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Abstract

Information Theory was introduced by C. E. Shannon (1948) in his landmark

paper “A Mathematical Theory of Communication”. It is a branch of mathe-

matics and computer science which studies the quantification of information. It

was introduced to study and improve the efficiency of transmission of informa-

tion through a channel. In Communication theory the basic questions can be

answered through Information theory such as: what is the ultimate transmission

rate of communication (answer: the channel capacity), and what is the ultimate

data compression (answer: the entropy). Important applications of information

theory were found in different areas of Cryptography, Coding theory, Thermal

Physics, Neurobiology, Quantum Computing etc.

The objective of this thesis entitled, “Generalization of Varma and Tsallis

Entropies and Their Properties” is to study the monotonic behaviour, convolu-

tion results, characterizations and reliability properties of residual life time of

Generalized Shannon information measures.

In chapter 1, we present the literature survey related to the Shannon infor-

mation measure, Generalized information measure, the reliability properties of

residual life time and well known life time distributions. In addition to this, the

basic fundamental background is also provided.

The entropy measures is the uncertainty about the outcomes of a random ex-

periment. In case the outcome is captured in an interval which is contracting, the

measure of entropy should be decreasing. In the present chapter, Varma entropy

of order α and type β has been studied for this monotonic behaviour. For an

absolutely continuous type random variable, necessary and sufficient conditions

on the distribution function have been provided so that the conditional Varma

entropy is a monotonic on an interval. Further, the results on the convolutions

of Varma entropy have also been provided.

In chapter 3, we propose a generalized cumulative residual information mea-

sure based on Tsallis entropy and its dynamic version. We study the charac-
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terizations of the proposed information measure and define new classes of life

distributions based on this measure. Some applications are provided in relation

to weighted and equilibrium probability models. Finally the empirical cumulative

Tsallis entropy is proposed to estimate the new information measure.

In chapter 4, we extend the definition of dynamic cumulative residual Tsallis

entropy (DCRTE) into the bivariate setup and study its properties in the context

of reliability theory. Earlier, Sati and Gupta (2015) proposed two measures of

uncertainty based on non-extensive entropy, called the dynamic cumulative resid-

ual Tsallis entropy (DCRTE) and the empirical cumulative Tsallis entropy. We

also define a new class of life distributions based on proposed Bivariate DCRTE.

In chapter 5, we present the conclusions.
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Chapter 1

Introduction

1.1 Background and Motivation

All the structures on the planet Earth are normally under two types of order -

visible order and invisible order. In invisible order every bit is complex. This

order makes us realize that nature has been harnessing for billions of the years to

control and make use of resources, especially those producing energy. Our minds

and surroundings are full of such information and we constantly exchange these

with each other.

In communication systems, Information Theory identifies, characterizes and

computes the basic limits of performance measures. For example, in order to

answer about the information rates in the multi-user setting that can be trans-

mitted reliably over a given noisy channel which involves various transmitter as

well as various receivers.

Long distance message transmission gets depleted and is eventually unread-

able. The actual problem of communication was resolved with the help of am-

plification. This problem was unpredictable perturbation of the message called

noise. It is this noise which prevents a message from getting transferred. Even

though the noise is small, we amplify the message over and over; and eventually
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the too noise amplified with the message. And if the noise is more amplified than

the message, then the message cannot be read.

Shannon gave an amazingly simple solution to the above communication

problem by observing that all messages can be converted into binary digits or

a sequence of binary digits, better known as bits. Shannon formulated a the-

ory which aimed to quantify the communication of information and tackled the

problem of how to transmit information most efficiently through a given chan-

nel. It has diverse applications in different areas of Coding theory, Decision the-

ory, Cryptography, Thermal Physics, Sampling theory, Neurobiology, Psychology,

Economics, Quantum computing, Biology etc.

1.2 Shannon’s Entropy

Let X be a random variable which is of discrete type can take the finite numbers

of values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn in an experiment then the

Shannon entropy is defined as

H(P ) = −
n∑
i=1

pi log pi, 0 ≤ pi ≤ 1 (1.2.1)

unit of the quantity H(P ) is called bit, Nat or Hartley according to whether the

base of the logarithm in equation (1.2.1) is taken to be 2, e or 10 respectively.

Shannon entropy defined by (1.2.1) satisfies the following properties:

(i) Non-negativity: The entropy is always non-negative, i.e.,

H(p1, p2, . . . , pn) ≥ 0

(ii) Continuity: H(p1, p2, . . . , pn) is a continuous function of their probabilities

(iii) Symmetry: H(p1, p2) is a symmetric function of its arguments, that is,

H(p1, p2) = H(p2, p1)

2



(iv) Normality: For two equally probable events entropy becomes unity, that

is,

H

(
1

2
,
1

2

)
= 1

(v) Maximality: The entropy is maximum when the probabilities of all events

are equal

H(p1, p2, . . . , pn) ≤ H

(
1

n
,

1

n
, . . .

1

n

)
(vi) Additivity: If two independent probability distributions are P = (p1, p2, . . . , pn)

and Q = (q1, q2, . . . , qn), then

H(p1q1, . . . , p1qn, p2q1, . . . , p2qn, . . . , pnq1, . . . , pnqn) = H(p1, p2, . . . , pn)+H(q1, q2, . . . , qn)

Let X be a continuous random variable with the probability density function

f(x) then the Shannon entropy is defined as

H(X) = −E[log f(x)], or

H(X) = −
∫ ∞
−∞

f(x) log (f(x)) dx. (1.2.2)

Equation (1.2.2) is also known as the Shannon’s differential entropy of random

variable X.

1.3 Generalization of Shannon’s Entropy

The Shanon entropy measures have been generalized in a number of different

ways by different pioneer researchers such as Renyi (1961), Varma (1966), Kapur

(1967) and Tsallis (1961). Varma entropy is a generalized two parameter Shan-

non entropy and plays vital role as a measure of complexity and uncertainty in

different areas such as Physics, Electronics and Coding Theory. Whereas, Tsallis

entropy is defined as generalization of the standard Boltzmann-Gibbs entropy. It

is generally referred as nonextensive statistics dealing with one-parameter gener-

alization of Shannon entropy.
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However, Varma entropy was not defined for conditional entropy and for its

monotonic nature. In case of Tsallis entropy, generalized cumulative residual

entropy and its dynamic form was not defined. Therefore, we formulated condi-

tional Varma’s entropy of X given A, where A is an event, X ∈ (a; b) and studied

their monotonic and convolution properties. We also formulated and studied the

dynamic cumulative residual Tsallis entropy for univariate and bivariate setup.

In the sequel H(X|A) should be read as H(X|X ∈ A).

1.3.1 Varma Entropy

Varma (1966) proposed the generalized entropy of order α and type β for discrete

case

Hβ
α(P ) =

1

β − α
log

(
n∑
i=1

pα+β−1
i

)
, β − 1 < α < β, β ≥ 1, (1.3.1)

and in continuous case

Hβ
α(X) =

1

β − α
log

(∫ ∞
0

(f(x))α+β−1dx

)
, β − 1 < α < β, β ≥ 1. (1.3.2)

As β = 1, α → 1, the measure (1.3.1) and (1.3.2) reduces to (1.2.1) and (1.2.2)

respectively.

1.3.2 Tsallis Entropy

Tsallis (1961) proposed the generalized entropy of order α for discrete case

Sα(P ) =
1

α− 1

(
1−

n∑
i=1

pαi

)
, α > 0, α 6= 1, (1.3.3)

and in continuous case

Sα(X) =
1

α− 1

(
1−

∫ ∞
0

(f(x))αdx

)
, α > 0, α 6= 1. (1.3.4)

As α → 1, the measure (1.3.3) and (1.3.4) reduces to (1.2.1) and (1.2.2) respec-

tively.
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1.4 Some Basic Concepts in Reliability

To describe the distribution of a random variable,various functions are used such

as distribution functions, survival functions, density functions, hazard rates, mean

residual lives. None of these can be called as best, it so happens that for a

particular problem one function gives a very simple form of distribution while

other functions may be awkward to work with. But in another problem the

situation may be reversed. The most important is the fact that characteristic of

a distribution may be more clearly revealed by a particular function than any

other. The use of a function also varies person to person.

1.4.1 Distribution Function

If X is a continuous random variable with probability density function f(x), then

the function

F (x) = P (X ≤ x) =

x∫
−∞

f (t) dt, ∀x

is called distribution function or cumulative distribution functions of the random

variable X. The Distribution function has the following properties

(i) F is non-decreasing and right continuous function.

(ii) F (−∞) = 0 and F (+∞) = 1.

1.4.2 Survival Function

If X is a continuous random variable with density function f(x), then the survival

function is denoted by F̄ (x) and defined as

F̄ (x) = P{X > x} =

∞∫
x

f (t) dt

5



The survival function is also known as the “Reliability function”. It is a non-

increasing continuous function with F̄ (0) = 1 and F̄ (∞) = 0. The relationship

between survival function and distribution function is defined as follows

F̄ (x) = 1− F (x)

Differentiating both sides with respect to x, we get

f (x) = − d

dx
F̄ (x)

1.4.3 Probability Mass and Density Functions

For any random variable, distribution function and survival function always exist

but this is not true in case of probability mass function and probability density

function.

If X is a discrete random variable which can take the values x1, x2, . . . and

P (X = xi) = p(xi), i = 1, 2, . . . then

F (x) =
∑
xi≤x

p(xi)

and p is called the probability mass function of X.

If X is continuous random variable such that

F (x) =

x∫
−∞

f (z) dz, ∀x ∈ R

then f is called the probability density function of X.

The density functions are not unique, in most of the cases distribution function is

differentiable except at countable isolated points. The derivative of distribution

function, if it exists, is the density function of the distribution and it is preferred to

describe the distribution. For further details one can refer to Albert W. Marshall

& Ingram Olkin (2007).

6



1.4.4 Hazard Functions and Hazard Rates

The function R defined on (−∞,∞) by R (x) = − log F̄ (x) is called the hazard

function of F , or of X. For a non-negative random variable, R (0−) = 0, R

is increasing, and limx→∞ R(x) = ∞; any function with these properties is a

hazard function.

If F is an absolutely continuous distribution function with probability density

function f , then the function r defined on (−∞,∞) by

r (x) = f(x)

F̄ (x)
, if F̄ (x) > 0

= ∞, if F̄ (x) = 0

is called a hazard rate or failure rate function of F , or of X.

The hazard rate or failure rate function is also defined as the conditional

probability of failure between (x, x+∆x) given that there is no failure up to time

x,

r (x) = lim
∆x→0

P{x < X ≤ x+ ∆x|X > x}
∆x

Thus, it is the probability that the item will fail in the next ∆x time unit given

that the item is functioning properly in time x.

1.4.5 The Residual Life Distribution

The distribution of remaining life for an unfailed item of age t is often of interest.

Let F be a distribution function such that F (0) = 0. the residual life distribution

Ft of F at t is defined for all t ≥ 0 such that F̄ (t) > 0 by

F̄t (x) =
F̄ (x+ t)

F̄ (t)
, x ≥ 0.

If F has density f , then Ft has density ft and hazard rate rt given by

ft (x) =
f(x+ t)

F̄ (t)
, x ≥ 0,

rt (x) =
f(x+ t)

F̄ (x+ t)
= r (x+ t) , x ≥ 0.

7



Thus, the residual life distribution Ft is a conditional distribution of the remaining

life given survival up to time t.

1.4.6 The Mean Residual Life Function

The mean residual life function is the average life time remaining for a system,

which has survived up to an age t. The mean residual life function for a continuous

random variable X, is given by

m(t) = E(X − t |X ≥ t)

or

m(t) =

∞∫
t

F̄ (x)dx

F̄ (t)
.

For the various properties and application of mean residual life function can refer

to Barlow and Proschan (1975), Marshall and Olkin (2007).

The relationship between mean residual life function and hazard rate is given

by

r(t) =
1 +m′(t)

m(t)
.

The mean residual life function m(t) is the mean of residual life distribution Ft

as a function of t. More explicitly, when F has finite mean µ and F (x) = 0, for

x < 0, the mean residual life function is given by

m (t) =

∞∫
0

F̄ (x+ t)

F̄ (t)
dx =

∞∫
t

F̄ (z)

F̄ (t)
dz =

∞∫
t

(t− z)

F̄ (t)
dF (z)

for t such that F̄ (t) > 0, and is equal to 0 if F̄ (t) = 0.
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1.5 Proportional Hazards model

Cox (1972) has introduced and studied a dependence structure among two dis-

tributions, which is referred as the proportional hazards model (PHM) and also

known as Cox PH Model. Let X and Y are two non-negative continuous random

variables with survival functions F̄ (x) and Ḡ(x), and hazard rate rF (x) and rG(x)

respectively. If

rG(x) = θ rF (x), (1.5.1)

where θ is a positive real constant. This PH model defined by equation (1.5.1) is

equivalent to

Ḡ(x) =
[
F̄ (x)

]θ
, θ > 0.

This model has many application in different fields such as reliability, survival

analysis, economics, medicine etc. Ebrahimi and Kirmani (1996) and Nair and

Gupta (2007) gave some results of characterization of probability distribution

based on the proportional hazards model.

1.6 Parametric Families of Life Distributions

We recall the following definitions:

I. Increasing Function

Let I be an open interval in R. The function f : I → R is said to be an increasing

function on I if

f(x1) ≤ f(x2), ∀ x1 < x2 .

II. Decreasing Function

Let I be an open interval in R. The function f : I → R is said to be an decreasing

function on I if

f(x1) ≥ f(x2), ∀ x1 < x2 .

