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ABSTRACT 

 

Cloud computing offers an on-demand computing model which has transformed the working 

environment of IT companies and thus, the trend of cloud computing has increased with the 

passage of time. Out of many different services of the cloud environment, IaaS (Infrastructure as 

a service) is one of the leading services which has given the birth to pay per use model and on the 

basis of this model, cloud service providers offer these services to the users. To satisfy the 

requirements of cloud users, it requires a large number of physical devices and, it requires a 

massive amount of electricity to power and cools down the several electronic components present 

inside these devices. It has been observed that the electricity consumption of data centers is 1.1% 

to 1.5% of the total electricity consumed all around the world and it is rising by 12% every year. 

This high consumption of electricity results in the emissions of high carbon dioxide and therefore, 

it is very necessary to reduce the consumption of energy for the betterment of environmental 

sustainability. Energy consumption of data center can be reduced by using minimum number of 

resources and improvement of their utilization. Moreover, the consumption of energy can be 

minimized by deactivating and reactivating the physical hosts present inside data center. 

This thesis presents a new model, algorithms and heuristics for all different steps of dynamic 

virtual machine consolidation in Infrastructure as a service architecture that meets the 

requirements of SLA agreement and deals with energy-performance trade-off. The process of 

virtual machine (VM) consolidation has been selected for the improvement of energy 

consumption along with the use of live migration of virtual machines to minimize the number of 

active physical hosts. Thus, for the process of energy efficient VM consolidation, we have 

proposed a median based threshold approach (MEDTH) for the selection of underutilized and 

overutilized host present inside the data center. This proposed approach has been validated and 

showed better SLA performance than other policies by consuming less energy. Since the 

objective of energy consumption has not been achieved in this step, therefore, in the second step 

we proposed an Analytic Hierarchy Process for the selection of VMs for migration. It is a multi-

criterion decision making approach for the selection. This algorithm selects the VMs on the basis 

of their memory occupancy, CPU utilization and migration time to achieve the objective of 
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energy minimization. Results obtained from the evaluation of proposed algorithm showed better 

energy savings in comparison to conventional techniques. 

We have formulated the problem of dynamic VM consolidation as a bin packing problem for the 

placement of selected VMs over most appropriate host i.e. the problem of VM Placement. For 

which we have proposed three different heuristics based on best-fit algorithms and they 

considered the present and historical behavior of the cloud resources. As, the main objective of 

this thesis is to minimize the energy consumed by data center but simultaneously, the excessive 

VM consolidation and migration may degrade the performance of data center. Therefore, our 

solution considers the overall performance of the system instead of only energy consumption to 

maintain a level of trust between cloud service providers and users. Furthermore, we have also 

solved the problem of VM placement using nature inspired Genetic Algorithm (GA) and analyzed 

that how the use of GA brings the better results for VM placement than classical bin packing 

algorithms. The only disadvantage of these genetic algorithms is that they have more execution 

time for solving the problems because of their large search space. For the further improvements 

of energy savings by using the idea of genetic algorithms we have again framed the problem of 

VM placement as optimization of multi objectives using Non-Dominated Sorting Genetic 

Algorithm (NSGA) where, our overall objective is to minimize the energy and SLA performance 

along with the migration count for the improvement of data center’s performance. Finally, to 

solve the problem of VM placement we have designed a BPGA (Back Propagation-Genetic 

Algorithm) model which made use of both NSGA and back propagation neural network (BPNN). 

This BPGA model has been validated and it shows better results for energy consumption as well 

as other performance parameters of data centers. The proposed algorithms, heuristics and models 

for dynamic VM consolidation has been evaluated using an open source software framework 

called CloudSim using PlanetLab dataset for different workload conditions. Our solutions are 

robust, flexible and generic. Moreover, the experimental result shows that the overall VM 

consolidation process using the proposed BPGA VM Placement provides 19.8%, 9.7% and 4.5% 

of energy savings in comparison to GA, ACO and NSGA VM placement techniques. 
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CHAPTER 1 

INTRODUCTION 

Cloud computing is an on-demand model for the provisioning of resources that are provided by 

service providers on the basis of pay per usage [1]. Cloud computing has become very important 

in both academic, IT sector as well as in our day today lives due to its numerous characteristics 

like no upfront cost, on demand service, reliability, elasticity, and ease of access. various service 

providers such as Microsoft, Amazon, Google, IBM and many others provide various services for 

hardware, applications, platforms, and software and they are referred as Infrastructure as a service 

(IAAS), Platform as a service (PAAS), Software as a service (SAAS). The cloud service users 

can use these services from any location irrespective to any geographical, device, time restriction. 

Thus, this model cab be viewed as a “cloud” from where everyone can use its services or 

applications depending upon their requirements. 

The different definition of cloud computing has been given by different associations. The 

National Institute of Standards and Technology (NIST) [2] defines the term cloud computing as: 

“a pay per use model for enabling available, on-demand network access to a shared pool of 

computing resources such as servers, applications, storage, networks” that can be rapidly 

provisioned. 

University of California Berkeley [3] defined the cloud computing as: “(a) it is the illusion 

of infinite computing resources; (b) it has the ability to pay for what we have used (on demand); 

(c) the exclusion of an up-front promises by cloud users. The increasing trend of cloud computing 

has led to the deployment of a large number or data centers around the world [4] and thus, it is 

capable of supporting various computing services such as storage, servers, networks and 

applications for both e-sciences, e-business and much more over the network. This new paradigm 

of cloud computing is a big pool of easily accessible and readily usable virtualized resources such 

as platform, hardware and services (Example: CPU, memory, Java, .Net, email etc.).  Data 

centers are the fundamental component of this new paradigm. These data centers are the 

collection of several electronic devices such as: servers, racks and therefore, they data centers are 
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big source of energy consumption. Data centers are one of the world's main consumer of power 

and energy [5]. It has been analyzed that the cost of energy consumption will be increased by 

50% after few years where as in last ten years the power consumption of servers has also 

increased by a factor of 10 [6], [7]. The energy consumption of these data centers is not only 

because of several computing devices [8], but also because of inefficient usage of cloud 

resources. Thus, there should be some green cloud computing solutions for better environment 

condition and to make data centers more efficient. Instead of maintaining the hardware 

efficiencies, the energy consumption can be lessened down by efficient utilization of resources. 

Two most important techniques that are used for the improvement of resource utilization 

and to solve the problem of resource over provisioning are: 1) virtualization and 2) VM-  

consolidation. Virtualization is a technique that splits the single PM into several VMs due to 

which multiple physical resources can be used as logical or virtual resources [9]. Rest of the 

significance of virtualization are: improvement in resource utilization, server management and 

minimization of the cost of data center’s infrastructure. Energy and powers of servers are wasted 

when they are not utilized and thus, the consumption of idle power becomes the reason for 

inefficiency of data centers. Consolidation of VMs and servers is a beneficial method for the 

improvement of power as well as energy consumption of data center. VMs are consolidated over 

PMs in order to avoid the usage of extra PMs. Moreover, for the reduction of active physical 

machines, the idle nodes should be turn off or kept in to low power or hibernate state or [10]. This 

method helps to decrease the idle power consumption. VM or server consolidation involves a key 

enabler technology known as VM Migration [11] because of which VMs are migrated from one 

to another PM. This technology also helps to improve the performance of systems by maintaining 

or balancing the load of the system by performing the migrations of VMs from overloaded or 

under loaded to other servers. VM Migration can be performed as: if a host H1 is under loaded 

i.e. it’s host usage is low, then all the VMs from this host will be migrated to another host 

machine to avoid the unnecessary usage of H1, similarly if a host H1 is overloaded i.e. it’s host 

usage is high, then some of VMs can be migrated to another host to reduce the load of H1. Figure 

1 shows the schematic diagram of VM consolidation using virtualization. Where, we have taken 8 

physical machines whose CPU utilization varies from 15% to 50% and thus after VM 
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consolidation 3 physical machines are used and rest of others are in hibernate mode to minimize 

the energy consumption. 

 Moreover, this commercial success of cloud computing technology provides better QoS- 

Quality of Services that are documented in the Service level agreement (SLA) between cloud 

service providers and users [12]. Virtualization is the one of the best topic in cloud computing, 

which provides better QoS and deals with auto scaling, server/VM consolidation, energy 

conservation, load balancing and much more [13] - [16] because of its ability to run many OS- 

Operating Systems on single physical machine simultaneously by sharing the hardware resources. 

 

 

 

Figure 1.1: Schematic view of VM consolidation 

 The improper allocation of VMs on unsuitable host affects the interference of the different 

applications on same physical machines and this leads to the performance degradation with 

decreased level of Quality of services (QoS) for the applications. Therefore, certain issues should 
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be resolved during VM consolidation process which can improve energy consumption, resource 

utilization and performance of data center. As, the excess of VM consolidation leads to the 

performance degradation; thus, it is the responsibility of a cloud provider to deal with tradeoff 

values of energy and performance. Energy consumption can be lessened down while meeting the 

SLA such that the QoS- quality of services should be maintained for the reliability of cloud 

environment. For the optimal VM consolidation, there is a need for data center framework which 

would be energy and SLA efficient. Figure 2 shows the framework of data center that we have 

used in our work. 

 

Figure 1.2: Data center Framework 

This framework has two main components: a) SLA manager, b) VM analysis. The requested 

resources are determined by VM analyzer depending upon the number of requests made by cloud 

users which are calculated by front end servers and then VM analyzer send these requested 

resources for VM Placement and then it will check the current status of available resources on 

servers and allocate the VMs on physical hosts. It tries to allocate the VMs such that minimum 

number of servers are used to fulfil the resources that are requested by VMs. SLA manager 

checks the current status of SLA for each placement inside the data center. It will report back to 

VM placement analyzer if SLA violations increase after the placement so that appropriate 
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placement of VMs on the host should be there which can provide trade-offs values for SLA 

violation and energy consumption. Thus, in this way, the objective of energy and performance 

efficient trade-offs can be fulfilled to provide better QoS.  Solving the problem of VM 

consolidation in a cloud environment by dealing with energy performance trade-offs is a very 

challenging issue. This thesis presents the novel and complete solution for VM consolidation in 

IaaS (Infrastructure as a Service) cloud environment while dealing with QoS. 

