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“I may not have gone where I intended to go, but I think I have ended up where I needed to be." 

 

~Douglas Adams~ 

 

“Perfection is not attainable, but if we chase perfection we can catch excellence.”    

 ~Vince Lombardi~ 
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ABSTRACT 

Diarrhea which is a manifestation of intestinal dysfunction is characterized by increase in stool 

frequency, loss of water, electrolytes, and/or nutrients. Diarrheal diseases are the second leading 

cause of children deaths under age five worldwide. Diarrheal diseases burden tends to be the 

highest in developing countries. Diarrhea is negatively associated with child growth, survival and 

cognitive development. Diarrhea is caused by a wide variety of organism including bacteria, 

viruses, parasites and helminthes with diverse pathogenesis mechanisms. Zinc supplementation 

as an adjunct to ORS is the recommended therapy for diarrheal management. Several medication 

categories are available to deal with different aspects of diarrheal diseases which include opiates, 

antibiotics, bile acid sequestrants and heavy metals. Due to emergence of clinically significant 

cases of antibiotic resistance, the problem of antibiotic resistance surfaced as a global health 

problem which can potentially jeopardize the achievements of modern medicine. The last novel 

class of antibiotics was discovered in 1987. The last three decades which essentially remain to be 

a discovery void era, have observed a rampant increase in antibiotic resistance with a steady 

decline in the number of new antibiotics approved. In India, regarded as the largest consumer of 

antibiotics, antibiotic use increased by 43% from 2000-2010 with 18% of the drugs being used 

without prescription. In containment of the global problem of antibiotic resistance, limited 

surveillance, irrational use of antibiotics in humans and livestock and lack of interest of 

pharmaceutical companies in development of new drugs and diagnostic tests are major 

impediments. 

Single Nucleotide Polymorphisms have a vast potential to be utilized as molecular diagnostics 

for gene-disease or pharmacogenomics association studies linking genotype to phenotype. In this 

study, we first developed a database DBDiaSNP which is a comprehensive repository of 

mutations and resistance genes from various diarrheal pathogens to advance breakthroughs that 

will find applications from development of sequence based diagnostic tools to drug discovery. It 

contains information about 946 clinically significant mutations and 326 resistance genes 

compiled for pathogens such as DEC (Diarrheagenic E. coli), Salmonella spp., Campylobacter 

spp., Shigella spp., Clostridium difficile, Aeromonas spp., Helicobacter pylori, Entamoeba 

histolytica, Vibrio cholera, and viruses. It also includes mutations from hosts (humans and pigs) 

which render them either susceptible or resistant to a certain type of diarrhea. For future 
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translational research involving integrative biology and global health, the database offers 

veritable potentials, particularly for worldwide monitoring and personalized effective treatment 

of diarrheal pathogens. 

Ciprofloxacin, a potent broad spectrum antibacterial agent is the first line of antibiotics against 

severe cases of Traveler’s Diarrhea (TD). Several mutations in the quinolone resistance 

determining region (QRDR) of the structural target gene (gyrA) for quinolones are associated 

with increased quinolone resistance in vivo, which account for reduced affinity towards 

quinolones. To understand the molecular events underlying the mechanism of drug resistance, 

fully atomistic explicit-water solvated molecular dynamics simulations of wild-type, and mutant 

forms of gyrA in Enterotoxigenic Escherichia coli (ETEC) and Campylobacter jejuni complexed 

with ciprofloxacin were performed. From structural stability calculations, no clearly discernible 

conformational changes were observed. However, these mutations significantly alter gyrA 

residue interaction network and the overall pattern of global dominant motions in major 

distinctive domains of N-terminal regions of gyrA. This study offers insights into molecular 

events central to the gyrA-ciprofloxacin interaction, consequently would aid in design of more 

potent antibacterial agents with high ligand efficacy for treating drug resistant bacterial 

infections 

With emergence of serious antibiotic resistance threats, a renewed search for new antibiotics and 

vaccine candidates becomes imperative. We have employed a range of omics and systems 

biology approaches to investigate the entire genome/proteome/metabolome of pathogens viz. 

ETEC, C. jejuni and Salmonella typhimurium to instigate the search for potential therapeutic 

drug targets and vaccine candidates. For vaccine candidate identification in ETEC and C. jejuni, 

comparative genomics and immunoinformatics approaches were used. The predicted epitopes 

were selected based on outer membrane localization, high antigenicity, population coverage, and 

interaction with many HLA-alleles. For drug target identification in C. jejuni, an integrated 

approach of comparative metabolic pathway analysis and subtractive genomics was utilized. 

Constraint based analysis of metabolic reconstruction model was exploited for identification of 

proteins with therapeutic potential in S. typhimurium. Many of the identified candidate drug 

targets have already been exploited as drug targets and a variety of other metabolites have not yet 

been targeted. Majority of the metabolites identified as potential drug targets are involved in cell 
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wall synthesis, fatty acid synthesis, and bacterial secretion systems which are crucial for bacterial 

growth and viability.  
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1.1      Introduction 

Diarrhea is a manifestation of intestinal dysfunction that results in increased stool frequency, 

characterized by loss of water, electrolytes, and/or nutrients. Diarrheal diseases rank second only 

to pneumonia as the leading cause of deaths among children under five years of age worldwide 

[1, 2]. Despite the fact that mortality rate of diarrheal diseases was substantially reduced by 

almost 31.1% from 1·8 million in 2000 to 1·3 million in 2013 [1] due to inception of many 

immunization programs for diarrheal disease control, the proportional mortality rate still is 

soaring with an estimated 2,34,570 under 5 children deaths in India and more than 2.5 

million diarrheal deaths globally [2]. The highest mortality rate due to diarrheal diseases 

continues to be concentrated in resource poor countries. Figure 1.1 depicts the burden of 

diarrheal diseases across the globe.

 

 

 

 

 

 

Figure 1.1: Rates of child mortality due to diarrhea2. 

 

It is estimated that 2% of diarrheal cases progress to severe diarrheal disease stage. As shown in 

Figure 1.2, diarrheal incidence and case-fatality ratios vary between different WHO regions and 

tend to be much higher in developing world than industrialized nations [3]. Diarrheal diseases 

are negatively associated with cognitive development, childhood growth and survival. In 

children affected with HIV, diarrhea is more detrimental with a reported 11 times higher 

mortality rate than those without diarrhea. Children below age 3 experience three diarrheal 

episodes annually in developing countries. In India, as shown in Figure 1.3, diarrheal diseases 

account for approximately 13% of all childhood deaths under age 5; additionally contributing to 
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another 1% of the neonatal deaths [4]. Diarrheal pediatric death toll is higher than that of AIDS, 

measles, and malaria combined. 

 

 

 

 

 

 

 

Figure 1.2: Regional burden of diarrhea per year in children aged 0–4 years, by WHO region5. 

 

 

 

 

 

 

 

 

Figure 1.3: Causes of deaths in under-five children in India6.

 

Diarrhea has been classified into three categories based on clinical presentations [5].  

1.) Acute Watery Diarrhea (Non-Inflammatory) which lasts for several hours or days.  
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2.) Acute Bloody Diarrhea termed as dysentery (Inflammatory). 

3.) Persistent Diarrhea (Enteric Fever) which lasts for 14 days or longer. 

Table 1.1: Classification of diarrhea based on clinical presentations 

Illness  Watery Diarrhea Dysentery  Enteric Fever 

Mechanism   Noninflammatory, 
Enterotoxin mediated 
disruption of 
water/electrolyte 
secretion by 
gastrointestinal (GI)  
mucosal cells 

Inflammatory with  
Cytotoxin mediated  
destruction or invasion of  
mucosal cells 

Invasion beyond GI 
mucosa  
and dissemination  
systemically 

Histopathology   
 

No structural damage 
to GI mucosa, no 
inflammation 

Destruction of GI mucosal 
cells with inflammation 

 

Infection Site Small intestine  
(organisms generally  
do not penetrate GI  
epithelium but  
remain in lumen) 

Large intestine (organisms 
actually invade but are 
generally limited to GI 
mucosa) 

Distal small intestine 
– site of entry 
(disseminates 
systemically) 

Stools 
Characteristics  

High volume,  
watery  

Dysentery-frequent, small  
volume stools containing  
blood and mucus  

Systemic illness in 
which GI symptoms 
may not be very  
prominent 

Presence of 
fecal  
WBCs 

No  Yes (PMN)  Variable 

Other clinical  
findings 

No fever,  
leukocytosis;  
volume depletion  
predominates 

Fever, leukocytosis;  
volume loss less prominent 

Systemic signs and 
symptoms  
predominate-fever, 
headache,  
enlarged liver and 
spleen 

Representative  
organisms 

Vibrio cholerae, 
Enterotoxigenic 
Escherichia coli 
(ETEC), Bacillus 
cereus, Clostridium 
perfringens 

Shigella, 
Enterohemorrhagic 
Escherichia coli (EHEC), 
Campylobacter jejuni, 
Salmonella, Clostridium 
difficile, Entamoeba 
histolytica 

Salmonella, Yersinia 
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Human small and large intestine are competent to absorb approximately 10 liters of fluid per day 

while functioning normally [6]. As can be seen in Table 1.2, any disruptions in the normal gut 

physiology results in osmotic, secretory, motility or mixed diarrhea [7,8].  

Table 1.2: Classification of diarrhea based on intestinal fluid absorbance capacity 

Illness  Osmotic Diarrhea Secretory Diarrhea Motility Diarrhea 

Mechanism   increase in the amount 
of fluid being drawn 
into the lumen of the 
bowel 

dysfunction in the 
ability of the intestine 
to reabsorb fluid as it 
flows through the 
lumen 

intestines functioning 
abnormally, motility 
increased or decreased 

Stools Characteristics volume one liter daily, 
with neutral pH 

volume under one 
liter, acidic with loss 
of more potassium 
than sodium 

low volume, liquid 
stool and cramping 

Representative  
Organisms/Causative 
Agents 

Vibrio cholerae, E. 
coli, Campylobacter 
jejuni, Salmonella, 
Shigella, Clostridium 
difficile 

decreased enzymatic 
availability (lactose 
intolerance), genetic 
abnormality, fat 
malabsorption, 
malnutrition 

bowel changes due to 
inflammatory bowel 
disease or by irritable 
bowel syndrome 

 

Diarrheal symptoms are usually dependent on the causative agent and type of diarrhea, but 

commonly observed symptoms include frequent watery bowel movements, cramping abdominal 

pain, fever,  abdominal tenderness, intestinal bleeding visible in the form of bloody stools, 

dehydration signs etc. [8]. Diarrhea is usually spread through contaminated water, food, or 

objects following different pathways as shown in Figure 1.4. Contaminated water poses a serious 

threat to human health worldwide. In a report released by World Health Organization (WHO), 

unsafe water supply, sanitation and hygiene accounts for 58% of diarrheal burden, which 

includes 3,61,000 under age five children deaths, mostly concentrated in developing countries 

[9]. 

Diarrhea is caused by a wide spectrum of infectious organisms including viruses, bacteria, 

parasites, and helminths. These diarrheal agents follow diverse pathogenesis mechanisms and 

vary in their route of transmission, inoculum size requirement and host preferences [10]. Such as, 

for Shigella a few thousand organisms are sufficient to cause infection while for Vibrio cholerae 
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millions of organisms are required. Similarly pathogens such as rotavirus have sharp host 

preference while Salmonella display broad-range host specificity. Most cases of acute 

gastroenteritis are viral while bacterial pathogens are discovered in foodborne illness outbreaks 

cases and in severe cases of bloody diarrhea [8].

 

 

 

 

 

 

 

 

Figure 1.4: Pathways to diarrheal spread through contaminated water, food, or objects.

 

1.2      Diarrheal Etiology 

1.2.1 Bacteria 

1.2.1.1 Escherichia coli 

E. coli is facultatively anaerobic gram negative bacillus which is the most versatile bacterial 

pathogen as some strains are part of normal gut flora while others cause infections by virtue of 

their virulence factors. Diarrheagenic E. coli (DEC) are divided into six distinct categories based 

on their pathogenesis mechanisms which include enterotoxigenic E. coli (ETEC), 

enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli 

(EHEC), enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC) [11]. ETEC 

colonize small intestine using fimbrial adhesions and then release plasmid-associated 

enterotoxins heat labile (LT) or heat stable (ST) which results in secretory diarrhea [12]. ETEC is 
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the most common cause of traveler’s diarrhea (TD) commonly spread through consumption of 

contaminated water. EPEC causes diarrhea by destroying microvilli in the small intestines 

through attaching-effacing mechanism [13] and is associated with sporadic cases and outbreaks 

of infection in infants and young children. EHEC causes dysentery by releasing cytotoxic Shiga 

Toxins (Stx-1 and Stx-2) which destroy intestinal villi [14]. It is usually spread through 

contaminated food and unpasteurized milk. ETEC and EPEC are the largest contributors to 

diarrheal incidences worldwide while EHEC is mostly concentrated in developed countries. 

EIEC destroys epithelial cells in the large intestines by invading them through endocytosis and 

results in bloody diarrhea [15]. EIEC spread is usually food-borne with no evidence of animal or 

environmental reservoir. EAEC colonize small intestine in an aggregative fashion [16] by using 

plasmid-associated fimbriae and cause persistent diarrhea. DAEC role in diarrheal diseases is 

poorly understood.  

1.2.1.2 Vibrio species 

Vibrios are curved-rod shaped gram negative bacilli which thrive in estuarine and marine 

environments with high salinity and temperature (up to 37°C). V. cholerae spreads through 

contaminated water and food; person-to-person transmission is unusual due to high inoculums 

size requirement. The symptoms range from asymptomatic colonization to fatal diarrhea rapidly 

after 2-3 days of bacterial ingestion which results in severe dehydration, metabolic acidosis 

(bicarbonate loss), hypokalemia (low potassium) are other symptoms [17]. If left untreated, the 

mortality rate is as high as 60%, but reduced to less than 1% through prompt replenishment of 

lost fluids and electrolytes [18]. V. parahaemolyticus which is transmitted through contaminated 

shellfish is another cause of mild to severe secretory diarrhea [19]. 

1.2.1.3 Shigella species 

Shigella are rod-shaped, non-motile gram-negative bacteria which are transmitted through fecal-

oral route. Shigellosis known as bacillary dysentery is characterized by an invasive infection of 

colonic mucosa resulting in mucus or blood in the stool [20]. Like V. cholerae, humans are only 

known reservoirs for Shigella. S. sonnei, S. flexneri, S. dysenteriae, S. boydii are known species 

where S. sonnei is reported more frequently in developed countries and S. flexneri predominantly 

in resource poor countries. S. dysenteriae infects host through shiga toxin [20] similar to that of 
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EHEC which damages intestinal epithelium and glomerular endothelial cells leading to kidney 

failure. S. boydii is less frequently isolated.  

1.2.1.4 Campylobacter species 

Campylobacter are microaerophilic gram negative bacteria with poultry as its main reservoir. 

The disease is spread to humans either through consumption of contaminated food or contact 

with infected animals. Out of thirteen species implicated in human diseases, C. jejuni and C. coli 

are predominantly associated with Campylobacter gastroenteritis. C. lari has been associated 

with recurrent diarrhea in children. Campylobacter damages mucosa of small and large intestines 

by invading into intestinal cell walls [21].  

1.2.1.5 Salmonella species 

Salmonella are rod-shaped facultatively anaerobic gram negative bacteria with Salmonella 

enterica and Salmonella bongori species. S. enterica includes six subspecies which include over 

2500 serovars. S. enterica typically is classified into typhoidal (S. typhi and S. paratyphi) and 

non- typhoidal (S. enteritidis and S. typhimurium) species [22]. Non-typhoidal Salmonella 

species display broad host range as they are capable of infecting virtually all host species.   Large 

inoculum is required to cause disease as ingested bacteria are killed by gastric acidity; 

nevertheless bacteria have been evolving to be tolerant to acidic environments of GI [23]. Non-

typhoidal Salmonella infection in humans occurs usually through contaminated foods. Infants, 

elderly and immunocompromised individuals are at greater risk as small numbers of ingested 

bacteria are capable of disease inception.  

1.2.1.6 Clostridium species 

Clostridium are anaerobic spore-forming gram positive bacilli which include about 100 species 

of free living bacteria and pathogens. C. perfringens is a frequently reported cause of foodborne 

illness in developed countries. C. perfringens infects host by action of enterotoxin or β-toxin 

[24]. More common enterotoxin-mediated infection spreads through undercooked meat or 

poultry. β-toxin mediated infection results in bloody diarrhea with 50% mortality rate. C. difficile 

is commonly diagnosed to be the causative agent of nosocomial infectious diarrhea. Broad 
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spectrum antibiotic treatments disturb the normal gut flora and allow C. difficile to thrive [25]. It 

produces toxins which result in diarrhea. 

1.2.1.7 Yersinia enterocolitica 

Y. enterocolitica are rod-shaped gram negative bacteria which are motile at optimum temperature 

range 22-29°C [26]. It can colonize the GI tract of a variety of hosts including pigs, rodents, 

dogs, sheep, cattle, horses and even mammals from terrestrial and aquatic niches. Transmissions 

from pigs and dogs to humans have been reported.  The organism usually spreads from 

contaminated water, meat, or milk resulting in watery or bloody diarrhea and fever.  

1.2.1.8 Bacillus cereus 

B. cereus is a motile gram positive bacillus which causes foodborne illness and results in severe 

diarrhea and gastrointestinal pain. B. cereus is acquired from improperly cooked food which 

leads to survival of bacterial endospores. It produces enterotoxins highly resistant to temperature 

and acidic pH. Hemolysin BL (Hbl), heat labile nonhemolytic enterotoxin (Nhe) and cytotoxin K 

(CytK) toxins result in diarrheal symptoms [27]. 

1.2.2 Viruses 

Rotavirus is a double-stranded RNA virus which targets the epithelial villi of the small intestine 

and following infection, enterotoxin stimulates chloride secretion which results in watery 

diarrhea. Rotavirus is highly infectious with infectious dose between 10-100 virions and the most 

important cause of severe diarrheal episodes in children under age 5 (Figure 1.5). Rotavirus is 

responsible for approximately 22% of under age 5 deaths in India with highest mortality rates in 

Asian and African countries [28,29]. Noroviruses are single-stranded RNA viruses implicated in 

diarrhea associated with foodborne or waterborne illness. It spreads to humans through 

consumption of sewage-contaminated shellfish. These are highly infectious organisms with a 

rapid dispersal rate. They have been reported to be an important cause of diarrhea in healthcare 

settings and in crowded places with poor hygiene in older children and adults [30]. Astroviruses 

are single-stranded RNA viruses with characteristic five- or six pointed star-like surface which 

result in mild diarrheal episodes mostly in children. Astroviruses are responsible for 5-9% of 

diarrheal incidence in children [31]. Adenoviruses are unenveloped double-stranded DNA 
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viruses associated with gastroenteritis in children [32]. Types 40 and 41 of adenovirus are second 

only to rotavirus as a cause of acute diarrhea. 

 

 

 

 

 

 

 

 

Figure 1.5: Distribution pattern of causes of diarrheal death in a) children below age 5 and b) all 

age groups globally from 1999-20133.

 

1.2.3 Parasites 

Entamoeba histolytica is an anaerobic parasitic protozoan which is mostly reported in subtropical 

and tropical countries with prevalence rate exceeding 50%. E. histolytica invades mucosal cell 

linings in the large intestine which results in mild diarrhea [33]. Severe invasion leads to 

amoebic dysentery. It spreads through contaminated food or water and can also be transmitted as 

a result of anal sexual activity. E. histolytica incidence rate is approximately 50 million which 

may be an underestimation as only 10%-20% of infected individuals become symptomatic. 

Giardia lamblia is a flagellated protozoan parasite which colonize small intestine of many 

mammalian species including cattle, sheep, dogs, birds. It is transmitted through fecal-oral route 

along with zoonotic transmission. G. lamblia can result in chronic diarrhea in immunosuppressed 

individuals [34]. G. lamblia is a major cause of epidemic childhood diarrhea with prevalence 

rates of 15-20% in children aged less than 10 years in the resource poor settings. 

Cryptosporidium are implicated in gastrointestinal illness which primarily involves watery 
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diarrhea. Major species include C. hominis which infects human and C. parvum largely infecting 

animals. Cryptosporidium infection ranges from mild to profuse watery diarrhea which can 

become chronic in immunocompromised individuals [34]. Cyclospora cayetanensis is a cause of 

TD which can be acquired through contaminated food also [35]. Isospora belli results in 

persistent diarrhea in AIDS patients [36]. Enterocytozoon bieneusi and Encephalitozoon 

intestinalis are also recognized to be diarrhea causative agents in AIDS and other 

immunosuppressed patients [37,38]. Mild to profuse Trichuris infection can also result in chronic 

diarrhea [39]. 

1.3       Diagnosis 

Initial clinical evaluations focus on symptomatic diagnosis which includes assessing disease 

severity and degree of dehydration, identifying probable etiologic agent based on patient history 

and stool characteristics. Presence of visible blood in patient stool points to invasive infection 

due to pathogens such as Shigella, C. jejuni, Salmonella, or E. histolytica [40]. Stool cultures are 

necessary for V. cholerae identification. Incubation period, patient travel history in context to 

regional differences in pathogen prevalence, unusual eating situation, recent use of 

antimicrobials can also shed light on diarrhea epidemiology [40].  

1.4      Treatment 

Regardless of the etiological agent dehydration remains a critical concern. Replenishment of lost 

electrolytes is a critical therapy which is accomplished by intake of commercially prepared Oral 

Rehydration Solution (ORS) [6]. Zinc supplementation as an adjunct to ORS is recommended for 

diarrheal management in malnourished children and in persistent diarrhea particularly in 

developing countries [40]. Probiotics have been proven to be successful in reducing the length 

and severity of infectious diarrhea, nevertheless probiotics use may not be appropriate in 

resource poor countries as their effects are strain specific [40]. Depending on etiology of 

diarrhea, specific dietary measures can be adopted. In case of lactose intolerance as the 

underlying cause of diarrhea, Lactaid® substance maybe added to the diet [41]; in case of fat 

malabsorption, a low fat diet is recommended. Several medication categories are available to 

deal with different aspects of diarrheal diseases which include opiates, antibiotics, bile acid 

sequestrants and heavy metals. Table 1.3 lists currently available antibiotics and vaccines against 
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diarrheal pathogens which are either in use or under different phases of development. iOWH032 

is a new drug which is under investigation for exploring its potential to be the first synthetic drug 

against secretory diarrhea [42]. 

Table 1.3 List of currently available drugs and vaccines against diarrheal pathogens. 

Organism Drugs Vaccines 

Live 

attenuated 

Killed 

whole-

cell 

vaccines 

Subunit 

Shigella Ciprofloxacin, 
Pivmecillinam, 
Azithromycin 

CVD1208S, 
WRSS1 

ETEC  
whole  
cell 

Chemical glycoconjugate, 
Recombinant glycoconjugate, 
Synthetic glycoconjugate, 
InvaplexAR, GMMA, OMV, 
DB  Fusion, PSSP-1, 34  kDa  
OMP 

Salmonella Azithromycin, 
Fluoroquinolones, 
Ceftriaxone 

JOL919, 
JOL1364 (C
hickens) 

  

Campylobacter Erythromycin, 
Azithromycin and 
Fluoroquinolones 

   

ETEC Ciprofloxacin and 
Azithromycin 

ACE527, 
ZH9 

ETVAX Dukoral®(CTB), dmLT, ST, LT 
patch, Fimbrial  tip  adhesion, 
CF/CS consensus  peptide fused 
to  dmLT-ST mutants, YghJ, 
EatA 

Rotavirus  RotaTeq®, 
Rotarix, 
Rotavac 

  

V. cholera Doxycycline and 
Tetracycline 

CVD 103-
HgR, 
Mutacol 

Dukoral, 
Shancho
l 

 

E. histolytica Metronidazole, 
Tinidazole, 
Nitroimidazole 

   

G. lamblia Metronidazole 
and Ornidazole 

α1- Giardin   

 

Opiates such as loperamide (Imodium®) and diphenoxylate with atropine (Lomotil®) are used to 

treat chronic diarrhea by slowing down within the intestine passage time to allow more fluid to 
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be reabsorbed [43]. These medications are not to be used in case of bloody diarrhea, or in case of 

presence of blood and leukocytes in the stool [44]. Lomotil®) is not recommended for children 

below age 2. Bile acid sequestrants are used in patients who have had their gall bladder removed 

to neutralize the bile acid built up in the colon [43]. Cholestyramine (Questran®) is one such 

drug which should be used with caution due to its potential to cause adverse drug reactions 

(ADR) particularly in patients with renal insufficiency [6]. Heavy metals such as bismuth have 

been effective in TD treatment due to its anti-infective and anti-secretory properties. Pepto-

Bismol® and Kaopectate® are two medications which contain bismuth subsalicylate [45] and 

should not be used for children below age 12. Since diarrhea is a self-limiting disease, antibiotic 

treatment is usually not recommended. Antibiotics are commonly required in case of TD, 

persistent and invasive diarrhea and C. difficile infection. The elderly and children are at greater 

risk for contacting severe diarrheal episodes. With age, GI tract changes in respect to passage 

time and blood flow to the gut in elderly population [46]. Children are more prone to dehydration 

as their metabolic rates are high while functional reserves are low [47]. Consequently, in elderly 

and young populations drug dosages should be reduced and time between doses should be 

extended to avoid any adverse effects.  

1.5     Antimicrobial resistance (AMR) 

AMR which is the ability of the microorganism to develop resistance to the drugs to which it was 

originally susceptible has emerged as a global health concern threatening the treatment of ever-

widening range of infectious diseases. Antibacterial resistance (ABR) is intricate as broad range 

resistance mechanisms are involved affecting ever-growing bacterial spectrum which are 

implicated in a wide variety of diseases. Penicillin discovery in 1928 by Alexander Fleming 

marked the commencement of a golden era of antibiotics. Penicillin which was released for 

public use in 1945 was used widely in World War II. The first case of penicillin resistance 

emerged in 1940 [48] but clinically significant resistance cases of penicillin were reported in 

early 1950’s. Figure 1.6 shows the timeline of antibiotic discovery and emergence of clinical 

resistance for various classes of antibiotics [49]. From 1940-1980, average resistance time for a 

drug was exceeding ten years, nevertheless in present scenario it has reduced to one year [50]. 

ABR is a natural phenomenon further accelerated by irrational use of antibiotics including in 

livestock, inadequate infection control practices, poor hygiene and lack of resistance surveillance 
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and monitoring systems. AMR impact on human health and health care expenditures is largely 

unidentified. Economic impacts of AMR to the US health system alone were estimated at US 21-

34 billion dollars annually which could potentially jeopardize the achievements of modern 

medicine [51].

 

 

 

 

 

 

Figure 1.6: Timeline of the discovery of antibiotic classes showing the dearth of progress made 

in the last few decades51.