9



III. Concave and Convex Functions

Let g(x) be a real valued function defined on interval I = (a, b) is said to be

concave (convex) function if for all x1, x2 ∈ I and for all α ∈ [0, 1], we have

g(αx1 + (1− α)x2) ≥ (≤)α g(x1) + (1− α) g(x2)

IV. Log-Concave and Log-Convex Functions

Let g(x) be a real valued function defined on interval I = (a, b) is said to be

log-concave (log-convex) function if for all x1, x2 ∈ I and for all α ∈ [0, 1], we

have

g(αx1 + (1− α)x2) ≥ (≤) (g(x1))α (g(x2))(1−α)

V. Hölder’s Inequality

If xi, yi > 0, i = 1, 2, . . . , n and
1

p
+

1

q
= 1, p > 0, q > 0 then the following in-

equality holds (
n∑
i=1

xiyi

)
≤

(
n∑
i=1

xpi

) 1
p
(

n∑
i=1

yqi

) 1
q

Some of the probability distributions describe the failure process and relia-

bility of a component or a system more satisfactorily than others. They are the

exponential, Weibull, Gamma, Pareto distributions. The reliability characteris-

tics relating to these failure distributions are as under.

The Exponential Distribution:

For exponential distribution, the parameter λ > 0 is a scale parameter and

F̄ (x) = e−λx, x ≥ 0,

f (x) = λe−λx, x ≥ 0.

and

r (x) = λ, x ≥ 0.

10



For the exponential distribution, we have

F̄ (x+ t)

F̄ (t)
= F̄ (x) .

Thus, exponential distribution is the conditional probability of surviving an ad-

ditional period of x, given survival up to time t, is the same as the unconditional

probability of survival to time x.

The Gamma Distribution:

For gamma distribution, we have the scale parameter λ > 0 and shape parameter

α > 0 and

f (x|λ, α) =
1

Γ (α)
λαxα−1e−λx , x ≥ 0.

For α = 1, above equation reduces to the exponential distribution.

The Weibull Distribution:

For Weibull distribution, we have the scale parameter α > 0 and shape parameter

λ > 0. The survival function for Weibull distribution has a simple form given by

F̄ (x) = e−(λx)α , x ≥ 0.

Therefore, the density function for Weibull distribution is given by

f (x) = αλ (λx)α−1 e−(λx)α , x ≥ 0.

The Pareto Distribution:

For Pareto distribution, we have the shape parameter a > 0 and scale parameter

b > 0

F̄ (x) =
b

x

a

, x ∈ [b, ∞),

and

f (x) =
aba

xa+1
, x ∈ [b, ∞).

11



1.7 Literature Survey

The concept of entropy has been widely used in different areas, e.g., Information

theory, Probability and Statistics, Communication theory, Physics, Economics

and Computer Science etc. Shannon (1948) was the first to introduce entropy,

known as Shannon’s entropy or Shannon Information measure. A large numbers

of generalization of Shannon entropy are available in the literature, among them

some important generalization are given by Renyi (1961), Varma (1966), Kapur

(1967), Tsallis (1988), Sharma and Taneja (1975), Sharma and Mittal (1977),

Boekee and Lubbe (1980).

Shannon’s differential entropy defined by equation (1.2.2) is not useful for

such a system which has survived to an age t, Ebrahimi and Pellery (1995)

and Ebrahimi (1996) proposed a modified form of Shannon’s differential entropy

known as residual entropy function. This new measure of uncertainty for the

residual life time Xt = [X − t|X > t], where t > 0 given by

H(X; t) = −
∞∫
t

f(x)

F̄ (t)
log

(
f(x)

F̄ (t)

)
dx.

For the study of the properties and applications of residual entropy we refer to

Asadi and Ebrahimi (2000), Asadi et al. (2005), Nanda and Paul (2006) and

Sunoj et al. (2009).

Shannon entropy play an important role in different area of research and it

is well defined for discrete and continuous random variables. Shannon entropy

of a discrete random variable is always non-negative, while it is not always non-

negative for a continuous random variable . Rao et al. (2004) identified some

limitations of the use of Shannon’s differential entropy and introduced an alter-

nate measure of uncertainty called cumulative residual entropy (CRE). This new

measure is based on the survival function F̄ (x) rather than the density function of

a random variable X. The distribution function is more regular than the density

function, because the density is computed as the derivative of the distribution.

The cumulative residual entropy of a non-negative random variable X is defined
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as

ξ(X) = −
∫ ∞

0

F̄ (x) log
(
F̄ (x)

)
dx.

Cumulative residual entropy has many important properties as follows:

(1) Cumulative residual entropy has consistent definitions in both the continuous

and discrete domains.

(2) Cumulative residual entropy is always non-negative.

(3) Cumulative residual entropy can be easily computed from sample data and

these computations asymptotically converge to the true values.

For the study of the properties and applications of CRE, we refer to Asadi and

Ebrahimi (2000), Asadi et al. (2005), Rao (2005), Drissi et al. (2008), Gupta

(2009), Di Crescenzo and Longobardi (2009), Navarro et al. (2010), Gupta and

Taneja (2012), Taneja and Kumar (2012).

Asadi and Zohrevand (2007) further studied the cumulative residual entropy

for the residual lifetime and proposed a new measure of uncertainty called a

dynamic cumulative residual entropy (DCRE), given by

ξ(X; t) = −
∞∫
t

F̄ (x)

F̄ (t)
log

(
F̄ (x)

F̄ (t)

)
dx.

Abbasnejad et al. (2010) proposed dynamic survival entropy of order α and gave

the relation of dynamic survival entropy with the mean residual life function.

Sunoj and Linu (2010) defined cumulative residual Renyi entropy of order β and

its dynamic version. Kumar and Taneja (2011) defined generalized cumulative

residual information measure and its dynamic version based on Varma’s entropy

function. For more details of the properties and applications of DCRE, we refer

Asadi and Zohervand (2007), Di Crescenzo and Longobardi (2009), Abbasnejad

et al. (2010), Navarro et al. (2010), Sunoj and Linu (2010), Kumar and Taneja

(2011).
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The reliability characteristics can be extended to higher dimensions. Al-

though, a lot of work have been done on information measures in the univariate

case, but very limited works have been done in higher dimensions. For more

details, we refer [ Sunoj and Linu (2010), Rajesh and Nair (2000), Nadarajah

and Zografos (2005), Ebrahimi et al. (2007), Sathar et al. (2009), Rajesh et al.

(2009), (2014a), (2014b)].
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Chapter 2

On Partial Monotonic Behaviour

of Varma Entropy and its

application in coding theory

2.1 Introduction

The concept of entropy, originally introduced by Shannon (1948), has been widely

used in the fields of Information Theory, Physics, Probability and Statistics, Eco-

nomics and Communication Theory. Entropy is a measure of the average amount

of uncertainty associated with the outcomes of the random experiment. Consider

a random variable X which is of discrete type (or of absolutely continuous type)

with probability mass function pi, i = 1, 2 . . . , n (or probability density function

fX(x) with support set D = {x ∈ R : fX(x) > 0}). The Shannon entropy in

discrete version is defined as:

H(X) = −
n∑
i=1

pi log pi,

and its differential form is

H(X) = −
∫
D

fX(x) log (fX(x)) dx. (2.1.1)
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Various generalizations of entropy are proposed by different researchers in order

to quantify uncertainty.

Renyi (1961) proposed a generalized entropy of order α as

Hα(X) =
1

1− α
log

(∫
D

(fX(x))αdx

)
, α > 0, α 6= 1. (2.1.2)

Tsallis (1988) defined the generalized entropy as

Sα(X) =
1

α− 1

(
1−

∫
D

(fX(x))αdx

)
, α > 0, α 6= 1. (2.1.3)

Kapur (1967) defined the measure of entropy of order α and type β as

Hα,β(X) =
1

β − α
log

(∫
D

(fX(x))αdx∫
D

(fX(x))βdx

)
, α 6= β, α > 0, β > 0.

Varma (1966) also proposed the generalized entropy of order α and type β as

Hβ
α(X) =

1

β − α
log

(∫
D

(fX(x))α+β−1dx

)
, β − 1 < α < β, β ≥ 1. (2.1.4)

Entropies are important in Probability and Statistics because of their role in

large deviations theory and in the study of likelihood-based inference principles.

Shannon, Renyi and Tsallis entropies have operational meaning in terms of data

compression. Varma entropy plays a vital role as a measure of complexity and

uncertainty in different areas such as Physics, Electronics and Coding Theory.

We refer reader to Cover and Thomas (2006) for applications of entropies in

Information Theory.

The conditional Shannon entropy of X given A, where A = (a, b), is given

by

H (X|A) = −
∫ b

a

fX|A(x) log
(
fX|A(x)

)
dx,

where

fX|A(x) =
fX(x)

FX(b)− FX(a)
, a < x < b.
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Here FX(x) = P (X ≤ x), x ∈ (−∞,∞), denotes the cumulative distribution

function of X.

The conditional Shannon entropy is interpreted as the average entropy of the

regular conditional distribution when averaged over different possible outcomes

of the variable being conditioned on interval A. Sunoj et. al. (2009) provided an

excellent review of the conditional Shannon entropy. The conditional Shannon

entropy, Renyi entropy, Tsallis entropy and Kapur’s entropy have been studied for

monotonicity properties and convolution in the literature [see Shangari and Chen

(2012), Chen (2013) and Gupta and Bajaj (2013)]. The Varma entropy (Gener-

alized entropy) properties of records has been studied by Kayal and Vellaisamy

(2011).

As described by Shangari and Chen (2012), Chen (2013) for an interval A, the

conditional Shannon entropy H(X|X ∈ A) may serve as indicator of uncertainty.

When the interval provides the information about the outcome, the measure of

uncertainty shrinks/expands as the interval shrinks/expands. For an interval A

and B such that B ⊆ A , if H(X|X ∈ B) ≤ (≥)H(X|X ∈ A) then entropy

function H is said to be partially increasing (decreasing). Shangari and Chen

(2012) proved that conditional Shannon entropy H(X|A) of X given A = (a, b)

is a partially increasing function in the interval A if FX (x) is log-concave. They

also proved that the conditional Renyi entropy Hα(X|A) of X given A = (a, b)

is a partially increasing function in the interval A for α ≥ 0 , α 6= 1 if FX (x)

is log-concave. Gupta and Bajaj (2013) proved that conditional Kapur entropy

Hα,β(X|A) of X given A = (a, b) is a partially increasing function in the interval

A if FX (x) is concave. They also proved that if F (x) is log-concave then the

conditional Tsallis entropy Sα(X|A) ofX givenA is a partially increasing function

in the interval A where A = (a, b). One may also refer to Ash (1990), Yeung

(2002) and Cover and Thomas (2006) for details on various properties, which

play an important role in information theory.

In the present chapter we propose a new conditional entropy which is based
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on Varma’s entropy of order α and type β and also we define the monotonic

nature of conditional Varma entropy.

In Section 2, we prove that if FX(x) is log concave and α + β > (<)2 then

the conditional Varma’s entropy Hβ
α(X|A) is partially decreasing (increasing) in

A = (a, b). If FX(x) is log convex and α+β < (>)2 then the conditional Varma’s

entropy Hβ
α(X|A) is decreasing (increasing) in b, for fixed a.

Consider an experiment X that is repeated to measure its reproducibility or

precision or both, then the function U = |X1 −X2| measures the uncertainty of

the experiment; where X1 and X2 are two independent and identically distributed

copies of an experiment X. We prove that if random variables X1 and X2 have

log concave probability functions then the conditional Varma’s entropy of U =

|X1 − X2| given B = {a ≤ X1, X2 ≤ b}, is partially increasing (decreasing)

function of B if α + β < 2(α + β > 2).

In Section 3, we provide applications of Varma entropy in coding theory.

2.2 Monotonic Behaviour and convolution of Varma

entropy

The conditional Varma entropy of X given A = (a, b) is given as

Hβ
α(X|A) =

1

β − α
log

(∫ b

a

(
fX|A(x)

)α+β−1
dx

)
, β − 1 < α < β, β ≥ 1

=
1

β − α
log

(∫ b

a

(
fX(x)

FX(b)− FX(a)

)α+β−1

dx

)
, β − 1 < α < β, β ≥ 1.

The following theorem provides the conditions under which the conditional

Varma’s entropy Hβ
α(X|A) is partially decreasing/increasing in interval A =

(a, b).
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Theorem 2.2.1:

Let A be the event a < X < b. If FX(x) is

(a) log-concave and α+β > (<)2, then the conditional Varma entropy Hβ
α(X|A)

is partially decreasing (increasing) in interval A = (a, b).

(b) log-convex and α+ β < (>)2, then the conditional Varma entropy Hβ
α(X|A)

is decreasing (increasing) in b, for fixed a.

Proof:

(a) We will only show that if FX(x) is log-concave and α + β > 2, then the

conditional Varma entropy Hβ
α(X|A) is partially decreasing in interval A =

(a, b). When FX(x) is log-concave and α+β < 2, then the conditional Varma

entropy Hβ
α(X|A) is partially increasing in interval A = (a, b) may be shown

in a similar fashion. Define

φ(a, b) =

∫ b

a

(
fX(x)

FX(b)− FX(a)

)α+β−1

dx.

For fixed a,

∂φ(a, b)

∂b
= − (α + β − 1)fX(b)

(FX(b)− FX(a))α+β

∫ b

a

fα+β−1
X (x)dx+

(
fX(b)

FX(b)− FX(a)

)α+β−1

=
fX(b)

(FX(b)− FX(a))α+β
ψ1(b), (2.2.1)

where

ψ1(b) = −(α + β − 1)

∫ b

a

fα+β−1
X (x)dx+ fα+β−2

X (b)(FX(b)− FX(a)),

ψ1(b)|b=a = 0,

and

ψ′1(b) = −(α + β − 1)fα+β−1
X (b) + (α + β − 2)fα+β−3

X (b)f ′X(b)

(FX(b)− FX(a)) + fα+β−1
X (b)

= (2− α− β)fα+β−3
X (b)

(
f 2
X(b)− f ′X(b)(FX(b)− FX(a))

)
. (2.2.2)
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Note that FX(x) is log-concave, implies that

(FX(x)− FX(a))/(FX(b)− FX(a)) is log-concave. Hence we have

f 2
X(b)− f ′X(b)(FX(b)− FX(a)) ≥ 0, ∀ b

Consider the following cases:

Case-I: Since α + β > 2, then from (2.2.2) we have ψ′1(b) ≤ 0, i.e. ψ1(b) is

decreasing in b. Now for b > a we have ψ1(b) ≤ ψ1(a), i.e. ψ1(b) ≤ 0. There-

fore from (2.2.1) we have, ∂φ(a,b)
∂b
≤ 0. Hence φ(a, b) is decreasing in b, for

fixed a. Therefore the conditional Varma entropy Hβ
α(X|A) is decreasing in b.