1.1 RESEARCH PROBLEM AND OBJECTIVES 

This thesis deals with the research issues that occur during dynamic VM consolidation in IaaS 

cloud environment.  Even if the problem of VM consolidation has been solved by many 

researchers, but still there is a lack of optimal algorithms to ensure energy efficient VM 

consolidation. The various problems are investigated to solve the problem of VM consolidation is 

as follow: 

 

Figure 1.3: VM consolidation method. Utilization of host 3 is low and all the VMs of host 3 are 

migrated to host 4, and host 3 is switched to sleep mode. 

When to migrate VMs?  

The process of VM consolidation starts in two conditions: (a) hotspot, (b) excess spare condition. 

Hotspot means over utilized hosts from which VMs need to be migrated to some another host in 
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order to minimize the performance degradation caused by overutilization of host, and second is to 

migrate the VMs from underutilized servers in order to reduce the energy consumption and 

improvement of resource utilization. Moreover, it is difficult to decide when to start the process 

of migration in both the cases to meet the QoS constraints. 

Which VMs should migrate? 

To select any one of the virtual machine or the complete set of VMs from the server is very 

important and difficult step in the process of VM consolidation. These selected VMs need to be 

allocated to some other hosts. Therefore, a beneficial decision must be made to provide suitable 

system configuration. 

Where to migrate the selected VMs?  

Another aspect that affects the quality of consolidation is VM placement, i.e. the placement of 

selected or new VMs to the new hosts or the most appropriate host. VM placement also affects 

the QoS while minimizing the energy consumption. Therefore, it is essential to find the most 

optimal VM placement method.  

 The process of VM consolidation is the combination of dynamic switching off/on the 

power states of host machines and it is necessary to determine which machine should be activated 

or deactivated to improve the resource utilization or to minimize the energy consumption. Thus, 

the first objective to provide the better and optimal solutions for above-mentioned problems and 

to explore the area of energy efficient cloud environment to understand the existing approaches 

and techniques. Second, is to develop energy efficient dynamic VM consolidation method. The 

third objective is to propose an algorithm for VM selection as well as VM placement during 

dynamic consolidation having workload independent conditions. Finally, the main aim of this 

thesis is the minimization of energy consumption and the cost of the data center while satisfying 

the parameters of QoS.  

1.2 CONTRIBUTIONS 

On the basis of the research problem and previously defined objectives, the contributions of this 

thesis are: 
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Literature Survey  

Here, we have provided the most recent and efficient work related to the VM consolidation that is 

helpful for energy efficient computing or data centers. 

Novel approaches for VM migration and selection 

 

• We have solved the above mentioned three problems of VM consolidation step by step. 

First, we solved the problem of identifying the hotspot and excess spare condition by 

using the dynamic MEDTH algorithm, which is median based threshold algorithm for 

finding the host machine to start the migration. 

• Second, we have formulated the problem of VM selection using multi-criteria decision-

making algorithm i.e. AHP (Analytic Hierarchy Approach). It selects the VMs or set of 

VMs by taking the advantage of different alternatives using different criteria.  

• Evaluation and performance analysis of proposed algorithms. 

Heuristic Approach for VM Placement 

 

• We have formulated the VM Placement problem as bin packing model. 

• We have proposed three heuristics for the performance efficient VM Placement named as 

ARBFH (Available Resource Best Fit Heuristic) which is based on a best fit algorithm. 

• Evaluation and comparison of proposed heuristics and other heuristic solution in terms of 

ESV i.e. Energy consumption, SLA violation and number of migrations. 

Meta Heuristics Approach for VM Placement 

 

• We have implemented the method of evolutionary algorithms for solving the problem of 

VM Placement and provide the mapping of VMs over host machine using GA (Genetic 

Algorithms). 

• Next, we have formulated the problem of VM placement as multi-objective optimization 

and thus, we solved this multi-objective problem using another improved version of GA 

i.e. NSGA (Non-dominated Sorting Genetic Algorithm) which provides the pare to or 

optimal set of solutions. 
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• We have proposed a new BPGA model (Back Propagation neural network along with 

Genetic Algorithm) for energy efficient VM Placement. This model works according to 

both NSGA and BPNN i.e. Back Propagation Neural Network training algorithm.  

Software implementation of VM consolidation 

 

• Implementation of several algorithms proposed in every step of VM consolidation is 

conducted using an open source cloud computing platform i.e. CloudSim. 

• This implementation uses the real-world workload traces collected from Planet Lab 

dataset [17]. Thus, the results obtained from simulations show that proposed algorithms 

for the dynamic VM consolidation provide a tradeoff values for energy and SLAV and 

minimizes the energy consumption of data center. 

1.3 THESIS ORGANIZATION 

This thesis is arranged into seven different chapters. Chapter 2 provides the existing literature of 

VM consolidation and energy efficient data centers. Also, we discussed about challenges, related 

issues and problems. This chapter is derived from [18] 

• Oshin Sharma, Hemraj Saini, “State of Art for Energy Efficient Resource Allocation for 

Green Cloud Data centers”, in International Journal of Control Theory and Application. 

Vol.9, No.11, pp. 5271-5280, 2016. 

Chapter 3 presents the proposed algorithms for dynamic VM consolidation along with their 

competitive analysis. Here, we discuss the solution for the first and second step of VM 

consolidation by considering the level of SLA Violation and performance degradation as its two 

main objectives. This chapter is derived from [19], [20] 

• Oshin Sharma, Hemraj Saini, “VM Consolidation for Cloud Data Centers using Median 

Based Threshold Approach”, in the proceedings of 12th International Multi-Conference on 

Information Processing (IMCIP-2016). Vol. 89, pp.27-33. 

• Oshin Sharma, Hemraj Saini, “Energy Efficient Virtual Machine Consolidation for Cloud 

Data Centers Using Analytic Hierarchy Process”, In International Journal of Advanced 

Intelligence and Paradigms. (In Press). 

Chapter 4 proposes novel heuristics based upon the bin packing algorithms for VM Placement. 

Here we have defined three different heuristics using current and previous used resources of data 



9 
 

centers. Simulations have been conducted to show their performance and their ability to reduce 

the energy consumption of data center. This chapter is derived from [21]. 

• Oshin Sharma, Hemraj Saini, “SLA and Performance Efficient Heuristics for Virtual 

Machine Placement inside Cloud Data Centers”, In International Journal of Grid and 

High-Performance Computing. Vol. 9, No.3, 2017. 

Chapter 5 compares the traditional bin packing algorithm with evolutionary approach for VM 

placement and discusses their performance evaluation. Also, this chapter presents a decision-

making system and a novel VM placement algorithm using meta-heuristics approaches. 

Experiments are conducted to show the efficiency of our solution. This chapter is derived from 

[22], [23]. 

• Oshin Sharma, Hemraj Saini, “Performance Evaluation of VM Placement Using Classical 

Bin Packing and Genetic Algorithm for Cloud Environment”, in International Journal of 

Business Data and Communication Network. Vol. 13, No.1, pp.45-57, 2016. 

• Oshin Sharma, Hemraj Saini, “Energy & SLA Efficient Virtual machine placement in 

Cloud Environment using NSGA (Non-dominated Sorting Genetic Algorithm)”, in 

International Journal of Information Security and Privacy. 2017 (in review) 

Chapter 6 proposes a new model for the VM Placement using nature inspire algorithm i.e. GA 

along with help of well-known training algorithm i.e. BPNN (Back Propagation Neural 

Network). Simulations are conducted to show that how this model minimizes the energy 

consumption as well as the cost of the data center. This chapter also describes the architecture and 

implementation of CloudSim, an open framework for the cloud environment. This chapter is 

derived from [24]. 

• Oshin Sharma, Hemraj Saini, “BPGA: A Novel Approach for Energy Efficient Virtual 

Machine Placement in Cloud Data Centers”, In Journal of Computing. (in review) 

Chapter 7 draws the conclusion and summarizes the major discussions, findings, challenges and 

future research directions. 
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CHAPTER 2 

A TAXONOMY ON VM CONSOLIDATION FOR ENERGY EFFICIENT 

CLOUD COMPUTING 

 

This chapter provides the recent literature on energy efficient cloud computing and dynamic VM 

consolidation. Also, this chapter discusses the future research challenges for VM consolidation. 

2.1 INTRODUCTION 

The trend of IT companies has been transformed from traditional to new on demand service as 

well as provisioning of the resources from resource pool due to one of the popular technology 

known as cloud computing. An organization can either build their private cloud for the 

management of resources or they can outsource the resources from some public cloud in order to 

avoid the high investment for the infrastructure of private cloud. 

 The increasing trend of cloud computing leads to the establishment of datacenters all 

around the world which consists of thousands of computing devices such as servers, racks, 

switches and much more. As these devices consume vast amount of electricity and results in the 

carbon dioxide (CO2) emission to the environment. Thus, datacenters became the big source of 

carbon dioxide emission. For the environment sustainability, it is necessary to find some 

solutions to minimize the consumption of power inside data center. This can be performed by 

minimizing the wastage of electricity and by improving the infrastructure of the data center. The 

management of resources inside data centers such as their allocation and utilization is also 

responsible for data center’s inefficiency. Therefore, recent advancement in the resource 

management results significant improvement in the efficiency of data centers. 