  

Since last three decades which apparently is a discovery void era very few antibiotics have made 

it to the development pipeline. A novel antibiotic class last discovered was in 1987 and 

antibiotics discovered thereafter are modifications of the existing antibiotics [52]. Efforts 

invested in research and development for antibiotics discovery have reduced significantly in last 

few decades. The number of new antibiotics approved is steadily decreasing [50] while the 

resistance among different pathogens has been escalating rapidly.  

1.5.1 Antibiotic resistance mechanisms 

Bacteria develop resistance through a variety of sneaky mechanisms which can be inherent or 

acquired. Intrinsic resistance refers to natural resistance present in bacteria owing to some genes 

which could generate a resistance phenotype and render it intrinsically resistant to particular 

antibiotic class. Acquired resistance is generated by mutations in the chromosomal genes or by 

acquisition of mobile genetic elements carrying antibiotic resistance; following mechanisms 
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shown in Figure 1.7 [53].

 

 

 

 

 

 

 

 

Figure 1.7: The various mechanisms of antibiotic resistance55.

 

 Inactivation of antibacterial drugs:  Bacteria can acquire genes which can either 

degrade the antibiotic or modify it enzymatically which render it inactive. Bacteria 

produce β-lactamase enzyme  which renders the antibiotic inactive by hydrolyzing the β-

lactam ring present on it [54].  

 Alteration of antibacterial drug target: Some bacteria develop resistance by 

incorporating mutations in the antimicrobial targets which slightly modifies the drug 

target. The drug target can no longer bind with the antibiotic with the same affinity and 

exert its normal effect. E. coli develop resistance to quinolones by incorporating 

mutations in the gyraseA and B subunits [55].   

 Cell Permeability: Bacterial cell walls have evolved non-specific porin proteins which 

act as passageway for antibiotics and small molecules. Bacteria hinder antibiotics entry 

into the cell by modifying their cell wall. S. typhimurium modifies lipopolysaccharide and 

lipid A which reduces cell permeability against polymyxin [56]  

 Efflux Pumps: Bacteria can expel out the drug which enters the cell via efflux pumps 

resulting in low intracellular concentrations insufficient to cause infection. Efflux 

systems were originally described for tetracylines in 1980 [57]. Efflux pumps have been 
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now categorized into following categories: i) the resistance-nodulatons, ion-cell division 

(RND), ii) major facilitator (MF), iii) staphylococcal/small multidrug resistance (SMR), 

iv) ATP-binding cassette (ABC), and v) multidrug and toxic compound extrusion 

(MATE) families [58]. 

 Overproduction of target: Bacteria overproduce some enzyme substrates rendering 

antibiotic unable to inactivate the drug target present in abundant quantities. Enterococci 

develop resistance to β-lactam antibiotics by overproduction of low-affinity penicillin-

binding proteins [59]. 

 Bypass pathways: Some bacteria develop high level resistance by bypassing the 

inactivation of enzymes through production of an alternative drug target which is 

resistant to a particular antibiotic. Vancomycin resistance in enterococci develops due to 

production of an alternative cell precursor with D-alanine-D-lactate terminus in place of 

normal cell precursor with D-alanine-D-alanine terminus [60]. 

1.5.2 Status quo of antibiotic resistance in diarrheal pathogens 

In context of diarrheal pathogens, intermediate to high level of resistance has been reported 

globally as shown in Figure 1.8. World health leader organizations have described resistant 

microorganism as “nightmare bacteria” which “pose a catastrophic threat” to people around the 

globe as they can easily spread across continents crossing international boundaries [50]. C. 

difficile is regarded as resistant bacteria requiring urgent attention as it spreads rapidly and is 

naturally resistant to many antibiotics used in the treatment of other infections. It alone is 

responsible for 250,000 hospitalizations and 14,000 deaths per year in United States only [50]. 

From 2000 to 2007, 400% increase in C. difficile resistance has been reported. Campylobacter is 

implicated to cause estimated 1.3 million infections and 120 deaths each year in the USA. 

Campylobacter resistance to ciprofloxacin and azithromycin in USA is concerning as resistance 

to ciprofloxacin from 1997 (13%) to 2011 (26%) approximately doubled [50]. Non-typhoidal 

Salmonella resistance to ceftriaxone, ciprofloxacin and various other classes of antibiotics has 

serious implications. It causes 1.2 million infections and 450 deaths amounting to $365 million 

annually in USA [50]. Resistance to third-generation cephalosporins increased from 70% to 83% 

in E. coli from 2008 to 2013, and resistance to fluoroquinolone increased from 78% to 85% [61]. 

A serious action is needed to tackle the drug resistant Shigella. Shigella has developed high level 
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resistance to first line antibiotics such as ampicillin and trimethoprim sulfamethoxazole [62]. 

Resistance to antibiotics like ciprofloxacin and azithromycin is growing in Shigella which 

accounts for approximately 500,000 diarrheal incidences and 40 deaths annually in USA [50]. 

Shigella has developed 50% resistance to norfloxacin and ampicillin in India [63].

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Percentage of isolates of different diarrheal pathogens resistant to antimicrobial 

agents, 201364.

 

1.6     Knowledge gaps 

Resistance in gram negative bacteria is typically troublesome as gram negative bacteria are on 

the way to becoming pan-resistant while some are already there. Increasing antibiotic resistance 

will place us in the post-antibiotic era which will cripple the ability to treat infectious diseases 

jeopardizing the gains of modern medicine. In Indian context, it is not possible to clearly 

demarcate the antibiotic resistance trends for specific organisms due to insufficient data; 

nevertheless it indicates high level of resistance. Resistance is highest for the drugs in use for the 

longest periods of time, and for the relatively newly introduced antibiotics, resistance in India is 
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reported to be quite high [63]. Deaths attributable to drug resistance would be concentrated more 

in South-East Asia region by 2050 which is as high as 4,730,000 [63]. India regarded as the 

largest consumer of antibiotics in the world was reported with a whooping 43% increase in 

antibiotic use from 2000 to 2010 [64]; where 18% of the drugs were used without prescription 

[65].  Indian Council of Medical Research (ICMR) launched the Anti-Microbial Resistance 

Surveillance and Research Network (AMRSN) in 2013 with its seven nodes focusing on 

diarrhea, enteric fever, sepsis, gram-positive bacteria, fungal infections and respiratory 

pathogens. AMRSN in its insurgency has been limited to small scale efforts, far behind its 

intended goal of being established as a permanent surveillance system for antibiotic resistance. 

The knowledge gaps in antibiotic resistance exist in form of  

i) Limited international, national and state surveillance to monitor urgent and emerging 

antibiotic resistant pathogens  

ii) No scaling of antibiotic use in humans and livestock   

iii) Lack of  antibiotic stewardship  

iv) Less effort invested in development of new drug and diagnostic tests.  

We have attempted to contribute to tracking and benchmarking antibiotic resistance and 

developing new antibiotics to keep pace with ever-evolving resistant bacteria with the motivation 

to address aforementioned gaps in tackling the global threat of antibiotic resistance. 

1.7    Objectives 

This research study was undertaken to study the antibiotic resistance mechanism in diarrheal 

pathogens and to propose potential drug targets and vaccine candidates against them using in 

silico approaches. The objective of this study is to develop a database which can unify the 

molecular data of mutations and resistance genes of diarrheal pathogens curated from published 

literature. SNPs deposited in the database will be studied at structural level wherever possible to 

derive a possible explanation for genotype to phenotype correlation where genotype represents 

SNPs in the drug target proteins and phenotype represents change in Minimum Inhibitory 

Concentration (MIC) values. Finally, integrated omics approaches such as immunoinformatics, 

comparative genomics, subtractive genomics and metabolic modeling will be applied aimed at 
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predicting some potential therapeutic drug targets and vaccine candidates. The specific 

objectives which are being addressed are: 

 To develop a database of mutations and resistance genes from various diarrheal 

pathogens  

 To study the structural signatures of the pathogen mutations deposited in the 

database and their consequences on drug binding landscape  

 in silico prediction of potential therapeutic drug targets and vaccine candidates 

against a wide variety of diarrheal pathogens  

Acquisition of mutations/polymorphism/SNP (Single Nucleotide Polymorphism) is a major 

force underlying bacterial evolution which provides a platform for natural evolution. Mutations 

emerge and accumulate in bacterial pathogens at a rapid rate as they are of haploid nature for 

majority of their genes and have typically short generation times. High mutation rates in 

bacteria render significant phenotypic changes in a real-time manner. Although horizontal gene 

transfer between bacterial pathogens is an important contributor to antibiotic resistance, 

however mutational resistance plays a critical role in continuous bacterial evolution and has 

clinical significance [66]. SNPs proved to be potential biomarkers due to their genome-wide 

availability in virtually all organisms and being large in numbers. SNPs find applications and 

have been extensively utilized in a wide range of areas such as human forensics [67] and 

diagnostics [68], aquaculture [69], marker assisted-breeding of dairy cattle [70], crop 

improvement [71], conservation [72], and resource management in fisheries [73]. SNPs are 

exploited in genetic mapping to decipher breeding pedigree, in evolutionary studies to identify 

genomic divergence aimed at explicating the role of speciation in evolution and in genome wide 

association studies to correlate genotypic variations with the phenotypic traits [74].    

With a rapid emergence of serious antibiotic resistance threats, there is a pressing need to 

monitor the spread of antibiotic resistance.  Molecular information pertaining to antibiotic 

resistance associated mutations has substantially increased in last few decades which can 

bequeath an understanding into spread and mechanism of antibiotic resistance. Nevertheless, 

mining such information is deeply hindered due to lack of data warehouses which can integrate 

the molecular data. The identification and cataloguing of SNPs implicated in antibiotic 

resistance and resistance genes in a public repository proves to be a useful resource for various 
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purposes in both basic and applied research. Treatment of diarrheal diseases is heavily 

compromised due to a wide variety of etiological agents involved which is further compounded 

by a rampant increase in the antibiotic resistance in diarrheal pathogens. Large scale studies 

have been undertaken globally to provide a catalog of antibiotic resistance associated mutations 

from different pathogens such as MTCID, CRAD, ARDB etc. [75-77] There have been no 

efforts to curate the experimental SNPs reported to be associated with antibiotic resistance in 

diarrheal pathogens which is scattered all over the web. We have attempted to build a 

comprehensive repository of resistance genes and antibiotic resistance associated mutations 

curated from published literature which is discussed in detail in Chapter 2.  

SNPs have important functional consequences such as in signal transduction [78], in gene 

regulation  [79], in maintaining cell structural integrity [80]  and in drug resistance by affecting 

drug target proteins such as G-protein coupled receptors, enzymes and ion channels [81-83]. 

Effects of SNPs on gene expression, mRNA stability and protein structure have important 

reverberations on drug response [84]. Evaluating the effect of SNPs in the context of protein 

three dimensional structures (3D) can yield valuable insights into antibiotic resistance 

mechanism by shedding light on drug-target interaction and genotype-phenotype association 

[85].  The efficient utilization of SNP based web resources involves i) understanding how 

individual genetic variations are decoded into structural modifications in protein drug targets 

which get translated into differential therapeutic drug responses and ii) and incorporating 

modifications into existing antibiotics based on how these variations alter drug response 

pathways. We have performed molecular modeling and molecular dynamics simulation studies 

to understand the effect of mutations in gyrase A subunit on quinolone affinity in ETEC and C. 

jejuni which is described in detail in Chapter 3.  

Due to ever-growing antibiotic resistance, economic constraints, limited time frame for 

antibiotic use before emergence of drug resistance and unfavorable regulatory factors pertaining 

to antibiotic approval and rigorous criteria of minimum adverse side effects, pharmaceutical 

industries have abridged their investment in antibiotic development ultimately shrinking the 

therapeutic arsenal in the battle against infectious diseases. With ever-widening range of 

microbes being resistant to existing antibiotics, bioterrorism threat, re-emergence of previously 

fatal and emergence of new infectious diseases, there remains a dire need to reinvigorate the 
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antibiotic pipeline. We have utilized the power of omics approaches to identify potential drug 

targets and vaccine candidates in various diarrheal pathogens which is discussed in Chapters 4, 

5, 6, and 7. 
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2.1 Introduction  

Diarrheal diseases continue to be a significant cause of morbidity and mortality, especially 

among children under five in developing countries. Oral Rehydration Therapy (ORT) is the 

cornerstone of treatment as recommended by the WHO [1], but is not sufficient therapy for some 

cases of bloody diarrhea, severe dehydration, intractable vomiting, monosaccharide mal -

absorption. Emergence of antimicrobial resistance, especially from the multidrug resistant 

microbes, is challenging the global prospects for fighting the diarrheal pathogens. Acquired 

resistance that results from mutation or acquisition of foreign resistance genes is a major player 

in the resistance against antibiotics [2]. Mutations and the resistance genes in the pathogen 

genome affect the drug response by various mechanisms such as inactivation of antimicrobial 

agents, modification of the antimicrobial target, altering membrane permeabili ty, efflux pumps 

etc. [3]; making it crucial to understand this trilateral relationship between disease and genome 

variations and resistance genes. 

 Single Nucleotide Polymorphisms (SNPs) are the unique genetic differences between 

individuals that contribute significantly in identification and forensics [4], mapping and genome 

wide association studies to complex diseases [5], to predict specific genetic traits [6], to classify 

patients in clinical trials [7]. SNPs underlie differences in susceptibility to or protection from a 

host of diseases thereby proving its great potential in personalized medicine [8]. Therefore, a 

database of the variations in a group of organisms is not only useful for understanding genotype-

phenotype relationship but also in clinical applications. The phenomenon of gene acquisition is 

mediated by transformation, transduction and conjugation. Plasmids, transposons, and integrons 

and gene cassettes are the platforms on which these resistance genes are assembled. They allow 

bacterial strains to expand their niches to the areas that were previously denied [9].  

Large scale studies have been undertaken throughout the world to identify the antibiotic 

resistance associated mutations which are devoted to some specific organism like 

Mycobacterium tuberculosis (MTCID, MGDD, MTBC, GMTV) or which are generalized and 

host mutations or resistance data from different organisms (CRAD, ARDB, CREAM) [10-17]. 
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The information about pathogens which are implicated in other disorders including diarrhea, is 

not disease specific while our database pertains to clinical isolates of diarrheal pathogens. 

Till date, there has been no single resource available that provides information about genomic 

variations and resistance genes among different diarrheal pathogens; readily available to be used 

in research and development. We have developed DBDiaSNP in an attempt to provide a single 

platform for storage and retrieval of large amount of polymorphism and resistance gene data, 

particularly which is derived from clinical isolates of diarrhea. It complements our other database 

dbDiarrhea [18] which is a repertoire of  pathogen proteins and vaccine antigens implicated in 

the pathogenesis of diarrhea. This database provides information about prevalence of resistance 

genes or mutations in a specific geographical region; increasing our knowledge on which 

mutations or resistance genes are common in certain bacteria or geographical locations. Mutation 

data in such databases can be used to screen newly sequenced strains for presence of any 

previously characterized resistance associated mutation; ultimately paving a way for information 

based targeted therapies. By mapping these SNPs at structural level, we can glean insights into 

the molecular level details of antibiotic resistance due to mutations. We can study how these 

mutations affect the binding of antibiotics to the target proteins. Such studies offer us with the 

possibility of mitigating the ever growing problem of antibiotic resistance by incorporating 

necessary modifications in already existing antibiotics. 

2.2 Methods 

2.2.1 Database system implementation 

DBDiaSNP has been designed on MySQL 5.1 that provides multi-layered server design with fast 

execution times. It is implemented by using three-tier architecture. DBDiaSNP was developed on 

an IIS server (7.0) in a Windows operating system. The web pages were written using PHP, 

HTML language, Cascading Style Sheets (CSS) and JavaScript. The IIS server handles queries 

from web clients through PHP scripts to perform searches which allow researchers to obtain SNP 

information. An overview of the DBDiaSNP architecture is given in Figure 2.1.a. As shown in 

Figure 2.1.b, the database is a comprehensive resource of drug-resistance mutations and 

resistance genes in diarrheal pathogens and hosts. We conducted a systematic review to identify 
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antibiotic resistance mutations and resistance genes reported in the literature to be included in the 

database. The variations are categorized into SNPs, substitutions, frameshift mutations, 

deletions, insertions. For each mutation, the database provides complete codon change at 

nucleotide or amino acid level. Resistance genes reported in different pathogens can also be 

browsed and are categorized into Plasmid mediated, Transposons mediated, Integrons and gene 

Cassettes mediated resistance modes according to its subcellular location. Table 2.1, 2.2 and 2.3 

show the database statistics which houses 946 mutations with clinical relevance and 326 

resistance genes associated with diarrheal pathogens (viruses, protozoans and bacterial species) 

and hosts. Table 2.4 shows the breakup of source of SNPs deposited in database. In pathogens, 

mutations and resistance genes are responsible for antibiotic resistance. The host mutations are 

the ones which render them susceptible or resistant to a particular type of diarrhea or to diseases 

where diarrhea is a predominant symptom.  

2.2.2 SNP and resistance data search 

DBDiaSNP allows users to search for SNP and resistance gene information based on organism of 

interest which includes both host and pathogens. Related literature citations can also be retrieved 

based on the resistance mechanism adopted. The search results provide related SNP and 

resistance gene data and their annotations. The information on corresponding protein, PDB 

identifiers, function etc. associated with each of the SNPs and resistance gene has been extracted 

from different web resources dbSNP, OMIM, ClinVar, PDB [19-22]; thus providing a 

comprehensive compilation of the SNPs and resistance genes reported in the clinical isolates of 

various diarrheal pathogens.  

2.3 Results and discussion 

DBDiaSNP presents a database entirely devoted to drug-resistance mutations and resistance 

genes in diarrheal pathogens. We hope it will open new avenues to the discoveries that will have 

applications from diagnostics to drug discovery. 

2.3.1 Development of SNP-based diagnostics 
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There is pressing need to develop tools that can identify the antibiotic-resistant pathogens rapidly 

and with high accuracy. SNPs based diagnostic methods detect mutations associated with a 

particular disease, but such tools extensively rely on information about the mutations and their 

relative frequency [23]. As more sequencing data are made available, this database project, we 

believe will pave a path for the currently available tools to detect resistance to the antibiotics.  

Table 2.1: SNPs statistics along with genes:  Table 2.2: Resistance Gene statistics: 

Species wise distribution in pathogens  Species wise distribution in pathogens 

 

 

 

 

 

 

 

Table 2.3: SNPs statistics along with genes: Species wise distribution in hosts 

 

 

 

Table 2.4: Breakup of Source of SNPs in database  

 

 

Organism #Resistance Genes 

Escherichia coli 68 

Enterococcus spp. 10 

Campylobacter spp. 10 

Shigella spp. 58 

Vibrio spp. 60 

Aeromonas spp. 26 

Clostridium spp. 10 

Klebsiella spp. 16 

Salmonella spp. 68 

Total 326 

Organism #SNPs (Genes) 

Viruses 221 (10) 

Escherichia coli 91 (15) 

Entamoeba histolytica 11 (1) 

Campylobacter spp. 98 (4) 

Shigella spp. 13 (3) 

Vibrio cholerae 16 (1) 

Aeromonas caviae 4 (2) 

Clostridium difficile 46 (4) 

Helicobacter pylori 71 (3) 

Salmonella spp. 19 (3) 

Total 590 (46) 

Organism #SNPs (Genes) 

Humans 291 (57) 

Porcine   65 (3) 

Total                                       356 (60) 

Source     # SNPs 

Pubmed 590 

OMIM 229 

dbSNP 102 

clinVar 25 
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Figure 2.1: DBDiaSNP architecture overview. a) Standard three-tier architecture of DBDiaSNP; 

b) Organizational structure of the DBDiaSNP. The data were compiled from existing literature 

and online databases Uniprot, ClinVar, dbSNP, and OMIM, and enriched with annotation 

information such as PDB ID, Gene ID, Pubmed ID, Biological function, and CCDS ID from 

online resources. The database includes three modules: 1) Polymorphism data further categorized 

into Host and Pathogen Polymorphism; 2) Resistance Gene data further categorized into Plasmid 

mediated, Integrons, and Gene Cassettes, and Transposon Mediated; 3) Research articles relevant 

to each category.

 

2.3.2 SNPs monitoring in different geographical regions 

Different analogs of the same drug interact differently with the targets. Mutations arising as a 

result of treatment with different drug analogs may help explicate the geographic differences in 

drug effectiveness [24]. Therefore, we have mentioned the geographic locations of antibiotic 

resistance studies in our database. Availability of data on frequency of mutations through 

sequencing projects will lead to better understanding of regional differences in drug resistance. 

2.3.3 Drug discovery 

SNPs can have a major influence on response to pharmacotherapy [25]. The database will aid in 

lead discovery against antibiotic resistant pathogens by mapping the mutations onto the protein 

structure; providing a better understanding of molecular mechanism of drug-resistance. 

Additionally such analysis may suggest drug modifications to combat emerging drug resistance 

in diarrheal pathogens. 

We have created an interactive web interface to retrieve information about mutations and 

resistance genes in diarrheal pathogens associated with drug resistance. Currently there is 

information from major diarrheal pathogens and hosts. To get a comprehensive list of variations, 

particularly substitutions and in-dels; one can choose Host Polymorphism or Pathogen 

Polymorphisms. As shown in Figure 2.2 for both pathogen and host mutations, after submission, 

the output will show all the SNPs along with annotation of genes corresponding to these SNPs.  
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Figure 2.2: Typical output of a query (SNP). (a) Description of different annotation terms; (b) 

Distribution of mutations associated with antibiotic resistance in C. difficile; (c) Mutation in IL8 

associated with susceptibility to EAEC-associated traveler’s diarrhea in H. sapiens. 
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Figure 2.3: Typical output of a query (Resistance Gene). This view shows the distribution of 

resistance genes distributed in Campylobacter spp.

 

Users can also browse through the resistance genes in different diarrheal pathogens. Figure 2.3 

shows the results of a query executed with Campylobacter spp. listing all the resistance genes 

and related annotation data. Users can also search for the related literature based on categories 

polymorphism, plasmid-mediated resistance or integrons and gene-cassettes. In addition to 

presenting the literature in a manually curated database, this web interface will also serve as a 

gateway to post data from future research. In keeping with the scientific philosophy of open 

access, the database is publicly accessible. We hope that this database will serve as a portal to 

share future research on antibiotic resistance. 

2.4 Future directions 

The current version of the database is based on literature available till date. The database will be 

updated regularly to provide an accurate picture of the mutations and resistance genes associated 

with antibiotic resistance in diarrheal pathogens. To keep the database updated, we will include 
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new mutation prevalence data sets. We will include novel mutations from published studies in 

clinical isolates of drug-resistant diarrheal pathogens. We will customize the website to house 

more plasmid mediated resistance and integrons and gene cassettes associated resistance 

mechanisms and related mutations in near future.  

Conclusion 

In this manuscript we describe DBDiaSNP, a comprehensive database of molecular variations 

and resistance genes in clinical isolates of Diarrhea, generated through manual curation of data 

from published literature. DBDiaSNP is intended to pace up with research efforts for global 

surveillance and control of diarrhea. The variations reported in the database represent potential 

markers of antibiotic resistance in diarrheal pathogens which might help in understanding 

genotype-phenotype relationships. The database will expand as additional polymorphisms will 

be identified in the coming years. We expect that it will make a substantial contribution towards 

the breakthroughs that will find applications ranging from diagnostics to drug discovery and will 

prove to be utile to both the diarrheal research community and clinicians. For future translational 

research involving integrative biology and global health [26,27], the presented database offers 

veritable potentials, particularly for developing countries and worldwide monitoring and 

personalized effective treatment of pathogens associated with diarrhea. 
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3.1 Introduction 

gyrA, a type II topoisomerase, is an attractive drug target for antibacterials as it is indispensable 

to bacterial survival and lacking in higher eukaryotes. Due to their unique mechanism of action 

of catalyzing change in DNA topology and indispensable nature, gyrA has been exploited as a 

drug target both for gram negative and some gram positive bacteria since a long time. It is one of 

the two essential subunit of DNA gyrase, which facilitates DNA unwinding at replication forks 

and involved in the regulation of DNA supercoiling [1]. DNA gyrase is a hetrotetramer (A2B2) 

which is composed of two subunits of GyrA (Mol Wt.: 97 kDa) and GyrB (Mol Wt.: 90 kDa) 

encoded by genes gyrA and gyrB respectively [2]. A 59 kDa (GyrA59) N-terminal domain 

(NTD) and a 38 kDa C-terminal domain (GyrA-CTD) associate to form GyrA subunit. Currently 

there exist no high-resolution structure for the gyrase holoenzyme (A2B2) but X-ray crystal 

structure of the GyrA59 fragment from E. coli (PDB ID: 1ab4) was solved with a resolution of 

2.8 Å which consists of residues 30–522 [3]. The gyrA N-terminal region (NTD) which cleaves 

single-stranded DNA has three distinctive domains (Figure 3.1). The first domain contains a 

helix-turn-helix (HTH) motif similar to that of the E. coli catabolite activator protein (CAP). It 

contains both active-site tyrosine which is responsible for breakage and religation of the DNA 

[3,4] and quinolone resistance determining region (QRDR). The second domain is termed as the 

“tower” and adopts an extended bi-lobed α/ȕ structure. The third domain termed as dimerization 

domain is a dense bundle of small α-helices connected to the tower domain and the C-terminal 

domain (CTD) through long α-helices [3]. gyrA is exploited as a target of antibacterial agents 

with a high therapeutic potential due to its ability to introduce negative supercoils in DNA in an 

ATP-dependent reaction. 

Quinolones, a class of broad spectrum antibacterial agents, have been used as most potent 

inhibitors of bacterial topoisomerases hitherto [5]. Nalidixic acid, the prototypical compound of 

first generation shows relatively narrow antibacterial spectrum and low bioavailability. 

Introduction of fluoroquinolones by combining the fluoro-substituent at C6 and the saturated 

nitrogen-containing heterocycle at C7 was a major breakthrough. Norfloxacin and its derivatives 

ciprofloxacin and ofloxacin were representatives of this generation with broad spectrum activity 

and improved pharmakokinetic profiles [5]. Quinolones exert their antibiotic effect by stabilizing 

the covalent enzyme–DNA complex and preventing the religation of the cleaved DNA and 
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forming DNA lesions [6] which leads to impaired fundamental cellular activities such as DNA 

replication, recombination, transcription, and thus hampers bacterial growth.  

Traveler’s Diarrhea (TD) is the most frequent health problem affecting visitors to developing 

countries and tropical areas with huge economic costs. Enterotoxigenic E. coli (ETEC) is a major 

cause of TD [7]. Fluoroquinolones are potent antimicrobial agents for treatment of severe cases 

of TD. Ciprofloxacin is one of the most widely used fluoroquinolone. Increased use of 

quinolones led to an escalating rate of antibiotic resistance against these antibiotics in E. coli. C. 

jejuni in recent decades has emerged as the most recurring cause of  infectious diarrhea infecting 

estimated 2.4 million people worldwide and contributes to a huge economic burden [8]. 