Case II: Since α + β < 2, then from (2.2.2) we have ψ′1(b) ≥ 0, i.e. ψ1(b) is

increasing in b. Now for b > a we have ψ1(b) ≥ ψ1(a), i.e. ψ1(b) ≥ 0. There-

fore from (2.2.1) we have, ∂φ(a,b)
∂b

≥ 0. Hence φ(a, b) is increasing in b, for

fixed a. Therefore the conditional Varma entropy Hβ
α(X|A) is increasing in b.

Now for fixed b, consider

∂φ(a, b)

∂a
=

fX(a)

(FX(b)− FX(a))α+β
ψ2(a), (2.2.3)

where

ψ2(a) = (α + β − 1)

∫ b

a

fα+β−1
X (x)dx− fα+β−2

X (a)(FX(b)− FX(a)),

ψ2(a)|a=b = 0,

and

ψ′2(a) = (2− α− β)fα+β−3
X (a)

(
f 2
X(a) + f ′X(a)(FX(b)− FX(a))

)
. (2.2.4)

Note that FX(x) is log-concave, implies that

(FX(b)− FX(x))/(FX(b)− FX(a)) is log-concave. Hence we have

f 2
X(a) + f ′X(a)(FX(b)− FX(a)) ≥ 0, ∀ a

20



Consider the following cases:

Case-III: Since α + β > 2, then from (2.2.4) we have ψ′2(a) ≤ 0, i.e. ψ2(a) is

decreasing in a. Now for b > a we have ψ2(a) ≤ ψ2(b), i.e. ψ2(a) ≤ 0. There-

fore from (2.2.3) we have, ∂φ(a,b)
∂a

≤ 0. Hence φ(a, b) is decreasing in a, for

fixed b. Therefore the conditional Varma entropy Hβ
α(X|A) is decreasing in a.

Case IV: Since α + β < 2, then from (2.2.4) we have ψ′2(a) ≥ 0, i.e. ψ2(a) is

increasing in a. Now for b > a we have ψ2(a) ≥ ψ2(b), i.e. ψ2(a) ≥ 0. There-

fore from (2.2.3) we have, ∂φ(a,b)
∂a

≥ 0. Hence φ(a, b) is increasing in a, for

fixed b. Therefore the conditional Varma entropy Hβ
α(X|A) is increasing in a.

Hence the conditional Varma entropy Hβ
α(X|A) is partially decreasing (in-

creasing) function in interval A = (a, b)

(b) Define

φ(a, b) =

∫ b

a

(
fX(x)

FX(b)− FX(a)

)α+β−1

dx.

For fixed a,

∂φ(a, b)

∂b
= − (α + β − 1)fX(b)

(FX(b)− FX(a))α+β

∫ b

a

fα+β−1
X (x)dx+

(
fX(b)

FX(b)− FX(a)

)α+β−1

=
fX(b)

(FX(b)− FX(a))α+β
ψ(b), (2.2.5)

where

ψ(b) = −(α + β − 1)

∫ b

a

fα+β−1
X (x)dx+ fα+β−2

X (b)(FX(b)− FX(a)),

ψ(b)|b=a = 0,

and
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ψ′(b) = −(α + β − 1)fα+β−1
X (b) + (α + β − 2)fα+β−3

X (b)f ′X(b)

(FX(b)− FX(a)) + fα+β−1
X (b)

= (2− α− β)fα+β−3
X (b)

(
f 2
X(b)− f ′X(b)(FX(b)− FX(a))

)
. (2.2.6)

Note that FX(x) is log-convex, implies that

(FX(x)− FX(a))/(FX(b)− FX(a)) is log-convex. Hence we have

f 2
X(b)− f ′X(b)(FX(b)− FX(a)) ≤ 0, ∀ b

Consider following cases:

Case-I: If α + β < 2, then from (2.2.6) we have ψ′(b) ≤ 0, i.e. ψ(b) is de-

creasing in b. Now for b > a we have ψ(b) ≤ ψ(a), i.e. ψ(b) ≤ 0. Therefore

from (2.2.5) we have, ∂φ(a,b)
∂b
≤ 0. Hence φ(a, b) is decreasing in b, for fixed

a. Therefore the conditional Varma entropy Hβ
α(X|A) is decreasing in b, for

fixed a.

Case-II: If α + β > 2, then from (2.2.6) we have ψ′(b) ≥ 0, i.e. ψ(b) is

increasing in b. Now for b > a we have ψ(b) ≥ ψ(a), i.e. ψ(b) ≥ 0. Therefore

from (2.2.5) we have, ∂φ(a,b)
∂b
≥ 0. Hence φ(a, b) is increasing in b, for fixed

a. Therefore the conditional Varma entropy Hβ
α(X|A) is increasing in b, for

fixed a.

Hence the result follows.

�

Example 2.2.1:

Consider an exponential distribution with cumulative distribution function FX(x) =

1−e−λx, λ > 0, x ≥ 0, then FX(x) is log-concave. Hence using Theorem 2.2.1(a)

if α + β > (<) 2, then the conditional Varma entropy Hβ
α(X|A) is partially de-

creasing (increasing) in A = (a, b).
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Example 2.2.2:

Let f(x) = c (−x)−c−1 , c > 0 , x ∈ (−∞,−1) and F (x) = (−x)−c , c > 0, x ∈
(−∞,−1) are the probability density function and cumulative distribution func-

tion of Mirror-image Pareto distribution, respectively. Note that FX(x) is log-

convex. Hence using Theorem 2.2.1(b) if α + β < (>) 2, then the conditional

Varma entropy Hβ
α(X|A) is decreasing (increasing) in b, where A is the event

−∞ < X < b.

Next we provide a result on convolution. Consider an experiment X repli-

cated to measure the reproducibility and precision of the experiment, i.e., the

experiment represented by a random variable X have two copies X1 and X2

which are independent and identically distributed with common density fX(x).

The uncertainty in X may be measured by the difference of two experiment X1

and X2. The difference U = |X1 − X2| measures the uncertainty between two

outcomes. If the additional information of the form B = { a ≤ X1,X2 ≤ b } is

provided then uncertainty should reduce.

Let B = {a < X1, X2 < b} and F (x) = P (X ≤ x). If the additional

information B is provided then the marginal probability density function of U =

|X1 −X2| given B, is

g(u; a, b) =
1

(FX(b)− FX(a))2

b∫
a+u

fX(x)fX(x− u)dx, ∀ u ∈ [0, b− a]. (2.2.7)

Chen (2013) shows that if X1 and X2 have log-concave probability density

functions which take value in B, then the conditional Shannon entropy of U given

B is partially monotonic in B. Shangari and Chen (2012) claimed and Gupta

and Bajaj (2013) proved that if X1 and X2 have log-concave probability density

functions which takes value in B, then the conditional Tasalli and Renyi entropy

of U given B, is partially increasing function of B if α > 0, α 6= 1. Here we want

to study the partial monotonic behaviour of the conditional Varma entropy of

U given B. The following lemma is useful in proving the next result of the section.
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Lemma 2.2.1:

(a) Let X1 and X2 have log-concave probability density functions. If the function

φ(u) is increases in u, then E(φ(U)|a < X1, X2 < b) is increasing in b for any

a, and decreasing in a for any b; where U = |X1 −X2|.

(b) If fX(x) is log-concave, then g(u; a, b) is decreasing function of u on u ∈
[0, b− a].

Proof:

(a) For a < b1 < b2 and 0 < u < b1 − a, we have g(u; a, b) is totally positive of

order 2 according to Chen (2013), i.e.,

∣∣∣∣∣∣ g(u; a, b1) g(u; a, b2)

g(u+ δ; a, b1) g(u+ δ; a, b2)

∣∣∣∣∣∣ ≥ 0,

g(u; a, b1)g(u+ δ; a, b2) ≥ g(u; a, b2)g(u+ δ; a, b1).

This implies

g(u; a, b1){g(u+ δ; a, b2)− g(u; a, b2)} ≥ g(u; a, b2){g(u+ δ; a, b1)− g(u; a, b1)}.

Dividing both side by δ and letting δ → 0, we get

g(u; a, b1)

{
lim
δ→0

g(u+ δ; a, b2)− g(u; a, b2)

δ

}
≥ g(u; a, b2)

{
lim
δ→0

g(u+ δ; a, b1)− g(u; a, b1)

δ

}
⇒ g(u; a, b1)g′(u; a, b2) ≥ g(u; a, b2)g′(u; a, b1),

⇒ g′(u; a, b2)

g(u; a, b2)
≥ g′(u; a, b1)

g(u; a, b1)
.

Integrating both sides of above inequality with respect to u, we have

log g(u; a, b2)− log g(u; a, b1) ≥ 0.
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Let f(u; a, b) = log g(u; a, b2) − log g(u; a, b1), and differentiating both sides

with respect to u, we have

d

du
f(u; a, b) =

1

g(u; a, b2)

d

du
g(u; a, b2)− 1

g(u; a, b1)

d

du
g(u; a, b1)

=
g(u; a, b1)g′(u; a, b2)− g(u; a, b2)g′(u; a, b1)

g(u; a, b1)g(u; a, b2)
≥ 0.

This implies that log g(u; a, b2)− log g(u; a, b1) is an increasing function of u

over u > 0 for all a < b1 < b2 , i.e., g(u;a,b2)
g(u;a,b1)

is increasing in u, for b1 < b2.

⇔ [U |X ∈ (a, b1)] ≤lr [U |X ∈ (a, b2)] ⇒ [U |X ∈ (a, b1)] ≤st [U |X ∈ (a, b2)]

⇔ E(φ(U)|a < X < b1) ≤ E(φ(U)|a < X < b2),

where φ is increasing function.

(b) Differentiating equation (2.2.7) with respect to u, we have

d

du
g(u; a, b) =

1

(FX(b)− FX(a))2

d

du

(∫ b

a+u

fX(x) fX(x− u)dx

)
=

−1

(FX(b)− FX(a))2

(∫ b

a+u

fX(x)
d

du
fX(x− u) dx + fX(a)fX(a+ u)

)
< 0.

Hence the result.

Now, we will prove the following theorem which provides the conditions for

conditional Varma entropy of U given B, to be partially increasing/decreasing

function of B.

Theorem 2.2.2:

Let the random variables X1 and X2 have log-concave probability density func-

tions and B = {a ≤ X1, X2 ≤ b}, then

(a) the conditional Varma entropy of U given B, is partially increasing function

of B, if α + β < 2.

(b) the conditional Varma entropy of U given B, is partially decreasing function

of B, if α + β > 2.
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Proof:

(a) The conditional Varma entropy of order α and type β for U given B, is:

Hβ
α(U) =

1

β − α
log

(∫ b

a

(g(u; a, b))α+β−1 du

)
, β − 1 < α < β, β ≥ 1.

For fixed a, if we choose for any b1 ≤ b2,

ψ1(u) = (g(u; a, b1))α+β−1 (g(u; a, b2))(α+β−1)(α+β−2)

and

ψ2(u) = (g(u; a, b2))(α+β−1)(2−α−β),

clearly here ψ1(u) and ψ2(u) are non-negative. Also, let p = 1
α+β−1

and

q = 1
2−α−β , then p > 0, q > 0 and 1

p
+ 1

q
= 1. Now using Hölder’s inequality

we have∫
ψ1(u)ψ2(u)du ≤

(∫
(ψ1(u))pdu

)1/p(∫
(ψ2(u))qdu

)1/q

,

i.e.,

∫
(g(u; a, b1))α+β−1du

≤
(∫

g(u; a, b1)(g(u; a, b2))α+β−2du

)α+β−1(∫
(g(u; a, b2))α+β−1du

)2−α−β

,

⇒

( ∫
(g(u; a, b1))α+β−1du(∫

(g(u; a, b2))α+β−1du
)2−α−β

) 1
α+β−1

≤
∫

(g(u; a, b2))α+β−2g(u; a, b1)du.

(2.2.8)

For fixed b2 > 0, let

φ1(u) = (g(u; a, b2))α+β−2;

then,

φ′1(u) = (α + β − 2)(g(u; a, b2))α+β−3g′(u; a, b2) ≥ 0,

as the probability density function g(u; a, b) is decreasing in u for 0 ≤ u ≤ b−a
(Using Lemma 2.2.1 (b)) and α+ β < 2. Hence φ1(u) increases in u. There-

fore, by lemma 2.2.1 (a) for any a < b1 < b2, we have
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E(φ(U)|a ≤ X1, X2 ≤ b1) ≤ E(φ(U)|a ≤ X1, X2 ≤ b2),

⇒
∫

(g(u; a, b2))α+β−2g(u; a, b1)du ≤
∫

(g(u; a, b2))α+β−1du, (2.2.9)

From (2.2.8) and (2.2.9) , we have

( ∫
(g(u; a, b1))α+β−1du(∫

(g(u; a, b2))α+β−1du
)2−α−β

) 1
α+β−1

≤
∫

(g(u; a, b2))α+β−1du,

⇒
(∫

(g(u; a, b1))α+β−1du)

) 1
α+β−1

≤
(∫

(g(u; a, b2))α+β−1du

) 1
α+β−1

⇒
∫

(g(u; a, b1))α+β−1du ≤
∫

(g(u; a, b2))α+β−1du (2.2.10)

Therefore we have

1

β − α
log

(∫
(g(u; a, b1))α+β−1du

)
≤ 1

β − α
log

(∫
(g(u; a, b2))α+β−1du

)
,

i.e., Hβ
α(U |a < X1, X2 < b1) ≤ Hβ

α(U |a < X1, X2 < b2); for b1 ≤ b2.

Hence, the conditional Varma entropy of U given B, is increasing in b for

fixed a, if α + β < 2.