 For the improvement of energy inefficient data centers, it is very essential to understand 

how the power is distributed among the various components present inside data center. According 

to the report of EPA on data center’s energy [25], the power consumption of a server is 40% of 

the data center’s power and 80% of the total IT load. Similarly, the survey from open compute 

project [26] reported that 91% of energy consumption with in data center is only due to its 

computing resources. Thus, the source of high emission of CO2 is also due to inefficient usage of 



11 
 

computing resources. Data provided in [27] shows that most of the times, server’s works for more 

than 15-50% of their overall capacity which results over provisioning of the resources and leads 

to the higher Total Cost of Acquisition (TCA) [28]. According to National Resource Defense 

Council’s report [29], [30], mostly the data centers are unused and the underutilization of servers 

is also inefficient for energy aware data centers. Solution of this problem is the consolidation of 

servers, by which fewer number of hosts will run the same application with lesser power 

consumption and it will further reduce the overall energy. Along with this, during the low server 

utilization, idle servers consume 70% of the power. Therefore, these idle servers should be turn 

off to reduce the energy consumption. Another important reason for energy wastage inside the 

data center is the lack of standard metrics. So, there should be some energy efficient metrics for 

servers so that servers can be arranged according to their energy efficiency. Figure 2 shows the 

main cause of energy wastage inside the data center. 

 

 

Figure 2.1: Major Cause of Energy Wastage inside Data Center 

The concept of energy efficient cloud computing deals with the energy and power 

consumption at the hardware level, software level, operating system level and data center level. 

This chapter deals with the concept of energy efficient data center. This chapter provides the 



12 
 

current research on VM consolidation for energy efficient cloud computing and discuss some 

research challenges within the research area. 

2.2 ENERGY EFFICIENT CLOUD COMPUTING 

As we discussed earlier, the minimization of energy and power consumption is the first objective 

for energy efficient cloud environment. The origin for the concept of energy efficient computing 

or we can say green computing is a program launched by U.S. Environmental Protection Agency 

[31] i.e. energy star. It was the volunteer program to identify the energy efficient products to 

minimize CO2 emission. Monitors and computers were the first products they labeled.  Later on, 

TCO certification program was developed by the employees of Swedish Confederation which 

includes the environmental requirements of the IT equipment’s such as keyboards, computers, 

monitors, peripheral devices and mobile phones. Now a day, there are many industries that have 

their standard methods to minimize the carbon dioxide emission and consumption of energy with 

in data centers such as VMware, Intel, Microsoft, IBM, Dell, HP and many more. 

2.2.1 Power and Energy Modeling in Cloud Environment 

Before dealing with the measurement of power and energy consumption, it is very helpful to 

understand the relationship between them and their units of measurement. Power is the rate of the 

system while performing its work whereas, energy s the total amount of work done over a period 

of time. The measurement unit of power is watt (W) and for energy, it is Watt-hour (Wh). Power 

and energy are defined in equations, 2.1, 2.2. Where P is the power, W is the work done during 

the period of time T and E is the energy consumed. 

 

    𝑃 =
𝑊

𝑇
          2.1 

                                    𝐸 = 𝑃𝑇                                                                                               2.2  

  

As, the energy and power consumption both are directly related to each other, but still the 

minimization of power does not always minimize the energy consumption. 
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2.2.1.1 Techniques for the measurement of Power consumption 

From the data of Intel Labs [32], the main part of power consumption inside servers are CPU and 

after that memory. The best way to find the accurate energy consumption of servers is by directly 

measuring it. It can be possible only by installing extra hardware in the hosts or an intelligent 

monitoring system inside the data center. GOC (Green Open Cloud) [33] is the best example of 

energy monitoring system which has sensors to compute the electricity consumed by cloud 

resources. It provides the dynamic measurement of energy consumption. But in the case of power 

consumption of virtual machines, it cannot be calculated by any such kind of sensors. Some 

solutions have been proposed in [34], [35] by including power monitoring adapter between 

hypervisor and server driver modules, but it was also not able to provide power consumption per 

VM and provide the power consumption of virtualization layer. 

2.2.1.2 Modeling of power consumption 

To find the power consumption of the system, it is required to design the model for dynamic 

power consumption. The modern computer servers have built in power monitoring capabilities 

and by utilizing these capabilities; the power consumption can be calculated. From the literature 

[36] it has been concluded that there is a linear relationship between the CPU utilization of the 

machine and power consumption. From [37], [38], [39], [40] power models of the servers based 

on the simple utilization and assumed that CPU utilization is only responsible for power 

consumption shown in (2.3), where P is the total power consumption, Pidle is the idle power 

consumption of server, Pbusy is the power consumption of fully utilized host or server and U is the 

CPU utilization. 

                                  𝑃 =  𝑃𝑖𝑑𝑙𝑒 + 𝑈 ∗ (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒)               2.3 

Later on, more complex power models came into existence which considered parameters 

like memory access rate, network access rate and hard disk access rate. Their examples are 

provided in [41], [42], [43], [44].  

2.2.1.3 Problems related to Energy and Power consumption 

Both the terms energy and power are interchangeable, but there exists a difference between them. 

If we consider and focus both of them, we can get better efficiencies and savings. In simple 
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terms, energy efficiency deals with the total amount of electricity consumed by the system 

whereas power efficiency deals with the work done by the CPU for the amount of electricity 

consumed. In terms of data center efficiency, power consumption deals with the cost of 

infrastructure which is essential to maintain the energy consumption and system operation. The 

first major problem of high power consumption inside the data center is heat dissipation. More 

the electrical power consumed by the computing resources, more the power gets converted into 

heat which further required more power for the cooling systems. Moreover, the overheating of the 

components will reduce their lifetime and provide more error proneness of the components. 

Similarly, high emission of CO2 or carbon footprints is the main problem of data centers which is 

caused by the high energy consumption and it contributes to the global warming. Above figure 

2.2 shows the problems from high power and energy consumption inside the data center. 

According to the survey reports of [45], the increase in the trend of annual carbon emission (CO2) 

was 42.8 million metric tons to 62.7 million metric tons. Thus, the reduction of carbon emission 

became an important problem and needs further advancement. 

 

Figure 2.2: Worldwide problems of data center with high energy and power consumption 

2.2.1.4 Modeling of power consumption for VM migration 

To minimize the consumption of energy within the data centers, it is very important to estimate 

the power consumption by VM. Thus, the CPU utilization can also be used for the calculation of 
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the power consumption of CPU by VM as similar to servers. In [43] author presents a VM Power 

monitoring method and Joule meter (a software for VM power estimation) on the basis of CPU 

utilization and Performance Monitoring Counters (PMC) [46]. The process of VM consolidation 

for energy efficient data centers also brings the power consumption which costs in terms of 

energy. Thus, the estimation of energy consumption for each VM migration became the key point 

for energy efficient VM consolidation. Studies from [47], [48], [49] investigate the model for the 

cost of energy during VM migration. They framed that the energy cost depends upon the 

available bandwidth and memory used by VM. 

2.2.2 Power Saving Techniques for Cloud Environment 

Three main powers saving techniques for energy efficient cloud environment are: VM 

Consolidation, powering down the servers and Dynamic Voltage Frequency Scaling (DVFS). 

Automatic switching off or powering down the idle servers which are not in use is a very 

interesting method to reduce the total energy consumed. Most of the times, many servers remain 

in the idle position inside data centers. Thus, the dynamic provisioning of the selection of these 

types of servers and put them to sleep mode became a very challenging task. Different 

approached for dynamically turn off and turn on the servers inside data centers have been 

proposed to minimize the energy consumption [50], [51], [52], [53], and [54]. Later on, the 

process of dynamic VM consolidation came into existence and became useful for the selection of 

servers that should be power down or power up. As the process of VM consolidation works in 

different steps, therefore, it is the key technique for the selection of most efficient servers. This 

process makes the use of fewer numbers of servers because its VM live migration technique 

simply migrates the VMs from one host to another and power down the underutilized servers. 

Details of the VM consolidations will be provided in the next section. 

 DVFS is also a tool that is used for the power management or to minimize the power 

consumption of servers. DVFS is an example of DPS (Dynamic Performance Scaling) which can 

be applied to the components of the computer which supports the dynamic adjustment of their 

performance. As the increase in frequency or voltage may increase the power consumption of 

system or vice a versa. Thus, the DVFS minimizes the number of instructions the processor 

executes to minimize the performance by which program take more time to execute [55]. The 
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approach of DVFS can provide the energy savings but it is hardware dependent and therefore, for 

the idle server, the scope of power minimization will be very less. Mainly the technology of 

DVFS is used for the achievement of energy efficiency in multicore, multiprocessors and 

embedded systems. They are adopted for processors and more efficient computation-intensive 

VMs and are not suitable for input/output intensive VMs [56]. DVFS is hardly adopted for 

virtualized cloud systems. These reasons contribute to the use of fewer hosts and put the other 

idle hosts into sleep mode using VM consolidation which means deactivation of idle servers 

minimizes the energy and power consumption as well as improves the resource utilization. 

2.3 STATE OF ART FOR ENERGY EFFICIENT VM CONSOLIDATION 

The main focus of this thesis is to design the models for energy efficient VM consolidation for 

cloud data centers. A huge amount of research has been done in this particular area of research. 

To achieve this objective and to provide energy efficient solutions and to solve various problems, 

we have discussed existing state of art techniques and models. In this section, we provide the 

details of energy efficient VM consolidation.  

2.3.1 Virtualization- backbone of cloud computing 

Virtualization is the key technology of a cloud environment which makes the cloud resources 

available to cloud users by separating one physical machine into several virtual machines. With 

the help of virtualization, the cloud resources are available in the form of logical or virtual 

resources. Virtual machine monitor (VMM) is used during virtualization, which is also known as 

the hypervisor. The responsibility of this hypervisor is to virtualize the hardware of host machine 

into virtual resources due to which virtual machines can exclusively use them and maintain the 

isolation between the VMs. All the physical resources are virtualized and therefore, VMs 

containing their own operating systems can be executed on the physical machines [57].  

The concept of the virtual machine was provided by popek [58] that it is an efficient copy 

of real machine which allows the multiplexing of the original physical machine. Nowadays many 

open source project and several companies offer some software packages that make the use of 

virtual computing.  Figure 2.3 shows the process of virtualization thus; the use of virtualization is 



17 
 

to reduce the amount of hardware used and to improve the resource utilization by creating 

multiple VMs over single hosts [59]. 

