709 398 0.3763 45 0.0054 353
Epinions1 0.1447 292 0.1419 37 -0.0028 255
LiveJournal1 0.1458 969 0.1466 119 0.0008 850
Pokec 0.0295 901 0.0302 115 0.0007 786
Slashdot0811 0.0125 382 0.0143 49 0.0018 333
Slashdot0922 0.0168 389 0.0182 50 0.0014 339
Friendster 0.0536 1477 0.0546 187 0.0010 1290
Orkut 0.069 1074 0.0697 136 0.0007 939
Youtube 0.0936 578 0.0913 74 -0.0023 504
DBLP 0.4215 341 0.4286 38 0.0071 303
Arxiv-AstroPh 0.5081 197 0.5128 22 0.0047 176
web-Stanford 0.3908 437 0.3972 49 0.0064 388
Amazon0601 0.265 520 0.2668 62 0.0018 458
P2P-Gnutella31 0.0523 124 0.0507 16 -0.0016 108
RoadNet-CA 0.1692 599 0.1683 71 -0.0009 528
Wiki-Vote 0.2095 39 0.2045 5 -0.0051 34
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Chapter 6

Conclusion

In this work the fast and optimal algorithms for community detection on large network

is described and analyzed. We demonstrated and analyzed a new approaches to network

community detection via metric space induced by the complex network. The interesting

problem of the nearest neighbor within the nodes of a complex networks are studied

and applied for community detection. We have used geometric framework for network

community detection instead of traditional graph theoretic approach or spectral methods.

We presented the efficient computation of network community detection using low rank

approximation. Our techniques can be applied for quick analysis of very large complex

network. Finally the theoretical upper bound of network community detection algorithms

is analyzed using the notion of data complexity and tried to estimate the optimal bound

by heterogeneous combination of communities.

Complex network analysis is a large and growing body of research on the measure-

ment and analysis of relational structure. Issues pertaining to data collection, analysis

of single networks, network comparison, and analysis of individual-level covariates are

discussed, and a number of suggestions are made for avoiding common pitfalls in the
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application of network methods to substantive questions. The complex network field is

an interdisciplinary research program which seeks to predict the structure of relationships

among social and natural entities, as well as the impact of said structure on other natural

phenomena.

The objective of this thesis is to bridge the gap between two important research di-

rections, 1) complex network analysis, which deals with large real graphs but generally

studied via graph theoretic analysis or spectral analysis and 2) data analysis in metric

space using geometric distances, nearest neighbor search, which is a fundamental com-

putational tool for large data analysis and low-rank approximation of distance matrix.

Network community detection is not easy NP-Hard like data clustering due to the lack of

good heuristics. Both, Graph traversal based methods and spectral methods are compu-

tationally overloaded due to the verification of objective function value, required to guide

next iteration. Rich literature of clustering are not suitable for graph data. These obser-

vations motivates us for a transformation from complex network to Metric Space. But the

metrics developed so far on graph (like Shortest path, Jaccard similarity and Euclidean

distance between adjacency vectors) are less successful for network community detection

in terms of conductance and modularity so there is a need for development of a good

metric which works better on complex network. Aim of this work is the development of

fast and accurate algorithms for community detection of large network. Competitiveness

of the several approximation methods being analyzed with respect to their modularity

value and computational complexity. The main contribution of the thesis is explained

via the following chapters: 1) Chapter 2: Network community detection on metric space

2) Chapter 3: Nearest Neighbor search in Complex Network for Community Detection,

3) Chapter 4: Low rank approximations for community detection of very large networks,

and 4) Chapter 5: Optimal evaluation of network community.
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We develop the notion of a metric among the nodes using some new matrices derived

from the modified adjacency matrix of the graph. The developed metric space is flexible

over the networks and can be tuned to enhance its community structure. We also proposed

the community detection algorithms on induced metric space and analyze the results and

complexities of the developed algorithms.

The main achievement of the work was to use the rich literature of clustering in metric

space. Clustering is easy NP-Hard in metric space, whereas network community detection

is NP-Hard. The results obtained with our approach were very competitive with most

of the well known algorithms in the literature and justified over the large collection of

datasets. Our algorithm converges automatically to optimal clustering. It doesnâĂŹt

require verifying objective function value to guide next iteration, like popular approaches,

thus saving the time of computation.

The main contributions of this work are, 1) development of the concept of nearness

between the nodes of a complex network, 2) comparing the proposed nearness with other

notions of similarities, 3) study and experiment on approximate nearest neighbor search

for complex network using M-tree and LSH, 4) design of efficient community detection

algorithm using nearest neighbor search. We observed that nearest neighbor between

network nodes is a very efficient tool to explore better community structure of the real

networks. Further several efficient approximation scheme are very useful for large net-

works, which hardly made any degradation of results, whereas saves lot of computational

times.

The results obtained in the first experiment justify that the proposed distance is

more useful for complex network to extract the community structure compared to other

measures of similarity. The results obtained in the second experiment justify that the

proposed algorithm for community detection is very efficient compared to other existing
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methods in terms of modularity and time. The results obtained with our approach are

very competitive with most of the well known algorithms in the literature and this is

justified over the large collection of datasets. On the other hand, it can be observed that

time (second) taken by our algorithm is quite less compared to other methods and justify

the theoretical findings.

In this chapter we have proposed an algorithm to reduce the dimensionality of the

datasets such that after applying partitioning on reduced network we get almost same

results as with the original network via Nystrom sampling and random sketches. For

evaluation of the proposed approaches on complex network we applied it in community

detection problem. The results obtained using our methods are very competitive with

most of the well known algorithms exists in the literature and this is verified on collection

of real networks. On the other-hand, it can be observed that time taken by our algorithm

is quite less compared to popular methods. In this work we will explore the two low rank

approximation methods, Nystrom sampling and random sketching and they are described

below. Low-rank methods are very fast to compute communities from massive networks

by preserving the approximated results with moderate lower bound

In this chapter, we compare communities of complex networks determined by several

algorithms using Rough Sets theory and tried to combine them to obtain an optimally

community structure of the network. A community detection algorithm determines a

partition of the network. Given several partitions of same network obtained from the

output of different community detection algorithms, we tried to generate a new partition

of same size with better modularity than all. The comparison of partitions are done

using Rough Sets by assigning the minimum discernibility of the new partition with all

others. The optimal combination of the communities obtained from several algorithms

increase the modularity resultant community structure. This combination method is
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computationally very efficient when approximate algorithms are used.
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