Now for fixed b, if we choose for any a1 ≤ a2,

ψ3(u) = (g(u; a1, b))
α+β−1
α+β−2 (g(u; a2, b))

α+β−1

and

ψ4(u) = (g(u; a1, b))
α+β−1
2−α−β ,

clearly ψ3(u) and ψ4(u) are non-negative. Also, let p = α+β−2
α+β−1

and q =
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2− α − β, then p < 1, q < 0 and 1
p

+ 1
q

= 1. Now using Hölder’s inequality

we have

(∫
(ψ3(u))pdu

)1/p(∫
(ψ4(u))qdu

)1/q

≤
∫
ψ3(u)ψ4(u)du,

i.e.,

(∫
g(u; a1, b) (g(u; a2, b))

α+β−2 du

)α+β−1
α+β−2

(∫
(g(u; a1, b))

α+β−1du

) 1
2−α−β

≤
∫

(g(u; a2, b))
α+β−1du,

⇒
∫
g(u; a1, b)(g(u; a2, b))

α+β−2du ≤

 ∫
(g(u; a2, b))

α+β−1du(∫
(g(u; a1, b))α+β−1du

) 1
2−α−β


α+β−2
α+β−1

.

(2.2.11)

For fixed a2 > 0, let

φ2(u) = (g(u; a2, b))
α+β−2;

then,

φ′2(u) = (α + β − 2)(g(u; a2, b))
α+β−3g′(u; a2, b) ≥ 0,

as the probability density function g(u; a, b) is decreasing in u for 0 ≤ u ≤
b − a (Using Lemma 2.2.1 (b)) and α + β < 2. Hence φ2(u) increases in u.

Therefore, by lemma 2.2.1 (a) for any a1 < a2 < b, we have

E(φ(U)|a2 ≤ X1, X2 ≤ b) ≤ E(φ(U)|a1 ≤ X1, X2 ≤ b),

⇒
∫

(g(u; a2, b))
α+β−1du ≤

∫
(g(u; a2, b))

α+β−2g(u; a1, b)du, (2.2.12)

From (2.2.11) and (2.2.12) , we have

∫
(g(u; a2, b))

α+β−1du ≤

 ∫
(g(u; a2, b))

α+β−1du(∫
(g(u; a1, b))α+β−1du

) 1
2−α−β


α+β−2
α+β−1

,

⇒
(∫

(g(u; a2, b))
α+β−1du

) 1
α+β−1

≤
(∫

(g(u; a1, b))
α+β−1du

) 1
α+β−1

⇒
∫

(g(u; a2, b))
α+β−1du ≤

∫
(g(u; a1, b))

α+β−1du. (2.2.13)
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Therefore we have

1

β − α
log

(∫
(g(u; a2, b))

α+β−1du

)
≤ 1

β − α
log

(∫
(g(u; a1, b))

α+β−1du

)
,

i.e., Hβ
α(U |a2 < X1, X2 < b) ≤ Hβ

α(U |a1 < X1, X2 < b); for a1 ≤ a2.

Hence, the conditional Varma entropy of U given B is decreasing in a for

fixed b, if α + β < 2.

Therefore the conditional Varma entropy of U given B is partially increasing

in B.

(b) Similarly we can prove that, the conditional Varma entropy of U given B, is

partially decreasing function of B, if α + β > 2.

�

The above theorem, ensures that if α + β < 2, then the conditional Varma

entropy of U given B, partially increases in B; hence its reasonability of being

an entropy measure.

The following examples describe the densities where Theorem 2.2.2 is appli-

cable.

Example 2.2.3:

Let X1 and X2 be two independent Weibull random variables with the common

probability density function

fµ(x) = µλ(λx)µ−1e−(λx)µ , x ≥ 0, µ ≥ 1, λ ≥ 0.

Since Weibull density is log-concave if µ ≥ 1, using Theorem 2.2.2 conditional

Varma entropy of U given interval B, is partially increasing (decreasing) function

of B if α + β < 2 (α + β > 2).
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Example 2.2.4:

Let X1 and X2 be two independent gamma random variables with common prob-

ability density function

fµ, λ(x) =
λµ

Γ(µ)
xµ−1e−λx, x ≥ 0, µ ≥ 1, λ ≥ 0.

Since gamma density is log-concave if µ ≥ 1, using Theorem 2.2.2 conditional

Varma entropy of U given interval B, is partially increasing (decreasing) function

of B if α + β < 2 (α + β > 2).

2.3 Application of Varma entropy in coding the-

ory

Consider a source code C for a random variable X. Each realization of X as

xi, i = 1, . . . , n, can take some values from a set of codewords {a1, . . . , aD}. The

length of code associated with xi be denoted by li, i = 1, . . . , n. Let L denote

the average codeword length. It is known that the average codeword length L

lies between

HD(X) ≤ L < HD(X) + 1,

where HD(X) = −
∑
pi logD pi (see chapter 5, pp 112, Cover and Thomas

(2006)). We refer reader to Cover and Thomas (2006) for a detailed review

of coding theory and information theory.

Note that minimizing a monotonic increasing function of a mean codeword

length provide the same result as minimizing the mean codeword length itself.

Therefore we provide a result for all uniquely decipherable codes for Varma en-

tropy (a similar result is also stated in Tuli (2011)).

Theorem 2.2.3:

For all uniquely decipherable codes the correspondence between mean codeword

length and entropy measures is

Hβ
α(X) ≤ L(α , β) < Hβ

α(X) + 1,
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where

Hβ
α(X) =

1

(β − α)
logD

(
n∑
i=1

pi
α+β−1

)
, β − 1 < α < β, β ≥ 1, (2.3.1)

and

L(α , β) =

(
α + β − 1

β − α

)
logD

(
n∑
i=1

piD
li( β−α

α+β−1)

)
, where D ≥ 2, (2.3.2)

are, respectively, the Varma entropy and its mean codeword length.

Proof:

From Hölder’s inequality we know that

(
n∑
i=1

xpi

) 1
p
(

n∑
i=1

yqi

) 1
q

≤

(
n∑
i=1

xiyi

)
,

1

p
+

1

q
= 1 ( p < 1, q < 0) (2.3.3)

Let xi = p
(α+β−1
α+β−2)

i D−li and yi = p
(α+β−1
2−α−β )

i . If we choose p = α+β−2
α+β−1

and q =

(2− α− β), then
1

p
+

1

q
= 1( p < 1, q < 0). After substituting these values

in equation (2.3.3) , we get

(
n∑
i=1

piD
−li(α+β−2

α+β−1)

)α+β−1
α+β−2

(
n∑
i=1

pα+β−1
i

) 1
2−α−β

≤
n∑
i=1

D−li ≤ 1.

Taking log of both sides, we get

(
α + β − 1

α + β − 2

)
logD

(
n∑
i=1

piD
−li(α+β−2

α+β−1)

)
+

(
1

2− α− β

)
logD

(
n∑
i=1

pα+β−1
i

)
≤ 0,

1

2− α− β

[
logD

(
n∑
i=1

pα+β−1
i

)
− (α + β − 1) logD

(
n∑
i=1

piD
−li(α+β−2

α+β−1)

)]
≤ 0,

logD

(
n∑
i=1

pα+β−1
i

)
≤ (α + β − 1) logD

(
n∑
i=1

piD
−li(α+β−2

α+β−1)

)
.

Dividing both side by (β − α), we get

(
1

β − α

)
logD

(
n∑
i=1

pα+β−1
i

)
≤
(
α + β − 1

β − α

)
logD

(
n∑
i=1

piD
−li(α+β−2

α+β−1)

)
.

(2.3.4)
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So that, if li’s are to be integers, the lower bound for L(α , β) lies between Hβ
α(X)

and Hβ
α(X) + 1. �

We take the following example to illustrate the application of Varma entropy

in coding theory.

Example 2.2.5:

Consider the following information transmission scenario where Alice attempts

to communicate the outcome X of rolling a die experiments to her friend Bob.

Assume that Alice is using an irregular five sided die for the experiment. Suppose

the outcomes (source alphabets in a communication setup) follow the probability

distribution as given below:

Table 2.1: Probability distribution

X 1 2 3 4 5

pi 0.5 0.2 0.1 0.1 0.1

The problem here is to encode the source alphabets with minimum bits pos-

sible. Alice chooses an encoding method and encodes the outcomes 1, 2, 3, 4, 5

respectively with 1, 3, 3, 3, 3 bit-strings. From equations (2.3.1) and (2.3.2), we

obtain the results for fixed value of β and various values of α. These results are

illustrated in Table 2.2. The Table 2.2 shows that the mean codeword length of

Varma entropy is greater then Varma entropy for the values of α and β considered

in this example and thus demonstrating the theorem 2.2.3
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Table 2.2: Entropy is lower bound of mean codeword length

β α Hβ
α(X) L(α, β)

1 0.10 2.287 2.888

1 0.15 2.270 2.823

1 0.20 2.253 2.751

1 0.25 2.235 2.674

1 0.30 2.216 2.595

1 0.35 2.199 2.517

1 0.40 2.181 2.446

1 0.45 2.163 2.376

1 0.50 2.144 2.320

2.4 Conclusion

If X is an absolutely continuous random variable and the distribution func-

tion FX(x) is log-concave then it is proved that the conditional Varma entropy

Hβ
α(X|A) is partially decreasing (increasing) in interval A = (a, b). Further it

is proved that if random variables X1 and X2 be independent and identically

distributed copies of X and have log-concave probability density function then

the conditional Varma’s entropy of U = |X1 −X2| given B = {a ≤ X1, X2 ≤ b}
is partially increasing (decreasing) function on B if α + β < 2(α + β > 2).
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Chapter 3

Some Characterization Results

on Dynamic cumulative residual

Tsallis entropy

3.1 Introduction

For a residual lifetime Xt = [X − t|X > t], where t > 0, Ebrahimi (1996) defined

an entropy as a dynamic measure of uncertainty which is given by

H(X; t) = −
∞∫
t

f(x)

F̄ (t)
log

(
f(x)

F̄ (t)

)
dx. (3.1.1)

Alternative entropy was introduced by Rao et al. (2004) which is based on sur-

vival function instead of probability density function. Rao et al. (2004) defined

entropy as

ξ(X) = −
∫ ∞

0

F̄ (x) log
(
F̄ (x)

)
dx, (3.1.2)

and called it as the cumulative residual entropy (CRE).

For the study of the properties and applications of CRE, we refer to Asadi and
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Ebrahimi (2000), Asadi et al. (2005), Rao (2005), Drissi et al. (2008), Gupta

(2009), Di Crescenzo and Longobardi (2009), Navarro et al. (2010), Gupta and

Taneja (2012), Taneja and Kumar (2012).

For a residual lifetime Xt = [X − t|X > t], Asadi and Zohrevand (2007) defined

the dynamic measure of CRE as

ξ(X; t) = −
∞∫
t

F̄ (x)

F̄ (t)
log

(
F̄ (x)

F̄ (t)

)
dx, (3.1.3)

and called it as dynamic cumulative residual entropy (DCRE).

Abbasnejad et al. (2010) proposed dynamic survival entropy of order α and gave

the relation of dynamic survival entropy with the mean residual life function. Fur-

ther Sunoj and Linu (2010) defined cumulative residual Renyi entropy of order

β and its dynamic version. Recently Kumar and Taneja (2011) defined general-

ized cumulative residual information measure and its dynamic version based on

Varma’s entropy function.

Renyi (1961) defined the generalized entropy of order α as

Hα(X) =
1

1− α
log

(∫ ∞
0

(f(x))αdx

)
, α > 0, α 6= 1. (3.1.4)

Tsallis (1988) defined the generalized entropy of order α as

Sα(X) =
1

α− 1

(
1−

∫ ∞
0

(f(x))αdx

)
, α > 0, α 6= 1. (3.1.5)

Both the entropies (3.1.4) and (3.1.5) approaches the Shannon entropy (2.1.1) as

α → 1. There is a close relationship between the Renyi entropy and the Tsallis

entropy given as

Hα(X) =
1

(α− 1)
log [1− (α− 1)Sα(X)].

It may be noted that Tsallis entropy is a non-extensive entropy and it is non-

logarithmic. However, Renyi entropy is an extensive entropy which is the major

difference between them [cf. Beck (2009), Gupta and Bajaj (2013)].
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Tsallis entropy plays a central role in different areas such as physics, chem-

istry, biology, medicine, economics etc. Cartwright (2014) proposed applications

of Tsallis entropy in various fields such as describing the fluctuation of mag-

netic field in solar wind, signs of breast cancer in mammograms, atoms in optical

lattices, analysis in magnetetic resonance imaging (MRI).

The aim of the chapter is to study the cumulative residual information based

on non-extensive entropy measures and characterize some well known life time

distributions and probability models. The empirical form of this information

measure is useful for real data problems. In section 2, we propose a cumulative

residual entropy based on Tsallis entropy of order α and its dynamic version.

Also, we study some characterization results using the relationship of dynamic

cumulative residual Tsallis entropy (DCRTE) with hazard rate function and mean

residual life function. In section 3, we define new classes of life distribution based

on this measures. In section 4, we propose the weighted form of DCRTE and

study its various properties. In section 5 we introduce the empirical cumulative

Tsallis entropy, and express it in terms of the sample spacings. In order to study

the empirical cumulative Tsallis entropy, an example is also being provided.

3.2 Dynamic cumulative residual Tsallis entropy

(DCRTE)

In this section, we define the cumulative residual Tsallis entropy and dynamic

cumulative residual Tsallis entropy (DCRTE). We also give some characterization

results of well known distributions in term of DCRTE.

Definition 3.2.1:

For a random variable X with survival function (sf) F̄ (x), the cumulative resid-

ual entropy of order α denoted by ηα(X) is defined as
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ηα(X) =
1

α− 1

(
1−

∫ ∞
0

(F̄ (x))αdx

)
, α > 0, α 6= 1. (3.2.1)

In case α→ 1, (3.2.1) gives

lim
α→1

ηα(X) = ξ(X). (3.2.2)

Let us consider a unit whose random life is represented by random variable X.