Improvement in the performance and ease of migration of VMs from one host to another 

using the concept of live migration are the few benefits of virtualization. The ability of run time 

migration of the VMs is known as dynamic VM consolidation which will be discussed in next 

subsection. There are three important solutions for virtualization technologies that support power 

management such as: Xen hypervisor, VMware solutions and Kernel based virtual machine 

(KVM).  

VMware ESXi and VMware ESX Server are two virtualization solutions offered by 

VMware. It provides power management at host level via DVFS. Two services such as: VMware 

Distributed scheduler and VMware VMotion operates in combination with ESXi and ESX Server 

[60]. VMotion enables the live migration of VMs among physical machines whereas Distributed 

scheduler monitors the usage of the resources and maintain the balance among the VMs 

according to the current load. Moreover, distributed schedulers have Distributed Power 

Management (DPM) as a subsystem used for the reduction of power consumption of machines 

(servers) by dynamically switching off and on the extra spare servers [60]. 

 

 

Figure 2.3: Virtualization inside cloud data center 
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Xen Hypervisor is open source technology for virtualization licensed under General 

Public License (GPL) and developed by Xen community. As similar to Linux power 

management, Xen also contains four commands for making changes in the power state of 

hardware. 1) Power save used to set the lowest clock frequency, 2) Userspace used to set the 

specific CPU frequency by the user, 3) On-demand used to choose the p-state according to the 

resources, 4) performance is used to set the highest available clock frequency. Xen enables the 

systems for its transformation from one state to another i.e. P-state to C-state (CPU active state to 

CPU sleep state). Apart from this, Xen also supports live and offline VM migration. For VM 

migration, it is very important that both the source and destination machines must be Xen running 

on them. Also, the destination host should have appropriate resources that can accommodate VM. 

Similarly, the Kernel based Virtual Machine (KVM) is also an open source software model for 

virtualization implemented as Linux Kernel. In this model, the role of hypervisor is played by 

Linux and the complexity of hypervisor implementation will be reduced to some extent. 

2.3.2 Virtual Machine Consolidation 

VM Consolidation is the most efficient procedure for the reduction of power as well as energy 

consumption of data center. VMs are consolidated over PMs in order to reduce the usage of 

number of physical machines. Moreover, it would be beneficial to keep the idle machines into 

sleep and hibernate state or turn them off during consolidation. By doing this, we can decrease 

the idle consumption of power with in data center. Sometimes the excessive consolidation 

delivers poor QoS- Quality of Service and may violate the SLA- Service Level Agreements 

between the service provider and user. Thus, VM consolidation should maintain an optimal 

balance between energy consumption and QoS [61] and deal with energy performance trade-offs.  

Migration technology is the backbone for server or VM consolidation [11] which 

performs the migrations of VMs from one host to another and improves the performance of 

systems as well as maintain the load of the system. The problem of dynamic VM consolidation 

can be processed into four different steps [10] as mentioned below: 

1. Selection of the hot spots i.e. over utilized machines within the data center which needs to 

migrate of some of its VMs. 

2. Selection of Virtual Machines from above selected hot spots for migration. 
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3. Selection of excess capacity servers i.e. under-utilized host machine for the migration of 

all its VMs. 

4. Design of the new placement policy for the selected VMs from host spots and excess 

capacity servers to some new host. 

Thus, the overall process of VM consolidation is shown in figure 2.4. Here, the process of 

VM consolidation starts by finding any over utilized or under-utilized host machine present inside 

data center and followed by two most important processes: VM migration and VM placement. All 

these steps of VM consolidation can efficiently manage the energy issues. 

 

Figure 2.4: Process of VM Consolidation 

There is a pool of physical machines present inside cloud environment where different 

applications are running over them. The problem of VM consolidation across these machines is 
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associated with multidimensional vector packing problem and in our current work, we have 

considered CPU and memory utilization as two different dimensions. Suppose two virtual 

machines are working on the same physical machine, then the resource utilization of the physical 

machine is equal to the sum of the resources of these two virtual machines running on it. For 

example, X1% and Y1% are the percentage utilization of CPU and memory for VM1 and X2% 

and Y2% are for VM2. Thus, the utilization of physical node accommodating these two VMs are 

the sum of the vectors: (X1% + X2%, Y1% +Y2%). The detail and a recent survey of every step 

involved in the process will be discussed in next subsections. 

2.3.2.1 Detection of Hot-spots and excess capacity servers 

To start the process of VM consolidation, it is very important to detect the hot-spots and excess 

capacity servers inside the data centers. Hot spots are those servers which are over utilized. We 

can also say that we have to find the time for the migration of VMs from the host (Physical 

machine) based upon the utilization rate of the host. Such that if the utilization of the physical 

machine will be greater than the value of upper threshold and lower than the value of lower 

threshold then only it would be beneficial to start the migration. In this contrast author in [62] set 

25% and 75% of utilization as the lower and upper threshold values for utilization. If the 

utilization of physical machine is less than a lower threshold value; all of the VMs will be 

migrated from the physical machine and then, it should be put into an idle mode in order to save 

energy. Similarly, if the utilization of host is greater than an upper threshold value; some of the 

VMs will be migrated from that host. For dynamic workload environment, this static method for 

setting upper and lower threshold is not suitable. 

Several authors provided their own dynamic methods for determining upper and lower 

threshold. Anton et al. [10] presented four statistical methods for determining threshold values 

such as: LR (Local Regression), MAD (Median Absolute Deviation), IQR (Inter Quartile Range) 

and LRR (Local Robust Regression) these methods based on robust methods rather than classical 

methods, as they are more effective than classical methods [63]. Author in [64] proposed a robust 

estimator which is alternate to MAD and more efficient. Horri et al. in [6] used a novel technique 

VM-based Dynamic Threshold i.e. VDT for detecting under-utilized physical machines. In their 

method, they have used VMs on the host and CPU utilization of host for optimization along with 



21 
 

hill claiming method. Similarly, Ehsan et al. [65] also proposed three policies for finding under-

utilized host and they are: Migration Delay (MDL), Available Capacity (AC), TOPSIS available 

capacity, the number of VMs and Migration Delay (TACND) where TACND works on the 

principal of multi-criteria decision-making process. MDL is same as the MMT proposed by 

Anton et al. in [10] and AC considers resource capacity rather than resource utilization. We have 

also proposed median based auto-adjustment or dynamic method for determining the threshold 

which will be discussed in next chapter. Figure 2.5 shows the scenario where host 1 and host 4 

are underutilized and over utilized respectively since 45% and 85% are lower and upper threshold 

values for utilization. Accordingly, the VMs are migrated to another host and host 1 and 4 will be 

turned off in order to save energy. 

 

 

Figure 2.5: VM migration from under-utilized and over utilized hosts 

2.3.2.2 Allocation policies  

Selection of virtual machines for migration and their placement over appropriate hosts plays an 

important role to optimize the allocation. These two policies are the two different steps for VM 

consolidation process and are discussed as follows: 
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2.3.2.2.1 VM Selection 

After the detection of over and under-utilized hosts, next task is to select the virtual machine for 

migration from these hosts. This process of VM selection works iteratively, the host needs to 

check again and again. If the host is still over or under-utilized; the VM selection policy again 

selects some more VMs for migration. 

 Anton et al. [10] proposed 3 different policies for the selection of VM migration and they 

are: Random choice policy (RC), minimum migration time policy (MMT) and Maximum 

correlation policy (MC). The names of these selection policies clarify their selection process. 

MMT selects those VM which requires minimum time to migrate VMs to another host or 

physical machine. Random choice policy randomly chooses the VM for migration and similarly, 

the last one MC policy migrate the VMs with highest degree of correlation of the CPU utilization 

with other VMs. Later on, in 2013 Wang et al. [66] also presented a method for VM selection 

from an over utilized host. Their selection strategy depends upon the CPU utilization of VMs 

known as double-threshold VM migration strategy. In [64] Hassan et al. presented the policy 

which considered both the CPU utilization as well as migration time of VMs when the virtual 

machines are migrating from one physical machine to another. This migration time can be 

considered as total memory used by VMs divided by the available bandwidth of that host. 

Sometimes VMs are selected depending upon their resource utilization and there are different 

types of resources such as CPU utilization, Memory, bandwidth and I/O. Due to different types of 

resources, it is not so easy to compare resource requirements of all the machines. Therefore, 

many functions are proposed in the literature for their comparison and one of them is “volume”. 

The volume function selects the VMs on the basis of the product of utilization of each resource 

individually [57]. In [67] another approach for selection of VMs has been proposed in which they 

try to select that VM which has more contribution towards the load change of their host. Their 

method performs three steps for selection: first is to evaluate the load of each VM and second is 

to sort the VM according to their load and finally to select the subset of VMs that are on the top 

of the list. On the basis of above-mentioned literature, we have also solved the problem of VM 

selection using multi-criteria decision-making process i.e. AHP Analytic Hierarchy Process. The 

details of the process will be discussed in chapter 3. 
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2.3.2.2.2 VM Placement   

During the VM consolidation process, the most difficult step is to select the most appropriate host 

for the placement of selected VMs from the previous step. Thus, it is the most important step of 

the consolidation process. Several researchers have presented their own methods for the 

placement of VMs such that they can able to decrease the energy consumption of data center. In 

most of the existing work, the VM placement has been considered as the problem of bin packing, 

but it is the not only solution for this problem. The existing research work can provide us with the 

details of every possible solution for VM placement is shown below: 

1) VM placement as Bin Packing  

Anton et al. [5] discussed the VM placement as a bin packing where, the physical machines 

represent bins and virtual machines represent items. Moreover, they have considered this problem 

as NP-hard and therefore, modified the (BFD) Best Fit Decreasing algorithm in such a manner 

that not more than 11/9.OPT +1 bins can be used for packing. OPT means the optimal solution 

provides for a number of bins [68]. Their modified algorithm is known as (MBFD) Modified Best 

Fit Decreasing. The process of PABFD sorts all the VMs according to their CPU utilization and 

accordingly, the first VM will be placed over that particular host which will provide minimum 

increase in power consumption and so on. This process will choose the most efficient host for 

placement. Later on, Anton et al. [10] named it as Power Aware Best Fit Decreasing (PABFD). 