Campylobacteriosis, the most common form of enteric bacterial infections, is usually self-

limiting, but in persistent form require antibiotic treatment with erythromycin and 

fluoroquinolones. The growing body of evidences has documented resistance to different 

antibiotics such as tetracycline, kanamycin, chloramphenicol, erythromycin, ciprofloxacin in C. 

jejuni strains [9,10]. Various studies on clinical isolates of ETEC and C. jejuni have reported 

mutations in the chromosomal genes that encode the subunits of DNA gyrase and 

topoisomerases IV which leads to increased Minimum Inhibitory Concentration (MIC) values of 

fluoroquinolones [11-13]. This observation suggests that the drug resistance may be related to 

the specific interactions between the antibiotic and the target. Increased quinolone resistance is 

related to i) decreased influx of antibiotic ii) plasmid mediated resistance and iii) acquisition of 

mutation in genes encoding gyrase reckoned to be most clinically relevant [5,14].  These 

mutations have been mapped to the QRDR of E. coli gyrase subunit A (residues 67–106) [15].  

Such mutations can cause structural modifications of the target and ultimately affect binding 

affinity. Exploring the structural impact of these antibiotic resistance associated mutations could 

significantly advance our knowledge of associated molecular changes in the functionally 

significant regions of the target. S83L and double mutation S83L/D87N have been widely 

associated with quinolone resistance in ETEC isolates and T86I and a double mutation 

T86I/P104S in C. jejuni isolates of diarrheal patients from diverse geographic regions and 

documented to increase Minimum Inhibitory Concentration (MIC) values [9,10,16,17]. Applying 

molecular dynamic simulation approaches to study these mutations could yield insights into the 

underlying molecular mechanism of the associated phenotypes. Structural consequences of these 
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mutations in the target can induce functional changes. Apparently conformational flexibility of a 

protein affects its interaction with ligand. The present study was undertaken to probe the 

dynamic behavior of the gyrA in ETEC and C. jejuni to expound the molecular changes 

associated with mutations S83L, S83L/D87N and T86I, T86I/P104S leading to ciprofloxacin 

resistance in ETEC and C. jejuni gyrA respectively.

 

 

 

 

 

 

 

 

 

Figure 3.1: Cartoon representation of ETEC gyrA showing its distinctive domains, catalytic site 

and mutations associated with quinolone resistance reported in diarrheal patients. QRDR 

mutations and the catalytic site are in stick representation and shown in yellow and cyan color 

respectively. The CAP domain is colored violet purple, the tower blue, the dimerization domain 

and connecting a-helices colored orange. Zoomed in is a view of CAP domain showing HTH 

motif with three helices and two beta-sheets with corresponding residue ranges as α1 (43–56), α2 

(66–77), α3 (81–92), ȕ2 (101–106), ȕ3 (124–128).

 

3.2 Methods 

All the docking calculations were carried out in Accelrys Discovery Studio (DS) version 4.1 and 

LeadIt version 2.1.6[18]. DS Client 4.1 was used for docking preparation; LeadIt was used for 
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binding energy calculations. LeadIt uses FlexX algorithm which is a fast, flexible docking 

method that uses an incremental construction algorithm for ligand placement into active site. 

3.2.1 Ligand preparation 

Ciprofloxacin (Pubchem Compund ID: 2764) 2D structure (SDF format) was retrieved from 

Pubchem Compound database [19]. The structure was prepared by assigning appropriate 

ionization in physiological pH range 6.5-8.5 because at pH greater than 6.09, the carboxylic acid 

group will be primarily dissociated and at pH less than 8.74, the nitrogen will be primarily 

protonated. A conformational search for prepared ligand was performed in order to find a set of 

low-energy conformers. For ligand structure, a maximum of 10 tautomers and stereoisomers 

were generated. The prepared structure was energy minimized by Smart Minimizer Algorithm 

using CHARMm force field. 

3.2.2 Homology modeling 

gyrA amino acid sequence for ETEC (875 aa) strain E24377A (Escherichia coli O78:H11) and 

C. jejuni (863 aa) strain NCTC11168 were retrieved from Uniprot database with IDs A7ZP49 

and Q03470 respectively. Both structures were modeled in Discovery Studio using E. coli gyrA 

(PDB Id: 1AB4) as template which showed 91.2% and 50.3% identity with ETEC and C. jejuni 

gyrA respectively. Initial homology models were built using DS. Out of the 5 models generated 

by DS, the one with the highest Discrete Optimized Protein Energy (DOPE) score was selected 

for each structure. DOPE score is a statistical measure for assessment of the quality of homology 

modeled structures as a whole. The residue profiles of the models were further verified for 

stereo-chemical properties by subjecting them to Verify3D [20] and PROCHECK [21]. 

The modeled native and mutant structures for ETEC and C. jejuni gyrA were prepared and 

energy minimized in DS. Mutant type structures (MT) of ETEC were obtained from wild type 

(WT) ETEC gyrA by introducing amino acid substitutions at position 83 and 87, generating 

mutants with single mutation S83L and double mutation S83L/D87N. For C. jejuni, two mutants 

were built with amino acid substitutions at 86 and 104 positions generating a single mutant T86I 

and a double mutant T86I/P104S. The receptor structures were prepared by optimizing hydrogen 

network, inserting missing loops based on SEQRES data in PDB, optimizing short and medium 

loop regions with looper algorithm and minimizing remaining loop regions, assigning 

appropriate ionization states at physiological pH 7.4. All structures were then energy minimized 
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to RMS gradient 0.1 with 200 steps of minimization, so as to remove steric clashes, by Smart 

Minimizer Algorithm with CHARMm force field. The secondary structures of the modeled gyrA 

from ETEC and C. jejuni were predicted using STRIDE [22]. The modeled structures were 

superimposed on the template crystal structure without changing the coordinate system of atoms 

in the template using jCE algorithm in Combinatorial Extension method [23]. 

3.2.3 Molecular docking 

For ETEC and C. jejuni, amino acids at corresponding mutated positions 83, 87 and 86, 104 in 

the receptor were selected to define a sphere centre and amino acids within 10 Å radius of this 

sphere were selected to specify the binding site to allow the ligand to rotate freely even in its 

fully extended conformation. The minimized structures of ligands and receptors were used for 

docking in LeadIt using FlexX incremental algorithm which decomposes ligand into fragments 

and then selects some base fragments and use them as anchors for systematic conformational 

analysis of remainder of the ligand using a variety of placement strategies. For present work, we 

employed entropy approach which utilizes single interaction scan (SIS) based on hydrophobic 

pockets with only a few interaction sites. For protein ligand clashes and intra ligand clashes 

default values of maximum allowed overlap volume (2.9 cubic Å) and clash factor (0.6) were 

used. For each iteration and fragmentation, 200 solutions were generated. Top 10 best poses for 

the ligand were generated for each docking calculation and conformations with highest docking 

score (more negative) and maximum number of interactions were used for further analysis. The 

output score is based on Bohm’s function which involves a number of parameters [24] and is 

calculated as:  

ΔGbind= ΔG0 + ΔGhb∑  ሺ     ሻ        

                     +ΔGionic∑  ሺ     ሻ                  

                     + ΔGlipo|Alipo| + ΔGrotNROT 

where ΔG values on the right side of equation are all constants, ΔG0 is contribution to the 

binding energy that does not depend directly on any specific interaction with the protein, 

hydrogen bonding and ionic terms depending on the geometry of interaction, with deviations 

from ideal distance R and ideal angle α being penalized, lipophilic term |Alipo| proportional to the 

contact surface area between non polar atoms of protein and ligand, entropy term is directly 
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proportional to the number of rotatable bonds in ligand (NROT) and represents the penalty 

associated with freezing internal rotations of the ligand. 

3.2.4 MD simulations 

The molecular system was simulated using Molecular Dynamics in Amber 11.0 [25] and 

Ambertools 1.5. Hydrogen atoms were added using the tLeap program implemented in 

Ambertools and parameters were assigned according to AMBER FF99SB force field [26]. The 

system was solvated with TIP3P water model [27] in an octahedral box with 15 A˚ buffer around 

the complex. Na+ counterions were added to maintain the neutrality of the systems.  

Each molecular system of ETEC i.e. 1) native modeled complex of 1AB4, 2) modeled complex 

of 1AB4 with substitution of Ser to Leu at position 83, and 3) with substitution of Ser to Leu at 

position 83 and substitution of Asp to Asn at position 87 and C. jejuni viz. 1) native modeled 

complex of 1AB4, 2) modeled complex of 1AB4 with substitution of Thr to Ile  at position 86, 

and 3) with substitution of Thr to Ile  at position 86 and substitution of Pro to Ser at position 104 

were energy minimized through three rounds of energy minimizations of 1000 steps each. In 

each set of minimization, protein was energy minimized for 500 steps of steepest descent 

followed by 500 steps of conjugate gradient with a time step of 2 fs to eliminate close van der 

Waals contacts. In the first and second minimization rounds positions restraints of 10 kcal-1Å-2 

and 2 kcal-1Å-2 respectively were imposed while in the third minimization, the entire system was 

minimized without any restraints. After minimization, each system was then gradually heated 

from 0 to 300 K followed by constant temperature equilibration at 300 K and 1 atm pressure for 

100 ps. Following the stabilization of thermodynamic properties, a 10 ns MD simulation was 

performed for each system with an integration step of 2 fs in an isothermal isobaric ensemble 

(NPT, T = 300 K and P = 1 atm) with periodic boundary conditions. NPT conditions were 

maintained with Langevin thermostat [28] and Berendsen barostat [29]. SHAKE algorithm [30] 

was applied to constrain all covalent bonds involving hydrogen atoms.  

Long-range electrostatic forces were treated using the particle-mesh Ewald (PME) method [31] 

with a charge grid spacing of ~1.0 A˚, and the charge grid interpolation on a cubic grid by setting 

the direct sum tolerance to 4.0 X 10-6. Short-range electrostatics and van der Waals interactions 

were evaluated using a 9.0 A˚ atom-based cutoff. Trajectory coordinates were saved at every 2 

ps for further analysis. After performing MD simulations, the root mean square deviations 
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(RMSD) and root mean square fluctuations (RMSF) of the MD trajectories were analyzed with 

respect to each initial set of coordinates. MD simulation protocol has been validated based on the 

modeled structure of WT-gyrA. The convergence of simulations was analyzed by monitoring 

parameters like the energy components, root mean-square deviation (RMSD) from the initial 

modeled structure, and root mean-square fluctuation (RMSF) for WT-gyrA and each of the 

mutants in both ETEC and C. jejuni molecular systems being investigated. 

3.2.5 MM-PBSA calculations 

Free energies were calculated using the conventional MM-PBSA and MM-GBSA approaches in 

AMBER 11. Free energies were estimated by averaging the configurations that were extracted 

from a total of 2500 frames at every 20 ps giving a total of 125 frames for energetic analysis 

during the last 5 ns of the MD simulation. The binding free energy profiles were calculated for 

WT and each of the mutants using following equations:  

ΔGbind= Gcomplex– Greceptor– Gligand    (1) 

   ΔGbind = Egas+ Gsol – TΔS                                                        (2) 

   Egas= Eint + Evdw+ Eele            (3) 

Gsol= GGB + GSA                                                                                                       (4) 

  GSA=ȖSASA                                                                                 (5) 

where T and S correspond to the temperature and the total solute entropy, respectively; Egas 

signifies gas-phase energy which is sum of internal energy (Eint), electrostatic (Eele) and van der 

Waals contributions (Evdw). Egas is evaluated using parameters from the FF99SB force field 

terms. The solvation free energy (Gsol) can be further decomposed into polar and nonpolar 

solvation states. The polar solvation contribution (GGB and GPB) is determined by solving Poisson 

Boltzmann (PB) and Generalized Born (GB) equations. The nonpolar solvation contribution 

(GSA) is estimated using 0.0072 kcal mol−1Å−2 as the value for constant Ȗ and the solvent 

accessible surface area (SASA) determined using a water probe radius of 1.4 Å. Dielectric 

constants values for solute and solvent were set to 1 and 80, respectively.  

In order to determine the contribution of individual amino acid towards total binding free energy 

between ciprofloxacin and the WT/MT of gyrA in ETEC and C. jejuni, a per-residue 
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decomposition analysis of the interaction energy for each residue was carried out using the GB 

model, implemented in Amber11. Decomposition analysis was performed on l25 frames 

obtained during last 5 ns of MD simulation. Amino acids contributing binding free energy more 

than 0.5 kcal/mol were identified as the hotspot amino acids. These hotspot amino acids add up 

most to the complex stability and are crucial for the gyrA-ciprofloxacin interaction.    

3.2.6 Principal component analysis (PCA) 

In order to investigate the direction and amplitude of the dominant motions of MD trajectories, 

essential dynamics (ED) calculations were performed using PCA method by reducing the 

dimensionality of the MD simulations data. PCA can help in identifying an essential subspace 

that probes pronounced motions corresponding to large scale vibrational modes of groups of 

atoms in normal modes analysis [32].  Prior to analysis, the overall translational and rotational 

motions were excluded by translating MD trajectory to the geometrical center of the molecule 

and superimposing onto a reference structure [33]. PCA constructs the configurational space by 

orthogonal linear transformation in a new coordinate system to generate a covariance matrix (C). 

Associated eigenvectors (Vi) namely principal components (PC) and eigenvalues (λi) are 

generated by diagonalization of the covariance matrix. Vi give a vectorial description of each 

component of the motion by indicating the direction of the motion and λi represent the amplitude 

of the eigenvectors along the multidimensional space. Projection Proj[M,PCi] of any frame M 

onto ith PC is calculated by Eq. (6): 

                                              Proj[M,Vi]=Mα.Vi                                                                              6 

where Mα is the Cα atom of every structure after overlaying M with the reference structure. 

Projection highlights the time-dependent motions that the components perform in the particular 

vibrational mode. PCA was carried out using the PCAsuite software 

(http://mmb.pcb.ub.edu/software/pcasuite/) on I), WT, S83L, and S83L/D87N mutant models of 

ETEC and II) WT, T86I, T86I/P104S models of C. jejuni. Molecular dynamics trajectories of 

corresponding atoms were extracted using the PTRAJ program and analysis carried out for the 

last 5 ns using 63 frames. 

3.2.7 Residue Interaction Networks (RINs) analysis 



                                                                                                                     Chapter 3 
 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 47 
 

For both ETEC and C. jejuni, the average structures derived from the last 5 ns trajectory of each 

system were used for constructing the RINs. Reduce program [34] adds hydrogen atoms to the 

input structure using local geometry. PROBE [35] identifies interacting amino acids by 

evaluating their atomic packing using small-probe contact dot surfaces. PROBE uses several 

scoring functions to quantify non-covalent interactions such as interatomic contact, hydrogen 

bonds, salt bridges, pi–pi interaction etc. RINs generated from the averaged MD structures were 

visualized using RINalyzer [36]. Analyzing different RINs help us to extract changes in the 

networks that reflect alterations in physicochemical characteristics of the structures. 

3.3 Results and discussion 

ETEC 

3.3.1 Model building and structure validation 

As there was no crystal structure available for ETEC gyrA, it was determined using homology 

modeling protocol. The structure was built using E. coli gyrA as template which showed 91.2% 

identity. The sequence alignment generated using Praline program [37] is shown in Annexure: 

Figure 1. The modeled structure shows a typical Rossmann fold composed of six parallel beta 

strands linked to two pairs of alpha helices (Annexure: Figure 2). The model with lowest DOPE 

score was subjected to structure validation in terms of the stereo-chemical properties using 

PROCHECK and Verify3D. It was observed that 99.8% residues were in the allowed regions 

with 67.3% residues in the most favored regions (Annexure: Figure 3). Verify3D also predicted 

it to be a high quality model with 99.87% of the residues with score >=0.2. The structural 

superimposition of the backbone of the modeled structure with the template (Figure 3.2) resulted 

in a root mean square deviation (RMSD) of 1.3 Å with Z-score 51, indicating the structure is a 

reasonable good quality model. High sequence identity of the modeled structure with the 

template ensures correct connectivity of the secondary structure elements.  

3.3.2 Molecular docking and binding affinity calculations 

We used LeadIt for binding energy calculations of ciprofloxacin. FlexX incremental algorithm is 

aimed at assisting correct orientation of the ligands into the active site by using SIS approach. 

The resulting poses were ranked based on docking score. Ciprofloxacin interacting with WT 

gyrA through hydrogen bonds with residues K42, D87, and R91 predicted a docking score of -
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25.50. Figure 3.3 captures the binding of ciprofloxacin with WT gyrA. The ability to make 

hydrogen bonding and hydrophobic contacts are two crucial factors that decide whether ligand 

fits appropriately into the binding site. After introducing mutations in the WT gyrA, docking 

score decreased reasonably (Table 3.1). In MT S83L and double mutant S83L/D87N docking 

score was observed to be -21.2327 and -18.8967 involving hydrogen bonds with K42, D87, N87 

and R91 (Figure 3.4). In WT gyrA, R91 bonded with ciprofloxacin atoms O2 and O4 while in 

the MT gyrA hydrogen bond with ciprofloxacin O4 was lost (Table 3.2), thereby contributing to 

a decrease in the docking score. D87 being directly hydrogen bonded to the ciprofloxacin H43 

atom, plays a crucial role in the quinolone binding with gyrA. In the double mutant hydrogen 

bond length for residue 87 was increased from 2.76 Å in WT gyrA to 3.25 Å significantly 

decreasing the bond energy. 

 

 

 

 

 

 

 

 

Figure 3.2: Superimposition of ETEC gyrA and the template (PDB ID: 1AB4) produced by 

structural modeling with color coding scheme for helix, sheet and loop as red, yellow, green in 

template structure and cyan, magenta, salman in the modeled structure.

 

Other than hydrogen bonds, hydrophobic interactions also contribute to the docking score. 

Fluorine atom of ciprofloxacin made close contacts with D87. In WT gyrA complexed with 

ciprofloxacin, close atom-atom contacts score (clash) was 2.45, which was lower as compared to 

S83L and S83L/D87N in which it was observed to be 3.24 and 2.67 (Table 3.3). In S83L clash 
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score was highest because leucine being a bulkier residue, causes steric hindrance due to its side 

chain. In S83L lipophilic atom-atom contacts score was also lowest (-5.34) which was -5.61 and 

-6.47 in WT gyrA and double mutant respectively.  

Table 3.1: Docking scores and hydrogen bond residues involved in ciprofloxacin binding with 
WT and MT gyrA.  

 

Table 3.2: Hydrogen bonds involved in gyrA-ciprofloxacin interaction in WT and MT gyrA.  

Mutations Receptor  
Residue 

Receptor  
Atom 

Ligand  
Atom 

Bond 
Lengths (Å) 

Wild Type K42 NZ O3 3.04 

R91 NH1 O4 2.79 

R91 NH1 O2 3.01 

D87 OD2 H43 2.76 

S83L K42 NZ O3 2.74 

R91 NH1 O2 2.75 

D87 OD2 H43 2.80 

S83L/D87N K42 NZ O3 2.96 

K42 NZ O4 2.73 

R91 NH1 O2 2.75 

N87 OD1 H42 3.25 

 

Table 3.3: Contribution of various energy terms in ciprofloxacin binding with WT and MT 

forms of gyrA. 

Mutations Match 
Score 

Lipo 
Score 

Ambig 
Score 

Clash 
Score 

Rot 
Score 

Wild Type -23.37 -5.61 -5.78 2.45 1.4 

S83L -21.88 -5.34 -4.04 3.24 1.4 

S83L/D87N -16.82 -6.47 -5.08 2.67 1.4 

 

The lipophilic term is proportional to the contact surface area between the ligand and the protein 

involving non-polar terms and it contributes positively to the binding affinity. As a result binding 

Mutation Score No. of Hydrogen Bonds (residues involved) 

WT -25.50 3 (K42, R91, D87) 

S83L -21.23 3 (K42, R91, D87) 

S83L/D87N -18.90 3 (K42, R91, N87) 
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affinity is reduced with a decrease in the lipophilic contacts.  Hydrogen bonded interactions of 

ciprofloxacin with both the mutants are shown in Figure 3.4. 

 

 

 

 

 

 

 

Figure 3.3: Highest scoring pose of ciprofloxacin at active site of ETEC WT gyrA. Interacting 

residues and atoms are labeled. Receptor is shown as cartoons. Ligand is shown in stick mode, 

gyrA interacting residues are shown in ball and stick mode. Binding interactions are shown as 

dashed lines indicating salt bridge and hydrogen bonding interactions. 

 

 

 

 

 

 

Figure 3.4: Hydrogen bonds involved in binding of ciprofloxacin with a) wild type b) mutated 

S83L and c) S83L/D87N QRDR of gyrA.

 

It is apparent that substitution of both S83 and D87 accounts for a decrease in the docking score 

and less efficient binding which ultimately leads to intermediate to high level drug resistance in 
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the strains previously sensitive to drugs. Our in silico docking results are in good agreement with 

previous experimental studies on these mutations [17,38,39]. Through molecular modeling 

studies we can derive a possible explanation for increased resistance in pathogens, but we cannot 

firmly establish the predictive powers of this approach since other mechanism can as well 

contribute to resistance such as plasmid mediated resistance, or presence of integrons and gene 

cassettes. 

3.3.3 Structural stability characterization 

To explicate the molecular basis of how the substitutions at amino acid position 83 and 87 affect 

susceptibility to quinolones, we carried out molecular dynamics simulations. To evaluate the 

conformational flexibility of the WT and MT structures, time dependent root-mean-square 

deviations (RMSD) of the backbone atoms from the corresponding energy minimized structure 

were monitored. Figure 3.5 depicts RMSDs of WT and MT models compared to the reference 

structure as a function of time. RMSDs were calculated from the last 5 ns of the 10-ns MD 

simulations. The trajectories for all the simulation systems were stabilized over the time course, 

with moderately small fluctuations in the models. The final RMSD values range from 1.2 to 1.3 

Å for all three systems. A narrow range of time averaged RMSD values reflects that deviations 

in the native and mutant structures were relatively constant. It was proposed that these mutations 

do not disrupt the backbone conformation or cause significant global change, hence could be 

affecting the dynamic behavior of mutant complexes which leads to reduced binding affinity. 

From their initial conformations, S83L/D87N showed maximum deviation. It is evident from the 

RMSD plot that RMSDs of the both MT models are comparatively higher than that of the WT.In 

order to assess the effect of these mutation on dynamic behavior of residues, root mean square 

fluctuations (RMSFs) between native and S83L, and S83L/D87N were generated and plotted in 

Figure 3.6. RMSFs were calculated from average structures generated during the last 5 ns of the 

10-ns MD simulations which were used as a reference to calculate the RMS deviations in the last 

5 ns. The apex points of RMSFs were different for all the trajectories which implied that 

regardless of the structural similarities between WT and MT models of gyrA (RMSDs ~ 1.2 Å), 

flexibilities of mutant forms considerably deviate from the wild-type. The deviations in residue 

fluctuations may influence the interaction with ligand and thus the ligand binding efficiency.  

The regions of high RMSFs were not confined to vicinity of the mutated residues only, but were 

distributed across entire protein backbone. For example, RMSFs of the residues ranging from 
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240-270 show large fluctuations in WT as compared to both MT models which suggests that 

these mutations affect entire protein structure and not just adjacent residues. The difference in 

RMSDs of WT and MT models at several apex points was higher than 1 Å which further 

strengthen our argument that such mutations introduced in native structure influence the dynamic 

properties of the protein. Flexibility of active site residue Y122 is reduced in MT as compared to 

WT indicating the relative rigidity of this region in MT models. Y122 lies in domain III which 

has folds similar like E. coli catabolite-activator protein (CAP) and is responsible for DNA 

cleavage [40].  

3.3.4 Secondary structure content 

We show in Figure 3.7 the ensemble-averaged secondary-structure populations of each amino 

acid residue. Though WT and MT variants conformations appear to be dominated by turns and 

α-helices yet regular secondary structures (helical and ȕ-sheet structures) in small fractions are 

clearly traceable. The population of the pi-helix and parallel sheet is almost negligible for all the 

systems investigated. The helical content is conspicuously higher than the ȕ -sheet and turn 

contents in all molecular systems.  

No significant changes were observed in the secondary structural content in the ensemble 

averaged structures of MT from WT which suggests that the backbone conformations of the WT 

and MT complexes do not change significantly upon mutations. DNA-dependent ATPase 

activity of gyrA is governed by the enzymatic site comprising residue Y122. To investigate the 

dynamic structural changes of the catalytic residue and nearby active site residues in quinolone 

resistance associated gyrA mutants, we visualized the enzymatic site using VMD [41]. It was 

observed that the conformation of catalytic residue Y122 fluctuates in WT, S83L, and 

S83L/D87N mutants during the course of simulation. Three snapshots per mutant at 0, 5 and 10 

ns of the molecular dynamics trajectories were saved reflecting conformational changes of Y122 

(Figure 3.8). Conformational changes of Y122 were quantified by computing the phi-psi dihedral 

angles across WT and MT structures (Figure 3.9). Mean dihedral angles in WT gyrA, S83L, 

S83L/D87N varied from -115.06 to -122.91 and -118.32 for phi; 4.47 to 0.73 and 5.84 for psi 

respectively. It is noteworthy that neither RMSD, RMSF comparisons nor secondary structure 

assessment provide any evidence for decreased structural stability of mutated structures as 

compared to WT. 
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Figure 3.5:  Time evolution RMSD of gyrA backbone throughout the 10 ns MD simulation time 

for WT (Blue), S83L mutant (Yellow:M1), S83L/D87N mutant (Red:M2). 

 

 

 

 

Figure 3.6:  Time evolution RMSF of gyrA backbone atoms throughout the 10 ns MD 

simulation time for WT (Blue), S83L mutant (Yellow:M1), S83L/D87N mutant (Red:M2). 

 

 

 

 

 

 

 

 

Figure 3.7: Average secondary-structure contents of protein backbone residues in a) WT, b) 

S83L mutant, and c) and S83L/D87N double mutant.
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3.3.5 MM-PB(GB)/SA binding free energy calculations 

To evaluate the free energy differences between WT and MT, MM-PB(GB)/SA methods were 

employed.  For calculating binding energy, 125 frames from the last 5 ns simulation were 

analyzed and predicted binding energies and energy component breakdown for different 

simulation systems are summarized in Table 3.4. The total binding free energies using both 

methods follows the same trend with a reduction in the binding affinity in MT relative to WT. In 

the double mutant S83L/D87N a significant drop in binding energy (ΔGbinding) was observed 

using both methods. Reduced binding affinities due to the mutations influence the efficiency of 

ciprofloxacin binding to gyrA. Computationally predicted binding affinities are in accordance 

with experimental evidence that S83L and S83L/D87N lead to significant increase in Minimum 

Inhibitory Concentrations (MIC) values and resistance towards ciprofloxacin. The predicted van 

der walls (ΔEVDW) and electrostatic contribution (ΔEELE) are significantly higher in WT gyrA 

than both MT (Table 3.4). It is evident from Table 3.4 that majority of favorable contributions 

are due to ΔEVDW and ΔEELE terms. 

Table 3.4: MM-PB(GB)/SA based free binding energy profile of ciprofloxacin complexed with 

the wild and the  S83L, S83L/D87N mutant  types of gyrA. 