Let the unit survive up to time t, then the information based on entropy of the

random variable X may not be useful. In that case we may consider dynamic

(time dependent) information based on the entropy of the random variable Xt =

[X−t|X > t]. The random variable Xt = [X−t|X > t] has the survival function:

F̄t(x) =


F̄ (x)

F̄ (t)
, where x > t

1, otherwise.
(3.2.3)

Definition 3.2.2:

For a random variable Xt with survival function F̄ (x), the dynamic cumulative

residual entropy of order α denoted by ηα(X; t) is defined as

ηα(X; t) =
1

α− 1

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx

 , α > 0 , α 6= 1. (3.2.4)

The following theorem shows that, the dynamic cumulative residual entropy

determines the survival function F̄ (x) uniquely.

Theorem 3.2.1:

Let the non-negative random variable X have the density function f(x), the

survival function F̄ (x) and the hazard rate r(x). Assume that ηα(X; t) < ∞;

t ≥ 0; ∀α > 0 , α 6= 1. Then for each α, ηα(X; t) (where η′α(X; t) 6= 0 ) uniquely

determines the survival function F̄ (t).
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Proof:

Consider the dynamic cumulative residual Tsallis entropy of order α as (3.2.4).

Therefore, we have

(α− 1) ηα(X; t) = 1−

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α . (3.2.5)

Differentiating (3.2.5) with respect to t, we have

(α− 1) η′α(X; t) = 1− αf(t)

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α+1

= 1− αr(t)

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α

= 1 + αr(t) ((α− 1)ηα(X; t)− 1) , (3.2.6)

where the last step follows from (3.2.5) and r(x) = f(x)/F̄ (x) be the hazard rate

function of random variable X.

Consider two survival functions F̄1(t) and F̄2(t) having dynamic entropies as

ηα(X1; t) and ηα(X2; t), and hazard rate functions r1(t) and r2(t), respectively

such that

(α− 1) η′α(X1; t) = (α− 1) η′α(X2; t),

using (3.2.6), we get

1 + α r1(t) ((α− 1)ηα(X1; t) − 1) = 1 + α r2(t) ( (α− 1)ηα(X2; t)− 1 ) .

(3.2.7)

Taking ηα(X1; t) = ηα(X2; t) = ηα(X; t) in (3.2.7), we obtain r1(t) = r2(t) or

equivalently F̄1(t) = F̄2(t). �

Now we provide some characterization results in terms of relationship be-

tween DCRTE and hazard rate function r(t).
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Theorem 3.2.2:

Let X be a non-negative continuous random variable with survival function

F̄ (t), hazard rate function r(t) and dynamic cumulative residual Tsallis entropy

ηα(X; t); then the relationship

(α− 1) η′α(X; t) = c r(t), α > 0 , α 6= 1, (3.2.8)

gives survival function F̄ (t) = exp

{
−

t∫
0

1√
K−2αcx

dx

}
, where K is the constant

of integration and characterizes,

(i) an exponential distribution for K > 0 and c = 0 with survival function

F̄ (t) = e−λt , λ =
1√
K

> 0, t > 0

and

(ii) Weibull distribution for K = 0 and c < 0(c = −a, a > 0), with survival

function

F̄ (t) = e−(γt)
1
2 , γ =

2

aα
> 0, t > 0.

Proof:

Under the assumption that the equation (3.2.8) holds; using (3.2.6), we have

1 + α r(t) { (α− 1) ηα(X; t) − 1 } = c r(t)

or equivalently, using (3.2.5),

F̄ (t)

f(t)
− c = α


∞∫
t

F̄α(x) dx

F̄α(t)

. (3.2.9)
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Differentiating equation (3.2.9) with respect to t, we have

−
[
1 +

F̄ (t)

(f(t))2
f ′(t)

]
= α

−1 + α
f(t)

F̄ (t)


∞∫
t

F̄α(x) dx

F̄α(t)




⇒ −
[
1 +

1

r(t)
· f
′(t)

f(t)

]
= α

[
−1 + r(t)

(
F̄ (t)

f(t)
− c

) ]
⇒

[
1 +

1

r(t)
· f
′(t)

f(t)

]
= αc r(t)

⇒ α c (r(t))2 − r(t) =
f ′(t)

f(t)

⇒ α c (r(t))2 =
d

dt
( log r(t) ) . (3.2.10)

Now letting log (r(t)) = y, that is, r(t) = ey, equation (3.2.10) reduces to

α c e2y =
dy

dt
,

i.e., e−2ydy = α c dt.

Integrating on both sides, we have

e−2y = K − 2α c t,

where K is a constant. Therefore, r(t) = ey provides

r(t) =
1√

K − 2αct
.

Since the hazard rate uniquely determines the survival function using the rela-

tionship F̄ (t) = exp

{
−

t∫
0

r(x) dx

}
, consider the following case.

(i) For K > 0 and c = 0, F̄ (t) = exp

{
−

t∫
0

1√
K
dx

}
or equivalently F̄ (t) =

e−λt, where λ = 1√
K
> 0.

(ii) For c 6= 0, survival function F̄ (t) = e−
√
K
αc e

√
K−2αct
αc . Further, for K = 0

and c < 0 (c = −a, a > 0), F̄ (t) = e−(γt)
1
2 , where γ = 2

aα
> 0.
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Converse:

We assume that random variable X is distributed exponentially with p.d.f. λe−λx,

λ > 0, x ≥ 0. Using equation (3.2.5) , we have (α− 1) ηα(X; t) =
(
1− 1

αλ

)
from

which equation (3.2.8) follows with c = 0.

When X is distributed as Weibull with p.d.f. βγβxβ−1e−(γx)β , γ > 0, β = 1
2
,

x ≥ 0. Using equation (3.2.5) , we have (α− 1) ηα(X; t) = 1− 2
α2γ

(
1 + α(γt)

1
2

)
which on differentiation yields (α− 1) η′α(X; t) = − 1/α(γt)

1
2 = c r(t) with

r(t) = (1/2)(γ/t)1/2 and c = −a < 0. �

The following theorem characterize the distributions using relationship be-

tween DCRTE and mean residual life (MRL) mF (t).

Theorem 3.2.3:

Let X be a non-negative continuous random variable with survival function F̄ (t),

MRL mF (t) and dynamic cumulative residual Tsallis entropy of order α, ηα(X; t).

Then

(α− 1) ηα(X; t) = 1−KmF (t) , α > 0 , α 6= 1, (3.2.11)

iff X has

(i) an exponential distribution for K = 1
α

,

(ii) a Pareto distribution for K < 1
α

and

(iii) a finite range distribution for K > 1
α

.

Proof:

(i) If random variable X denote an exponential distribution, then it has p.d.f.,

the survival function and the mean residual life, respectively as

f(t) = λ e−λt, λ > 0, t > 0,

F̄ (t) = e−λt and mF (t) =
1

λ
.
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The dynamic cumulative residual Tsallis entropy of order α, ηα(X; t) is

ηα(X; t) =
1

α− 1

1−

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α

 ,

(α− 1) ηα(X; t) = 1−

∞∫
t

(
e−λx

)α
dx

(e−λt)α

= 1− 1

αλ

= 1−KmF (t),

where K = 1
α

and mF (t) = 1
λ
.

(ii) If random variable X denote the Pareto distribution, then it has p.d.f., the

survival function and the mean residual life, respectively as

f(t) =

(
1 +

t

a

)−a−1

, a > 1, t > 0,

F̄ (t) =

(
1 +

t

a

)−a
and mF (t) =

(a+ t)

(a− 1)
.

The dynamic cumulative residual Tsallis entropy of order α, ηα(X; t) is

(α− 1) ηα(X; t) = 1−

∞∫
t

(
1 + x

a

)−aα
dx(

1 + t
a

)−aα
= 1− a+ t

αa− 1

= 1−
(
a− 1

αa− 1

)(
a+ t

a− 1

)
= 1−KmF (t),

where K = (a−1)
(αa−1)

< 1
α

if α > 1 and mF (t) = (a+t)
(a−1)

.
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(iii) If random variable X denote the finite range distribution, then it has p.d.f.,

the survival function and the mean residual life, respectively as

f(t) = b (1− t)b−1 , b > 0, 0 < t < 1,

F̄ (t) = (1− t)b and mF (t) =
(1− t)
(b+ 1)

.

The dynamic cumulative residual Tsallis entropy of order α, ηα(X; t) is

(α− 1) ηα(X; t) = 1−

∞∫
t

(1− x)bα dx

(1− t)bα

= 1− 1− t
αb+ 1

= 1−
(
b+ 1

αb+ 1

)(
1− t
b+ 1

)
= 1−KmF (t),

where K = (b+1)
(αb+1)

> 1
α

if α > 1 and mF (t) = (1−t)
(b+1)

.

Converse:

Let equation (3.2.11) hold. Using equation (3.2.5), we get

KmF (t) =

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α , (3.2.12)

differentiating equation (3.2.12) with respect to t, we obtain

Km′F (t) = −1 + αr(t)

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α

= −1 + αr(t)KmF (t) . (3.2.13)

Using the relation between mean residual life and hazard rate, that is, r(t)mF (t) =

1 +m′F (t), we have

m′F (t) =
(Kα− 1)

K(1− α)
. (3.2.14)

44



Integrating equation (3.2.14) on both sides with respect to t over (0, x), we get

mF (x) =
(Kα− 1)

K(1− α)
x+mF (0). (3.2.15)

The equation (3.2.15) is linear in MRL function mF (x) of continuous random

variable X, if and only if the underlying distribution is exponential (K = 1
α

),

Pareto (K < 1
α

) or finite range (K > 1
α

) refer to Hall and Wellner (1981). This

completes the theorem. �

3.3 New class of life distributions

In this section, we define new class of life distributions based on the dynamic

cumulative residual Tsallis entropy (DCRTE) of order α.

Definition 3.3.1:

The distribution function F is said to be increasing dynamic cumulative residual

Tsallis entropy (IDCRTE), if ηα(X; t) is an increasing function of t. Similarly,

the distribution function F is said to be decreasing dynamic cumulative residual

Tsallis entropy (DDCRTE), if ηα(X; t) is an decreasing function of t.

The following theorem gives the necessary and sufficient condition for ηα(X; t)

to be increasing (decreasing) DCRTE.

Theorem 3.3.1:

The distribution function F is increasing (decreasing) DCRTE if and only if for

all t ≥ 0.

ηα(X; t) ≥ (≤)
1

(α− 1)

(
1 − 1

αr(t)

)
, ∀ α > 0 , α 6= 1 (3.3.1)

Proof:
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The dynamic cumulative residual Tsallis entropy of order α is

ηα(X; t) =
1

α− 1

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx

 .

Differentiating the above equation with respect to t, we have

η′α(X; t) =
1

α− 1

1− αr(t)

∞∫
t

(
F̄ (x)

)α
dx(

F̄ (t)
)α


=

1

α− 1
{1 + αr(t) ((α− 1)ηα(X; t)− 1)},

the DCRTE of order α, ηα(X; t) is increasing (decreasing) function of t, if η′α(X; t) ≥
(≤) 0. Therefore

1

α− 1
{1 + αr(t) ((α− 1)ηα(X; t)− 1)} ≥ (≤) 0.

Hence

ηα(X; t) ≥ (≤)
1

(α− 1)

(
1 − 1

αr(t)

)
, ∀ α > 0 , α 6= 1.

�

In the following theorem, we give the hazard rate ordering using the DCRTE.

Theorem 3.3.2:

Let X and Y be two non-negative absolutely continuous random variables with

survival functions F̄ (t) and Ḡ(t), and hazard rate functions rF (t) and rG(t),

respectively. If X ≥hr Y , that is rF (t) ≤ rG(t) for all t ≥ 0, then

(i) ηα(X; t) ≤ ηα(Y ; t) for α > 1.

(ii) ηα(X; t) ≥ ηα(Y ; t) for 0 < α < 1.

Proof:

The assumption that rF (t) ≤ rG(t) implies F̄Xt(x) ≥ ḠXt(x).

(
F̄ (x)

F̄ (t)

)α
≥
(
Ḡ(x)

Ḡ(t)

)α
, ∀ α > 0,
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1−
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx ≤ 1−

∞∫
t

(
Ḡ(x)

Ḡ(t)

)α
dx.

(i) For α > 1

1

(α− 1)

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx

 ≤ 1

(α− 1)

1 −
∞∫
t

(
Ḡ(x)

Ḡ(t)

)α
dx

 .

Hence

ηα(X; t) ≤ ηα(Y ; t).

(ii) For 0 < α < 1

1

(1− α)

 ∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx− 1

 ≥ 1

(1− α)

 ∞∫
t1

(
Ḡ(x)

Ḡ(t)

)α
dx− 1


⇒ 1

(α− 1)

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx

 ≥ 1

(α− 1)

1 −
∞∫
t

(
Ḡ(x)

Ḡ(t)

)α
dx

 .

Hence

ηα(X; t) ≥ ηα(Y ; t).

�

In the following lemma, we discuss the effect of linear transformation on

DCRTE.

Lemma 3.3.1:

For any non-negative random variable X, let Z = aX+b, where a > 0 and b ≥ 0,

then

ηα(Z; t) =
(1− a)

(α− 1)
+ a ηα

(
X;

t− b
a

)
, t ≥ b.
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Proof:

For non-negative random variable Z = aX + b, the DCRTE of order α is

ηα(Z; t) =
1

α− 1

1 −
∞∫
t

(
F̄Z(x)

F̄Z(t)

)α
dz

 ,

ηα(Z; t) =
1

α− 1

1 −
∞∫
t

(
F̄X
(
x−b
a

)
F̄X
(
t−b
a

))α

a dx


=

1

α− 1

{
1 + a

(
(α− 1)ηα

(
X;

t− b
a

)
− 1

)}
=

1

α− 1

{
1− a+ a(α− 1)ηα

(
X;

t− b
a

)}
=

1− a
α− 1

+ a ηα

(
X;

t− b
a

)
.

�

3.4 Weighted dynamic cumulative residual Tsal-

lis entropy

Let X be a random variable with probability density function f(t) and survival

function F̄ (t). Let XW be weighted random variable associated to X and their

probability density function and survival function denoted by fw(t) and F̄w(t),

given by

fw(t) =
w(t) fX(t)

E(w(X))

and

F̄w(t) =
E(w(X) |X > t) F̄X(t)

E(w(X))
; 0 < E(w(X)) <∞.