Figure 2.6 shows the scenario of VM placement using bin packing. 

 Weijia et al. [69] proposed VISBP i.e. Variable Item Size Bin Packing algorithm. 

According to their survey, they found that the packing of items within the online bin packing 

algorithms is without the knowledge of item’s size. As, the resource demands of virtual machines 

may change with the time and thus, the size of items cannot be fixed for bin packing problems for 

which several authors presented a different technique for repacking. Some have handled this 

problem by removing the item from the bin and pack it again. Since the removal of items leads to 

deletion of items. Therefore, in [69] author provides the strategy of repacking some other items to 

the bin rather than changing the items. Thus, VISBP deals with the problem of packing of items 

when resource demands of VM (items) change. 
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Figure 2.6: VM Placement using Bin Packing 

 Lovasz et al. [70] presented three different heuristics for the optimal solution of Energy 

and performance aware VM placement. They also related the problem with NP-hard algorithms. 

Their heuristics are: 1) BestFromRandom Heuristic with a complexity of O(n.m) where n 

represents VM and m represents PM. In this heuristic, the algorithm considers several 

random/valid VM-PM mapping and power consumption will be calculated for every mapping.  

The VM-PM mapping causing the minimum power consumption will be considered as the 

solution. 2) Greedy Heuristic- the approach of this heuristic is to sort the VMs according to their 

size i.e. sorting factor which is the combination of resource usage as well as total power 

consumption. VM list will be sorted in decreasing order and then, first VM with the biggest size 

will be removed from the list and mapped to the server with minimum power consumption. This 

heuristic also provides the VM-PM mapping with the complexity of O(n.m). 3) Modified First Fit 

Heuristic- it is similar to the previous one heuristic. In this, both the VMs and PMs will be sorted. 

VMs will be sorted in decreasing order and PMs will be in increasing order of their sorting factor. 

Similarly, the first VM will be removed from the VM list and mapped over the first PM of the 

PM list. The overall complexity of this heuristic is also O(n.m) 
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 Consolidation of servers is widely adopted the technique for energy minimization since it 

minimizes the idle power within the infrastructure of the data center. There process of 

consolidation may be of two types: static consolidation and dynamic consolidation. During the 

static consolidation, the mapping of VMs to the PMs cannot be changed at runtime. As the 

resources are statically assigned, therefore, it cannot solve the problem of overprovisioning. 

During dynamic consolidation, the resources are allocated at run time i.e. if a load of the VMs 

changes then, PMs will be remapped. Thus, dynamic consolidation helps to minimize the 

overprovisioning of the resources. Multiple virtual servers on the same physical machine also 

strengthen the argument between the resources. By consolidation, multiple servers on the same 

physical server allow the non-exclusive usage of the resources which will lead to a certain level 

of performance degradation. The amount of acceptable performance degradation is always 

mentioned in SLAs. 

Chaima et al. [71] presented their work on the allocation algorithm by making the use of 

bin packing problem. Their objective is to pack the virtual machines i.e. VMs into a number of 

physical machines i.e. PMs which are characterized by power consumption. The mapping of VMs 

over PMs depends upon some resource constraints such that: 1) VM can be mapped to only one 

server. 2) Each severs must has some maximum power limit which should not be beaten during 

the allocation of VMs. Their proposed algorithm is also an adoption of the Best-Fit algorithm. 

Here, the process of VM placement also starts with the sorting of virtual machines in the 

decreasing order of power consumption and constructs an ordered stack of VMs from which the 

first VM will be most power consuming VM and it will be placed on the server which has 

minimum power consumption. This process will be repeated until all the VMs are packed in the 

servers and remaining servers will be switch off to save the energy consumption 

Mayank et al. [57] presented that consideration of available resources of physical host or 

destination is not enough. Some other important points should also be considered such as: after 

the mapping of some new VMs over the PMs, how will be the performance of VMs that already 

hosted over the PMs get affected. Their proposed algorithm also makes the use of bin packing 

algorithm along with vector packing algorithm where VMs and PMs are arranged in the order of 

their resources and then Best Fit or First Fit heuristics are applied on them to select the most 
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appropriate PM. They also described the important concept of memory aware migration. 

According to which the VM can be remapped if the other PM host better memory sharing partner. 

For example, if two VMs are mapped over different PM and they have strong communication 

between them, then one of the VM will be remapped to the PM which hosts its communicating 

partner. 

Horri et al. [6] presented their work on VM consolidation. They proposed VM placement 

algorithm provides the mapping of VM-PM according to the utilization of host and minimum 

correlation (UMC). The idea of UMC was presented by Verma et al. [72] that the probability of 

server to become over utilized will be more if the correlation between the applications that use 

same resources over an over provisioned host is more. According to this UMC, virtual machines 

will be placed over that host, whose value of CPU utilization has the lowest correlation with the 

CPU utilization of all other virtual machines on that host. The correlation of CPU utilization 

among VMs can be calculated using different coefficients [73]. Hill optimization method has 

been used by them for setting the values of the threshold. 

Sina Esfandiarpoor et al. [74] presented a new direction for the energy efficiency of cloud 

data centers. Along with the efficient consolidation, they have also worked for the efficient 

structure of data center which means that fewer switches, racks and routers should be used 

without negotiating the SLA and idle cooling and routing equipments should be turned off for the 

reduction of energy consumption.  For the efficient VM consolidation, they have used a different 

metric for the ranking of VMs i.e. Millions of Instructions Per Second (MIPS) instead of CPU 

utilization. They proposed VM placement algorithm by making some improvement on the MBFD 

algorithm presented in [10] and able to find the best physical machine for each virtual machine 

which causes the smallest increase of power consumption. For structure aware efficient VM 

consolidation, they considered network topology, cooling equipment, utilization of racks and 

utilization of the individual server. Rack utilization is the ratio of the Millions of Instructions Per 

Second requested by the virtual machine to the total Millions of Instructions Per Second capacity 

of physical machines. The VM placement by considering the rack utilization also used the 

method of threshold values. If the value of rack utilization is lesser than the threshold, then all the 

virtual machines are migrated from this rack to another rack such that the switches and cooling 
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equipment of this racks can be turn off for energy savings. Three racks aware VM placement 

policies have been proposed by them. 1) RBR- virtual machine placement using Rack by Rack. 2) 

NUR- virtual machine placement in Non-Underutilized Racks. 3) HSRC- Hybrid Server and 

Rack Consolidation. The first rack aware policy sorts the racks according to their utilization and 

VMs will be sorted according to the MIPS, then first rack from the sorted list will be selected for 

the first VM from the sorted VM list and finally, the previous algorithm will be used for the 

selection of best host machine for selected rack. In the second policy of rack aware VM 

placement i.e. NUR, during the placement of each VM, first the best host will be found from all 

non-underutilized racks and if no host can be found then only the algorithm will try to find the 

host in the under-utilized racks. This algorithm provides more energy savings than RBR by 

minimizing the number of extra servers to be turned on. Third and last policy of HSRC combines 

both servers and racks for consolidation. In this policy, the rack consolidation will be used when 

the similar number of machines or servers are obtained from server consolidation otherwise 

HSRC will assign the VMs to the ON servers in a minimum number of racks. 

Ehsan et al. [65] provided a multi-criteria algorithm for making the decision of choosing 

the most appropriate host known as TPSA policy. Selection of host depends upon the five 

different criteria taken by the author. TPSA simply calculates the score of all the hosts which are 

suitable for hosting the VM and select the host with the highest score. Author has divided the 

criteria into benefit and cost type. If the value of criteria with benefits type is more and value for 

criteria with cost type is low, the solution will be the optimum one and vice a versa. TPSA 

considered following conditions for calculation the score of host: 1) the selected hosts should 

have least increase in power consumption, 2) the selected hosts should have more available 

resources, 3) the selected host should have minimum number of VMs, 4) there should be 

minimum value of correlation of the VMs that are to be hosted on the selected machine, 5) the 

value of migration delay should be minimum for the VMs that are to be hosted on the selected 

machine. All these considerations reduce the percentage of SLATAH, PDM, level of SLA 

violation, the number of migrations and provide better energy savings.    

Chowdhury et al. [75] proposed some algorithms rather than using best fit decreasing 

algorithms and their objective is also the reduction of power consumption while dealing with QoS 
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-Quality of Services. First, they proposed MWFDVP- Modified Worst Fit Decreasing VM 

Placement which is modified version of WFD-Worst Fit Decreasing. WFD is just opposite to that 

BFD which means, it chooses the physical machines with a maximum increase of power 

consumption. After that, they slightly modified the first one by placing the VMs over the host that 

has second minimum available power and known as second Worst Fit Decreasing technique 

(SWFDVP). The third one is the Modified First Fit Decreasing VM placement-MFFDVP, it will 

select the host from the first host presents in the host list and checks whether it is suitable or not 

for VM. If it is suitable; VM will be allocated to that host otherwise next host will be checked and 

similarly the process will go on. MFFDVP has been modified further and known as FFHDVP- 

First Fit Decreasing with Decreasing Host VM Placement. In this, hosts are sorted in decreasing 

order of their available power. Thus, the first virtual machine will be mapped over that physical 

machine which has maximum available power. After VM mapping, the host list will be again 

sorted in decreasing order and this will continue until all the VMs from VM list are not mapped 

over the hosts. 