 

 

 

 

 

 

 

 

 

 

 Contribution WT S83L S83L/D87N 

ΔE INT 0 0 0 

ΔEVDW -24.2421 -13.4977 -5.6295 
ΔE ELE -110.813 -40.6163 -33.5151 
ΔE GAS/ ΔE MM -135.055 -54.114 -39.1446 
ΔG SOL-NP -2.5072 -0.8743 0.1548 
ΔG PB 123.253 45.0921 34.9382 
ΔG SOLV,PB 120.746 44.2177 35.0931 
ΔG ELE,PB 12.44 4.4758 1.4231 
H TOT,PB -14.3093 -9.8963 -4.0515 
ΔG GB 121.811 46.6201 36.6038 
ΔG SOLV,GB 118.514 44.7953 35.8509 
ΔG ELE GB 10.9982 6.0038 3.0887 
H TOT, GB -16.5413 -9.3187 -3.2937 
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Figure 3.8: Observed conformational changes of catalytic residue Y122 and the mutated 

residues S83 and D87 during the course of MD simulation in WT (Column 1), S83L mutant 

(Column 2), S83L/D87N mutant (Column 3) at 0 ns (start of production phase), 5 ns, and 10 ns 

(end of production phase). 

 

 

 

 

 

Figure 3.9: Time evolution of rotation of dihedral bond angles a) dihedral angle phi b) dihedral 

angle psi throughout MD simulation course in WT, S83L mutant and S83L/D87N mutant. 
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Relatively stable dihedral angle of catalytic residue Y122 across all structures throughout 

simulations suggests no major conformational change.

 

3.3.6 Per-residue decomposition of binding energy 

Per-residue decomposition of binding energy sheds light on the residues which majorly 

contributes to gyrA-ciprofloxacin binding in both WT and MT models. Figure 3.10 compares the 

protein–ligand interaction spectra between the WT and MT models and shows contribution of 

individual hot-spot residues to polar and non-polar interaction terms. It can be observed from the 

energy decomposition analysis that in the case of ciprofloxacin bound WT complex, major 

contributions were from K42, H45, R91, L98, S172, G173, and I174. Decrease in the overall 

interaction energy in MT models is largely accountable to change in the van der Waals 

contribution of hot-spot residues. Although, mutation of S to L at position 83 in double mutant 

S83L/D87N shows improved binding at mutation site (Total Score: -0.609 kcal/mol; van der 

Waals Score: -0.88 kcal/mol) likely due to better hydrophobic interactions with the L side chain 

but it is accompanied with a reduction in overall binding energy (Table 3.4) as S83L substitution 

negatively impacts the binding affinity of the nearby residues. 

3.3.7 PCA 

To identify the dominant motions in WT and MT complexes, PCA was carried out on the last 5 

ns trajectories of each molecular system. Figure 3.11 shows porcupine plot for the ciprofloxacin 

bound WT and MT complexes along the direction of first principal component which shows 

significant difference in the overall pattern of global motions between three systems. Dominant 

motions represented by high magnitude arrows were mostly observed in the three distinctive 

domains of N-terminal regions (NTD). CAP domain contains HTH motif which have been 

previously described to be responsible for contacts with DNA targets [40]. Motions in the CAP 

domain in WT were mostly upwards, while in S83L no prominent motions were observed and 

double mutant S83L/D87N random movements were observed. CAP domain in WT was 

observed to be relatively more flexible. Tower domain holds up against CAP domain providing 

structural support and DNA binding site [42]. Tower domain in WT exhibited mostly upward 

movements, while in S83L and S83L/D87N leftwards and downwards/leftwards movements 

were detected.  
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Figure 3.10: Polar and non-polar contribution of hot-spot residues from MM-PBSA based 

energy decomposition analysis of total binding energy (kcal/mol) during last 5 ns of MD 

simulation a) WT, b) S83L mutant, and c) and S83L/D87N double mutant.
 

 

 

 

 

 

Figure 3.11: Porcupine plot of the first eigenvector obtained by PCA from simulation ensembles 

of a) WT, b) S83L mutant, and c) S83L/D87N mutant from the last 5 ns of MD simulation. 

Protein backbone represented as ribbon. Dominant motions of residues illustrated as arrows. 

Arrow represents direction of the eigenvector and the size of each arrow shows the magnitude of 
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the corresponding eigenvalue. 

 

gyrA switches between its open and closed conformations due to the flexion of two connecting 

α-helices which connect dimerization domain to CTD and tower domain [42]. We observed that 

prominent motions in these three domains were significantly different in MT variants as 

compared to WT structure both in direction and magnitude. Consequently, overall conformations 

of trajectories from the last 5 ns simulation were different across different structures. 

3.3.8  RIN analysis 

To identify key residue interactions and explore the differences between different WT and MT 

models, RINs were generated using the representative structures from the last 5 ns trajectories of 

each molecular system. As evident from the RINs plot (Figure 3.12), RIN of MT variants of 

gyrA vary considerably when compared to the WT and each other. Zooming into the RIN plot 

shows for instance that interaction network in the vicinity of mutated residues S83 and D87 and 

around catalytic residue Y122 follows different trend across WT and MT variants of gyrA. A 

three way interaction (peptide bond, close atom interaction, pi-cation interaction) between T123 

and E124 in WT gyrA reduces to just a peptide bond interaction in S83L mutant. Though effect 

of changes at individual residue site may not be prominent, but collectively these changes in 

residue interactions could have extreme effect on protein structure altering the active site 

conformation. It is quite interesting to observe that in the case of S83L/D87N mutant, interaction 

sub-network of residues range 30-34 collapses with Q106, T123 and E124 interaction networks 

while in S83L mutant, no interactions are observed in these sub-networks. S83L and D87N 

mutations have apparently disrupted the RIN of WT gyrA subsequently affecting the drug 

binding landscape. 

C. jejuni 

3.3.9 Model building and structure validation 

Due to unavailability of crystal structure for C. jejuni gyrA, it was determined using homology 

modeling protocol. The structure was built using E. coli gyrA as template which showed 50.3% 

identity. The sequence alignment generated using Praline program is shown in Annexure: Figure 

4. The secondary structure predicted using STRIDE program is shown in Annexure: Figure 5. 
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The model with lowest DOPE score was subjected to structure validation in terms of the stereo-

chemical properties using PROCHECK and Verify3D. It was observed that 65.3% residues were 

in the most favored regions with 32.5% residues in the additional allowed regions (Annexure: 

Figure 6). Verify3D also predicted it to be a reasonably good quality model with 88.18% 

residues in agreement with 3D-1D score profile (>=0.2) which determines the compatibility of 

structure (3D) with amino acid sequence (1D). The structural superimposition of the backbone of 

the modeled structure with the template (Figure 3.13) resulted in a root mean square deviation 

(RMSD) of 0.9 Å, indicating the structure is of reasonable good quality. High sequence identity 

of the modeled structure with the template ensures correct connectivity of the secondary 

structure elements. 

3.3.10 Molecular docking and binding affinity calculations 

Binding energy calculations of ciprofloxacin with gyrA were carried out in LeadIt. The resulting 

poses were ranked based on docking score. Ciprofloxacin interacting with WT gyrA through 

hydrogen bonds with residues R35, and E158 predicted a docking score of -11.19. Figure 3.14 

captures the binding of ciprofloxacin with WT gyrA. Hydrogen bonds and hydrophobic contacts 

are factors critical to accurate ligand binding into the active site moiety. Due to mutations 

introduced, docking score decreased reasonably (Table 3.5). In MT T86I and double mutant 

T86I/P104S docking score was observed to be -10.91 and -10.88 involving hydrogen bonds with 

H48, R94, and I177 (Figure 3.14). 

In WT gyrA R35 bonded with ciprofloxacin atoms O3 and O4 while in the mutant forms of gyrA 

hydrogen bond with R35 was lost (Table 3.5), thereby contributing to a decrease in the docking 

score. Consequently it can be speculated that R35 being directly hydrogen bonded plays a crucial 

role in the quinolone binding with gyrA. In T86I, R94 atoms NE and NH2 interacts with ligand 

atom O3 with respective bond lengths of 2.57 Å and 2.92 Å while in the double mutant one 

hydrogen bond through gyrA NE atom was lost while the hydrogen bond length for atom NH2 

was reduced. Hydrogen bond length for H48 which interacts through ligand O2 atom was 

reduced to 3.32 in T86I/P104S from 2.85 in T86I. The reduced bond lengths for H48 and R94 

resulted in decreased binding affinity scores.  
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Figure 3.12: Residue interaction networks (RINs) comparison between a) WT, b) S83L mutant, 

and c) S83L/D87N mutant docked with ciprofloxacin. Zoomed view highlights changes in 

network in vicinity of catalytic residue Y122 and mutated QRDR residues S83 and D87.  

Nodes represented as: Helix   Loop     Sheet     Default and Edges represented 

as: Hydrogen Bond    Peptide Bond    Salt Bridge    Ionic bond   Pi 

Stacking    Pi-Cation    Closest Atoms Interaction  

 

 

 

 

 

 

 

Figure 3.13 Structural superimposition of C. jejuni gyrA on the template (PDB ID: 1AB4) 

produced by structural modeling with modeled structure colored cyan and template colored sea 

green. 

 

 

 

 

 

 

Figure 3.14: Hydrogen bonds involved in binding of ciprofloxacin with a) wild type b) mutated 

T86I and c) T86I/P104S QRDR of gyrA
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Table 3.5: Docking scores and hydrogen bond residues involved in ciprofloxacin binding with 
WT and mutant forms of gyrA.  

Mutation  LeadIT 
Score 
(kcal/mol)  

GyrA’s 
Residue  

GyrA’s 
Atom  

Ligand 
Atom  

H-Bond 
Distance(Å)  

Wild  -11.19  R35  NE  O3  2.73  
R35  NH2  O4  2.81  
E158  OE2  N7  2.72  

T86I -10.91  R94  NE  O3  2.57  
R94  NH2  O3  2.92  
H48  NE2  O2  2.85  

T86I/P104S -10.88  I177  O  N7  2.46  
R94  NH2  O3  2.99  
H48  NE2  O2  3.32  

 

We can discern from these findings that substitutions of T with I at position 86 and P with S at 

position 104 in C. jejuni gyrA have a pronounced effect on ciprofloxacin binding and have been 

reported frequently. It is evident that mutation of both T86 and P104 resulted in a relatively low 

docking score which suggests the critical role of these residues in ciprofloxacin binding with 

gyrA. This decreasing trend in docking score accounts for increased resistance in the MT gyrA, 

observed to be highest in the double mutant. 

3.3.11 Structural stability characterization 

We carried out molecular dynamics simulations of complexes of WT and MT gyrA from C. 

jejuni with ciprofloxacin, in order to better understand the mechanism underlying gyrA 

resistance to fluoroquinolones at atomic level. WT and MT gyrA (T86I and T86I/P104S) docked 

against ciprofloxacin were computationally simulated to complement experimental findings of 

increased MICs reported in clinical isolates harboring these mutations. To evaluate the 

conformational flexibility of the WT and MT structures, time dependent root-mean-square 

deviations (RMSD) of the backbone atoms relative to the corresponding energy minimized 

structure were monitored. RMSDs of WT and MT complexes estimated relative to the reference 

structure are plotted in Figure 3.15 as a function of time. RMSDs were calculated from the last 5 

ns of the 10 ns MD simulations. It was observed that all the molecular systems stabilized over 

the 10 ns time course of simulation, with moderately small fluctuations in the models arising at 

the beginning of every production run. For all the three systems, the final RMSD values relative 
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to the reference energy minimized structure range from 1.3 to 1.8 Å for all three systems. RMSD 

deviations in the native and mutant forms of gyrAwere relatively constant which is mirrored by a 

narrow range oftime averaged RMSD values. It suggests that these mutations do not disrupt the 

backbone conformation or cause significant global change. It is speculated that due to these 

mutations, changes in the dynamic behavior of gyrA-ciprofloxacin complexes leads to reduced 

binding affinity.  

Root mean square fluctuations (RMSFs) of each residue in WT and T86I, and T86I/P104S 

mutants of gyrA were plotted in Figure 3.16 to monitor the effect of these mutations on dynamic 

behavior of complexes. RMSFs were computed relative to the average structures generated 

during the last 5 ns of the 10 ns MD simulations. The apex points of RMSFs were of different 

magnitude for WT and both MT trajectories which imply that despite the fact that no 

considerable distortion was observed in the backbone structure, residue flexibilities in mutant 

formsshow large deviations from those observed in WT. The deviations in residue fluctuations 

may influence the interaction with ligand and thus the ligand binding efficiency.  The regions of 

high RMSFs were not confined to vicinity of the mutated residues only, but were localized and 

distributed across entire protein backbone which suggests that effect of mutations is not 

restricted to its close vicinity but affect the entire protein structure. At some points, RMSF 

difference between WT and MTs was significantly higher which further strengthen our argument 

that mutations introduced in the native structure impact the dynamic behavior of the protein. 

Residue flexibility was observed to be lowest in T86I/P104S which would ultimately lead to 

reduced binding affinity.  

3.3.12 Secondary structure content 

The ensemble-averaged secondary-structure populations of each amino acid residue for all three 

molecular systems are plotted in Figure 3.17. Though WT and MT variants conformations 

appear to be dominated by α-helices yet turns and anti-parallel ȕ-sheet structures were apparently 

visible. Other regular secondary structures were present in very small fractions. Pi-helix 

population was almost negligible for all the systems investigated and was almost absent from 

T86I mutant. The helical content was radically higher than the ȕ-sheet and turn contents in all 

molecular systems.  
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Figure 3.15: Time evolution RMSD of gyrA backbone throughout the 10 ns MD simulation time 

for WT (Blue), T86I mutant (Yellow: M1), T86I/P104S mutant (Red: M2). 

 

 

 

 

Figure 3.16: Time evolution RMSF of gyrA backbone atoms throughout the 10 ns MD 

simulation time for WT (Blue), T86I mutant (Yellow: M1), T86I/P104S mutant (Red: M2). 

 

 

 

 

 

 

 

 

Figure 3.17: Average secondary-structure contents of protein backbone residues in a) WT, b) 

T86I mutant, and c) and T86I/P104S double mutant.
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Significant changes were not observed in the secondary structural content in ensemble averaged 

structures of MTs from WT which again points to the argument that the backbone conformations 

were not significantly altered due to mutations harbored in these structures. To investigate the 

dynamic structural changes of the mutated residues and overall conformation of molecular 

complexes, we visualized the MD trajectories using VMD [41]. It was observed that the 

conformation of mutated residues as well as overall backbone conformation fluctuates in WT, 

T86I, and T86I/P104S mutants during the course of simulation. In Figure 3.18, three snapshots 

saved for each molecular system at 0, 5 and 10 ns of the molecular dynamics trajectories 

reflecting conformational changes are shown.  

3.3.13 MM-PB(GB)/SA binding free energy calculations 

To evaluate the free energy differences between WT and MT, MM-PB(GB)/SA methods were 

employed.  We estimated binding energy from 125 frames of the last 5 ns simulation trajectories 

and computationally predicted free energies. The contribution of various components to binding 

energy for different simulation systems are summarized in Table 3.6. The total binding free 

estimates are approximate as it does not include contribution from configurational entropy 

changes. In support of experimental findings, it was observed that WT gyrA has higher affinity 

for ciprofloxacin and binds more favorably than any of the mutant forms (Table 3.6). In both the 

mutants T86I and T86I/P104S a significant drop in binding energy (ΔGbinding) as compared to 

WT gyrA was observed using both PB and GB methods. Reduced binding affinities due to the 

mutations influence the efficiency of ciprofloxacin binding to gyrA. It was revealed that 

electrostatic term (ΔEELE) contributes significantly to total binding free energy. Our results 

reinforce the idea that these mutations in the QRDR region are major driving force of 

fluoroquinolone resistance as computationally predicted binding affinities are in accordance with 

experimental evidence that T86I and T86I/P104S lead to significant increase in MIC values of 

various quinolones [13]. 

3.3.14 Per-residue decomposition of binding energy 

Per-residue binding energy decomposition sheds light on the key residues which play major role 

in protein-ligand interaction in a molecular system and provides a semi-quantitative estimate of 

their contribution to complex stability. We have compared the protein–ligand interaction spectra 

between different molecular systems of gyrA (WT and MT models) and contribution of 
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individual residues classified as hot-spot, to both polar and non-polar interaction terms is plotted 

in Figure 3.19. From binding energy decomposition analysis, it was revealed that residues S30, 

R35, P82, H83, and Y152 contribute significantly to ciprofloxacin binding with WT gyrA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Observed conformational changes of the protein backbone and mutated residue 

positions 86 and 104 during the course of MD simulation in WT (Row 1), T86I mutant (Row 2), 

T86I/P104S mutant (Row 3) at 0 ns (start of production phase), 5 ns, and 10 ns (end of 

production phase).
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Table 3.6: MM-PB(GB)/SA based free binding energy profile of ciprofloxacin complexed with 

the wild and the  S83L, S83L/D87N mutant  types of gyrA. 

 

 

 

 

 

 

 

 

 

 

A significant decrease in the free energy in mutant forms was largely attributed to both polar and 

non-polar contribution of hot-spot residues. None of the hot-spot residues identified in WT gyrA 

were reported to have significant contribution to complex stability in mutants T86I and 

T86I/P104S. K45 residue in T86I/P104S has higher polar contribution as compared to T86I 

mutant, but R94 and S175 have higher contribution from van der Walls term in T86I. Though 

T86I/P104S showed improved binding at K45 site (Total Score: -4.357 kcal/mol; electrostatic 

Score: -33.591 kcal/mol) likely due to its hydrogen bonded interactions with the R49 side chain 

but it has a reduced total free energy as compared to T86I mutant (Table 3.6) as T86I and P104S 

substitution negatively impacts the binding affinity of the nearby residues. 

3.3.15 PCA 

To probe the dominant motions of ensemble of conformations in WT and MT complexes, PCA 

was carried out on the last 5 ns trajectories of each molecular system. The trajectories of 

ciprofloxacin bound WT and MT complexes analyzed using PCA to identify dominant motions 

along the direction of first principal component are plotted in Figure 3.20 in the form of 

porcupine plot. The porcupine plot represents major fluctuations and significant difference in the 

overall pattern of global motions in WT and MTs molecular systems are clearly distinguishable.  

 Contribution WT M1 M2 

ΔE INT 0 0 0 

ΔEVDW -15.637 -26.7396 -17.2818 
ΔE ELE -144.14 -85.2518 -66.3329 
ΔE GAS/ ΔE MM -159.78 -111.991 -83.6147 

ΔG SOL-NP -1.3818 -2.3611 -1.6393 
ΔG PB 144.2091 102.7148 73.208 
ΔG SOLV,PB 142.8272 100.3537 71.5687 
ΔG ELE,PB 0.0685 17.463 6.8751 
H TOT,PB -16.95 -11.6377 -12.046 
ΔG GB 146.058 100.406 74.49 
ΔG SOLV,GB 143.749 96.9002 72.106 
ΔG ELE GB 1.917 15.1542 8.1571 
H TOT, GB -16.028 -15.0912 -11.5087 
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Figure 3.19: Polar and non-polar contribution of hot-spot residues in a) WT, b) T86I mutant, 

and c) and T86I/P104S double mutant during last 5 ns of MD simulation. 

 

 

 

 

 

 

Figure 3.20: Porcupine plot of the first eigenvector obtained by PCA from simulation ensembles 

of a) WT, b) T86I mutant, and c) and T86I/P104S mutant from the last 5 ns of MD simulation. 

Protein backbone represented as ribbon. Dominant motions of residues illustrated as arrows. 

Arrow represents direction of the eigenvector and the size of each arrow shows the magnitude of 
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the corresponding eigen value.

 

In the WT, major dominant motions which are represented by high magnitude arrows were 

mostly observed in the lower and uppermost domains which are similar to tower domain in E 

.coli. These motions were of reduced magnitude and varying directions in both mutants. In 

T86I/P104S mutant, corresponding principal motions were observed to be of the least magnitude. 

Motions in the lower domain which connects two α-helices were also distinct among WT and 

MT forms of gyrA; T86I/P104S was characterized by prominently reduced motions which reflect 

reduced flexibility. gyrA is predicted to switch between its open and closed conformations due to 

the flexion of two connecting α-helices which connect dimerization domain to C Terminal 

Domain  and tower domain [42]. Consequently, any changes in the flexibility of this domain 

would ultimately affect ligand binding efficiency. By and large, prominent dominant motions 

vary both in direction and magnitude among WT, T86I, and T86I/P104S mutants. 

3.3.16 RIN Analysis 

From both structural and functional perspectives, proteins are complex molecules and their small 

world behavior can be extensively studied by representing inter-residue protein contacts using 

graph theory in the form of residue interaction networks. RINs can capture residue interactions 

and find potential application in many scenarios such as identification of key residues involved 

in protein folding and functionally different states of protein and recently in study of protein-

ligand interactions [43-45].  To identify key residue interactions and explore the differences 

between different WT and MT models, RINs were generated using the representative structures 

from the last 5 ns trajectories of each molecular system and were plotted in Figure 3.21. It is 

apparent that RIN plots of mutant forms of gyrA vary considerably when compared to the WT 

and from each other as well. A zoomed in view of the RINs shows that interaction network in the 

neighborhood of mutated residue positions 86 and 104 are conspicuously discernible across WT 

and MT variants of gyrA. 
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Figure 3.21: Residue interaction networks (RINs) comparison between a) WT, b) T86I mutant, 

and c) and T86I/P104S mutant docked with ciprofloxacin. Zoomed view highlights changes in 

network in the vicinity of mutated residue.  

Nodes represented as: Helix    Loop     Sheet           Default            and Edges 

represented as: Hydrogen Bond    Peptide Bond    Salt Bridge    Ionic 

bond   Pi Stacking    Pi-Cation    Closest Atoms Interaction

 

Conclusion 

Rapidly evolving computational platforms have made investigating the structural consequences 

of the mutations easier. We performed a systematic study to explore the molecular mechanisms 

underlying mutations associated quinolone resistance in gyrA based on explicit-water MD 

simulations. As evidenced by RMS deviation, RMS fluctuation and secondary structure 

conservation, WT and MT trajectories were exploring the same conformational space and 

showed no significant changes.Despite that, incorporated mutations significantly impact the 

dynamic behavior of complexes which was reflected by major disruptions in the residue 

interaction network and altered dominant motions which could destabilize active-site 

conformation reducing ligand binding efficiency. This study offers a comprehensive picture of 

genotype–phenotype association of quinolone resistance associated SNPs in gyrA. The results 

reported in this study elucidate the role of mutations in gyrA which may provide a useful 

information for the design of gyrA mutants based therapeutic strategies against resistant strains 

of ETEC and C. jejuni.  
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4.1 Introduction 

Campylobacter jejuni are helical-shaped, non-spore forming, microaerophilic gram-negative 

bacteria and major cause of bacterial campylobacteriosis worldwide [1]. The Campylobacter spp. 

was considered as zoonotic pathogen until isolation of C. jejuni was accomplished from human 

faeces in 1968 [2]. Since its discovery in 1970’s, C. jejuni remains the most frequent cause of 

infectious diarrhea attributing to a large economic burden [1]. The first C. jejuni (strain 

NCTC11168) genome was sequenced in 2000 with 94.3% of the genome coding for proteins [3]. 

C. jejuni pathogenesis mechanisms are poorly understood as virulence determinants appear to be 

multifactorial in nature such as chemotaxis, motility, toxins, flagella, invasion and adherence, 

surface polysaccharide structures [4]. Antibiotic therapy traditionally involves treatment with 

erythromycin and ciprofloxacin, but many reports have witnessed resistance of C. jejuni to 

different antibiotics such as tetracycline, kanamycin, chloramphenicol, erythromycin, 

ciprofloxacin [5,6]. Due to irrational use of antibiotics, antibiotic resistance has escalated posing 

a challenge to current treatment regimens. Thus, there is a pressing need to develop alternative 

treatments.  

Vaccination has proved cost effective, safest and efficient solution to combat infectious diseases 

like meningococcal, diphtheria, tetanus, poliomyelitis, pertussis, measles, mumps, rubella in 

human health care [7]. The traditional approach to subunit vaccine development has negative 

aspects involving time and labor intensive nature, failure in cases where microorganism cannot 

be cultured or obtained in sufficient amounts [8]. In order to limit the increasing antibiotic 

resistance and increasing number of human infections, developing vaccines against C. jejuni is 

both indispensable and attractive. Some mutants of C. jejuni with defects in pili or invasion 

biosynthesis are being evaluated for their protective efficacy in animal models. Flagellin and 

adhesin proteins have been suggested as potential subunit-based vaccine candidates such as a 

recombinant truncated flagellin protein (rFla-MBP) conferred 60% protection in a ferret model 

of diarrhea. Several Killed Whole Cell (WC) and Heat Labile toxin (LT) adjuvanted vaccines are 

under development [9,10]. In one such example, killed Campylobacter whole cell (CWC) 

organism adjuvanted with heat-labile enterotoxin (LT) of Escherichia coli showed protection 

against intestinal colonisation in mice and rabbits. However, currently there are no approved 

vaccines available to treat Campylobacter-associated illness. Sequencing the genome of many 
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Campylobacter strains together with development of omics techniques and advanced 

bioinformatics approaches significantly improve the process of candidate epitopes identification 

minimizing the arduous peptide screening task for immunobiological properties. The present 

study has employed a range of computational approaches to investigate the entire proteome of C. 

jejuni for identification of B and T-cell epitopes as potential vaccine candidates. This study has 

important repercussion for selection of vaccine candidates, a critical step in vaccine 

development. 

4.2 Methods 

4.2.1 Retrieving non-homologous proteins from pathogen whole proteome 

As described in the workflow diagram (Figure 4.1), the complete proteome of the C. jejuni O:2 

(strain NCTC 11168) encoding 1,623 proteins was retrieved from Uniprot (Proteome ID 

UP000000799). Proteins non-homologous to host from pathogen proteome were retrieved using 

a two-step filtration procedure. In the first step, sequences with length less than 100 amino acids 

(aa) were filtered based on the fact that average protein length in bacteria is 267 aa [11]. 

Consequently sequences with length less than 100 aa would probably not code for any protein. In 

the next filtration step, sequences were further screened out based on homology with the host 

(Homo sapiens) proteome at an e-value cut off of 0.05. In the BLASTP search, proteins which 

showed no hits below e-value inclusion threshold were selected as non-homologous pathogen 

proteins.  

4.2.2 Antigenicity and transmembrane prediction 

To predict antigenic sequences, these non-homologous pathogen proteins were subjected to 

VaxiJen server [12], which is based on auto cross covariance (ACC) transformation of protein 

sequences into uniform vectors of principal amino acid properties with a threshold value of 0.7. 

The sequences with antigenicity value above threshold were subjected to PSORTb version 3.0 to 

retrieve outer membrane localized proteins. PSORTb utilizes a Bayesian network model to 

calculate associated probability for five localization sites viz. cytoplasmic, inner membrane, 

periplasmic, outer membrane and extracellular with a  default  probability value (p-value) of 7.5 

[13]. 
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Figure 4.1: Schematic representation of the protocols used for epitope identification. 