The weighted dynamic cumulative residual Tsallis entropy denoted by ηα(W ; t)

is proposed as
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ηα(W ; t) =
1

(α− 1)

 1 −
∞∫
t

(
F̄w(x)

F̄w(t)

)α
dt

 , α > 0 , α 6= 1. (3.4.1)

The importance of weighted distribution can be seen in Patil and Rao (1977),

Gupta and Kirmani (1990), Nair and Sunoj (2003), Di Crescenzo and Longobardi

(2006), Maya and Sunoj (2008). For the weighted distribution, we obtain the

following result based on MRL ordering.

Theorem 3.4.1:

(i) If E(w(X) |X > x) ≤ E(w(X) |X > t) for all x ≥ t, then

(a) ηα(W ; t) ≤ ηα(X; t) for 0 < α < 1.

(b) ηα(W ; t) ≥ ηα(X; t) for α > 1.

(ii) If E(w(X) |X > x) ≥ E(w(X) |X > t)for all x ≥ t, then

(a) ηα(W ; t) ≥ ηα(X; t) for 0 < α < 1.

(b) ηα(W ; t) ≤ ηα(X; t) for α > 1.

Proof:

Rewriting equation (3.4.1), we have

ηα(W ; t) =
1

(α− 1)

1 −
∞∫
t

(
F̄w(x)

F̄w(t)

)α
dx


=

1

(α− 1)

1 −
∞∫
t

[E (w(X) |X > x) F̄ (x) ]α

[E (w(X) |X > t) F̄ (t) ]α
dx


=

1

(α− 1)

1 −
∞∫
t

[
E (w(X) |X > x)

E (w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx

 . (3.4.2)

(i) If E(w(X)|X > x) ≤ E(w(X) |X > t) for all x ≥ t, that is,[
E(w(X) |X > x)

E(w(X) |X > t)

]
≤ 1, ∀x ≥ t,
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then we have

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx .

.

(a) For 0 < α < 1

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(α− 1)
+

1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
− 1

(α− 1)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(α− 1)
− 1

(α− 1)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
E(w(X)|X > x)

E(w(X)|X > t)

]α(
F̄α(x)

F̄α(t)

)
dx

 ≤ 1

(α− 1)

1−
∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

 .

(3.4.3)

Now using (3.4.2) and (3.2.4) , from (3.4.3) we get

ηα(W ; t) ≤ ηα(X; t) .

(b) For α > 1

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx,

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(α− 1)
+

1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
− 1

(α− 1)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(α− 1)
− 1

(α− 1)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
E(w(X)|X > x)

E(w(X)|X > t)

]α(
F̄α(x)

F̄α(t)

)
dx

 ≥ 1

(α− 1)

1−
∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

 .

(3.4.4)

Now using (3.4.2) and (3.2.4) , from (3.4.4) we get

ηα(W ; t) ≥ ηα(X; t) .
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(ii) If E(w(X) |X > x) ≥ E(w(X) |X > t) for all x ≥ t, that is,[
E(w(X) |X > x)

E(w(X) |X > t)

]
≥ 1 ∀x ≥ t,

then we have

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx .

.

(a) For 0 < α < 1

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(α− 1)
+

1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
− 1

(α− 1)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≥ 1

(α− 1)
− 1

(α− 1)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
E(w(X)|X > x)

E(w(X)|X > t)

]α(
F̄α(x)

F̄α(t)

)
dx

 ≥ 1

(α− 1)

1−
∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

 .

(3.4.5)

Now using (3.4.2) and (3.2.4) , from (3.4.5) we get

ηα(W ; t) ≥ ηα(X; t) .

(b) For α > 1

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(α− 1)
+

1

(1− α)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)
− 1

(α− 1)

∞∫
t

[
E(w(X) |X > x)

E(w(X) |X > t)

]α(
F̄α(x)

F̄α(t)

)
dx ≤ 1

(α− 1)
− 1

(α− 1)

∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
E(w(X)|X > x)

E(w(X)|X > t)

]α(
F̄α(x)

F̄α(t)

)
dx

 ≤ 1

(α− 1)

1−
∞∫
t

(
F̄α(x)

F̄α(t)

)
dx

 .

(3.4.6)
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Now using (3.4.2) and (3.2.4) , from (3.4.6) we get

ηα(W ; t) ≤ ηα(X; t) .

�

Particularly, when the weight function is defined as w(t) =
F̄ (t)

f(t)
, the cor-

responding weighted distribution becomes the equilibrium distribution. Let XE

be a random variable corresponding to equilibrium distribution with probability

density function fE(t) =
F̄ (t)

µ
, t > 0, and survival function F̄E(t) =

r(t)

µ
F̄ (t),

where µ = E(X) <∞, then dynamic cumulative residual Tsallis entropy of XE

is proposed as

ηα(E; t) =
1

α− 1

1 −
∞∫
t

(
F̄E(x)

F̄E(t)

)α
dx

 , α > 0 , α 6= 1. (3.4.7)

Theorem 3.4.2:

(i) If F̄ (t) has decreasing hazard rate, then

(a) ηα(E; t) ≥ ηα(X; t) for 0 < α < 1.

(b) ηα(E; t) ≤ ηα(X; t) for α > 1.

(ii) If F̄ (t) has increasing hazard rate, then

(a) ηα(E; t) ≤ ηα(X; t) for 0 < α < 1.

(b) ηα(E; t) ≥ ηα(X; t) for α > 1.

Proof:

Rewriting equation (3.4.7) , we have

ηα(E; t) =
1

(α− 1)

1 −
∞∫
t

(
F̄E(x)

F̄E(t)

)α
dx


=

1

(α− 1)

1 −
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx

 . (3.4.8)
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(i) If F̄ (t) has decreasing hazard rate, we have r(x) ≥ r(t) ∀x ≤ t, i.e.,

r(x)

r(t)
≥ 1 ∀x ≤ t,

then we have
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≥

∞∫
t

F̄α(x)

F̄α(t)
dx . (3.4.9)

(a) For 0 < α < 1

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≥ 1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≥ 1

(α− 1)
+

1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx

 ≥ 1

(α− 1)

 1−
∞∫
t

F̄α(x)

F̄α(t)
dx

 .

(3.4.10)

Now using (3.4.8) and (3.2.4) , from (3.4.10) we have

ηα(E; t) ≥ ηα(X; t) .

(b) For α > 1

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≤ 1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≤ 1

(α− 1)
+

1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx

 ≤ 1

(α− 1)

 1−
∞∫
t

F̄α(x)

F̄α(t)
dx

 .

(3.4.11)

Now using (3.4.8) and (3.2.4) , from (3.4.11) we have

ηα(E; t) ≤ ηα(X; t) .
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(ii) If F̄ (t) has increasing hazard rate, we have r(x) ≤ r(t) ∀x ≤ t, i.e.,

r(x)

r(t)
≤ 1 ∀x ≤ t,

then we have

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≤

∞∫
t

F̄α(x)

F̄α(t)
dx . (3.4.12)

(a) For 0 < α < 1

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≤ 1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≤ 1

(α− 1)
+

1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx

 ≤ 1

(α− 1)

 1−
∞∫
t

F̄α(x)

F̄α(t)
dx

 .

(3.4.13)

Now using (3.4.8) and (3.2.4) , from (3.4.13) we have

ηα(E; t) ≤ ηα(X; t) .

(b) For α > 1

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≥ 1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)
+

1

(1− α)

∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx ≥ 1

(α− 1)
+

1

(1− α)

∞∫
t

F̄α(x)

F̄α(t)
dx

⇒ 1

(α− 1)

1−
∞∫
t

[
r(x)

r(t)

]α
F̄α(x)

F̄α(t)
dx

 ≥ 1

(α− 1)

 1−
∞∫
t

F̄α(x)

F̄α(t)
dx

 .

(3.4.14)
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Now using (3.4.8) and (3.2.4) , from (3.4.14) we have

ηα(E; t) ≥ ηα(X; t) .

�

3.5 Empirical cumulative Tsallis entropy

Let X1, X2, .......Xn be non-negative, absolutely continuous, independent and

identically distributed random variables with distribution function F (x). Ac-

cording to equation (3.2.1), we define the empirical cumulative Tsallis entropy as

ηα ˆ(Fn) =
1

α− 1

(
1−

∫ ∞
0

(F̂n(x))αdx

)
, α > 0, α 6= 1, (3.5.1)

where

F̂n(x) =
1

n

n∑
i=1

I{Xi≤x}, x ∈ R,

is the empirical distribution of the sample and X(1) < X(2) < ..... < X(n) are the

order statistic. Equation (3.5.1) can be expressed as

ηα ˆ(Fn) =
1

α− 1

(
1−

n−1∑
j=1

∫ X(j+1)

X(j)

(F̂n(x))αdx

)
. (3.5.2)

Recalling that

F̂n(x) =


0 , x < X(1),
j

n
, X(j) ≤ x < X(j+1), j = 1, 2, ....., n− 1

1 , x ≥ X(n)

from equation (3.5.2), we get

ηα ˆ(Fn) =
1

α− 1

(
1−

n−1∑
j=1

U(j+1)

(
j

n

)α)
, α > 0, α 6= 1, (3.5.3)
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where

U(i) = X(i) −X(i−1), i = 1, 2, ...., n

are the sample spacings [cf. Di Crescenzo and Longobardi (2009), (2012)] .

In the following example we study the empirical cumulative Tsallis entropy

for exponentially distributed random samples.

Example 3.5.1:

Let X1, X2, .......Xn be a random sample of exponentially distributed random

variables with parameter λ. By Pyke (1965), the sample spacings are indepen-

dent, with U(j+1) exponentially distributed with parameter λ(n− j). Hence from

equation (3.5.3) we obtain the mean and variance of the empirical cumulative

Tsallis entropy as follows

E
(
ηα ˆ(Fn)

)
=

1

(α− 1)

[
1−

n−1∑
j=1

1

λ(n− j)

(
j

n

)α]
, α > 0, α 6= 1,

and

V ar
(
ηα ˆ(Fn)

)
=

1

(α− 1)2

n−1∑
j=1

1

λ2(n− j)2

(
j

n

)2α

, α > 0, α 6= 1,

Table 3.1: Mean of empirical cumulative Tsallis entropy for different values of n

and α

n α = 0.25 α = 0.5 α = 0.75 α = 0.99 α = 1.01 α = 1.25 α = 1.5

10 -8.63 -13.43 -27.64 -706.51 707.69 28.83 14.65

50 -59.81 -90.24 -181.31 -4549.44 4550.71 182.59 91.55

100 -125.56 -188.86 -378.55 -9480.62 9481.90 379.84 190.18

500 -656.74 -985.64 -1972.13 -49320.07 49321.36 1973.43 986.97

1000 -1322.48 -1984.26 -3969.36 -99250.80 99252.09 3970.66 1985.59
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Table 3.2: Variance of empirical cumulative Tsallis entropy for different values of

n and α

n α = 0.25 α = 0.5 α = 0.75 α = 0.99 α = 1.01 α = 1.25 α = 1.5

10 2.46 5.03 18.45 10673.12 10606.53 15.77 3.66

50 2.80 6.14 23.97 14664.52 14638.81 22.95 5.62

100 2.86 6.33 24.98 15420.17 15404.57 24.35 6.02

500 2.91 6.52 25.97 16179.85 16175.45 25.79 6.43

1000 2.92 6.55 26.13 16300.87 16298.39 26.03 6.49

Based on the empirical cumulative Tsallis entropy for random samples from

exponential distribution with mean 1, we tabulated the values for mean and vari-

ance in Table 3.1 and Table 3.2 respectively. It may be observed from tabulated

data that the mean of empirical cumulative Tsallis entropy i.e., E
(
ηα ˆ(Fn)

)
is

decreasing for different values of n, whereas the variance of empirical cumulative

Tsallis entropy i.e., V ar
(
ηα ˆ(Fn)

)
is increasing for different values of n.

3.6 Conclusion

The dynamic generalized information measure based on cumulative distribution

function is more stable than based on density function. We proposed the Dynamic

Cumulative Residual Tsallis Entropy which is found to be monotonic in nature.

Based on the proposed DCRTE, we characterized some well known life time dis-

tributions such as exponential, Weibull, Pareto and the finite range distributions

which play a vital role in reliability modeling. Hear we proposed weighted dy-

namic cumulative residual Tsallis entropy and examined its application in relation

to weighted and equilibrium models. Finally, we introduced empirical cumulative

Tsallis entropy for empirical samples. It is observed that the mean of empirical

cumulative Tsallis entropy decreases and variance increases irrespective of sample

size.
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Chapter 4

Bivariate Dynamic cumulative

residual Tsallis entropy

4.1 Introduction

In the literature several generalization of Shannon entropy are available like Renyi

entropy(1961), Varma entropy(1966), Tsallis entropy(1988) etc. In this chapter,

we focus on non-extensive entropy.

Tsallis (1988) defined the generalized non-expansive entropy of order α as

Sα(X) =
1

α− 1

(
1−

∫ ∞
0

(f(x))αdx

)
, α > 0, α 6= 1. (4.1.1)

In chapter III, we have proposed dynamic cumulative residual Tsallis entropy

(DCRTE) of order α as follows:

ηα(X; t) =
1

α− 1

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α
dx

 , α > 0α 6= 1, (4.1.2)

and studied its properties and applications.

The multivariate life distributions are used for studying the reliability characteris-

tics of multi-component system with each component having a lifetime depending
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on the next component. In the univariate case, the reliability characteristics can

be extended to higher dimensions. Although, a lot of work have been done on

information measures in the univariate case, but very limited works have been

done in higher dimensions. For more details, we refer [ Rajesh and Nair (2000),

Nadarajah and Zografos (2005), Ebrahimi et al. (2007), Sathar et al. (2009),

Rajesh et al. (2009), (2014a), (2014b)].