Moreover, the clustering technique has been also provided by the author. This clustering 

technique creates the clusters of virtual machines on the basis of its RAM and current CPU 

utilization. After the creation of clusters, first, their policy will find the host for those VMs which 

are the part of highly dense clusters followed by the VMs of second dense clusters. VM clusters 

are nothing but VM lists and these clusters are a group of objects with same attribute values. 

Those groups reside together and form clusters. In their clustering technique, they adopted 

centroid based clustering along with its most popular technique i.e. K-means algorithm. It will 

create VM clusters by assigning VM to its closest centroid which is calculated using CPU 

utilization and RAM. The process will compute the centroid of every cluster until the centroids 

do not change. From this clustering, they have modified all previous MWFDVP, SWFVP and 

FFHDVP algorithms and used their concept along with clustering technique. This modified 

algorithm were known as MWFVP_C (modified worst fit VM placement for clustering), 

SWFVP_C(second worst fit VM placement for clustering) and FFHDVP_C (first fit with 

decreasing host VM placement). Their novel technique provided better energy savings along with 

better quality of services. 

2) VM Placement using Evolutionary techniques 
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Evolutionary techniques are inspired by the behaviour of a living organism and natural evolution. 

An evolutionary technique includes several algorithms and they are: Genetic Algorithms (GA), 

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and many other nature 

inspired algorithms. Recent work using these evolutionary algorithms shows the effectiveness 

and efficiency in the complex cloud environment. 

 These evolutionary algorithms follow the three steps for their entire process to take place: 

evaluation of fitness function, candidate selection and trial variation. The advantages of these 

evolutionary algorithms are that their computational complexity is polynomially related to the 

scale of the problem rather than exponential. For Genetic Algorithms, the computational 

complexity is proportional to a maximum number of generations and the size of the population 

and it is O(uG). whereas, for PSO the complexity is: O(MuG) and M represents the number of 

tasks. For ACO, the computational complexity has been found as O(MNuG) N represents the 

resources for M tasks. Thus, the complexity of ACO is greater than PSO which is further greater 

than GA [76]. Some of the recent work regarding the VM placement using evolutionary 

techniques discussed here. 

 Paolo et al. [77] has given the concept of genetic algorithm for the allocation of the virtual 

machines in distributed systems. Later on, this concept of GA for VM placement has been used 

by many researchers, during which the set representation plays an important role [78] where set 

represents the number of machines and set items signifies the virtual machines that need to be 

packed. However, the previous algorithms like bin packing and many others were not so good 

thus, various algorithms have been presented using GA to find the optimal solution of VM 

placement. A new concept was developed by Bandi et al. [79] which also made the use of genetic 

algorithm for VM placement by considering the current demand of VMs as well as the usage 

history of PMs for energy minimization. Shi Chen et al. [80] proposed the combination of hybrid 

genetic algorithm and knapsack problem for VM Placement by using multiple fitness in order to 

validate the efficacy of their algorithm. They have considered the function by distributing the 

complete load of system into 3 dimensions such as: CPU utilization, throughput and I/O rate for 

performing live migration of VMs and due to which they achieved the goal of lowering down the 

energy consumption and increase in resource utilization. The concept of hybrid genetic algorithm 
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was also used by T. Thiruvenkadam et al. and Maolin Tang et al. [81-82]. They used this concept 

for load optimization during VM placement using 2 ways: a) packing of VMs after checking the 

load of every PM, b) use of hybrid GA for the optimization of VMs. Moreover, they have also 

attained the target of improvement in resource utilization with reduction in the energy 

consumption and SLA violation. Maolin Tang et al. considered the energy consumed by both the 

PMs and their communication network using the concept of basic GA for VM placement and 

after that, they enhanced the performance of cloud environment by using the concepts of hybrid 

GA. 

Novel form of GA was presented by researchers [83-84] and named as Grouping Genetic 

Algorithm (GGA) to provide more efficient and optimal results for VM placement. These types 

of algorithms provide better results than non-grouping algorithms but relation between VMs, data 

centers and servers has not considered by them. Later on, to solve this problem Fereydon et al. 

[85] have chosen the GGA as reference algorithm and propose novel multi-level grouping 

algorithm (MLGGA). These novel algorithms were able to consider the relationship of these 

individuals as well as group of each individual in the search of optimal solutions. Another 

important work presented by Maolin et al. [83], which introduced the Reordering Grouping 

Genetic Algorithm (RGGA) for resolving the problem of bin packing problem which deals with 

multi-capacity bins during consolidation. It deals with various severs with varying capacities 

(storage, network, CPU, memory etc.) and VMs with variable weights. Yu-Shuang. D et al. [86] 

proposed another approach for VM placement using GA. Their proposed distributed parallel 

genetic algorithm (DPGA) performs in 2 stages. First stage picks the initial set of population from 

the solution space to obtain several solutions by implementing GA parallely on various hosts. 

Second stage takes the solutions obtained from the first stage as the initial set of population thus, 

the optimal solutions can be found. A novel family genetic algorithm (FGA) was proposed by 

Christina et al. [87]. This method has been used to improve the GA execution time by separating 

the population into different families. The group of families obtained from previous step will be 

processed parallely and thus, the FGA method reduce the execution time of VM placement 

algorithm.VM placement problem also has been solved by Gao et al. [88] by using the concept of 

Ant Colony Optimization (ACO) which is inspired from the collective foraging behaviour of real 

ant and their colonies. They have solved the problem of VM placement as a multi-objective 
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optimization which uses the concept of dominance during the selection process. The approach of 

multi-objective optimization methods based on finding the set of paring to optimal solutions. 

Details for the concept of pareto dominance will be discussed in chapter 6.  Similarly, [89], [90], 

[91] also used ACO based VM placement for efficient power consumption and resource wastage. 

Another approach which is the variant of ACO has been used by researchers for minimizing the 

resource wastage and power consumption during the VM placement and known as firefly colony 

algorithm. Layeb et al. [92] described the reasons for choosing this firefly colony algorithm for 

VM placement. Boominathan et al. [93] considered the problem of server consolidation as vector 

packing and solved it with firefly colony algorithm. The procedure of firefly colony algorithm 

based upon the behaviour of the flashing patterns of fireflies and accordingly, the process of VM 

allocation starts with the random allocation of VMs to the servers and in the second step, for the 

allocation of next VM over the same server will depend upon the attractiveness value. Higher the 

attractiveness value greater will be the probability of choosing. Similarly, the process will go on 

by updating the value of attractiveness for more optimal allocation. Moreover, the author also 

proposed fuzzy firefly colony approach for VM placement and used fuzzy sets for choosing VMs 

for allocation. Once the VM placement using ACO became new perspective of research, several 

authors started proposing their ideas by modifying the different function of ACO process for the 

achievement of multi-objective optimization.  

 3) VM Placement using Constraint and Stochastic Integer Programming 

Constraint programming (CSP) can also be expressed as logic programming. It uses mathematical 

approaches along with a set of constraints, set of variables and domains to solve the complex 

problems of VM placement and provide optimal solutions. This approach of CSP is the variable 

assignment approach for maximizing or minimize the constraints while satisfying all the 

mentioned constraints. 

 Dupont et al. [94] presented a framework for the energy efficient resource allocation 

inside the data center to perform VM placement. Their approach was based upon the VM 

Repacking Scheduling (VRSP). Also, they have used SLA constraints for performing VM 

placement. Zhang et al. [95] also proposed a novel algorithm based on the constraint 

programming i.e. Virtual Cloud Resource Allocation (VCRA-CP). Their focus was to minimize 

the cost of resource usage by achieving the quality of services. Dong et al. [96] used different 
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constraints for VM allocation such as size of the physical machine and network link capacity. 

They proposed two stage VM allocation algorithms in which, they used Best Fit Decreasing 

heuristic with min cut hierarchical clustering for bin packing. It will decrease the number of 

active hosts inside the data center and used maximum link utilization (MLU) to avoids network 

congestion. The second stage of VM allocation is the re-optimization of the allocation. In contrast 

to constraint programming, stochastic integer programming is one of the mathematical 

optimization technique where future demands are very uncertain [97]. These techniques use the 

estimation model with the probability distribution of data. As the future demands of VMs are not 

known, therefore, this approach can be used for optimal VM Placement. Bobroff et al. [98] 

proposed Measure Forecast Remap algorithm (MFR) for dynamic server consolidation and 

migration of VMs in order to minimize the level of Sla violation and demand of servers. Their 

algorithm includes three main steps: Measuring of historical data, forecasting the future 

requirements, and remapping of VM-PM. Speitkamp et al. [99] also formulated the problem of 

server consolidation using NP-hard optimization model. They analyzed the historical data and use 

it with LP relaxation based heuristic for server consolidation. Also, they have used capacity 

planning approach for the optimal placement of VMs. 

2.3.2.3 Virtual Machine migration 

 VM migration is also the backbone for VM placement or VM consolidation process. virtual 

machines are the instances of operating systems running on the computers. Sometime, several 

VMs are running on the same computer and make it overburdened. During this time, it may be 

required to transfer some of the VMs to another machine. Thus, the VM migration is the process 

of transferring the virtual machines from one to another physical machine and allows the 

improvement in performance and fault tolerance. The concept of VM migration as provided by 

Clark et al. [100]. According to which the migration of VMs simply transfers its memory images 

from source machine to destination machine. In the past years, it was required to shut down the 

VMs first and allocate the resource to new physical machine during migration. After that, the VM 

files are moved to start the VM over the new machine. VM migration procedures are of two 

types: online and offline VM migration. During the VM memory transfer, the process of live 

migration guarantees the continuity of service provisioning to the hosted application where as 

non-live migration suspends the execution of application before the transfer of memory image. 
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The process of live migration includes two different techniques: Pre-copy and Post-copy VM 

migration. The details of these methods are discussed as below: 

Pre-copy VM migration 

This method of VM migration copies the memory pages from the source host to destination host 

without suspending the execution of the virtual machine. Pre-copy VM migration starts with the 

selection of destination host follows by the reservation of the resources on the destination host 

which guarantees to provide the requirements of VM. After that, all the pages will be transferred 

to the destination machine and successive iterations will be performed on memory pages until the 

final round has not been achieved by transferring the remaining dirty pages [101]. This step will 

increase the migration time with the increase in the rate of page updating. In the third step, the 

VM will be suspended from source machine and resume at the destination. All of the remaining 

states are also transferred to the destination. The advantage of this process is that both the source 

and destination machine has the copy of VM at this stage and thus, the copy of source machine 

can be useful in the case of failure. Now, in the fourth step, destination host acknowledges the 

source host that it has successfully received all of the VM images. After this acknowledgement 

source host rejects the original virtual machine and destination host acts as the primary host. 