 

4.2.3 T-cell epitope prediction 

NetCTL 1.2 Server was used to predict Cytotoxic T Lymphocytes (CTL) epitopes from the 

antigenic sequences localized in outer membrane, at a threshold value of 0.75 to maintain high 

sensitivity and specificity levels and the prediction was restricted to 12 Major Histocompatibility 

Class I (MHC-I) supertypes. NetCTL is an artificial neural networks (ANN) and weight matrix 

based tool combining the prediction of peptide MHC-I binding, proteasomal C terminal cleavage 
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and TAP transport efficiency [14]. The CTL epitopes generated from NetCTL were assessed for 

their allergenicity by subjecting them to AllerHunter program which is based on Support Vector 

Machine (SVM) and pairwise sequence similarity [15]. A threshold vale of 0.06 was specified 

for prediction of cross-reactive allergen. 

An Immune Epitope Database (IEDB) tool based on combined predictors of proteasomal 

processing, TAP transport, and MHC binding was used for predictions of antigen processing 

through MHC-I [16]. IEDB is the most inclusive database of experimentally characterized B cell 

and T cell epitopes. The Stabilized Matrix Base Method (SMM) which can model the sequence 

specificity of quantifiable biological processes [17] was employed to compute Inhibitory 

Concentration (IC50) values of peptide binding to MHC1 molecules. In conjunction with IEDB 

tool, MHCPred which uses a partial least squares-based multivariate statistical approach [18] 

was used for prediction of both MHC-I and MHC-II binders of the predicted peptides. The 

alleles with binding affinity IC50 value less than 500 nM from both the servers were considered 

as efficient peptide binders. 

4.2.4 Epitope conservancy and HLA-distribution analysis 

For each identified peptide, the conservancy was predicted using the IEDB tool [19]. The degree 

of conservation of each peptide was calculated as the fraction of protein sequences of different 

strains retrieved from Uniprot that match the aligned peptide sequence above a defined identity 

level. An IEDB based tool for human population coverage analysis [20] was used to study the 

distribution of human HLA alleles among the predicted epitopes. The predicted peptides with 

their corresponding MHC-I and MHC-II alleles were submitted with default parameter settings 

(the final set containing frequencies of 3,245 alleles for 16 geographical areas, 21 ethnicities, and 

115 countries). The predictions were made using the latest dataset from the Allele Frequency Net 

Database (AFND) [21]. 

4.2.5 Molecular docking studies of HLA-epitope 

4.2.5.1  Designing epitope 3D structure 

To study the molecular interactions between the predicted T-cell epitopes (YIQDNFNFY and 

NTDQAQGTV) and HLA molecules, PEP-FOLD based on a Hidden Markov Model derived 
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Structural Alphabet (SA) [22] was used to predict the 3D structure of the peptide. PEP-FOLD 

generated 5 models for input peptide sequence. The best model was selected for docking studies. 

4.2.5.2 Docking 

To validate our results, we performed a docking study of HLA-A*11:01 and selected epitope 

using Hex, the first Fourier transform (FFT)-based protein docking server [23]. The crystal 

structure of HLA-A*11:01 in complex with sars nucleocapsid peptide (PDB Id: 1X7Q) was 

simplified to HLA-A*11:01, prepared by adding hydrogen atoms. Finally the docking was 

carried out in Hex using prepared HLA-A*11:01 and PEP-FOLD predicted epitopes as starting 

structures. The parameters were set to default except for correlation type which uses both shape 

and electrostatics criteria for docking calculations. The best conformation was selected based on 

the Etotal (binding affinity) value and complexes and interactions were visualized in Pymol 

molecular graphics package [24] and Ligplot respectively [25].  

4.2.6 B-cell epitope identification 

BCPred [26] and AAP [27] methods at BCPred server, both of which use SVM based classifiers, 

were utilized with an aim to identify potential antigens which can interact with B lymphocytes. 

Tools from IEDB were employed to find the B-cell epitopes and further screen out the potential 

epitopes. Emini-surface accessibility prediction [28], Karplus & Schulz flexibility prediction 

[29], and Parker hydrophilicity prediction [30] programs were used from IEDB. The regions 

common to predictions from both BCPred server and IEDB tools were considered as potential B-

cell epitopes. These epitopes were further filtered based on allergenicity and antigenicity criteria 

using AllerHunter and VaxiJen respectively. 

4.3. Results 

4.3.1 Retrieving non-homologous proteins from pathogen whole proteome 

C. jejuni O:2 (strain NCTC 11168) whole proteome encodes 1623 proteins. After filtering out 

protein sequences on length criteria, we were left with 1500 proteins. We subjected rest of the 

protein sequences to a homology search against Human proteome database using BLASTP 

search from standalone blast suite and retrieved a total of 210 pathogen proteins which were non-

homologous to humans. Identifying proteins non-homologous to humans is essential as it 
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excludes the possibility of the peptide vaccine targeting hosts enzymes, thus avoiding adverse 

effects on humans [31]. Besides, self-peptides can mount an autoimmune response in the host. 

4.3.2 Antigenicity and transmembrane prediction 

The VaxiJen server used to assess the antigenicity of the protein sequences predicted 157 

proteins as antigenic above a threshold of 0.7 which were further analyzed for their cellular 

location and it revealed that 24 proteins were localized in outer membrane. Identification of outer 

membrane proteins is critical for reliable and rapid identification of vaccine candidates as many 

of the vaccines that trigger immune responses appeared to be secreted toxins or surface exposed 

molecules [32]. Outer membrane localized proteins were further analyzed for vaccine candidate 

identification.  

4.3.3 T-cell epitope prediction 

NetCTL predicted T-cell epitopes from each sequence against MHC-supertypes. 28 epitopes 

with their combinatorial score above threshold 2 were selected from the outer membrane 

localized antigenic proteins. These epitopes were further assessed by AllerHunter for allergic 

cross reactivity and by VaxiJen for antigenicity. This step identified four epitopes as potential T-

cell epitopes (Table 4.1). For each epitope, SMM based IEDB MHC I processing prediction tool 

retrieved the MHC-1 alleles with IC50 value less than 500 nM which were potential epitope 

binders. MHCPred predictions of MHC-I and MHC-II alleles as efficient epitope binders were 

taken together with IEDB tool predictions to generate a final list of potential binders for each 

epitope. The results are summarized in Table 4.2.  

4.3.4 Epitope conservancy and HLA-distribution analysis 

For each predicted epitope, conservancy was determined using IEDB conservancy tool and the 

results are shown in Table 4.2. Epitope NTDQAQGTV was 75% conserved at identity of >60% 

while YIQDNFNFY was 50% conserved at 100% identity. Conservancy results for other 

epitopes (RSDEAQTNY, KSDEEMEKY) were not alluring. Due to scarcity of sequence data in 

Uniprot database, conservancy results do not portray factual depiction of epitope conservancy. 

Population coverage analysis was then performed for epitopes NTDQAQGTV and 

YIQDNFNFY along with their associated MHC-I and MHC-II alleles as input to IEDB 
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population coverage analysis tool. As shown in Table 4.3, immune response elicitation of the 

81.07% and 85.27% world population was covered by the epitopes NTDQAQGTV and 

YIQDNFNFY respectively. Maximum coverage 85.99% for epitope NTDQAQGTV was in 

Europe area followed by 85.53%, 84.25% and 80.44% in the population of South Africa, South 

Asia and North Africa respectively. For epitope YIQDNFNFY, maximum coverage 90.81% was 

in Europe area followed by South Asia, North America, and Northeast Asia with coverage 

85.70%, 84.08%, and 82.80% respectively.   

4.3.5 Molecular docking studies of HLA-epitope 

Using Hex, different conformations of the predicted epitopes were generated and the best 

conformation was selected based on binding affinity scores. The docked complexes were 

visualized in Pymol as shown in Figure 4.2. Figure 4.3 represents the interactions involved in 

HLA-A*11:01 binding with predicted epitopes. HLA-A*11:01 binds with epitopes 

NTDQAQGTV, YIQDNFNFY with binding energies -386.53 and -350.09 respectively. 

Table 4.1: Most probable predicted epitopes selected on the basis of their NetCTL (MHC 

binding, proteasomal processing and TAP transport), AllerHunter (Allergic cross-reactivity) and 

VaxiJen (Antigenicity) Score. 

Uniprot 

Id 

Protein Name Gene 

Name 

Epitope NetCTL 

Score 

AllerHunter 

Score 

VaxiJen 

Score 

Q0PBW1 Putative TonB-

dependent outer 

membrane receptor 

Cj0178 NTDQAQGTV 2.0440 0.04 1.1875 

Q0P9M1 Outer membrane 

component of 

efflux system 

(Multidrug efflux 

system CmeDEF) 

cmeD YIQDNFNFY 2.2174 0.05 0.6824 

Q0P9S7 Putative outer-

membrane protein 

Cj0975 RSDEAQTNY 3.3776   0.06 1.5564 

Q0P826 Putative Conserved 

Protein 

(Uncharacterized 

Protein) 

Cj1602 KSDEEMEKY 3.3309 0.06 1.1041 
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Figure 4.2: Docked complexes of HLA-A*11:01 against predicted epitopes generated by Hex 

docking program. a) Epitope NTDQAQGTV b) Epitope YIQDNFNFY. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Interactions involved in HLA-A*11:01 binding with a) Epitope NTDQAQGTV b) 

Epitope YIQDNFNFY. 

 

4.3.6 B-cell epitope identification 

As per the criteria set for prediction of B-cell epitopes, Table 4.4 depicts the epitopes predicted 

using AAP, BCPred and IEDB tools further filtered based on allergenicity and antigenicity 

properties. Antigenic regions common to both BCPred and AAP were subjected to IEDB Emini 
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surface accessibility tool to predict peptides which were surface exposed. Predicted peptides 

were checked for flexibility and hydrophilicity using IEDB tools Karplus & Schulz flexibility 

prediction, and Parker hydrophilicity prediction. This yielded a total of 25 peptides as B-cell 

epitopes. To test such peptides for their potential as B-cell epitopes, they were checked for their 

allergenicity and antigenicity which yielded four epitopes with allergenicity score <=0.06 and 

antigenicity score >1 as shown in Table 4.4. 

4.4 Discussion 

With the advancement in sequencing technologies, there has been remarkable progress in the 

vaccinology area, enabling researchers to finally move beyond the traditional vaccinology 

approach. With computational approaches it is now feasible to access the entire antigenic 

repertoire of an organism. Reverse Vaccinology (RV) approach to vaccine identification came 

into existence with addressing the problem of vaccine identification against Meningococcus B 

(Men B). Men B is a pathogen which was intractable to vaccine development using conventional 

vaccinology approach as its capsular polysaccharide is identical to a human self-antigen [33]. 

Hitherto, RV has been practically applied against many pathogens [34,35]. In the post-genomic 

era, power of omics data has been complemented by bioinformatics approaches which may lead 

to the discovery of unique antigens that may eventually improve existing vaccines. Many 

researchers have already proposed an epitope-based vaccine candidate against C. jejuni with 

their studies aimed at identifying vaccine candidates from specific proteins like cytolethal 

distending toxin (CDT), autotransporter protein CapA, polysaccharide capsules etc. [36-38]. 

Developing killed WC vaccines is complicated by dearth of information on pathogenesis of C. 

jejuni and development of flagellin subunit-based vaccines is complicated owing to antigenic 

diversity of Campylobacter flagellins. Perceiving the gaps in current efforts for vaccine 

development against Campylobacter, we have undertaken current study of genome wide 

screening of C. jejuni using an in silico approach, aimed at identifying potential vaccine 

candidates against this organism and expedite the efforts in this direction. Currently most 

vaccines are based on B-cell providing antibody mediated immunity. However, T –cells confer 

long-lasting immunity while antibody mediated immunity can be easily overcome by surge of 

antigens [39]. Cytotoxic CD8
+
 T lymphocytes (CTL) hamper infectious agents from spreading 

by invading infected cells. 
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Table 4.3: Population coverage of predicted epitopes based on MHC-I and MHC-II restriction 

data. 4.3a) for epitope NTDQAQGTV maximum population coverage by Europe 4.3b) for 

epitope YIQDNFNFY maximum population coverage by Europe 

 

 

 

 

 

 

 

 

 

4.3a       4.3b 

Thus, in this study we have proposed both B and T-cell epitopes which could be experimentally 

tested for their efficacy in triggering humoral and cell mediated immune responses. As described 

in schematic workflow diagram (Figure 4.1), we have framed a set of criteria for identifying 

potential vaccine candidates which involves antigenicity, T-cell/B-cell processivity, interaction 

with HLA alleles, allergenicity, conservancy, and population coverage. Protective epitopes are 

not clearly defined for C. jejuni. Thus, while screening proteomic data, it is of utmost importance 

to select the proteins which can confer protection. To select such segments from the proteins, it is 

encouraged to select genomic segments with antigenic properties. Thus, antigenicity filter was 

employed at several stages of vaccine candidate identification task. Initially, the proteins with 

antigenicity score above threshold 0.7 were selected as antigenic. Identified B and T-cell 

epitopes were also filtered based on antigenicity criterion.  

Population / Area Class I and II 

Coverage 

World 81.07% 

East Asia 68.22% 

Northeast Asia 74.14% 

South Asia 84.25% 

Southeast Asia 63.61% 

Southwest Asia 72.88% 

Europe 85.99% 

East Africa 70.98% 

West Africa 69.64% 

Central Africa 75.76% 

North Africa 80.44% 

South Africa 85.53% 

West Indies 46.39% 

North America 78.72% 

Central America 1.34% 

South America 69.25% 

Oceania 63.73% 

Population / Area Class I and II 

Coverage 

World 85.27% 

East Asia 80.61% 

Northeast Asia 82.80% 

South Asia 85.70% 

Southeast Asia 70.72% 

Southwest Asia 70.55% 

Europe 90.81% 

East Africa 66.55% 

West Africa 75.91% 

Central Africa 69.61% 

North Africa 77.05% 

South Africa 77.44% 

West Indies 77.88% 

North America 84.08% 

Central America 15.10% 

South America 59.04% 

Oceania 64.30% 



                                                                                                                    Chapter 4 

 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 87 

 

Physiochemical properties like flexibility, hydrophilicity, solvent accessibility are distinctive 

features of B-cell epitopes. These features have been exploited in many B-cell epitope prediction 

programs [40]. Initially, based on surface accessibility, flexibility and hydrophilicity criteria B-

cell epitopes which could be proficiently processed by B-lymphocytes were identified. NetCTL 

server predicted T-cell epitopes based on combined predictions of MHC class I binding, 

proteasomal C terminal cleavage and TAP transport efficiency. C. jejuni strains are highly 

diverse which further complicates the vaccine development against this pathogen. Consequently 

conservation of the epitopes at sequence level reveals that these regions are imperative from 

evolutionary point. Population coverage plays an essential role in vaccine development process. 

Our predicted peptides showed good population coverage in spite of the fact that in case of 

MHC-II data was only available for the alleles HLA-DRB1∗01:01, HLA-DRB1∗04:01, and 

HLA-DRB1∗07:01. Though, all the predicted nonamers were interacting with most common 

HLA allele HLA-DRB1∗01:01 as shown in Table 4.2. For the predicted epitopes, in developing 

world highest population coverage was in Asian and African countries where the diarrheal 

incidence rate is reported to be highest and in industrialized nations, it was highest for Europe 

and North America, aligning with the fact that maximum number of travelers to Asia and Africa 

are observed from these countries [41].  

Further investigation in the data shows that epitope NTDQAQGTV has high antigenicity value 

(Table 4.2) but epitope YIQDNFNFY has a maximum of 29 MHC-interacting alleles. Epitope 

YIQDNFNFY was identified from cmeD which encodes for outer membrane component of 

Multidrug efflux system CmeDEF. In a study, CmeC which is an essential outer membrane 

component of CmeABC multidrug efflux pump was proposed as a promising subunit vaccine 

candidate against C. jejuni infection using chicken model [42]. cmeDEF also plays important 

role in antibiotic resistance against several antibiotics and toxic compounds. cmeABC and 

cmeDEF act synergistically in retaining cell viability and conferring antibiotic resistance [43]. 

Epitope sequence NTDQAQGTV has lower IC50 value of 20.61 nM for MHC supertype (HLA-

A∗11:01) as compared to YIQDNFNFY which has an IC50 of 69.82 nM with HLA-A∗11:01. The 

results of computational docking studies coincide with the binding affinity values. 

NTDQAQGTV has a stronger affinity for HLA-A∗11:01 with binding energy of -386.53 while 

YIQDNFNFY binds in the groove of HLA-A∗11:01 with total energy -350.09. Epitope sequence 

YIQDNFNFY is more conserved at 100% identity and has a high score as a processed peptide as 
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evidenced from NetCTL score (Table 4.1). As seen in Table 4.3, population coverage analysis 

reveals that epitope YIQDNFNFY covers a large proportion of human population. Lowest 

coverage for this epitopes is in Central America (15.10%) which is much higher when compared 

to population coverage of NTDQAQGTV in the same region being 1.34%. 

Table 4.4: Four most potential B-cell epitopes by combined predictions of AAP, BCPred, IEDB 

tools (Emini Surface Accessibility, Karplus and Schulz flexibility, Parker hydrophilicity), 

filtered based on their AllerHunter and VaxiJen score.  

 

Four potential B-cell epitopes were predicted with their VaxiJen score (antigenicity) >1 and with 

AllerHunter score (allergenicity) <=0.06 threshold.  The epitopic sequence YTGKAKRVNPNT 

has highest antigenicity of 1.6624 followed by IYRKHSNSSNS and RFSERKNKEE with 

antigenicity scores 1.6432 and 1.3154 respectively. Based on AllerHunter results, epitope 

sequence NPQQEKSQN has highest possibility of being a non-allergen as marked by the lowest 

score 0.05, while other B-cell epitopes YTGKAKRVNPNT, IYRKHSNSSNS and 

RFSERKNKEE have AllerHunter score of 0.06. Elicitation of effective immune responses 

depends on the specificity and diversity of the T-cell epitopes binding to HLA-alleles. Due to 

highly polymorphic nature of MHC, it is desirable to identify peptides which can bind to many 

MHC-alleles [44]. Our predicted T-cell epitopes NTDQAQGTV and YIQDNFNFY bind to more 

Uniprot 

Id 

Protein Name Gene 

Name 

Start End B-cell Epitope Length Aller-

Hunter 

Score 

VaxiJen 

Score 

Q0PBW1 Putative TonB-

dependent outer 

membrane 

receptor 

Cj0178 648 660 YTGKAKRVNPNT 12 0.06 1.6624 

Q0PAY6 Putative 

periplasmic 

protein 

Cj0530 583 593 IYRKHSNSSNS 11 0.06 1.6432 

Q0P9M1 Outer 

membrane 

component of 

efflux system 

(Multidrug 

efflux system 

CmeDEF) 

cmeD 220 228 NPQQEKSQN 9 0.05 1.2950 

327 336 RFSERKNKEE 10 0.06 1.3154 
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than 20 MHC-alleles and have broad human population coverage. HLA-A*11:01 was selected 

for docking studies. The predicted T cell epitopes interact with HLA-A*11:01 with varying 

affinities. From computational docking results, it was interpreted that the epitopes bind 

efficiently to the HLA-A*11:01. It is believed that such a systematic computational pipeline for 

prediction of vaccine candidates when employed to C. jejuni proteome reveals epitopes that 

would be able to elicit an efficacious immune response.  There has been growing body of 

evidence which state the indispensable role of bioinformatics approaches in translational 

medicine [36-38]. As shown in Figure 4.4, there was sturdy decline in the protein search space at 

each step. It was noticed that there was significant reduction in the proteome size to be searched 

for vaccine identification. We started with the proteome size of 1623 proteins. Applying different 

filtration criteria at each step, we were left with 8 antigenic sequences which were eventually 

tested for presence of vaccine candidates. In summary, omics-guided approaches and 

bioinformatics analyses offer broad potential for further developments in global health relevant 

novel therapeutics.

 

 

 

 

 

 

 

 

 

Figure 4.4: Step-wise reduction in the total no of proteins in search for the identification of 

vaccine candidates against C. jejuni.

 

Conclusion 

Traditional molecular immunology techniques for vaccine identification are time and labor 

consuming. A wide array of omics techniques, whole genome sequencing data and novel 



                                                                                                                    Chapter 4 

 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 90 

 

bioinformatics approaches have substantially improved our systemic understanding of complex 

diseases. These techniques hold a greater potential to be utilized for rapid and reliable genome 

wide screening for identification of vaccine candidates; thus have hastened the pace of vaccine 

development to a great extent by significantly reducing the number of experimentally testable 

epitopes. Our predicted epitopes are prospective vaccine candidates on grounds of higher 

population coverage and interactions with many HLA alleles. In conclusion, immunoinformatics-

based approach was utilized for detection of protective antigens in C. jejuni, which may serve as 

potential vaccine candidates to control campylobacteriosis once validated experimentally in vitro 

and in vivo. This immunoinformatics-based approach can be applied to other hosts or other 

enteric pathogens. 
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5.1 Introduction 

Enterotoxigenic Escherichia coli (ETEC), a gram negative, rod shaped bacilli of 

Enterobacteriaceae family colonizing the mucosal surface of small intestine, is the leading cause 

of bacterial diarrhea in the endemic countries and major cause of Traveler’s Diarrhea (TD) 

worldwide. Diarrhea due to ETEC remains a serious problem with an estimated annual incidence 

rate of 840 million infections and 3,80,000 deaths worldwide [1]. Beyond the startling mortality 

rates, are the emerging evidences for long-term consequences of diarrheal disease-associated 

intestinal enteropathy and malnutrition on physical and cognitive development [2]. ETEC’s 

major virulence mechanism involves production of one or both of enterotoxins, heat-labile 

enterotoxin (LT) and heat-stable enterotoxin (ST) and many colonization factors (pili/fimbrial or 

nonfimbrial) [3], 23 of which are defined while many still remain uncharacterized [4]. ETEC is 

difficult to recognize as it is not readily detected by standard assays and is often underestimated 

as being a major diarrheal causative agent.  

Vaccines have proved a breakthrough in disease prevention ultimately improving life expectancy 

against diseases  like meningococcal, diphtheria, tetanus, poliomyelitis, pertussis, measles, 

mumps, rubella [5]. Although conventional vaccinology strategies have been relatively 

successful, they are inadequate in vaccine development against antigenically diverse pathogens 

and in some cases conventional approaches fail due to their low efficacy and safety issues [6].  

The leading cellular vaccine candidates against ETEC include inactivated and live attenuated 

ETVAX and ACE527 vaccines respectively. ACE527 is a three-strain-combination live 

attenuated whole cell vaccine while ETVAX consists of four inactivated recombinant E. 

coli strains overexpressing the major ETEC colonization factors mixed with an LT B-subunit 

related toxoid. ETEC vaccine candidates based on subunits, toxins, or novel antigens such as 

new subunit ETEC candidate using the tip proteins from fimbriae, a multicomponent fusion 

protein, dmLT, Cholera  whole  cell/B  subunit, ST constructs, YghJ (type  2  secretion  system  

effector molecule), EatA (serine  protease) etc. are also being evaluated for their efficacy [7]. 

Hitherto there are no licensed vaccines available against ETEC.  

With the sequencing of first bacterial genome of Haemophilus influenza in 1995 [8], vaccine 

development entered a new era where it was feasible to access the entire antigenic repertoire of 

an organism with the information present in its genome sequence, an approach designated as 
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Reverse Vaccinology (RV). Since the first successful application of RV to Neisseria 

meningitides serogroup B (MenB) [9], there have been significant improvements to classical RV 

approach and it has been successfully applied to a broad spectrum of pathogens [10-12]. 

Application of omics techniques together with advanced bioinformatics tools have significantly 

improved the process of candidate epitopes identification with potential to be exploited as 

vaccine candidates; thus minimizing the arduous screening task for peptides with 

immunobiological properties.  The present study was undertaken to design an epitope based 

vaccine against ETEC using the RV approach which work through the identification of peptides 

capable of binding to human leukocyte antigens (HLA) and being processed by T cells. A range 

of computational approaches were employed to probe the entire antigenic repertoire of ETEC for 

identification of potential B and T-cell epitopes. This study has important reverberations for 

selection of vaccine candidates against ETEC which will eventually reduce the impact of disease 

caused by ETEC infections. 

5.2 Methods 

5.2.1 Comparative genomics analysis 

As illustrated in Figure 5.1, a two step comparative genomics approach was developed to retrieve 

orthologous proteins of E. coli O139:H28 (strain E24377A / ETEC) with other pathogenic strains 

and excluded orthologous proteins from other commensal/nonpathogenic E. coli strains. To 

achieve this, we included two pathogenic ETEC strains (E24377A and H10407) and one 

commensal strain (E. coli SE11). The complete proteomes of the diarrheagenic E. coli O139:H28 

(strain E24377A/ETEC), E. coli O78:H11 (strain H10407/ETEC) and commensal E. coli (strain 

SE11) were downloaded from the Uniprot database with Proteome Ids UP000001122, 

UP000006877 and UP000008199 respectively. The most probable set of orthologous proteins 

shared by the two pathogenic ETEC strains were identified using a reciprocal best-hit criterion as 

described. In the first step, entire proteome of one strain was BLASTP searched against the 

proteome of other strain using a threshold E value of 10
−12

. To scrutinize orthologous proteins, 

the alignment region between the subject and the query protein had to be at least 80% of the 

entire protein length, and similarity at least 40% for both query and target sizes. In the second 

step, the obtained orthologous proteins were again searched against commensal strain using 

BLASTP at a cut-off E value of 10
−12

. Proteins shared between pathogenic and commensal strain 
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were excluded. 

 

 

Figure 5.1: Schematic representation of the steps involved in target protein prioritization and 

antigenic epitope mapping in ETEC E24377A strain using an integrated comparative genomics 

and immunoinformatics approach.

 

The orthologous proteins with length less than 100 amino acid (aa) were filtered as the average 

protein length in bacteria is 267 aa [13]. Therefore proteins with length less than 100 aa are 

unlikely to code for any protein. In the next step, sequences were further screened out based on 

homology with the host (Homo sapiens) proteome at an e-value cut off of 0.05. In the BLASTP 

search, proteins which showed no hits below e-value inclusion threshold were selected as non-

homologous pathogen proteins.  

5.2.2 Antigenicity and transmembrane prediction 
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Non-homologous pathogen proteins were subjected to VaxiJen server [14], which is based on 

auto cross covariance (ACC) transformation of protein sequences into uniform vectors of 

principal amino acid properties, with threshold value 0.7 for prediction of antigenic sequences. 

The sequences with antigenicity value above threshold were scrutinized for their cellular location 

by subjecting them to PSORTb version 3.0. A probability value (p-value) of 7.5 was set to 

predict the antigenic sequences localized in membrane. PSORTb utilizes a Bayesian network 

model to calculate associated probability for each localization site [15]. 