The main objective of the chapter is to extend DCRTE defined in (4.1.2) to

bivariate setup and study its properties and connect it to some well known reli-

ability models. In section 2, we propose a bivariate dynamic cumulative residual

Tsallis entropy (BDCRTE) of order α and characterize some well known bivariate

models using the BDCRTE. In section 3, we define new classes of life distributions

based on BDCRTE and study their properties.

4.2 Bivariate Dynamic Cumulative Residual Tsal-

lis Entropy (BDCRTE)

In this section, we extend the definition of DCRTE to the bivariate setup known

as the bivariate cumulative residual Tsallis entropy (BDCRTE) and we also give

some characterization results of well known bivariate distributions in term of

BDCRTE.

Definition 4.2.1:

Let X = (X1, X2) be a bivariate random vector admitting an absolutely continu-

ous probability density function f(x1, x2), cumulative density function F (x1, x2)

and survival function F̄ (x1, x2) with respect to Lebesgue measure in the positive

octant R+
2 = {(t1, t2)|ti > 0, i = 1, 2} of the two-dimensional Euclidean space

R2. We define the bivariate DCRTE as
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ηα(X; t1, t2) =
1

α− 1

1 −
∞∫
t1

∞∫
t2

(
F̄ (x1, x2)

F̄ (t1, t2)

)α
dx2dx1

 , α > 0, α 6= 1.

(4.2.1)

Ebrahimi (2007) has proved that the bivariate residual entropy is not invari-

ant under non singular transformations. We can show that the bivariate DCRTE

defined in equation (4.2.1) is not invariant under non singular transformations.

If Yj = φj(Xj), j = 1, 2 are one to one transformations, then

ηα(Yj ;φ1(t1), φ2(t2)) =
1

α− 1

1 −
∞∫
t1

∞∫
t2

(
F̄ (x1, x2)

F̄ (t1, t2)

)α
J dx2dx1

 ,

where J = | ∂
∂x1

φ1(x1)× ∂

∂x2

φ2(x2)| is the absolute value of the Jacobian of

transformation. In particular, if we take φj(Xj) = ajXj + bj, then we get

ηα(Yj ;φ1(t1), φ2(t2)) =
(1− a1 a2)

(α− 1)
+ a1 a2 ηα(X; t1, t2).

Now we take into account the behavior of the Dynamic cumulative residual

Tsallis entropy for the conditional distributions. Let us consider the random vari-

ables Yj = (Xj|Xi > ti, i, j = 1, 2; i 6= j), where Yj, j = 1, 2 corresponds to the

conditional distributions of Xj given that Xi has survived up to time ti, i = 1, 2

and have the survival functions
F̄ (x1, t2)

F̄ (t1, t2)
for x1 ≥ t1 &

F̄ (t1, x2)

F̄ (t1, t2)
for x2 ≥ t2,

respectively. The DCRTE for the random variables Yj, j = 1, 2 are defined as

follows:

η1α(X; t1, t2) =
1

α− 1

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1

 , α > 0, α 6= 1, (4.2.2)

and
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η2α(X; t1, t2) =
1

α− 1

1 −
∞∫
t2

(
F̄ (t1, x2)

F̄ (t1, t2)

)α
dx2

 , α > 0, α 6= 1, (4.2.3)

respectively.

For a bivariate random vector X = (X1, X2), Johnson and Kotz (1975) de-

fined the bivariate hazard rate as

r(t1, t2) = ( r1(t1, t2), r2(t1, t2) ),

where

ri(t1, t2) = − ∂

∂ti
log F̄ (t1, t2), i = 1, 2. (4.2.4)

For a bivariate random vector X = (X1, X2), Zahedi (1985) defined the bi-

variate mean residual life function (MRLF) as

m(t1, t2) = (m1(t1, t2), m2(t1, t2) ),

where

mi(t1, t2) =
1

F̄ (t1, t2)

∞∫
ti

F̄ (xi, t) dx, i = 1, 2. (4.2.5)

The following theorem shows that the Bivariate dynamic cumulative residual

entropy uniquely determines the survival function F̄ (t1, t2).

Theorem 4.2.1:

Let X = (X1, X2) be a non-negative random vector admitting continuous distri-

bution function with respect to Lebsegue measure. Let ηiα(X; t1, t2) <∞ ; i =

1, 2, t = (t1, t2) ≥ 0; ∀α > 0 , α 6= 1. Then for each α, ηiα(X; t1, t2) (where

∂
∂ti
ηiα(X; t1, t2) 6= 0, ∀ i = 1, 2 ) uniquely determines the survival function

F̄ (t1, t2).
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Proof:

From the equation (4.2.2) we have,

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α . (4.2.6)

Differentiating (4.2.6) with respect to t1 and simplifying, we obtain

(α− 1)
∂

∂t1
η1α(X; t1, t2) = 1 + α r1(X; t1, t2) [(α− 1)η1α(X; t1, t2)− 1]. (4.2.7)

Similarly for i = 2, we also get

(α− 1)
∂

∂t2
η2α(X; t1, t2) = 1 + α r2(X; t1, t2) [(α− 1)η2α(X; t1, t2)− 1]. (4.2.8)

Let F̄X(t1, t2) and F̄Y (t1, t2) be two survival functions having Bivariate dy-

namic entropies ηiα(X; t1, t2) and ηiα(Y ; t1, t2) with hazard rates ri(X; t1, t2)

and ri(Y ; t1, t2), i = 1, 2 respectively.

Consider the following relationship between entropies of random vectors X

and Y :

ηiα(X; t1, t2) = ηiα(Y ; t1, t2) , i = 1, 2. (4.2.9)

Taking i = 1 and differentiating (4.2.9) with respect to t1, we get

∂

∂t1
η1α(X; t1, t2) =

∂

∂t1
η1α(Y ; t1, t2),

⇒ (α− 1)
∂

∂t1
η1α(X; t1, t2) = (α− 1)

∂

∂t1
η1α(Y ; t1, t2). (4.2.10)

Using (4.2.7), the equation (4.2.10) becomes

1 + α r1(X; t1, t2) [(α− 1)η1α(X; t1, t2)− 1] = 1 + α r1(Y ; t1, t2) [(α− 1)η1α(Y ; t1, t2)− 1].

(4.2.11)

Since η1α(X; t1, t2) = η1α(Y ; t1, t2), therefore the equation (4.2.11) reduces to

r1(X; t1, t2) = r1(Y ; t1, t2).
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Similarly for i = 2, we get

r2(X; t1, t2) = r2(Y ; t1, t2).

Thus, we have

F̄X(t1, t2) = F̄Y (t1, t2).

Hence, ηiα(X; t1, t2) uniquely determines the survival function F̄ (t1, t2). �

The following theorem characterize some well known bivariate distribution

using relationship between BDCRTE and bivariate mean residual life function

m(X; t1, t2).

Theorem 4.2.2:

For the random vector X = (X1, X2) admitting continuous distribution function

with respect to Lebsegue measure, a relationship of the form

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) , i = 1, 2, α > 0 , α 6= 1, (4.2.12)

where mi (X; t1, t2) , i = 1, 2 are the components of the bivariate mean residual

life function and K is a constant independent of ti, holds for all ti ≥ 0, if and

only if X follows any one of the three distributions:

(i) the bivariate Pareto distribution with joint survival function

F̄ (t1, t2) = (1 + a1t1 + a2t2 + bt1t2)−c ; a1, a2, c, t1, t2 > 0;

0 < b < (c+ 1)a1a2, (4.2.13)

(ii) the Gumbel’s bivariate exponential distribution with joint survival function

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) ; λ1, λ2, t1, t2 > 0;

0 < θ < λ1λ2, (4.2.14)

and
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(iii) the bivariate finite range distribution with joint survival function

F̄ (t1, t2) = (1− p1t1 − p2t2 + qt1t2)d ; p1, p2, d > 0; 0 < t1 <
1

p1

;

0 < t2 <
1− p1t1
p2 − qt1

, (4.2.15)

according as Kα < 1, Kα = 1 and Kα > 1, respectively.

Proof:

Differentiating equation (4.2.12) with respect to t1 by taking i = 1, we obtain

(α− 1)
∂

∂t1
η1α(X; t1, t2) = −K ∂

∂t1
m1(X; t1, t2).

Using the equation (4.2.7) , we get

1−Kαr1(X; t1, t2)m1(X; t1, t2) = −K ∂

∂t1
m1(X; t1, t2). (4.2.16)

Using the relation r1(X; t1, t2)m1(X; t1, t2) = 1 + ∂
∂t1
m1(X; t1, t2), the equation

(4.2.16) reduces to

1

K
− α

(
1 +

∂

∂t1
m1(X; t1, t2)

)
= − ∂

∂t1
m1(X; t1, t2)

(α− 1)
∂

∂t1
m1(X; t1, t2) =

1

K
− α

∂

∂t1
m1(X; t1, t2) =

1
K
− α

α− 1
= C.

Integrating on both side with respect to t1, we get

m1(X; t1, t2) = Ct1 +D1(t2), (4.2.17)

where D1 is independent of t1. Similarly for i = 2, we have

m2(X; t1, t2) = Ct2 +D2(t1). (4.2.18)

Hence

mi(X; t1, t2) = Cti +Di(tj) , i 6= j, i, j = 1, 2,
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where C =
1
K
− α

α− 1
and Di(tj) is a function of tj only. Based on the characteri-

zation theorem given by Sankaran and Nair (2000), we can easily prove that X

follows bivariate Pareto distribution with survival function (4.2.13) when C > 0,

Gumbel’s exponential distribution with survival function (4.2.14) when C = 0

and bivariate finite range distribution with survival function (4.2.15) when C < 0.

Converse:

(i) WhenX follows bivariate Pareto distribution with survival function (4.2.13),

then using the equation (4.2.2), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(1 + a1x1 + a2t2 + bx1t2)−cα dx1

(1 + a1t1 + a2t2 + bt1t2)−cα

= 1−
[

(c− 1)

(cα− 1)

(1 + a1t1 + a2t2 + bt1t2)

(c− 1)(a1 + bt2)

]
.

Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,

where K =
(c− 1)

(cα− 1)
, such that C =

1
K
− α

α− 1
> 0.

(ii) When X follows Gumbel’s exponential distribution with survival function

(4.2.14), then using the equation (4.2.2), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(
e−λ1x1−λ2t2−θx1t2

)α
dx1

(e−λ1t1−λ2t2−θt1t2)α

= 1− 1

α(λ1 + θt2)
.

Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,
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where K =
1

α
, such that C =

1
K
− α

α− 1
= 0.

(iii) When X follows bivariate finite range distribution with survival function

(4.2.15), then using the equation (4.2.2), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(1− p1x1 − p2t2 + qx1t2)dα dx1

(1− p1t1 − p2t2 + qt1t2)dα

= 1−
[

(d+ 1)

(dα + 1)

(1− p1t1 − p2t2 + qt1t2)

(d+ 1)(p1 + qt2)

]
.

Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,

where K =
(d+ 1)

(dα + 1)
, such that C =

1
K
− α

α− 1
< 0.

�

Now we provide characterization result in terms of relationship between bi-

variate DCRTE and bivariate hazard rate function.

Theorem 4.2.3:

For the random vector X = (X1, X2) admitting an absolutely continuous func-

tion with respect to Lebsegue measure, the relationship of the form

(α− 1)
∂

∂ti
ηiα(X; t1, t2) = c ri (X; t1, t2) , i = 1, 2, α > 0 , α 6= 1, (4.2.19)

hold for all t1, t2 ≥ 0, then X follows the Gumbel’s bivariate exponential distri-

bution with joint survival function

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) ; λ1, λ2, t1, t2 > 0; 0 < θ < λ1λ2 ,when c = 0.

(4.2.20)
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Proof:

When equation (4.2.19) hold for i = 1, then using the equation (4.2.6) and equa-

tion (4.2.7), we get

1− α r1(X; t1, t2)

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α = c r1(X; t1, t2),

or equivalently

1

r1(X; t1, t2)
= c+ α

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α . (4.2.21)

Differentiating equation (4.2.21) with respect to t1 and simplifying, we obtain

−1

(r1(X; t1, t2))2

∂

∂t1
{r1(X; t1, t2)} = −αc r1(X; t1, t2).

∂

∂t1
{log (r1(X; t1, t2))} = αc r2

1(X; t1, t2). (4.2.22)

For simplification, we assume that log (r1(X; t1, t2)) = y1(t1, t2) i.e., r1(X; t1, t2) =

ey1(t1,t2), then the equation (4.2.22) reduces to

∂

∂t1
{(y1(t1, t2))} = αc e2y1(t1,t2).

Integrating on both side with respect to t1, we get

r1(X; t1, t2) =
1√

K1(t2)− 2αc t1
.

Similarly for i = 2, we get

r2(X; t1, t2) =
1√

K2(t1)− 2αc t2
.

Hence

ri(X; t1, t2) =
1√

Ki(tj)− 2αc ti
, i 6= j , i, j = 1, 2, (4.2.23)

where Ki(tj) > 0 is constant and independent of ti.

When c = 0, then from the equation (4.2.23), we get ri(X; t1, t2) = 1√
Ki(tj)

or

68



equivalently

− ∂

∂ti

{
log F̄ (t1, t2)

}
=

1√
Ki(tj)

.

Integrating both side with respect to ti, we get

−log F̄ (t1, t2) =
ti√
Ki(tj)

+ Qi(tj)

F̄ (t1, t2) = e
−
[

ti√
Ki(tj)

+Qi(tj)

]
, i 6= j , i = 1, 2. (4.2.24)

Applying for i = 1, 2 and equating (4.2.24) we get

t1√
K1(t2)

+ Q1(t2) =
t2√
K2(t1)

+ Q2(t1) (4.2.25)

As t1 → 0, equation (4.2.25) becomes

Q1(t2) =
t2√
K2(0)

+ Q2(0)

As t2 → 0, equation (4.2.25) becomes

Q2(t1) =
t1√
K1(0)

+ Q1(0)

Putting the value of Q1(t2) and Q2(t1) in the equation (4.2.25), we get

t1√
K1(t2)

+
t2√
K2(0)

+ Q2(0) =
t2√
K2(t1)

+
t1√
K1(0)

+ Q1(0) (4.2.26)

Since Q1(0) = Q2(0) = F̄ (0, 0), equation (4.2.25) become

1

t2
√
K1(t2)

− 1

t2
√
K1(0)

=
1

t1
√
K2(t1)

− 1

t1
√
K2(0)

= θ(say), (4.2.27)

which implies
1√
K1(t2)

= λ1 + θt2

Similarly, we get
1√
K2(t1)

= λ2 + θt1,
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where 1√
K1(0)

= λ1 and 1√
K2(0)

= λ2. Substituting these value in the equation

(4.2.25), after simplification we get

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) .