Finally, the VM starts on the new host and resume its normal operations. 

Post-copy VM migration 

The process of post-copy VM migration starts by capturing all the states of VM such as I/O state, 

CPU state at the source machine. All these states are transferred to the destination machine and 

resumed there. After this, all the memory pages will be fetched from source servers until both the 

source and destination machines are synchronized. Figure 2.7 shows the pictorial view of live 

migration of VMs. Hines et al. [102] implemented the post-copy approach of live migration for 

migrating VMs from one host to another. According to them, there are four main components of 

post-copy approach live migrations: active pushing, demand paging, dynamic self-ballooning and 

prepaging. According to their performed evaluations on Linux and Xen, they showed that post-

copy approach minimizes the total migration time. Michael et al. [103] also implemented post-

copy approach and compared it with pre-copy live migration. Their evaluation showed some 
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improvement in the migration time and a number of pages transferred. They used DSB- Dynamic 

self-ballooning for the elimination of free memory pages and thus, speed up the migration 

process. 

 

Figure 2.7: Live migrations of VMs 
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2.4 RESEARCH AND CHALLENGES FOR ENERGY EFFICIENT VM 

CONSOLIDATION 

The advancement of virtualization has revolutionized the IT companies as well as academics by 

providing new possibilities and opportunities. By providing it’s most interesting feature of VM 

migration to data centers, where VMs are created, resized, migrated and terminated according to 

the requirement provides a dynamic environment to the data centers. Utilization of virtualization 

and VM consolidation has widely adopted by IT infrastructures to increase the resource 

utilization of data centers as well as to reduce the operating costs. There are some benefits as well 

as challenges for adopting the VM consolidation. As, we have discussed the benefits of adopting 

VM consolidation thus, here we are discussing some challenges for the adoption of VM 

consolidation inside data centers. 

• The process of VM consolidation puts several VMs on the single physical machine for 

hosting multiple applications. At some point, this may cause a single point of failure 

(SPOF). Also, the unavailability of several applications may occur dur to the up-gradation 

and maintenance of single server. 

• The sharing of physical resources provides the contention of resources during the 

consolidation process; thus, it may affect the performance of applications. 

• Applications which are delay sensitive such as online video and audio conferencing, VoIP 

–Voice over IP requires special consideration during the allocation of the resources. 

• The migration step of VM consolidation provides the overhead on the CPU cycles of the 

servers as well as on the network links to data centers [104]. From the literature, we have 

found that the migration of application provides the degradation of the performance. 

Therefore, the design of VM consolidation process needs to be there to minimize the live 

migration of VMs. 

Even with all these disadvantages of VM consolidation, the adoption of this process is 

increasing day by day due to its several benefits such as reduction in operational cost, 

minimization of energy consumption, improvement in the resource utilization of data center 

and much more. Therefore, several features, characteristics of the resources and applications 

that are hosted inside the data centers such as storage devices, deployment platform, physical 

devices, system software, types of applications and workloads and many more need to be 
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considered during the implementation and designing the process of virtual machine 

consolidation. Moreover, there should be realistic power models for VM placement, 

allocation policies and for network devices for the optimization of data centers. The focus of 

current research is the energy awareness during the resource allocation and VM placement. 

The consideration of network overhead is another research direction that is not explored much 

yet. As we have discussed above that the sharing of the resources provides the contention of 

the resources which lead to profit minimization and SLA violation. Therefore, to understand 

the behaviour of resource usage pattern of application [104] for the efficient placements of 

VMs is an important point of consideration. It needs some research points for minimizing the 

contention of the resources for the efficiency of the data centers.   
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CHAPTER 3 

MEDIAN BASED THRESHOLD (MEDTH) AND ANALYTIC HIERARCHY 

PROCESS (AHP) FOR HOST AND VM SELECTION 

 

The purpose of this chapter is to propose an automatic detection method for over and 

underutilized host for the dynamic cloud environment. Along with this, this chapter also provides 

multi –criteria decision-making approach for VM selection.  

3.1 INTRODUCTION 

The demand for a cloud computing enormously increases the consumption of power and energy 

due to the occurrence of several electronic components inside data centres such as, switches, 

servers, racks and many others. Thus, these components also need a large quantity of electricity 

to cools down which also result in the emission of high carbon dioxide. From existing literature, 

it has been found that the consumption of data centers is 1.1% to 1.5% of overall electricity 

consumed all around the world and which is growing with the rate of 12% per year. To Minimize 

the energy consumption of the data centers plays a significant role for environmental 

sustainability. This energy consumption can be minimized by reducing the usage as well as 

improving the utilization of cloud resources. Therefore, dynamic VM consolidation plays a very 

important role and it is also an effective method for the reduction of energy consumption by 

switching off the idle machines which minimize the number of active hosts. 

  Dynamic VM consolidation constitutes four different steps and here in this chapter, we 

provide the solution for first two steps of VM consolidation. First, we have proposed a novel and 

automatic method for the selection of hot spots and excess capacity servers. The detection of 

these servers is useful for starting the process of migration. This median based threshold approach 

is used for finding the lower and upper threshold values for the selection of such servers. The 

minimization of performance degradation and SLA violation are the two main objectives that we 

have considered.  

Secondly, we have provided the solution for the second step of VM consolidation process 

i.e. VM selection method. Analytic Hierarchy process has been used for the selection of VM for 
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migration. In this approach, we have used the resources such as CPU utilization, RAM, migration 

time all together instead of using one at a time like previous research methods. Minimization of 

the total energy consumption and SLAV – Service Level Agreement Violation are the two main 

objectives that we have considered during the implementation of this method. 

3.2 RELATED WORK 

In the contrast of selecting hot spots and excess capacity servers, Jeffrey et al. [62] set 25% and 

75% of utilization as the lower and upper threshold values for utilization. If the utilization of 

machine is less than the value of lower threshold; all of the VMs will be migrated from that 

machine and it would be turn off or kept into an idle mode to save energy consumption. 

Similarly, if the CPU utilization of machine is larger than the value of upper threshold value; few 

of the virtual machines will be migrated from that machine. This method of setting upper and 

lower threshold is static and not suitable. Anton et al. [10] also proposed a static method for 

finding threshold value and analyzed that this static method for finding thresholds is not 

beneficial for dynamic environment, as they do not adapt the changes in workload and therefore, 

they presented four statistical methods for determining threshold values such as: MAD, LR, LRR 

and IQR. The approach of linear regression also has been implemented by Fahimeh et al. [105], 

to predict the CPU usage of the host machine and then live migration process is used to detect 

underutilized and over utilized machine. Horri et al. in [6] used a novel technique VDT i.e. VM-

based Dynamic Threshold for the selection of under-utilized hosts. In their method, they have 

used VMs on the host and CPU utilization of host for optimization along with hill claiming 

method. 

Along with this, Anton et al. [10] also proposed 3 policies for the selection of virtual 

machines and they are: MMT- requires minimum time to migrate VM to another host, RC- 

randomly chooses the VM for migration and MC- migrates only those VMs that have highest 

value of the correlation of their CPU utilization with other VMs. In [64] Hassan et al. presented 

the policy which considered both the CPU utilization of VMs as well as migration time for the 

selection of VMs to migrate from one machine to another. Sometimes VMs are selected 

depending upon their resource utilization and there are different resources such as CPU, Memory, 

bandwidth, I/O. Due to different types of resources, it is not so easy to compare resource 
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requirements of all the machines. Therefore, on the basis of recent findings and literature, we 

have proposed median based auto-adjustment or dynamic method for determining the threshold 

values that will further help for the selection of over and under-utilized servers. Also, we have 

solved the problem of VM selection using multi-criteria decision-making process i.e. AHP 

Analytic Hierarchy Process in which we used three resources such as the CPU utilization, RAM 

and migration time were taken by VMs all together for VM selection. 

3.3 PROPOSED SYSTEM MODEL 

System model considered in this work consists of big data centres which contains P different 

heterogeneous physical machines (i.e. PM) and each PM is categorized by its CPU performance 

in terms of MIPS (Millions of instructions per seconds), its total network bandwidth and total 

RAM occupied. These PM are also consisting of several heterogeneous (VMs) virtual machines 

to run user applications and to satisfy the needs of customers and they are also characterized by 

their total MIPS, Network bandwidth and RAM, so that several user can requests for the 

provisioning of VMs along with their particular characteristics.  

 

 Figure 3.1: System model used for proposed work  
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The target system model that we have considered is similar to [10] and shown in Figure 3.1 

which contains 2 imperative parts: a) Global manager and b) Local manager. First one i.e. global 

manager performs as a resource manager for the allocation of VMs to available physical 

machines. The allocation of VMs is based on the predefined characteristics mentioned previously 

whereas, the second one i.e. local manager acts as a decision maker to decide the exact time and 

place where a VM should be migrated. Thus, both of these managers play an important role 

inside data center architecture.  