5.2.3 T-cell epitope prediction 

NetCTL 1.2 Server was used to predict Cytotoxic T Lymphocytes (CTL) epitopes from the 

antigenic sequences localized in membrane, at a threshold value of 0.75 to maintain high 

sensitivity and specificity levels and the prediction was restricted to 12 Major Histocompatibility 

Class I (MHC-I) supertypes. NetCTL is an artificial neural networks (ANN) and weight matrix 

based tool combining the prediction of peptide MHC-I binding, proteasomal C terminal cleavage 

and TAP transport efficiency [16]. The CTL epitopes generated from NetCTL were assessed for 

their antigenicity by subjecting them to VaxiJen server. Identified epitopes were categorized into 

low, medium and high priority vaccine candidates based upon the VaxiJen scores. An Immune 

Epitope Database (IEDB) tool based on combined predictors of proteasomal processing, TAP 

transport, and MHC binding was used for predictions of antigen processing through MHC-I [17]. 

IEDB is the most inclusive database of experimentally characterized B cell and T cell epitopes. 

The Stabilized Matrix Base Method (SMM) which can model the sequence specificity of 

quantifiable biological processes [18] was employed to compute Inhibitory Concentration (IC50) 

values of peptide binding to MHC1 molecules. In conjunction with IEDB tool, MHCPred which 

uses a partial least squares-based multivariate statistical approach [19] was used for prediction of 

both MHC-I and MHC-II binders of the predicted peptides. The alleles with binding affinity 

IC50 value less than 500 nM from both the servers were considered as efficient peptide binders. 

5.2.4 HLA-distribution analysis 

An IEDB based tool for human population coverage analysis [20] was used to study the 

distribution of human HLA alleles among the predicted epitopes. Human population coverage 

analysis tool was input with the predicted peptides and their corresponding MHC-I and MHC-II 
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alleles. All other parameters were set to default with the final data set containing frequencies of 

3,245 alleles for 16 geographical areas, 21 ethnicities, and 115 countries). The predictions were 

made using the latest dataset from the Allele Frequency Net Database (AFND) [21]. 

5.2.5 Molecular docking studies of HLA-epitope 

5.2.5.1 Designing epitope 3D structure 

To study the molecular interactions between the predicted T-cell epitope (SSFASNNIY) and 

HLA molecules, PEP-FOLD based on a Hidden Markov Model derived Structural Alphabet 

(SA) [22] was used to predict the 3D structure of the peptide. PEP-FOLD generates 5 models for 

input peptide sequence, the best of which is used for docking studies. 

5.2.5.2 Docking 

To validate our results, we performed a docking study of HLA-A*11:01 and high priority 

epitopes using Hex, the first Fourier transform (FFT)-based protein docking server [23]. The 

crystal structure of HLA-A*11:01 in complex with sars nucleocapsid peptide (PDB Id: 1X7Q) 

was simplified to HLA-A*11:01, prepared by adding hydrogen atoms. Finally the docking was 

carried out in Hex using prepared HLA-A*11:01 and PEP-FOLD predicted epitopes as starting 

structures. The parameters were set to default except for correlation type which uses both shape 

and electrostatics criteria for docking calculations. Hex uses spherical polar Fourier (SPF) 

algorithm for rotational correlations and abridged execution times. Hex resembles molecules to 

3D parametric functions relating electrostatic charge, surface shapes, and potential dissemination 

which engage electrostatic and van der Walls interactions.The best conformation was selected 

based on the Etotal (binding affinity) value. The docked complexes and interactions were 

visualized in Pymol molecular graphics package [24] and Ligplot respectively [25].  

5.2.6 B-cell epitope identification 

Both sequential and conformational B-cell epitopes were predicted. To predict sequential B-cell 

epitopes, BCPred [26] and AAP [27] algorithms at BCPREDS server, both of which use SVM 

based classifiers, were utilized with an aim to identify potential antigens which can interact with 

B lymphocytes. Tools from IEDB were employed to find the B-cell epitopes and further screen 

out the potential epitopes. Emini-surface accessibility prediction [28], Karplus & Schulz 
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flexibility prediction [29], and Parker hydrophilicity prediction [30] programs were used from 

IEDB. The regions common to predictions from both BCPREDS server and IEDB tools were 

considered as potential B-cell epitopes. These epitopes were further scrutinized for antigenicity 

prediction using VaxiJen. For prediction of conformational B-cell epitopes, CBTOPE server was 

used which uses an SVM-based model to predict the probability of a residue being a part of a B-

cell epitope [31]. DiscoTope server was also used for conformational B-cell epitopes prediction 

from protein 3D structures; which is based on surface accessibility calculation for assigning a 

propensity score to each residue [32]. To predict 3D structures of the outer membrane proteins to 

be used in DiscoTope Server, I-TASSER was used which is an integrated platform for automated 

protein structure and function prediction [33]. 

5.3 Results 

5.3.1 Genomic Features 

The chosen strain, ETEC E24377A (Uniprot Id: UP000001122) is composed of 4.9 Mbp long 

circular genome having 4,773 coding genes. This rod shaped facultatively anaerobic 

chemoorganotrophic gram-negative bacterium has about 50.6 % GC content (Figure 5.2). In 

order to design efficient remedies against ETEC, its multiplication and host effector mechanisms 

should be exploited. Proteins which perform various pathogenic activities have been investigated 

in this study. One of the most striking features of ETEC strains is the presence of high 

percentage of identified insertion (IS) elements and mobile features, comprising approximately 

4% of the genome. Existence of IS elements may provide a mechanism by which the plasmids 

can integrate into or expunge from the chromosome [34,35]. ETEC chromosome contains a 

unique gene cluster, EcE24377A_2278 to EcE24377A_229 responsible for the propanediol 

utilization, which was lost in an ancestor of E. coli and Salmonella, and reintroduced as a result 

of a relatively recent horizontal gene transfer event leading to altered metabolism.  In Figure 5.2 

generated using Civi [36], it can be observed that no genome-wide strand bias was observed. 

Another interesting aspect of the E24377A genome is the presence of multiple plasmids as 

compared to other pathogenic E. coli isolates. Each plasmid contains virulence factors 

recognized as essential in ETEC pathogenesis. ETEC E24377A genome is undergoing swift 

change through gene rearrangements and appears as a pathovar in genetic flux [34]. Complete 

annotated genome and its features facilitate understanding of factors which mediate the immune 
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responses. 

 

 

 

 

 

 

 

 

Figure 5.2: Circular genome of ETEC E24377A. 

(i) ORFs plus strand: The outer most ring in black color shows ORFs plus strand. In the same 

ring orange regions indicate the ORFs negative strand (ii) Subcellular localization: In the 

adjacent ring, green, yellow, purple, light blue, orange, red, and gray color represents cytoplasm, 

cytoplasmic membrane, outer membrane, extracellular region, cell wall, periplasmic region and 

unknown subcellular localization respectively (iii) The third red ring represents GC percentage. 

Peaks represent an increase in GC percentage (iv) fourth ring in yellow color shows GC skew 

values for the whole genome. (v) The innermost purple colored ring shows AT skew values 

calculated for the whole genome. The figure is generated by Circular Visualization for microbial 

genomes (CiVi).

 

5.3.2 Comparative genomics analysis 

We sought to screen the entire protein repertoire of ETEC strains E24377A and H10407 to 

identify sequences with high probability of being protective antigens. Comparative genomics of 

pathogenic and commensal strains can shed light on disease-related genes and vaccine 

candidates. Thus, we identified proteins shared between pathogenic ETEC strains which were 

lacking in commensal E. coli. First, the shared protein pool between E24377A and H10407 

ETEC strains was determined by a reciprocal BLAST analysis. Next, proteins present in the 
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commensal E. coli strain SE11 genomes were eliminated from this shared pool. Protein 

sequences from this shared pool were filtered based on length criterion. We subjected these 

protein sequences to a homology search against Human proteome database using BLASTP 

program from standalone blast suite and retrieved pathogen proteins which were non-

homologous to humans. Identifying proteins non-homologous to humans is essential as it 

excludes the possibility of the peptide vaccine targeting hosts enzymes, thus avoiding adverse 

effects on humans [37]. This analysis rendered 61 protein sequences.   

5.3.3 Antigenicity and transmembrane prediction 

The VaxiJen server used to assess the antigenicity of the protein sequences predicted 9 proteins 

as antigenic above a threshold of 0.6 which were further scrutinized for their cellular location. It 

revealed that 3 proteins were membrane localized by combined predictions of PSORTb and 

TMHMM. After filtering based on physicochemical properties responsible for establishing a 

protein as a potential vaccine candidate, targeted proteins pooled out of surface proteome were 

further used for epitope mapping (Figure 5.3). The venn diagram representing 3 prioritized target 

proteins was prepared using Jvenn. [38] 

5.3.4 T-cell epitope prediction 

NetCTL predicted T-cell epitopes from each sequence against MHC-supertypes. 50 epitopes 

were predicted from the membrane localized antigenic sequences. These epitopes were further 

assessed by VaxiJen for antigenicity. A list of all the predicted epitopes is provided. As shown in 

Table 5.1, based on the combined informatics analysis, vaccine candidates were divided in three 

categories high priority (5 candidates), medium priority (11 candidates), and low priority (9 

candidates). For each high priority epitope, SMM based IEDB MHC I processing prediction tool 

retrieved the MHC-I alleles with IC50 value less than 500 nM which were potential epitope 

binders. MHCPred predictions of MHC-I and MHC-II alleles as efficient epitope binders were 

taken together with IEDB tool predictions to generate a final list of potential binders for each 

high priority epitope. The results are summarized in Table 5.2 which lists potential MHC-binders 

along with their MHC-I and II alleles and their respective binding affinity values.  
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Figure 5.3: Representation of 3 prioritized target proteins: The proteins characterized as i) 

shared between pathogenic strains and excluded from commensal strain ii) Non-homologous to 

humans iii) Antigenic iv) Membrane localize, are shown using different colors in the Venn 

diagram. Proteins satisfying a particular parameter are shown in the corresponding category of 

the Venn diagram. Three proteins were prioritized for vaccine candidate identification. The 

image has been generated by Jvenn.

 

5.3.5 HLA-distribution analysis 

For population coverage analysis, predicted high priority epitopes were clustered into two 

epitope sets based on the protein sequence from which they were generated. Population coverage 

analysis was then performed with these two epitopic sets along with their associated MHC-I and 

MHC-II alleles predicted through IEDB tool and MHCPred as input to IEDB population 

coverage analysis tool. As shown in Table 5.3, immune response elicitation of the 97.58% and 

95.57% total world population was covered by the two predicted epitopic sets. Maximum 

coverage 99.23% for epitope set I was in European region followed by 97.53%, 94.42%, and 

93.44% in the population of North American area, South Asia and East Asia respectively. For 

epitope set II, maximum coverage 97.25% was in Europe area followed by North America, East 

Asia, and Southeast Asia with coverage 96.01%, 96.01%, and 93.05% respectively.   
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Table 5.1: Most probable predicted epitopes selected on the basis of their NetCTL (MHC 

binding, proteasomal processing and TAP transport) and VaxiJen (Antigenicity) Score. Epitopes 

are categorized into High, Medium and Low priority epitopes based on antigenicity scale 

(VaxiJen Score). 

Antigenicity Scale:0.7-1.0: Low Priority 1.0-1.7: Medium Priority 1.7 and above: High Priority 

 

5.3.6 Molecular docking studies of HLA-epitope 

Using Hex, different conformations of the predicted epitopes were generated and the best 

conformation was selected based on binding affinity scores. The docked complexes prepared in 

Priority Epitope 

Set 

Uniprot 

Id 

Protein Name Epitope NetCTL 

Score 

VaxiJen 

Score 

 

High  

 

Set I 

 

A7ZGR5 

 

Putative membrane 

protein 

 

LICFFTLSY 

 

1.8004 

 

1.7024  

PLNPLILLY 1.7020  1.7194  

PIVNLFLLY 1.0515 1.9812 

Set II A7ZGK4 Uncharacterized 

protein 

SVSVFIFLF 0.9647 3.0057 

SVFIFLFIY 1.0519 4.1539  

Medium Set I A7ZGR5 Putative membrane 

protein 

IIAFYEFMY 1.1235 1.6211 

FYEFMYINY 1.1529 1.1573  

SLFGPEFLY 0.7607 1.5082  

KTALLICFF 0.9668 1.2435 

FTLSYNVLY 3.2100 1.1549  

STTIHSLFF 1.1339 1.2332  

KASNAHQRY 1.4873 1.2538  

Set II A7ZTH5  O-antigen 

polymerase 

ASHATTAGY 1.5819  1.1027  

KTTLYTINF 0.8133  1.1789  

YTINFMLSL 0.9437  1.6805  

SVGARLAMY 0.9550 1.0684  

Low Set I A7ZGR5 Putative membrane 

protein 

TLLLGVLIY 1.0991 0.7237  

TLSYNVLYF 0.8201 0.9366  

VSTTIHSLF 1.1339 0.7892  

YYRFNDLFY 0.8111 0.7745  

YSSTKNIHQ 0.9350 0.8034  

Set II A7ZGK4 Uncharacterized 

protein 

MVRACIQMY 0.8529 0.8009  

Set III A7ZTH5  O-antigen 

polymerase 

SLATQLLFF 0.9629  0.7659  

TTAGYIILF 1.6656  0.9246  

FSAILIYAL 0.7571 0.7841  
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Pymol and the interactions involved in HLA-A*11:01 binding with predicted epitopes are shown 

in Figure 5.4-5.8. HLA-A*11:01 binds with epitopes LICFFTLSY, PLNPLILLY, PIVNLFLLY, 

SVSVFIFLF, and SVFIFLFIY with docking energies -405.02, -404.60, -408.70, -400.57 and -

446.00 respectively. Epitopes LICFFTLSY, PLNPLILLY, PIVNLFLLY interact with HLA-

A*11:01 through interactions with MHC residues Arg 6, Asp 29, Asp 30, Pro 210, Glu 212. 

MHC interacts with epitopes SVSVFIFLF and SVFIFLFIY through hydrophobic interactions 

with Ser 4, Phe 8, Tyr 27, Asp 29, Asp 30, Met 98, Ala 211, and Glu 212.  HLA-A*11:01 

residues Arg 6 and Thr 233 are hydrogen bonded to Ser 1 and Phe 7 in epitope SVFIFLFIY. 

Involvement of common residues in interaction with different peptides suggests the crucial role 

of Arg 6, Asp 29, Asp 30, and Glu 212 MHC residues in MHC-peptide binding. 

5.3.7 B-cell epitope identification 

As per the criteria set for prediction of B-cell epitopes, the sequential epitopes were predicted 

using combined predictions of BCPREDS server and IEDB tools; further filtered based on 

antigenicity values from VaxiJen. Antigenic regions common to both BCPred and AAP 

algorithms at BCPREDS server were subjected to IEDB Emini surface accessibility tool to 

predict peptides which were surface exposed. Predicted peptides were checked for flexibility and 

hydrophilicity using IEDB tools Karplus & Schulz flexibility prediction, and Parker 

hydrophilicity prediction. 

To test these peptides for their potential as B-cell epitopes, they were checked for their 

antigenicity which yielded five sequential B-cell epitopes with antigenicity score >0.09 (Table 

5.4). Antibody interacting residues in membrane localized proteins predicted using CBTOPE 

server are summarized in Table 5 along with their secondary structure conformation. The 

probability of finding Conformational B cell epitopes is more in the coiled or turn region than in 

the helix or beta sheet [31]. Majority of the antibody interacting residues from membrane 

proteins were adopting coil conformation validating the accuracy of the predicted residues being 

a part of the conformational B-cell epitope. Models predicted from I-TASSER were selected 

based on their C-scores (confidence score) which is a measure of the quality of predicted models 

and based on the significance of threading template alignments and the convergence parameters. 

Residues which are predicted to be a part of conformational B-cell epitopes by DiscoTope server 
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are listed in Table 5.5. Only the residues with their DiscoTope score greater than 1 were 

considered.  
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Table 5.3: Population coverage of predicted epitopes (Set I and Set II) based on MHC-I and 

MHC-II restriction data. 5.3a) Maximum population coverage by South Africa 5.3b) Maximum 

population coverage by Europe. Set I represents epitopes LICFFTLSY, PLNPLILLY, and 

PIVNLFLLY from protein with Uniprot Id A7ZGR5. Set II represents epitopes SVSVFIFLF and 

SVFIFLFIY from protein with Uniprot Id A7ZGK4 

 

 

 

 

 

 

 

 

 

                                5.3a                                                                    5.3b 

5.4 Discussion 

The advent of high throughput sequencing techniques has enabled researchers to move beyond 

the classical vaccinology approach and employ computers for rational vaccine development with 

the information present in the genome. Vaccine development against the meningitis marks the 

beginning of reverese vaccinology (RV) technique [39]. Hitherto, the use of omics data together 

with bioinformatics approaches has been the hallmark of vaccinology in the genomics era. Since 

then, RV has been practically applied against many pathogens [40,41]. Omics-guided approaches 

have been applied to its full potential by identifying vaccines against several human and animal 

pathogens such as Staphylococcus aureus, Salmonella spp., Neisseria meningitides (Serogroup 

B), Bacillus anthracis, Bordetella pertussis, West Nile Virus, Candida albicans, Plasmodium 

Population / Area Class I and II 

Coverage 

 World 97.58% 

East Asia 93.44% 

Northeast Asia 92.26% 

South Asia 94.42% 

Southeast Asia 87.54% 

Southwest Asia 89.71% 

Europe 99.23% 

East Africa 86.70% 

West Africa 88.20% 

Central Africa 84.79% 

North Africa 93.27% 

South Africa 91.71% 

West Indies 92.42% 

North America 97.53% 

Central America 14.41% 

South America 89.09% 

Oceania 80.85% 

Population / Area Class I and II 

Coverage 

 World 95.57% 

East Asia 96.01% 

Northeast Asia 91.23% 

South Asia 90.26% 

Southeast Asia 93.05% 

Southwest Asia 85.79% 

Europe 97.25% 

East Africa 85.47% 

West Africa 88.68% 

Central Africa 84.55% 

North Africa 88.91% 

South Africa 91.08% 

West Indies 90.89% 

North America 96.01% 

Central America 4.85% 

South America 87.93% 

Oceania 95.57% 
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falciparum, Streptococcus canis etc., now being in late stage clinical trials or preclinical studies 

[42]. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: A) Docked complex of HLA-A*11:01 with epitope LICFFTLSY visualized in 

Pymol A’) and corresponding interactions involved in binding visualized in LigPlot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: B) Docked complex of HLA-A*11:01 with epitope PIVNLFLLY visualized in 

Pymol B’) and corresponding interactions involved in binding visualized in LigPlot. 

 

The design of an epitope-based vaccine candidate against ETEC has already been proposed but 

these studies are focused on some specific proteins like autotransporter protein, adhesion 
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proteins like eae (intimin), colonization factors like CFA/1, CS2 and CS3 and invasion proteins 

like invasion plasmid antigen C (IpaC), chimeric multi subunit proteins [43-46]. Subunit ETEC 

vaccine research has been mainly focused on well known and characterized virulence factors 

such as toxins, major colonization factors, and adhesion proteins [7] which are essential for the 

inception of ETEC colonization and/or host damage. Yet, the genome of ETEC strains may 

encode several unveiled antigenic proteins, which have so far not been explored as vaccine 

candidates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: C) Docked complex of HLA-A*11:01 with epitope PLNPLILLY visualized in 

Pymol C’) and corresponding interactions involved in binding visualized in LigPlot. 
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Figure 5.7: D) Docked complex of HLA-A*11:01 with epitope SVFIFLFIY visualized in Pymol 

D’) and corresponding interactions involved in binding visualized in LigPlot. 

 

 

 

 

 

 

 

Figure 5.8: E) Docked complex of HLA-A*11:01 with epitope SVSVFIFLF visualized in Pymol 

E’) and corresponding interactions involved in binding visualized in LigPlot.

 

Omics techniques have been projected as a powerful aid in vaccine development, particularly for 

the pathogens for which pathogenesis mechanism or antigenic determinants knowledge is 

inadequate. In this study, we have used integrated comparative genomics and 

immunoinformatics analysis of available ETEC genomes in the search for vaccine candidates. 

We have used an unbiased screening approach by examining all encoded sequences in ETEC 

genome, without considering their annotated function, which facilitates access to obscured 

potential candidates overlooked by previous ETEC vaccine studies. Similar studies have been 

performed by a group of researchers to identify potential vaccine candidate against 

Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a highly virulent serotype implicated in 

outbreaks and sporadic cases of diarrhea which infects colon by producing relatively large 

amounts of the bacteriophage-mediated Shiga-like toxin [47,48]. Presently vaccines are based on 

antibody mediated immunity (AMI) provided by B-cells. Antibodies are currently the only way 

that confer immediate immunological protection against biological weapons in populations 

which are immunologically immature [49]. however, T-cells confer long-lasting immunity while 

antibody mediated immunity can be easily overcome by antigenic drift [50]. In this study, we 
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have proposed both B and T-cell epitopes which could be tested through in vivo and in vitro 

experiments for their efficacy in eliciting humoral and cell mediated immunity.  

In order to accelerate the process of identifying highly antigenic vaccine candidates using 

immunoinformatics approach, we have worked around a set of criteria that a predicted peptide 

must meet in order to qualify as potential vaccine candidate. As depicted in Figure 5.1, the 

proteins were selected based on physicochemical properties like surface localization (secreted), 

or having transmembrane (TM) domains. The VaxiJen server predicted the protective antigens 

based on the overall antigenicity score and assisted to prioritize the proteins. While screening 

genomic data, it is of utmost importance to choose the genomic portions with the most probable 

protective antigens. Such genomic segments can be identified by searching for sequences with 

antigenic potential. Antigenicity filter was employed at several stages; first to identify the 

antigenic proteins and at a later stage to identify peptides with high antigenicity values.  

For T-cell epitope predictions, parameters such as T-cell processivity, the number of human 

leukocyte antigens (HLA) alleles covered, and significant population coverage. The 

characteristics features of B-cell epitopes include physicochemical propensities like flexibility, 

hydrophilicity, solvent accessibility which have been utilized in many B-cell prediction programs 

[51]. For sequential B-cell epitope predictions, we identified epitopes which could be efficiently 

processed by B-lymphocytes and were chosen based on criteria of surface accessibility, 

flexibility and hydrophilicity. Majority of the B-cell epitopes (~90%) are conformational 

epitopes. CBTOPE which predicts conformational B-cell epitopes in an antigen from its amino 

acid sequence was used as for the proteins identified as vaccine candidates, 3D structure was not 

available. Subsequently, this approach rendered a list of five high priority T-cell epitopes, five 

sequential B-cell epitopes and antibody interacting residues forming conformational B-cell 

epitopes as potential vaccine candidates. B-cell epitopes most likely to induce immune responses 

were from O-antigen polymerase, putative membrane protein and an uncharacterized 

protein.Potential T-cell epitopes were chosen by using NetCTL server results based on integrated 

predictions of peptide MHC class I binding, proteasomal C terminal cleavage and TAP transport 

efficiency. Predicted peptides showed good population coverage despite the fact that in case of 

MHC-II data was only available for the alleles HLA-DRB1∗01:01, HLA-DRB1∗04:01, and 

HLA-DRB1∗07:01. However as is clear from the Table 5.3, all the predicted nonamers were 
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interacting with most common HLA allele HLA-DRB1∗01:01. As shown in Table 5.4, 

population coverage in developing world was highest in Asia and Africa where the diarrheal 

incidence rate is highest. In industrialized nations population coverage was highest for Europe 

and North America as these  countries have maximum number of travelers to Asian and African 

regions [43].  

Table 5.4: Five most potential B-cell epitopes by combined predictions of AAP, BCPred, IEDB 

tools (Emini Surface Accessibility, Karplus and Schulz flexibility, Parker hydrophilicity), further 

filtered based on their antigenicity values (VaxiJen Score).  

Uniprot Id Start 

Residue 

End 

Residue 

Epitope Length VaxiJen 

Score 

A7ZGR5 345 352 PETHKSDN 8 1.1952 

237 246 FKNQFNKKIT 10  0.9161 

179 189 YSSTKNIHQQK 11 1.0160 

A7ZTH5 

 

272 279 YSHDNTRT 8 1.9700 

303 319 EKRAEKIHELEEKEPRL 17 1.0362 

 

Further investigation in the data shows that epitopic set II of high priority T-cell epitopes has 

high antigenicity value (Table 5.2) and has maximum number of MHC-interacting alleles. 

SVSVFIFLF has highest number of interactors, showing interaction with a total of 27 MHC-I 

and MHC-II alleles. Epitope sequence SVFIFLFIY from epitopic set II has strongest binding 

affinity (316.96 nM) for MHC supertype (HLA-A∗02:01). The results from population coverage 

analysis reveal that epitopic set I and II both cover different populations effectively. Five 

potential B-cell epitopes were predicted with their VaxiJen score (antigenicity) greater than 0.9.  

The epitopes from set II, SVSVFIFLF and SVFIFLFIY have highest antigenicity of 3.0057 and 

4.1539 respectively. Elicitation of effective immune responses depends on the specificity and 

diversity of the T-cell epitopes binding to HLA-alleles. Besides due to highly polymorphic 

nature of MHC, identifying peptides which can bind to as many MHC-alleles is a requisite [52]. 

Findings from the current study show that all the predicted epitopes bound to more than 20 

MHC-alleles and had extensive human population coverage. 

All the predicted T cell epitopes were found to interact with HLA-A*11:01 with varying 

affinities. Most probable immunogenic T-cell epitopes were from membrane proteins and some 
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uncharacterized proteins. Thus, HLA-A*11:01 was selected for docking studies. The results of 

computational docking study show that all the peptides bind efficiently to the HLA alleles. In 

summary, our comparative genomic approach integrated with immunoinformatics analysis 

allowed us to identify a group of ETEC specific vaccine candidates, some of them with high 

potential to encode for protective immunogens. This approach confirms the antigenic and 

protective efficacy of a subset of the candidates and further requires the experimental validation 

of the predicted epitopes in order to increase the therapeutic arsenal of vaccines against ETEC. 

Moreover, uncharacterized proteins may be associated with virulence in ETEC, and their 

characterization could offer new insights into ETEC pathogenesis. Consequently, the predicted 

vaccine targets open up new avenues for the study of functional characterization of these proteins 

regarding interaction with host and vaccine development. 

Table 5.5: Potential conformational B-cell epitope residues predicted using CBTOPE and 

DiscoTope server, along with the corresponding secondary structure conformation each residue 

adopts and DiscoTope scores.  

Uniprot 

Id 

CBTOPE DiscoTope 

Start 

Residue 

End 

Residue 

Epitope Length Secondary 

Structure 

Type 

Residue 

No 

Residue DiscoTope 

Score 

A7ZGR5 322 322 I 1 C 238 K 2.081 

342 345 VLFP 4 CCCC 325 Q 1.718 

349 351 KSD 3 CCC 327 I 1.920 

404 405 IR 2 EC 328 N 3.520 

     363 L 2.118 

     366 K 1.393 

A7ZGK4 17 17 V 1 C    

136 139 PDKR 4 CCCC    

A7ZTH5 291 293 GLK 3 HHH    

 324 324 P 1 C    

 410 410 S 1 C    

 

There are certain limitations to our approach forvaccine identification in that the tools utilized in 

the computational pipeline have some inherent technical challenges. As these tools are data 

driven, the accuracy depends on the quality of the experimental data used to train these models. 