The converse part is staightforward. �

4.3 New class of life distributions

In this section, we define new class of life distributions based on proposed bivariate

dynamic cumulative residual Tsallis entropy (BDCRTE).

Definition 4.3.1:

The distribution function F (t1, t2) is said to be increasing bivariate dynamic cu-

mulative residual Tsallis entropy (IBDCRTE), if ηiα(X; t1, t2) is an increasing

function of t1, t2. Similarly the distribution function F (t1, t2) is said to be de-

creasing bivariate dynamic cumulative residual Tsallis entropy (DBDCRTE), if

ηiα(X; t1, t2) is an decreasing function of t1, t2.

The following theorem gives the necessary and sufficient conditions for BD-

CRTE to be increasing(decreasing) BDCRTE.

Theorem 4.3.1:

The bivariate distribution function F (t1, t2) is increasing (decreasing) BDCRTE

if and only if for all t1, t2 ≥ 0.

ηiα(X; t1, t2) ≥ (≤)
1

(α− 1)

(
1 − 1

α ri(t1, t2)

)
, i = 1, 2 ∀ α > 0 , α 6= 1.

Proof:

Differentiating (4.2.2) with respect to t1 and simplifying, we get

∂

∂t1
η1α(X; t1, t2) =

1

α− 1
(1 + α r1(t1, t2) [(α− 1)η1α(X; t1, t2)− 1]) .
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The BDCRTE of order α, η1α(X; t1, t2) is increasing (decreasing) function of t1,

if
∂

∂t1
η1α(X; t1, t2) ≥ (≤) 0. Therefore

1

α− 1
(1 + α r1(t1, t2) [(α− 1)η1α(X; t1, t2)− 1]) ≥ (≤) 0.

Hence

η1α(X; t1, t2) ≥ (≤)
1

(α− 1)

(
1 − 1

α r1(t1, t2)

)
.

Similar result holds for i = 2. �

The following theorem provides lower bound of BDCRTE based on bivariate

mean residual life function.

Theorem 4.3.2:

Let X = (X1, X2) be a non-negative random vector admitting absolute continu-

ous distribution function with respect to Lebesgue measure and mi(t1, t2), i = 1, 2

are the components of the bivariate mean residual life function, then

ηiα(X; t1, t2) ≥ 1

(α− 1)
(1 − mi(t1, t2) ) , i = 1, 2 ,∀ α > 0 , α 6= 1.

Proof:

We know that

(
F̄ (t1, t2)

)α ≤ (≥) F̄ (t1, t2), ∀ t1, t2 > 0, α > 1 (0 < α < 1)

⇒
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 ≤ (≥)

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1 , α > 1 (0 < α < 1).

Case 1: When α > 1

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 ≥ 1 −

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1
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1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1

 ≥ 1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1



⇒ η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) .

Case 2: When 0 < α < 1

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 − 1 ≥

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1 − 1

⇒ 1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 − 1

 ≥ 1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1 − 1



⇒ 1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1

 ≥ 1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1



⇒ η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) .

Thus

η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) ,∀ α > 0, α 6= 1.

Similar result holds for i = 2. Therefore, we have

ηiα(X; t1, t2) ≥ 1

(α− 1)
(1 − mi(t1, t2) ) , i = 1, 2 ,∀ α > 0, α 6= 1.

�

In the following theorem, we give the bivariate hazard rate ordering based

on BDCRTE.
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Theorem 4.3.3:

Let X = (X1, X2) and Y = (Y1, Y2) be two non-negative random vector with

survival functions F̄ (t1, t2) and Ḡ(t1, t2), and hazard rates rF (t1, t2) and rG(t1, t2)

respectively. If X≥hr Y , that is rF (t1, t2) ≤ rG(t1, t2), then

(i) ηiα(X; t1, t2) ≤ ηiα(Y ; t1, t2) for α > 1 , i = 1, 2.

(ii) ηiα(X; t1, t2) ≥ ηiα(Y ; t1, t2) for 0 < α < 1 , i = 1, 2.

Proof:

We know that rF (t1, t2) ≤ rG(t1, t2) which implies F̄ (t1, t2) ≥ Ḡ(t1, t2). Therefore,

we have for all α > 0

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 ≥

∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1.

(i) For α > 1

1−
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 ≤ 1−

∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1

⇒ 1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1

 ≤ 1

(α− 1)

1 −
∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1



⇒ η1α(X; t1, t2) ≤ η1α(Y ; t1, t2).

Similar result holds for i = 2. Hence

ηiα(X; t1, t2) ≤ ηiα(Y ; t1, t2).

(ii) For 0 < α < 1

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 − 1 ≥

∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1 − 1
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1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1 − 1

 ≥ 1

(1− α)

 ∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1 − 1


⇒ 1

(α− 1)

1 −
∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1

 ≥ 1

(α− 1)

1 −
∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α
dx1



⇒ η1α(X; t1, t2) ≥ η1α(Y ; t1, t2).

Similar result holds for i = 2. Hence

ηiα(X; t1, t2) ≥ ηiα(Y ; t1, t2).

�

Gupta and Sankaran (1998) proposed the bivariate equilibrium distribution.

Let X = (X1, X2) be a bivariate positive random vector admitting an absolute

continuous survival function F̄ (x1, x2). Then its bivariate equilibrium distribu-

tion is the distribution of a random vector Y = (Y1, Y2) such that the density

function and survival function of (Yi|Yj > tj), i, j = 1, 2.i 6= j are of the form:

gi(ti|Yj > tj) =
P (Xi > ti|Xj > tj)

E(Xi|Xj > tj)

=
F̄ (t1, t2)

F̄j(tj)E(Xi|Xj > tj)
, i 6= j; i, j = 1, 2 (4.3.1)

and

Ḡi(ti|Yj > tj) =

∞∫
ti

gi(u|Yj > tj)du

=
F̄ (t1, t2)mi(t1, t2)

F̄j(tj)E(Xi|Xj > tj)
, i 6= j; i, j = 1, 2, (4.3.2)

respectively, for t1, t2 ≥ 0.
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We define the residual Tsallis entropy for the bivariate random vector X =

(X1, X2) as follows:

Hα(X; t1, t2) = (H1α(X; t1, t2) , H2α(X; t1, t2) ) ,

where

Hiα(X; t1, t2) =
1

(α− 1)

1−
∞∫
ti

(
fi(xi|Xj > tj)

F̄i(ti|Xj > tj)

)α
dxi

, i, j = 1, 2, i 6= j .

In the following theorem we establish a relation between BDCRTE and resid-

ual Tsallis entropy corresponding to the bivariate equilibrium random vector

Y = (Y1, Y2).

Theorem 4.3.4:

Let X = (X1, X2) be a non-negative random vector and Y = (Y1, Y2) be the

equilibrium random vector associate with X, then

Hiα(Y ; t1, t2) =
ηiα(X; t1, t2)

mα
i (t1, t2)

+
1− m−αi (t1, t2)

(α− 1)
; i = 1, 2, ∀α > 0 , α 6= 1,

where Hiα(Y ; t1, t2) denote the bivariate residual Tsallis entropy corresponding

to Y and mi(t1, t2), i = 1, 2 are the components of the bivariate mean residual

life function.

Proof:

The bivariate residual Tsallis entropy corresponding to Y is defined as

Hiα(Y ; t1, t2) =
1

(α− 1)

1−
∞∫
ti

(
gi(yi|Yj > tj)

Ḡi(ti|Yj > tj)

)α
dyi

; i, j = 1, 2, i 6= j .

(4.3.3)

When the equation (4.3.3) holds for i = 1, we have

H1α(Y ; t1, t2) =
1

(α− 1)

1−
∞∫
t1

(
g1(y1|Y2 > t2)

Ḡ1(t1|Y2 > t2)

)α
dy1

.
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Applying the results of the equations (4.3.1) and (4.3.2), we get

H1α(Y ; t1, t2) =
1

(α− 1)

1− 1

mα
1 (t1, t2)

∞∫
t1

(
F̄ (y1, t2)

F̄ (t1, t2)

)α
dy1


=

1

(α− 1)

1− 1

mα
1 (t1, t2)

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α
dx1


=

η1α(X; t1, t2)

mα
1 (t1, t2)

+
1− m−α1 (t1, t2)

(α− 1)
.

Similar result holds for i = 2. Therefore, we have

Hiα(Y ; t1, t2) =
ηiα(X; t1, t2)

mα
i (t1, t2)

+
1− m−αi (t1, t2)

(α− 1)
, i = 1, 2, ∀α > 0, α 6= 1.

�

Cox (1972) introduced the concept of proportional hazards model (PHM).

Let X and Xθ be two continuous random variables with survival functions F̄X(x)

and F̄Xθ(x), respectively. The relation between survival functions of random life

times is given by

F̄Xθ(x) =
[
F̄X(x)

]θ
, x ∈ R , θ > 0,

where θ is a positive constant.

The following theorem is based on the proportional hazards model (PHM).

Theorem 4.3.5:

Let X and Xθ be two non-negative continuous random variables with survival

functions F̄X(x) and F̄Xθ(x) and dynamic cumulative residual Tsallis entropies

ηα(X; t) and ηα(Xθ; t), respectively. If FX(x) is the PH model of FXθ(x) then

(a) ηα(Xθ; t) ≥ ηα(X; t) for θ ≥ 1 , α > 1 and 0 < θ < 1 , 0 < α < 1.

(b) ηα(Xθ; t) ≤ ηα(X; t) for θ ≥ 1 , 0 < α < 1 and 0 < θ < 1 , α > 1.
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Proof:

We know that F̄Xθ(x) =
[
F̄X(x)

]θ
, θ > 0.

(a) Case 1: When θ ≥ 1, α > 1 then
(
F̄X(x)

)θα ≤ (
F̄X(x)

)α
, this implies

(
F̄X(x)

F̄X(t)

)θα
≤
(
F̄X(x)

F̄X(t)

)α

⇒
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx ≤

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx

⇒ 1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx ≥ 1−

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx

⇒ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx

 ≥ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx



⇒ ηα(Xθ; t) ≥ ηα(X; t).

Case 2: When 0 < θ < 1, 0 < α < 1 then
(
F̄X(x)

)θα ≥ (
F̄X(x)

)α
, this

implies

(
F̄X(x)

F̄X(t)

)θα
≥
(
F̄X(x)

F̄X(t)

)α

⇒
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx ≥

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx

⇒
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx− 1 ≥

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx− 1 ,
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1

(1− α)

 ∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx− 1

 ≥ 1

(1− α)

 ∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx− 1


⇒ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx

 ≥ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx


⇒ ηα(Xθ; t) ≥ ηα(X; t).

(b) Case 1: When θ ≥ 1, 0 < α < 1 then
(
F̄X(x)

)θα ≤ (
F̄X(x)

)α
, this implies(

F̄X(x)

F̄X(t)

)θα
≤
(
F̄X(x)

F̄X(t)

)α

⇒
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx− 1 ≤

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx− 1

⇒ 1

(1− α)

 ∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx− 1

 ≤ 1

(1− α)

 ∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx− 1



⇒ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx

 ≤ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx


⇒ ηα(Xθ; t) ≤ ηα(X; t). ,

Case 2: When 0 < θ < 1, α ≥ 1 then
(
F̄X(x)

)θα ≥ (
F̄X(x)

)α
, this implies(

F̄X(x)

F̄X(t)

)θα
≥
(
F̄X(x)

F̄X(t)

)α

⇒ 1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx ≤ 1−

∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx

⇒ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)θα
dx

 ≤ 1

(α− 1)

1−
∞∫
t

(
F̄X(x)

F̄X(t)

)α
dx


⇒ ηα(Xθ; t) ≤ ηα(X; t).
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.

4.4 Conclusion

The definition of dynamic cumulative residual Tsallis entropy (DCRTE) have

been extended into bivariate setup consequently proposed the Bivariate Dynamic

Cumulative Residual Tsallis Entropy. The monotonic behaviour in the context

of bivariate random vector has also been studied. Some well known bivariate

life time distributions are characterized. Additionally, we have defined some new

classes of life distributions based on BDCRTE.
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Chapter 5

Conclusions

If X is an absolutely continuous random variable and the distribution func-

tion FX(x) is log-concave then it is proved that the conditional Varma entropy

Hβ
α(X|A) is partially decreasing (increasing) in interval A = (a, b). Further it

is proved that if random variables X1 and X2 be independent and identically

distributed copies of X and have log-concave probability density function then

the conditional Varma’s entropy of U = |X1 −X2| given B = {a ≤ X1, X2 ≤ b}
is partially increasing (decreasing) function on B if α + β < 2(α + β > 2).

The dynamic generalized information measure based on cumulative distribu-

tion function is more stable than based on density function. We proposed the

Dynamic Cumulative Residual Tsallis Entropy which is found to be monotonic

in nature. Based on the proposed DCRTE, we characterized some well known

life time distributions such as exponential, Weibull, Pareto and the finite range

distributions which play a vital role in reliability modeling. Hear we proposed

weighted dynamic cumulative residual Tsallis entropy and examined its appli-

cation in relation to weighted and equilibrium models. Finally, we introduced

empirical cumulative Tsallis entropy for empirical samples. It is observed that

the mean of empirical cumulative Tsallis entropy decreases and variance increases

irrespective of sample size.
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The definition of dynamic cumulative residual Tsallis entropy (DCRTE) have

been extended to bivariate setup consequently proposed the Bivariate Dynamic

Cumulative Residual Tsallis Entropy. The monotonic behaviour in the context

of bivariate random vector has also been studied. Some well known bivariate life

time distributions are characterized. Additionally, we have defined some a new

class of life distributions based on BDCRTE.
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