Even the experimental data have the potential to be inaccurate due to experimental errors or 

flawed interpretations. Standard docking tools are meant for protein-protein or protein-ligand 

docking where active sites are strongly conserved to preserve protein functions. While antigen-



                                                                                                                   Chapter 5 

 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 114 

 

antibody binding sites are less conserved due to the competition for survival against the host 

immune system, thususing these docking tools presents us with some limitations. The 

computational approach for vaccine identification is not a substitute for experimental approaches 

but a potent complementary approach to reduce time and effort invested in culture based 

experimental methods.  

Conclusion 

Vaccine identification using traditional molecular immunology techniques is a time-consuming, 

arduous and expensive task. With a myriad of omics techniques, availability of genomic 

sequence data and novel bioinformatics approaches, our understanding of complex human 

diseases has radically improved. These techniques have accelerated the pace of vaccine 

development as they hold the potential for rapid screening and identification of probable vaccine 

candidates from the whole genome; thus significantly reducing the epitope dataset to be tested 

experimentally. Our selection criteria based on integrated approach of comparative genomics and 

immunoinformatics aided in categorizing the candidates as high, medium, and low priority. The 

high priority epitopes predicted in our study have greater than 95% population coverage, thus 

being a representative of larger human population and interacts with major MHC supertypes. Our 

findings may help to develop vaccines against ETEC once validated experimentally using model 

organisms.  
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6.1 Introduction 
Campylobacters are a major cause of foodborne diarrheal illness and result in high morbidity and 

mortality rate, and economic loss in every region of the world [1]. In developing 

countries, Campylobacter infections are frequent in children under age two, sometimes leading 

to death. In industrialized nations, they are most frequently identified cause of bacterial diarrhea 

in early adulthood [2]. According to a report released by Center for Disease Control and 

Prevention (CDC), there are 1.3 million incidences of campylobacteriosis and there is rapid 

escalation of antibiotic resistance in Campylobacter from 13% in 1997 to almost 25% in 2011 in 

United States [3]. Growing body of literature has documented that resistance to antibiotics like 

quinolones, macrolides, tetracyclines, chloramphenicol, cephalosporins, aminoglycosides is 

increasing rapidly in most parts of the world due to common and indiscriminate use of these 

agents [4-7]. Campylobacters are highly important from socioeconomic perspective, which 

strongly indicates a need for novel therapeutic targets with a high potential to improve quality of 

life and survival rates.  

Since the publication of pathogenic bacterial genome sequences Haemophilus influenza [8] and 

Mycoplasma genetalium [9] in 1995, the number of completed genome sequence for various 

microbial species has increased rapidly. This data in the post genomic era has provided 

researchers with the possibility to fully exploit it for identification of novel therapeutic targets 

and opened up new avenues for genome wide application of comparative and subtractive 

genomics approaches for therapeutic intervention. 

Subtractive genomics approach has been adverently used by many researchers [10-13] in search 

of novel drug targets for different microbes. Genome sequences of several Campylobacter 

species have been published including Campylobacter concisus, Campylobacter curvus, 

Campylobacter fetus, Campylobacter hominis and six strains of Campylobacter jejuni 

(http://gcid.jcvi.org/projects/msc/campylobacter/). In this study we report the subtractive 

genomics approach integrated with comparative metabolic pathway analysis aimed at identifying 

novel therapeutic target proteins of C. jejuni pathogenic strain NCTC11168. 



                                                                                                                   Chapter 6 
 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 120 
 

6.2 Methods 
Different databases and tools as described in the workflow (Figure 6.1) were utilized for the 

identification of putative therapeutic targets against C. jejuni integrating subtractive genomics 

approach with genome wide comparative pathway analysis.

 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.1: Schematic workflow of comparative genomics approach to identify drug targets in 

pathogenic C. jejuni strain NCTC11168.

 

Pathway information for C. jejuni and H. sapiens retrieved from KEGG 
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6.2.1 Host and pathogen comparative metabolic pathway analysis   

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database [14], the most 

comprehensive resource of pathway information was used for comparative genome wide 

pathway analysis of the C. jejuni and Homo sapiens. Manual comparison was done to identify 

the pathways unique to C. jejuni as per KEGG database annotations. Protein sequences for the 

enzymes involved in the unique pathways were retrieved from the Uniprot protein database.  

6.2.2 Subtractive genomics and identification of essential non-homologous pathogen 

proteins 

Essential non-homologous proteins from pathogen proteome were selected by two step 

comparison. In first comparison, subtractive genomics approach was applied on pathogen 

proteins from unique pathways.  The BLAST search [15] based on essentiality criteria was 

performed against Database of Essential Genes (DEG version 10.9) [16] which hosts records of 

essential genomic elements critical for an organism’s survival, such as protein-coding genes and 

non-coding RNAs, among bacteria, archaea and eukaryotes. An expectation value (e-value) 

threshold of 0.05 was used as filtering criteria for BLAST hits; with C. jejuni and Helicobacter 

pylori as background organism against which similarity search for identification of essential 

genes was performed. In the second step comparison, essential pathogen proteins were further 

screened out on the basis of homology with the host proteome at an e-value cut off of 0.05. In 

BLASTP search, proteins that did not have any hits below e-value inclusion threshold were 

selected to be essential non-homologous proteins from C. jejuni. 

6.2.3 Prioritization of essential non-homologous proteins for therapeutic targets 

The molecular and structural properties of essential non-homologous pathogen proteins were 

calculated which aid in prioritization of the drug targets that will most likely lead to effective 

treatments. Subcellular localization of identified proteins was predicted using PSORTb [17] 

which uses a Bayesian network model to calculate associated probability value for five major 

localization sites viz. cytoplasmic, inner membrane, periplasmic, outer membrane and 

extracellular with p-value criteria 7.5. TMHMM server which is a Hidden Markov Model 

(HMM) based tool for prediction of alpha helices in membrane proteins was used for 

transmembrane predictions [18]. A search was performed to identify the proteins for which 

experimentally or computationally solved structures are available in PDB [19] or Modbase [20] 
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or ProteinModelPortal [21]. A search of identified proteins in Uniprot was performed for 

retrieving information pertaining to molecular weight and existence of proteins. The information 

on protein existence provides different types of evidence for experimental characterization at 

protein and/or transcript level, homology inference or uncertainty. VaxiJen server [22] was 

employed to check the antigenicity of the membrane localized proteins with a threshold of 0.6. 

The antigenic sequences were further screened for their ability to bind to MHC Class I molecule 

using ProPred-I [23].  ProPred-I implements proteasomal processing with matrices for 47 MHC 

Class-I alleles to identify the regions in the antigenic sequence which can act as potential MHC 

binders. 

6.2.4 Druggability of essential non-homologous proteins 

To evaluate the druggability potential that is ability of a particular biological target to bind with 

high affinity to known drugs of each identified therapeutic target; we subjected each protein to a 

BLASTP search against DrugBank with an e-value 0.01. DrugBank is a unique comprehensive 

resource that integrates drug data with drug target information at sequence, structure and 

pathway level [24]. DrugBank version 4.2 currently has information about 7737 drug entries 

including 1585 FDA-approved small molecule drugs, 158 FDA-approved biotech 

(protein/peptide) drugs, 89 nutraceuticals and over 6000 experimental drugs; along with 4281 

non-redundant protein sequences (drug target/enzyme/transporter/carrier) linked to these drugs.  

6.3 Results and discussion 

6.3.1 Identification of unique metabolic pathways 

The KEGG database initiated in 1995 is a computational representation for biological systems, 

integrating genetic information of genes and proteins with chemical and systemic information of 

molecular interaction and reaction networks. It links genetic building block information with 

higher order functional information. Currently KEGG database houses 87 different pathways for 

C. jejuni 11168 strain and 292 pathways for H. sapiens. As described in the workflow (Figure 

6.1) manual comparison of host and pathogen pathways was conducted which resulted in 

identification of 16 unique pathways to the pathogen (Table 6.1) while 71 remaining pathways 

being shared by both humans and Campylobacters. Furthermore, the proteins involved in unique 

pathways were identified.  
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Table 6.1: A list of metabolic pathways unique to C. jejuni against human host and the number 

of proteins associated with the corresponding pathway 

6.3.2 Identification of essential non-homologous pathogen proteins 

A total of 446 proteins were identified to be involved in 16 unique pathways. Few proteins were 

involved in more than one pathway which resulted in 326 protein sequences from 

uniquepathways after removing redundant protein sequences. A BLASTP search of these 326 

protein sequences against 551 essential genes from C. jejuni and H. pylori in DEG was 

performed which revealed a total of 115 essential protein sequences with hits below e-value 0.05. 

Gene essentiality is thought to be important criteria for identification of therapeutic drug targets 

[25]. But there is a limitation to this approach as it fails to identify some targets such as 

hypoxanthine phosphoribosyl transferase as essential in Plasmodium falciparum  (false negative) 

[26] while sometimes it yields false positives as in case of  dihydrofolate reductase in 

Leishmania major [27]. Gene essentiality prediction via experimental methods such as single 

gene knockouts, RNA interference, and conditional knockouts is labor-intensive, expensive, and 

time-consuming [28]. Furthermore only few infectious agents are amenable to experimental 

approaches of gene essentiality as the tools for identification of drug or vaccine targets are often 

limited or absent for many pathogens. In such scenarios, computational methods for gene 

S. No Pathway Name Pathway ID #Proteins 
1 Carbapenem biosynthesis cje0033 2 
2 Novobiocin biosynthesis cje00401 4 
3 D-Alanine metabolism cje00473 2 
4 Streptomycin biosynthesis cje00521 3 
5 Lipopolysaccharide biosynthesis cje00540 20 
6 Peptidoglycan biosynthesis cje00550 14 
7 C5-Branched dibasic acid metabolism cje00660 7 
8 Methane metabolism cje00680 15 
9 Biosynthesis of secondary metabolites cje01110 167 
10 Microbial metabolism in diverse environments cje01120 88 
11 beta-Lactam resistance cje01501 5 
12 Vancomycin resistance cje01502 5 
13 Two-component system cje02020 43 
14 Bacterial chemotaxis cje02030 20 
15 Flagellar assembly cje02040 33 
16 Bacterial secretion system cje03070 18 
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essentiality prediction seem to streamline the gap between the amount of data generated from 

sequencing projects and whole genome approaches for prediction of essential genes [25,29,30].  

A previous work also identified the drug targets in C. jejuni by utilizing the CAI (Codon 

Adaptation Index) criterion as a measure of gene essentiality [31]. Essential genes are highly 

conserved, highly expressed and preferentially positioned in the leading strand. But high gene 

expression rates do not significantly correlate with the gene strand biasness and non-essential 

genes also show high expression rates [32,33]; in which case the definition of essentiality based 

on high expression could be erroneous. In our study, we have utilized subtractive genomics 

approach to predict genes essential to C. jejuni through homology search against experimentally 

predicted essentiality data from C. jejuni and H. pylori in DEG, both of which belong to the 

epsilon class of proteobacteria. These essential protein sequences were further filtered out by 

homology search against human proteome for identification of non-homologous protein 

sequences. This comparison detected 66 essential non-homologous proteins with no hits against 

H. sapiens below e-value 0.05. This comparison was performed to identify proteins unique to 

pathogen so as to avoid adverse effects on the human host [28], as the potential drug may also 

target host’s enzymes. These 66 essential non-homologous protein sequences represent the 

potential to be further exploited for therapeutic drug design against C. jejuni.  

6.3.3 Prioritization of essential non-homologous proteins for therapeutic drug targets 

Although all 66 essential non-homologous identified proteins are potential drug targets, yet these 

can be further filtered; using additional parameters that are determinant of structural and 

molecular properties of proteins such as molecular weight, subcellular localization, 

transmembrane prediction and availability of 3D structure; for prioritization of drug targets [25] 

which maximizes the likelihood of landing to the best therapeutic target against pathogen and 

reduces the time and resources for developing such an agent. Subcellular localization prediction 

using PSORTb program identified 63 proteins to be of cytoplasmic origin and all the essential 

non-homologous proteins were found to be <110 kDa; suggesting possibility of experimental 

verification of the most of the identified targets. Smaller proteins are easy to purify and 

localization information of proteins can yield insights into protein function [17,34]. A search for 

availability of 3D structure identified 7 proteins for which there was no structure available while 

for 6 of these proteins experimentally solved structures were available which points to a gap in 
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the structural characterization of pathogen proteins despite the fact that C. jejuni whole genome 

is sequenced. Rest of the 53 proteins had computationally solved structures available in either 

Modbase or ProteinModel Portal. Protein structural information can be used to a significant 

advantage in drug identification and validation significantly reducing the cost of high throughput 

experimental assays [35]. TMHHM server predicted 16 proteins that had one or more helices 

traversing the membrane, 6 of which were found to be antigenic above the specified threshold. 

ProPred-I server predicted MHC binder regions in all of the six proteins (murF, frdC, ccoP, 

secD, Cj1094c, tatC) for different MHC class I alleles, and these proteins represent potential 

vaccine candidates as most of them are transporters, surface exposed proteins. All these results 

are presented in Table 6.2.  

6.3.4 Druggability of potential drug targets 

To examine the druggability of each of the essential non-homologous protein, they were 

subjected to a BLASTP search against all the drug targeted proteins in DrugBank database which 

resulted in the identification of 34 C. jejuni proteins which shared high similarity to the binding 

partners of these drug targeted proteins from DrugBank. 9 of these 34 proteins were FDA-

approved drugs or nutraceuticals while the remaining 25 were under experimentation. In Table 

6.3, we have summarized the identified target protein binding partners of the all the drugs of 34 

C. jejuni target proteins. The likelihood of being able to develop a drug-like compound to 

modulate the target is an important consideration that can aid drug design. The proteins for 

which drugs are already available can prove to be useful starting points for drug discovery. 

The distribution of the essential non-homologous proteins was checked before and after 

similarity search against DrugBank (Figure 6.2). It was noticed that there was ~49% reduction in 

the number of proteins and 20% reduction in the number of pathways after DrugBank analysis; 

which leads to a shift in the pathway priority. Before DrugBank analysis biosynthesis of 

secondary metabolites, two-component system, microbial metabolism in diverse environments, 

peptidoglycan biosynthesis, bacterial secretion system, flagellar assembly, and 

lipopolysaccharide biosynthesis pathways were having maximum druggable targets but after 

DrugBank analysis biosynthesis of secondary metabolites, peptidoglycan biosynthesis, two-

component system were the major pathways of druggable targets.  
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Figure 6.2: Distribution of essential non-homologous proteins of C. jejuni in different pathways 

before and after drug bank search for druggability potential evaluation.

 

Finally, we have narrowed down the search of therapeutic targets to final 14 prioritized drug 

targets and vaccine candidates. 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 

(pfs) enzyme catalyzes the direct conversion of aminodeoxyfutalosine (AFL) into 

dehypoxanthine futalosine (DHFL) and adenine via the hydrolysis of the N-glycosidic bond 

which represents an essential step in menaquinone biosynthesis pathway [36]. This enzyme is an 

attractive drug target as it is involved in many pathways such as ubiquinone and other terpenoid-

quinone biosynthesis, cysteine and methionine metabolism, biosynthesis of amino acids.  



                                                                                                                   Chapter 6 
 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 133 
 

Both alanine racemase (alr) and pyridoxal 5'-phosphate-dependent enzyme that catalyze the 

interconversion of L-alanine and D-alanine and D-alanyl-alanine synthetase A (ddl) involved in 

cell wall formation by joining two of the D-alanine residues together catalyzing the formation of 

the ATP-dependent D-alanine-D-alanine dipeptide bond between the resulting D-alanine 

molecules. Inhibition of these two enzymes leads to effective inhibition of peptidoglycan 

synthesis and ddl has been proposed to be an attractive drug target in Mycobacterium 

tuberculosis [37]. Vancomycin binds to ddl, a peptidoglycan precursor under normal conditions 

forming a stable complex and inhibits cell wall synthesis [38] ultimately leading to cell lysis, 

thus playing an important role in vancomycin resistance pathway.  Penicillin Binding Proteins 

(PBPs) are of special interest as these are target site for beta-lactam antibiotics. They also play an 

important role in cell wall formation. pbpA appear to be important for cell division and essential 

for growth [39]. pbpB also is critical for  bacterial growth and cell wall biosynthesis [40]. pbpC 

is a major protein of cell division complex. PBPs have already been utilized as model drug target 

system [41]. PBPs were found to be highly similar to the binding partners of many FDA-

approved and experimental drugs. Hence PBPs can be considered of high potential for 

experimental validation as vaccine candidates. 

UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) and UDP-N-

acetylenolpyruvoylglucosamine reductase (murB), both catalyze important reactions in the 

peptidoglycan precursor synthesis. murA catalyzes transfer of an enolpyruvate residue from 

phosphoenolpyruvate (PEP) to position 3 of UDP-N-acetylglucosamine followed by a MurB-

catalysed NADPH dependent reduction of the UDP-N-acetylglucosamine enolpyruvate to UDP-

N-acetylmuramic acid. Majority of antibiotics in clinical use today target later steps of 

peptidoglycan synthesis [42]. murB has previously been reviewed to be essential in Escherichia 

coli [43]. murA to murF genes are all essential and highly conserved among bacterial species 

thus holding a great promise as future therapeutic drug targets. Both frdC (Fumarate reductase 

cytochrome B subunit) and ccoP are important constituents of oxidative phosphorylation 

pathway for ATP formation, often called as molecular unit of energy transfer. While frdC 

couples the reduction of fumarate to succinate with the oxidation of quinol to quinine, ccoP 

(Cbb3-type cytochrome c oxidase subunit) is required for transfer of electrons from donor 

cytochrome c via its heme groups to CcoO subunit. secD (Protein translocase subunit SecD) a 

part of the Sec protein translocase complex, tatC (Sec-independent protein translocase protein 
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TatC) an important part of the twin-arginine translocation (Tat) system and Cj1094c (Putative 

preprotein translocase protein) transports large proteins across membranes. Twin-arginine 

translocation (TAT) pathway is important to bacterial growth and virulence [44,45]. secD and 

Cj1094c help in secretion across the inner membrane via preprotein translocase pathway. 

Transport proteins are associated with pathogenesis and virulence and have been identified as 

potential vaccine candidates in several previous studies as well [46,47]. Peptidoglycan is an 

important component of bacterial cell wall responsible for maintaining a definite cell shape and 

primarily conferring mechanical resistance to higher osmotic pressure [48]. Any interference 

with peptidoglycan biosynthesis will result in cell lysis. Peptidoglycan biosynthesis, the pathway 

with largest distribution of final identified drug targets can be exploited for therapeutic drug 

targets owing to its multiple target enzymes whose inhibition could lead to disruption of cell well 

and in turn attenuate bacterial cell growth.

 

 

 

 

 

 

 

Figure 6.3: Step-wise reduction in the total no of proteins in the subtractive analysis of C. jejuni 

proteome for drug target identification.

 

The computational subtractive genomics approach integrated with comparative pathway analysis 

resulted in a significant reduction in the number of protein targets (Figure 6.3) at each step. Thus 
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we were able to identify several essential proteins critical for bacterial growth and survival and 

with minimum toxicity to host, that can be targeted for effective drug design to combat 

Campylobacter infections. 

Conclusion 
We have performed subtractive genomics analyses of the C. jejuni pathogenic strain 

NCTC11168, and have identified several proteins in the genome that can prove to be potential 

targets for effective drug design. As many of the identified drug targets have already been 

reviewed to play critical role in the metabolic pathways that regulate bacterial growth and 

survival, a systematic approach to develop antibiotics against the identified targets would likely 

be very promising for the treatment of Campylobacter infections. The information about these 

targets can also lead to significant progress in testing the efficacy of already existing drugs which 

is as equally important as development of new drugs. It is believed that the drugs developed 

against these identified targets will be pathogen specific and with minimal toxic effects on host. 
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7.1 Introduction 

Salmonella enterica sv. typhimurium (S. typhimurium), gram negative, rod shaped bacteria are 

one of the most common and widely distributed bacterial causes of food-borne illness. 

Salmonella’s annual incidence rate is estimated to be tens of millions of human cases worldwide 

[1]. S. typhimurium is the classical broad-host-range serovar, since it exhibits promiscuous 

behavior in their ability to infect broadly diverse range of phylogenetically unrelated host species 

including humans, livestock, domestic fowl, rodents, and birds [2]. Salmonella infection is 

usually associated with self-limited gastroenteritis; however, it can manifest itself in highly 

invasive form which has surfaced as a major public health concern in sub-Saharan Africa [3,4]. 

S. typhimurium has exhibited a gradual increase in antibiotic resistance against conventional 

antibiotics such as ampicillin, chloramphenicol, and sulfamethoxazole-trimethoprim, 

fluoroquinolones and extended-spectrum cephalosporins; and emergence of multidrug resistant 

strains isolated from humans and animals worldwide [5-7]. Growing antibiotic resistance in 

nontyphoid Salmonella serotypes is a global concern owing to the broad-range host specificity of 

the pathogen [2] and its potential of conjugal transmission of antibiotic resistance to other 

pathogens [8]. Continuous surveillance of antimicrobial resistance and its impact on clinical 

medicine is imperative to S. typhimurium transmission monitoring. To keep pace with the 

continuously evolving bacteria, there is growing need to restock the antibiotic pipeline. With 

bioterrorism threats, growing number of drug resistant bacteria, and emergence of new infectious 

diseases it becomes imperative to develop new antibiotics particularly directed against multidrug 

resistant gram-negative bacteria in hospitals and community-acquired pathogens [9], otherwise 

there is a serious risk that a major proportion of infectious diseases will effectively be 

untreatable.  

Genome-scale metabolic network models seek to decipher the complex molecular mechanisms 

governing physiological and biochemical aspects of an organism.  These networks provide vital, 

cost effective framework for understanding and predicting the cellular behavior in physiological 

as well as pathophysiological state [10]. Genome scale reconstruction of metabolic networks 

allows developing system-oriented drug-design strategies by integrating biological and chemical 

information on genes, metabolites, biochemical reactions, drugs, diseases and drug targets [11]. 

Constraint-based methods can then be applied to such models to describe the pathogen metabolic 
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physiology quantitatively since microbial cells functioning is also limited due to governing 

constraints [12]. Genome-scale metabolic network modeling has been utilized for drug target 

identification in some pathogens [13-16]. 

In this work, we interrogate the metabolic network model of S. typhimurium to identify effective 

and novel drug targets by applying a system-level approach that efficiently utilizes the constraint 

based methods to metabolic network modeling. The drug targets were predicted employing the 

concept of metabolite essentiality i.e. the metabolite is critical to the bacterial growth (biomass 

production) and were further screened out applying additional filtration criteria. It is believed 

that this strategy can be effectively applied for drug targeting in other pathogens as well in a cost 

effective manner.  

7.2 Methods 

To predict potential drug candidates, we used a genome scale metabolic model of S. 

Typhimurium (iRR1083) [17]. Constraint based modeling of metabolic networks holds immense 

predictive powers for identification of critical genes, metabolites and reactions involved in 

metabolism. Constraint based modeling offers an added advantage which is the need to 

determine few parameters from experimental data as compared to other modeling approaches. 

We have used constraint based approach FBA (Flux Balance Analysis) and its extension MOMA 

(Minimization of Metabolic Adjustment) which determine flux distribution through the 

metabolic network by maximizing the objective function. 

FBA: FBA formulates a metabolic network as the system of stoichiometry balanced set of 

equations which describe changes in the concentration as the dot product of a matrix of the 

stoichiometric coefficients (the stoichiometric matrix S of size m*n with m metabolites and n 

reactions) and the vector v of the unknown fluxes. The right-hand side of the dot product is set to 

zero implying steady state.        

Since, in a metabolic network number of reactions far outcompetes the metabolites number 

(n > m), the system is under-determined (with n–m degrees of freedom), entailing the imposition 
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of additional constraints. Such under-determined systems are then solved using Linear 

Programming (LP).                                          

The expression to be maximized (f
T
v) is defined as objective function and the 

inequalities   define the minimal and the maximal rates of flux for every reaction. 

MOMA: MOMA accurately describes the transient growth rates immediate after gene knockouts 

while FBA specifically focus on final optimal metabolic steady state. MOMA utilizes Quadratic 

Programming (QP) to search for a point in the solution space of the mutant strain which is 

contiguous to the optimal point in the solution space of wild type strain. MOMA tries to 

minimize the sum of the squares difference between wild type and mutant flux distribution. 

MOMA tests the hypothesis of minimizing flux redistribution in the mutant strain and thus 

effectively capturing the mutant phenotype characteristics.   

7.2.1 Gene knockout analysis 

We carried out gene knockout studies by performing simulation of the mutant strains (model 

with gene deletions) for  all genes of S. typhimurium (iRR1083)  and analysis was carried out 

using OptFlux [18].  If the gene knockout reduces the objective function (biomass) by >90%, the 

corresponding gene is presumed to be indispensable. Gene deletion analysis could lend a hand to 

identify genes or metabolites which are indispensable for bacterial growth. An in silico knockout 

experiment by using MOMA approach was performed for each gene in the metabolic model. The 

results were compared against the predictions by FBA approach. Genes common to both 

predictions were considered as essential to the growth and maintenance of the bacterial 

metabolic system. 

7.2.2 Identification of essential non-homologous pathogen proteins 

Genes essential to bacterial growth which were obtained from in silico knockout studies were 

compared against experimentally identified essential genes of Salmonella spp. deposited in the 
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Database of Essential genes (DEG version 10.9) [19]. The genes were searched against DEG 

which hosts records of essential genomic elements critical for an organism’s survival by using an 

e-value of 10
-5 

and bit score 100. The background organism against which search was performed 

include Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhi Ty2, Salmonella 

enterica serovar Typhimurium SL1344, Salmonella enterica subsp. Enterica serovar 

Typhimurium str. 14028S, and Salmonella typhimurium LT2. The filtered gene list was further 

screened out on the basis of homology with the human proteome at an e-value cut off of 0.05. 

Genes which do not show any hits below e-value inclusion threshold were selected as therapeutic 

drug targets.   

7.2.3 Prioritization of drug targets 

The molecular and structural properties of proteins encoded by selected genes were calculated 

which aid in prioritization of those drug targets that will most likely lead to effective treatments. 

Subcellular localization of identified proteins was predicted using PSORTb [20] which uses a 

Bayesian network model to calculate associated probability value for five major localization sites 

viz. cytoplasmic, inner membrane, periplasmic, outer membrane and extracellular with p-value 

criteria 7.5. TMHMM server which is a Hidden Markov Model (HMM) based tool for prediction 

of alpha helices in membrane proteins was used for transmembrane predictions [21]. A search 

was performed to identify the proteins for which experimentally or computationally solved 

structures are available in PDB [22] or Modbase [23] or Protein Model Portal [24]. For 

uncharacterized proteins homology models were predicted through RaptorX server [25]; which is 

based on novel nonlinear context-specific alignment and probabilistic consistency algorithm to 

search for remote templates. A search of identified proteins in Uniprot was performed for 

retrieving information on their molecular weight.   

7.2.4 Druggability and assayability 

To evaluate the druggability potential of each identified therapeutic target, we subjected each 

protein to a BLASTP search against DrugBank with an e-value 0.0001. Druggability potential 

evaluates the ability of a particular biological target to bind with high affinity to known drugs; 

DrugBank is a unique comprehensive resource that integrates drug data with drug target 

information at sequence, structure and pathway level [26]. DrugBank version 4.2 currently has 
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information about 7737 drug entries including 1585 FDA-approved small molecule drugs, 158 

FDA-approved biotech (protein/peptide) drugs, 89 nutraceuticals and over 6000 experimental 

drugs; along with 4281 non-redundant protein sequences (drug target/enzyme/transporter/carrier) 

linked to these drugs. Assayability includes information on the availability of biochemical and/or 

cellular assays and reagents. Enzyme assayability is usually hindered by difficulties in producing 

soluble recombinant protein. 

7.2.5 Protein-Protein Interaction (PPI) network analysis 

The proteins finally picked as potential drug targets were studied for their PPIs to identify the 

pathways enriched in these proteins and their interaction in Salmonella proteome.  PPI networks 

are frequently employed in prioritization of drug targets.  We used STRING (Search Tool for the 

Retrieval of Interacting Genes/Proteins) database [27] for analyzing PPI networks of the selected 

set of drug targets. STRING is a comprehensive resource of 5 million proteins and >200 million 

PPIs from more than a thousand organisms encompassing experimental, predicted and 

transferred interactions along with accessory information such as protein domains and structures.  

These networks present a holistic view of the interacting proteins within the pathogen proteome. 

7.3 Results and discussion 

The 4,857-kb chromosome (Figure 7.1) and 94-kb virulence plasmid of Salmonella enterica 

serovar typhimurium LT2 strain first isolated in 1940s in Sweden were sequenced in 2001. The 

complete genome sequence of S. typhimurium LT2 genome codes for 4,489 coding sequences 

(CDS/ORFs) including 39 pseudogenes and has GC content of 53 percent [28]. S. typhimurium 

LT2 genome is mosaic composed mostly of collinear regions interspersed with loops or islands. 

These islands called as Salmonella Pathogenicity Islands (SPI’s) often code for pathogenicity 

traits [29,30]. The host generalist nature of S. typhimurium LT2 strain could be a consequence of 

fewer pseudogenes (39) as compared to its close relative S. typhi (204) [31] which is host 

specialist in that it is restricted to grow in humans only. Understanding pathogen metabolism has 

gained momentum to seek insights into host defense mechanisms and to better understand the 

pathogen intracellular lifestyle. The genome scale metabolic network model of S. typhimurium 

LT2 (iRR1083) containing 1,083 genes, 973 proteins and 744 metabolites which catalyze 1087 

reactions was used for identification of drug targets in Salmonella. 
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Figure 7.1: Circular genome of S. typhimurium LT2 

(i) ORFs plus strand: The outer most ring shows ORFs plus strand. (ii) The second ring indicates 

the ORFs negative strand. In two outermost rings green, yellow, purple, light blue, orange, red, 

and gray color represent cytoplasm, cytoplasmic membrane, outer membrane, extracellular 

region, cell wall, periplasmic region and unknown subcellular localization respectively (iii) The 

third red ring in orange represents GC percentage. Peaks represent an increase in GC percentage 

(iv) fourth ring in blue color shows GC skew values for the whole genome. (v) The innermost 

red colored ring shows AT skew values calculated for the whole genome. The figure is generated 

by Circular Visualization for microbial genomes (CiVi). 

 

Such metabolic models illustrates metabolism in a way which coincides with the known genetics 

and biochemistry of the organism. Furthermore these genome-scale metabolic network models 

can be computationally grilled by compiling them into mathematical models and then using a 

variety of constraint based modeling approaches to interpret metabolic networks.  

7.3.1 Gene knockout analysis 

Gene knockout studies have been a massive advancement in the biomedical and pharmaceutical 

sector. Gene knockout experiments help researchers to understand the role of a particular 

gene/reaction by searching a metabolic network for the genes that are critical to the production of 

biomass. Experimental validation of gene essentiality is expensive, and time-consuming [32] 

where in computational methods seemingly streamline the gap between rapidly mounting 

sequencing data and whole genome approaches to gene essentiality prediction [33-35].  
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Constraint-based modeling provides pragmatic solutions which are amenable to experimental 

testing by imposing certain constraints on biomass, growth etc. For identifying the genes which 

are indispensable to the bacterial growth, we used standard FBA and MOMA models 

implemented in OptFlux as outlined in the workflow chart in Figure 7.2. We identified 73 genes 

to be critical using gene knockout studies which are listed in Table 7.1. These genes rendered a 

reduction of greater than 90 percent in the total biomass yield during in silico knockout 

experiments using MOMA model and FBA model. In MOMA, mutant strain tries to minimize 

the adjustment of fluxes from wild type distribution, and thus the linear problem of FBA 

converts to an optimization problem with a quadratic objective function. The distribution pattern 

of these genes among various KEGG pathways is depicted in Figure 7.3. 

7.3.2 Identification of essential non-homologous pathogen proteins 

A BLASTP search of the proteins corresponding to these critical genes by homology search 

against human proteome rendered 65 genes as non-homologous to H. sapiens below e-value 

0.05. Identifying drug targets which are absent from host organism is an important factor to 

assessing drug safety, as it excludes the possibility of any potential undesired adverse-effects 

which can arise upon drug administration. Adverse drug reactions add significantly to morbidity 

with a huge burden on hospitals globally [36]. These proteins were further filtered by performing 

a BLASTP search against experimentally predicted essential genes of Salmonella enterica 

serovar Typhi, Salmonella enterica serovar Typhi Ty2, Salmonella enterica serovar Typhimurium 

SL1344, Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S, and Salmonella 

typhimurium LT2 in DEG. This search revealed that a total of 54 proteins were in alignment with 

experimentally verified essential genes from Salmonella spp.  

7.3.3 Prioritization of drug targets 

The essential gene set retrieved from this study was further prioritized through a multistep 

process which involved following criteria: a) molecular weight b) availability of experimental 

data on target crystal structure; c) subcellular localization; d) presence of transmembrane helices; 

e) druggability potential; and f) Assayability; to be reduced to a set of candidate drug targets. All 

the 54 proteins retrieved in previous step were having molecular weight <110 kDa which makes 

them amenable to isolation and experimental verification as small weight proteins are easier to 

purify [37]. 
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Figure 7.2: Schematic representation of the steps involved in target protein prioritization from 

genome scale metabolic network of S. typhimurium LT2.  

 

In a search for 3D structural data, it was observed that crystal structure information was available 

for yadF, ribH, fabD, aroD, rfbG, rfbD, ppnK, and ribB proteins. For 9 proteins i.e. mraY, fabI, 

ribA, pgsA, folB, rfaL, dfp, cdsA, and psd no structural data was found to be existing. Rest of the 

proteins had structures solved computationally through homology modeling with varying 

sequence identities from 11-99% with the template and which were deposited in Modbase 

database. Even after a decade of S. typhimurium LT2 genome being sequenced out, structural 

information is typically lacking for the proteins encoded by this strain, which points towards a 

gap in structural characterization of pathogen proteins. Availability of target structure is an 

important factor which contributes largely to the drug identification, optimization and validation, 

thereby reducing the cost of high throughput experimental assays radically [38]. Typically 

majority of the drug targets were predicted to be of cytoplasmic origin as per PSORTb 

calculations. Subcellular localization of the drug target can shed some light on the protein 

function [20].  With combined predictions of PSORTb and TMHHM server, 6 proteins viz. 

mraY, cdsA, pgsA, plsC, rfaL were predicted to be membrane localized with one or more helices 

traversing the membrane, opening up new avenues to explore these proteins as vaccine 

candidates. All these results are summarized in Table 7.2. 
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Figure 7.3: Distribution of the essential target proteins retrieved using FBA and MOMA 

approach in different pathways. 

 

A BLASTP search of all the selected proteins was performed against the druggable proteins 

deposited in the DrugBank database to evaluate the druggability potential of the selected 

proteins. Druggability evaluated the probability of unearthing small molecules which alters the 

function of the drug targets to which they bind in a way that benefits the patient therapeutically 

[39]. We identified 47 proteins with a significantly higher similarity to the binders of these drug 

targeted proteins. Out of these, 14 proteins had FDA-approved drugs or nutraceuticals in the 

market against them, while for the rest of the proteins the drug binders were in the experimental 

stage only. In Table 7.2, for each drug target we have listed the identified drug types. 

Druggability potential is an important concern in drug target identification considering the fact 

that only 10-14% of the human genome is speculated to be druggable [40]. Information on 

assayability of each protein was referenced from BRENDA database. Assayability concept 

revolves around the availability of information on the biochemical or cellular assays for drug 

binding, inhibition/activation, and function. Assayability information is critical to support the 

screening programs for establishing suitable lead compounds. We checked the distribution 

pattern of proteins with regard to their involvement in various pathways before and after 

performing similarity search against DrugBank. The number of proteins after druggability 

potential evaluation was reduced by ~23% and there was a steep decrease in the number of 

proteins at every step.  
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The numbers of proteins which are present at each stage are summarized in Figure 7.4.  The 

distribution pattern of various genes based on their involvement in pathways also shifted. After 

searching against DrugBank, the number of proteins in pathways such as Metabolism of 

cofactors and vitamins, Lipid metabolism, Carbohydrate metabolism, Biosynthesis of secondary 

metabolites, Glycan biosynthesis and metabolism reduced while for Biosynthesis of antibiotics, 

Carbon metabolism, Nucleotide metabolism, Amino acid metabolism, Metabolism of terpenoids 

and polyketides was more or less the same (Figure 7.5).  After applying all the filtration criteria, 

we selected proteins involved in L-rhamnose biosynthesis, peptidoglycan biosynthesis, fatty acid 

biosynthesis, folate biosynthesis as our serving set of top priority therapeutic drug candidates. 

PPIs are intrinsic to various aspects of virtually every biological process and PPI networks are 

important from perspectives of system level understanding of the cellular processes. Protein 

expression is a dynamic process which responds to a multitude of stimuli. Analyzing interacting 

partners of a protein can open up new avenues for cross-species predictions and also the network 

embodies information on the functional modularity and interconnectivity in the cell [27]. Our 

protein interaction analysis results showed that selected drug targets were involved in crucial 

cross talks between themselves and there were direct interactions between these proteins.  

 

Figure 7.4: Representation of 47 prioritized target proteins: The proteins characterized as i) 

proteins with a role in metabolic network ii) essential proteins using combined predictions of 
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FBA and MOMA approach iii) Non-homologous to humans iv) experimentally predicted as 

essential from prediction of DEG v) druggable, are shown using different colors in the Venn 

diagram. Proteins satisfying a particular parameter are shown in the corresponding category of 

the Venn diagram. Three proteins were prioritized as drug targets. The image has been generated 

using Jvenn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Distribution of essential non-homologous proteins of S. typhimurium LT2 in 

different pathways before and after drug bank search for druggability potential evaluation. 

 

The topological analysis of the network as shown in Figure 7.6, revealed that folC and floP 

enzymes were interacting with pabA, pabB, pabC, folA, and mur ligases which were mapped to 

pathways such as peptidoglycan biosynthesis, streptomycin synthesis, amino acid and nucleotide 

synthesis. Involvement in these pathways signifies their association with pathogenesis 

mechanism and bacterial survival. For the selected drug targets, their structures were predicted 

using RaptorX, where no information was available on crystal structure or homology modeled 
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structure. Structures of proteins pabA, glmM, glmU, mraY, rfbF, and rfbH predicted through 

homology modeling are shown in Figure 7.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Protein–protein interactions among the prioritized proteins. Proteins involved in 

peptidoglycan synthesis, folate synthesis show extensive linkages among them. Proteins involved 

in L-rhamnose synthesis are rich in interactions among themselves. 

 

Bacterial cell wall deserves special attention owing to its fundamentally different nature from 

eukaryotic counterpart and to presence of various virulence determinants encoded in bacterial 

membrane. Complex carbohydrate structures and lipids are essential components of bacterial cell 

wall [41]. L-rhamnose, a 6-deoxyhexose is one such building block of bacterial cell wall, absent 

from mammals. L-rhamnose is utilized by gram negative bacteria by incorporating it into O-

antigen of various serotypes [42]. The rfb gene cluster of S. typhimurium LT2 encoding rfbC 

(dTDP-4-dehydrorhamnose 3,5-epimerase), rfbD (dTDP-4-dehydrorhamnose reductase), rfbF 

(Glucose-1-phosphate cytidylyltransferase), rfbG (CDP-glucose 4,6-dehydratase), rfbH 

(Lipopolysaccharide biosynthesis protein RfbH) is essential for expression of O-antigen; which 
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is highly polymorphic and predominantly determines the pathogenesis in Salmonella spp. and E. 

coli [43]. rfbC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-

xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose and rfbD catalyzes the final step of 

L-rhamnose biosynthesis pathway by reducing dTDP-6-deoxy-L-lyxo-4-hexulose to dTDP-L-

rhamnose as shown in Figure 7.8 [44]. rfbD has been speculated to be an attractive drug target 

due to its probability to have specific drug pockets against rhamnose like compounds [42].  rfbF 

is involved in tyvelose biosynthesis by catalyzing the transfer of CMP moiety to glucose 1-

phosphate. rfbG and rfbH are both involved in the LPS O-antigen biosynthesis, which is a unique 

component of bacterial outer membrane, toxic to animals [45].  

 

Figure 7.7: 3D structures of the prioritized proteins a) pabA, b) glmM, c) glmU, d) mraY, e) 

rfbF, and f) rfbH for which no crystal structure information was available based on novel 

nonlinear context-specific alignment. 

 

Recently peptidoglycan biosynthesis pathway has been extensively subjected to drug targeting. 

As the enzymes involved in peptidoglycan biosynthesis are indispensable to bacterial survival 

and do not have any orthologs in humans [46], which has directed researchers to an intensified 

research for discovering new drug targets against bacterial pathogens. Peptidoglycan 

biosynthesis is a multistage process. Stage I occurring in cytoplasm involves the formation of 
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monomeric building block, N-acetylglucosamine-Nacetylmuramyl pentapeptide through action 

of ten cytoplasmic enzymes. glmM (Phosphoglucosamine mutase) and glmU (Bifunctional 

protein GlmU) are important stage I enzymes which synthesize UDP-N-acetylglucosamine 

(UNAG) [46]. UDP-N-acetylmuramic acid (UNAM) synthesis from UNAG involves murA 

(UDP-N-acetylglucosamine 1-carboxyvinyltransferase) and murB (UDP-N-

acetylenolpyruvoylglucosamine reductase) catalyze important reactions in the peptidoglycan 

precursor synthesis. murA transfers an enolpyruvyl group from phosphoenolpyruvate (PEP) to 

UNAG to form UDP-N-acetylglucosamine enolpyruvate (UNAGEP) followed by a murB-

catalyzed NADPH dependent reduction of UNAGEP to UNAM. murB has previously been 

reviewed to be essential in E. coli [47]. murC to murF genes located in a mra cluster assemble 

the peptide moiety of the monomeric unit of peptidoglycan, thus called as Mur ligases. murG and 

mraY are stage II enzymes which synthesize an intermediate monomer unit of the peptidoglycan 

polymer [48]. Majority of antibiotics in clinical use today target later steps of peptidoglycan 

synthesis [49]. All these enzymes are highly conserved sharing common structural motifs and 

indispensable to bacterial cell survival [50]. Thus they embrace great opportunities to be 

exploited as therapeutic drug targets.   

 

 

 

 

Figure 7.8: Final Step catalayzed by rfbD in dTDP-L-rhamnose biosynthesis pathway viz. 

reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to dTDP-L-rhamnose.
44

 

 

Folate is a critical precursor for the synthesis of a variety of cellular components such as purine, 

pyrimidine and amino acids by catalyzing one-carbon transfer reactions. Unlike higher 

eukaryotes, in bacteria folate must be synthesized de novo through folate biosynthesis pathway. 

folA (Dihydrofolate reductase), folC (Bifunctional protein FolC), folK (7, 8-dihydro-6-

hydroxymethylpterin-pyrophosphokinase, PPPK), folP (Dihydropteroate synthase), 
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pabA(Aminodeoxychorismate synthase component 2), pabB (Aminodeoxychorismate synthase 

component 1), and pabC (4-amino-4-deoxychorismate lyase) are important enzymes of folate 

biosynthesis pathway. folA is a critical node in folate synthesis as it links folate synthesis and 

utilization to tetrahydrofolate production (THF) as shown in Figure 7.9. folA effectiveness as an 

antimicrobial agent is widely acknowledged [51]. Pterin component upstream of folA in folate 

synthesis pathway is also synthesized de novo. Pterin synthesis is controlled by enzymes such as 

folC, folK, folP rendering them attractive drug targets as eukaryotes produce tetrahydrobiopterin 

through a different pathway and pterin has important functions in nerve signaling and 

maintenance of homeostasis of brain chemistry [52]. Folate biosynthesis pathway has significant 

untapped potential to be exploited as drug targets as the mutations in the enzymes involved in 

this pathway are reported to produce non-viable phenotypes [53,54] and moreover this pathway 

is absent in higher eukaryotes as they salvage membrane associated folate proteins [55].  

 

 

 

 

 

Figure 7.9: A critical node in folate synthesis, Dihydrofolate reductase, links folate synthesis to 

tetrahydrofolate production (THF) utilization by reducing dihydrofolate to tetrahydrofolate. 

 

Although fatty acid synthesis pathways are virtually similar between mammals and bacteria, but 

different profile and arrangements of active sites in these enzymes makes it profoundly trailed 

pathway for drug targets [56]. fabI (Enoyl-[acyl-carrier-protein] reductase [NADH] FabI), one of 

the most intensively explored target is no longer considered as viable due to resistance to fabI-

specific drugs in organism carrying fabI gene and failure to achieve broad spectrum antibacterial 

activity [57]. fabA(3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase) and fabZ (3-

hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ) are essential for unsaturated fatty acid 

synthesis, but fabZ is considered as the most attractive drug target as it is uniformly expressed in 
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bacterial system while fabA distribution is  limited [56]. Riboflavin is a central player in cell 

physiology as it serves as precursor to many redox reactions as a component of flavin adenine 

dinucleotide (FAD) and Flavin mononucleotide (FMN). ribD (Riboflavin biosynthesis protein 

RibD), ribH (6,7-dimethyl-8-ribityllumazine synthase), ribE (Riboflavin synthase, alpha chain) 

were predicted to be good drug targets supplemented with the fact that riboflavin is synthesized 

de novo in bacteria, a pathway absent from mammals [58].The ubiquitous enzyme ppa (Inorganic 

pyrophosphatase) catalyzing inorganic pyrophosphate (PPi) hydrolysis to ortho-phosphate (Pi), is 

essential for bacterial survival [59] and has important role in energy and lipid metabolism [60] 

making it an attractive drug target. 

Thus, summing up we can conclude that the approach that we have utilized is statistically robust 

as many of the identified candidate drug targets have already been exploited as drug targets and 

many of them have already existing antibiotics targeted towards them; which is apparent from a 

search performed against Drug bank database. We have identified a variety of other metabolites 

which have not yet been targeted. Majority of the metabolites identified as potential drug targets 

are involved in cell wall synthesis. 

Conclusion 

Genome-scale metabolic networks can provide valuable insights into the complex molecular 

mechanisms governing cellular aspects of pathogen metabolism in pathophysiological state. To 

resolve gaps in our understanding of pathogen metabolism and host-pathogen relationship, single 

target-centric approaches have extended themselves into system-level studies. In this study, 

constraint-based analysis methods have been applied to large scale metabolic network 

reconstruction model of S. typhimurium to identify candidate drug targets. Identifying drug 

targets tailored according to a particular pathogen’s need will result in narrow-spectrum 

antibiotics against these drug targets which will ultimately enable to surmount the menace of 

multi-drug resistance. We believe, this general therapeutic approach offers a way to identify 

unique metabolites with a potential to be explored as drug target rapidly and this systems-level 

approach can be applied to other microbes as well to combat the global threat of multi-drug 

resistant bacteria. 
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Conclusion 

Diarrheal diseases, a highly common infection, remain a leading cause of childhood mortality 

and morbidity worldwide. Diarrheal diseases are a serious impediment to cognitive development, 

childhood growth and survival, predominantly in the developing countries. Continuous 

replenishment of lost electrolytes is a critical treatment for diarrheal management which is 

accomplished by intake of commercially prepared Oral Rehydration Solution (ORS) in 

conjunction with Zinc supplementation. Most cases of diarrhea are self-limiting, occasionally 

requiring antibiotic treatment in case of TD, persistent and invasive diarrhea and C. difficile 

infection. The Global Burden of Disease (GBD) study, 2013 estimated that diarrheal mortality 

rate was significantly reduced by almost 31.1% from 1.8 million in 2000 to 1.3 million in 2013, 

however the proportional mortality rate still is soaring with an estimated 1.7 billion diarrheal 

incidences annually. A wide variety of etiological agents are implicated to be associated with 

diarrheal diseases including viruses, bacteria, protozoa, and helminthes. Due to increasing 

antibiotic resistance among diarrheal pathogens, limited surveillance of emerging antibiotic 

resistant pathogens, irrational use of antibiotics and lack of efforts devoted to drug development, 

tackling the problem of the global mass killer diarrhea seems a goal which cannot be achieved in 

the near future.  

We have used diarrheal diseases as our case study and built a systematic computational pipeline 

to study mechanisms of antibiotic resistance and propose effective solutions to address the 

knowledge gaps in containment of antibiotic resistance. In the first part of thesis, we have 

designed a database, DBDiaSNP which is a comprehensive repository of mutations and 

resistance genes among various diarrheal pathogens and hosts to advance breakthroughs that will 

find applications from development of sequence based diagnostic tools to drug discovery. It 

contains information about 946 mutations and 326 resistance genes compiled from published 

literature. DBDiaSNP is the first antibiotic resistance database dedicated to the diarrheal 

pathogens covering mutations and resistance genes that have clinical relevance from a broad 

range of pathogens and hosts. For future translational research involving integrative biology and 

global health, the database offers veritable potentials, particularly for developing countries and 

worldwide monitoring and personalized effective treatment of pathogens associated with 
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diarrhea. The database is accessible on the public domain at 

http://www.juit.ac.in/attachments/dbdiasnp/.  

In the second part, the mutations deposited in DBDiaSNP database were mapped to structural 

level using molecular modeling and molecular dynamics simulations to gain atomistic details 

into the mechanism of antibiotic resistance. Several mutations in the quinolone resistance 

determining region (QRDR) of the gene gyrA, an attractive drug target for quinolones, are 

associated with increased quinolone resistance in vivo. Fully atomistic explicit-water solvated 

molecular dynamics simulations of wild-type and mutant forms of gyrA in ETEC and C. jejuni, 

complexed with ciprofloxacin reveal that significant conformational changes are not observed 

upon introducing mutations which is reflected by stable RMSD over the course of simulation 

across all mutant and wild type structures; nonetheless these mutations drastically alter gyrA 

residue interaction network and the overall pattern of global dominant motions in major 

distinctive domains of N-terminal regions of gyrA. 

In the last part of the thesis, we have explored the innovative approaches based on systems 

biology and exploited the power of integrated omics approaches to predict potential vaccine 

candidates and drug targets against ETEC, Campylobacter spp. and Salmonella spp. Integrated 

comparative genomics and immunoinformatics approach for proteome scale identification of 

peptide vaccine candidates were utilized. To predict potential vaccine candidates, the proteins 

shared between pathogenic strains but lacking in commensal strain were subjected to 

immunoinformatics analysis based on physicochemical and immunogenic properties like 

population coverage in diarrhea endemic regions; presentation by major MHC-I supertypes and 

efficient binding in MHC groove. In Salmonella, we performed flux balance analysis and 

minimization of metabolic adjustment studies of genome scale reconstruction model of the 

pathogen to identify large number of metabolites with a potential to be utilized as therapeutic 

drug targets. Metabolites involved in L-rhamnose biosynthesis, peptidoglycan biosynthesis, fatty 

acid biosynthesis, and folate biosynthesis pathways were prioritized as candidate drug targets. In 

Campylobacter, comparative metabolic pathway analysis approach integrated with subtractive 

genomics was utilized to facilitate rapid identification of drug targets. Majority of the predicted 

drug targets had indispensable role in cell wall synthesis and energy metabolism. Such 

computational approaches can yield insights into novel protective antigens which could better 
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guide the fate of future medicine ultimately making the vaccine and drug development a more 

robust and competent task.   

Future Perspectives 

With a significant reduction in the sequencing cost, the availability of data on mutation 

frequency through sequencing projects is expected in near future. Due to accessibility to 

mutation frequency data, it would be feasible to develop SNPs based diagnostic methods which 

would identify mutations associated with a particular disease more rapidly and with high 

accuracy; and to comprehend the consequences of regional differences in drug resistance. 

Mapping of mutations at the structural level reveal the molecular mechanisms underlying 

mutations associated antibiotic resistance and consequently can be further exploited to aid in 

design of more potent antibacterial agents with high ligand efficacy for treating drug resistant 

bacterial infections. Virtual screening of inhibitors against the predicted drug targets proteins 

may lead to discovery of novel therapeutic compounds which will be pathogen specific and have 

minimal toxic effect on the host. Predicted epitopes open up new avenues for experimental 

validation using model organisms which will eventually accelerate the development of 

successful vaccines to control diarrheal disease burden which has plagued human lives for years. 

These computational approaches can be further extended to understanding host-pathogen 

interactions which would further ease the treatment of infectious diseases by shedding light on 

the complex interplay between host and pathogen. 

We conclude by stating that the omics approaches described in this thesis hopefully lend to a 

host of new drug targets and vaccine candidates against diarrheal pathogens. The database 

DBDiaSNP will prove to be useful to researchers and clinicians working in the diarrheal 

diseases. Indeed, the progress in understanding antibiotic resistance from computational 

perspective is quite electrifying; and there will be many more breakthroughs in the future. 
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Figure 1: A snippet of sequence alignment for ETEC gyrA and template structure of gyrA from 

E. coli showing 91.2% identity. 

 

 

 

 

 

 

 

 

 

 

Figure 2: A snippet of the secondary structure elements assignment in the corresponding 

sequence of the modeled protein structure of ETEC gyrA. 



                                                                                                                  Annexure 

 

KUSUM-Ph.D Thesis, Jaypee University of Information Technology, JUN 2017 170 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Ramachandran plot of the E. coli gyrA based ETEC gyrA model generated with 

PROCHECK. 

 

 

 

 

 

 

 

Figure 4: Sequence alignment for C. jejuni gyrA and template structure of gyrA from E. coli. 
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Figure 5: A snapshot of the secondary structure assignment in the corresponding sequence of the 

modeled protein structure of C. jejuni gyrA. 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Ramachandran plot of the modeled structure of gyrA from C. jejuni generated using 

PROCHECK. 
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