3.3.1 Data center’s power model  

Disk storage, CPU performance, Power supply, memory and cooling systems are the few 

important aspects that influence the power consumption of PM exists inside data centers. CPU is 

the most important and major source of power consumed by data center therefore, from the 

existing literature it has been analyzed that linear relationship exists between power consumption 

and CPU utilization. Here in this work, we have supposed that the total MIPS of a CPU is m *c, 

where m, c represents the CPU cores as well as MIPS of each core respectively. We have taken 

the power consumption of machines from SPEC power benchmark [106]. They have provided the 

power consumption of each machine in every condition i.e. when machine is idle or when it is 

100% utilized. We have used 6 different servers and they are HPProLiant ML110 G5, 

HPProLiant ML110 G4, IBM Server x3550XeonX3470, IBM Server x3250XeonX3480, Acer 

AR320 F1 and Acer AT150 F1. Table 3.1 shows the configuration of these servers and table 3.2 

shows the power consumed by these servers from idle to 100% utilization. 

Table 3.1: Six different servers with different configurations 

Servers CPU Model Cores Frequency (MHz) RAM (GB) 

HP ProLiant G4 Intel Xeon 3040 2 1,860 4 

HP ProLiant G5 Intel Xeon 3075 2 2,660 4 

IBM Server x3250 Intel XeonX3480 4 2,933 8 

IBM Server x3550 Intel Xeon X3470 12 3,067 16 

Acer AT150 F1 Intel Xeon 5670 12 2,933 12 

Acer AR320 F1 Intel Xeon 3470 4 2,933 8 
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3.3.2 Energy model 

In this work, the energy consumption has been evaluated with the help of this model. To 

minimize the energy consumed of data center is the key objective of the current research thus, it 

is very essential to enlighten this model of energy consumption which can be calculated by the 

summation of total power consumed by host during each small period of time frame, as shown in 

equation 3.1. 

                                                      𝐸(𝑡) =  ∫𝑃(𝑡)𝑑𝑡                                                                (3.1) 

Table 3.2: Power consumption of servers in Watt [106]  

Servers 

 

Idle 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HPProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HPProLiant G5 

 

93.7 97 101 105 110 116 121 125 129 133 135 

IBMServerX3250 41.6 

 

46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113 

IBM Server x3550 58.4 98 109 118 128 140 153 170 189 205 222 

Acer AT150 F1 65.4 113 125 136 150 165 183 199 215 229 244 

Acer AR320 F1 39.6 47.3 55 63.4 71.9 80.3 89.8 97.9 107 116 124 

 

3.3.3 Performance Metrics 

For measuring the performance of cloud environment, it is very important to analyze the 

performance metrics during the proposal of models. Here, in this work, we have considered the 

QoS (Quality of Servies) as a performance metrics which are formalized in Service Level 

Agreement (SLA) which has been contracted between the cloud service providers and users. To 

fulfill the requirements mentioned in QoS plays a significant role in cloud environment. These 

QoS can vary for different applications in terms of characteristics; therefore, it requires to define 

some metrics for the calculation of SLA delivered. In this work, we have used following 

performance metrics: SLATAH (SLA violation time per active host), PDM (performance 

degradation due to migration) and SLAV (SLA violation) that are introduced in [10] and defined 
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in equation 3.2 and equation 3.3. Multiplication of these SLATAH and PDM metrics introduces 

SLA violation i.e. SLAV defined in equation 3.4 and its minimization along with energy 

consumption is the main focus of our study. 

1. SLATAH (SLA violation per active host): percentage of time when CPU utilization of host 

machine reaches to 100%.  

                                                      𝑆𝐿𝐴𝑇𝐴𝐻 = ∑
𝑇𝑠𝑖

𝑇𝑎𝑖

𝑁
𝑖=1                                                              (3.2) 

In equation, 3.2 N shows the number of hosts inside data center, whereas Tsi is the time period 

when CPU utilization reaches to 100% and Tai is the total time for which host remains active. 

2. PDM (Performance degradation due to migration): calculates the amount of percentage the 

performance is getting degraded during every VM migration. In [24] it has been mentioned 

that the total performance degradation of system depends upon the host CPU utilization 

 

                                         𝑃𝐷𝑀 = 
1

𝑀
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑀
𝑗=1                                        (3.3)

  

 In equation 3.3 M shows the number of VMs used inside data center, Cdj is the total estimate 

of the performance degradation of VMj during VM migration and it has been assumed as 10% of 

CPU utilization during all VMj migration. The total amount of CPU requested by VMj is 

represented by Crj. These two SLATAH and PDM are equally important for SLA violation; 

therefore, SLAV is the combination of both SLATAH and PDM shown in equation 3.4 

                                                    𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻 ∗ 𝑃𝐷𝑀                                                       (3.4) 

3.4 PROPOSED VM CONSOLIDATION METHOD 

Dynamic VM consolidation works in four different steps [10] inside data center and they are 

described as follows along with its flow chart in figure 3.2 which shows that in this chapter we 

have provided the solution for first and second step: 

1. Selection of the overutilized host which needs the migration of VMs it contains. 

2. Selection of VMs from selected over utilized host to perform migrations. 

3. Selection of the under-utilized host for migrating it’s all VMs. 
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4. Designing of new placement policy for selected VMs from selected over and under-utilized 

hosts. 

 We have also used above 4 steps in our overall work and this chapter presented a novel 

method for the first and second step of consolidation process i.e. detection of over and under-

utilized host as well as a selection of VMs from selected hosts for migration. 

 

 

Figure 3.2: Flow chart for VM consolidation process 
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3.5 PROPOSED APPROACH FOR DETECTION OF HOT SPOTS AND 

EXCESS CAPACITY SERVERS 

The previous approach of Anton et al. [10] for finding underutilized and over-utilized machines 

i.e. excess capacity servers and host spots for dynamic workload environment are extended by the 

consideration of the CPU utilization of all physical machines or servers. We have proposed an 

automatic method for finding over utilized and under-utilized host using Median based approach. 

If a physical machine is found as an over utilized machine then some of the virtual machines from 

this machine would be migrated to another machine or server, and if the physical machine is 

found as underutilized machine then all VMs of this machine would migrated to another physical 

machine. 

3.5.1 Median based threshold approach for finding over utilized and underutilized host 

machines (MEDTH) 

MEDTH method starts with the calculation of the CPU utilization of all physical machines 

present inside datacenter in the first step. After this, the upper and lower threshold values are to 

be calculated such that these threshold values will be further used for finding the hot spot i.e. over 

utilized physical machine and excess capacity server i.e. under-utilized physical machine. For the 

CPU utilization of all physical machines, we have used a random generator. Ci represents the 

CPU utilization of Pi numbers of host machines, where i ∈ R+ and Pi number of host machines 

can be arranged as {Pi = P1, P2, P3 ...Pi}. These physical machines can be even and odd in 

numbers, therefore median of even numbers of machines i.e. P2i gives two new sets: the first set is 

(P1 to Pi represented as Xi), and the second set is (Pi +1 to P2i represented as Xj). Similarly, two 

different sets can also be arranged for odd numbers of physical machines i.e. P2i +1. First set is 

(P1 to Pi represented as Yi) and the second set is (Pi +2 to P2i +1 represented as Yj). Similarly, 

upper and lower threshold limits Thu and Thl for both even and an odd number of physical 

machines present inside data centers can be detected using median method formularized in 

equation 3.5 and equation 6. 

               𝑖𝑓 
𝑃𝑖

2  
= 2𝑥 (𝑥 ∈ 1,2,3, …… . .∞)  {

𝑇ℎ𝑙 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑋𝑖)
𝑇ℎ𝑢 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑋𝑗)

                                           (3.5) 

               𝑖𝑓 
𝑃𝑖

2
= 2𝑥 + 1 (𝑥 ∈ 1,2,3, …… . .∞) {

𝑇ℎ𝑙 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑌𝑖)
𝑇ℎ𝑢 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑌𝑗)

                                      (3.6) 
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 With the help of these two equations, the over utilized and under-utilized physical 

machines can be found as follows: 

 

             {
𝑖𝑓 𝐶𝑃𝑈𝑃𝑖 > 𝑇ℎ𝑢 (𝑃𝑖 = 𝑂𝑣𝑒𝑟ℎ𝑜𝑠𝑡

𝑖𝑓 𝐶𝑃𝑈𝑃𝑖 < 𝑇ℎ𝑙   (𝑃𝑖 = 𝑈𝑛𝑑𝑒𝑟ℎ𝑜𝑠𝑡
                                                                             (3.7) 

 

 Here in above equation 3.7, Overhost represents over utilized hosts and Underhost represents 

under- utilized physical machines. If CPU utilization of physical machine is greater than the 

upper threshold value then the machine will be considered as over utilized and if the value CPU 

utilization of machine is smaller than the lower threshold then it will be considered as a under-

utilized machine.  

3.5.2 Results and discussions 

For the performance evaluation of proposed approach, we have considered both the real and 

random workload environment. For random workloads, we have assumed that the data center 

contains 800 heterogeneous physical machines with the request for the provisioning of 800VMs  

Table 3.3: Number of Virtual Machines for real workload environment 

 

 

 

 

 

and for real workload we have taken the data from the project of PlanetLab [17] which is a 

monitoring infrastructure and named as CoMon project. This project contains the data for CPU 

utilization of thousands of VMs which is obtained from physical servers placed more than 500 

locations around the world. Data from these servers are collected after every five minutes. We 

have selected data of four days from workload traces of the project during March 2011.There are 

different numbers of VMs for each day, from which each VM has assigned some workload trace 

randomly for every corresponding day. Table 3.3 shows the number of VMs for each day. 

 

Date Number of Virtual Machine 

3 March 2011 1,052 

6 March 2011 898 

9 March 2011 1,061 

22 March 2011 1,516 
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  Table 3.4: Percentage of Performance metrics for random workload  

Policies for detection of over utilized 

and underutilized host 

 

SLATAH PDM SLAV 

MEDTH 0.91% 0.02% 0.0182% 

THR 1.78% 0.05% 0.089% 

IQR 3.2% 0.11% 0.03872% 

MAD 2.11% 0.09% 0.1899% 

 

 The simulation of these two different scenarios in CloudSim toolkit [107] provides 

following results. Table 3.4 and 3.5 shows the SLATAH, PDM and SLA violation occurred 

during random and real workload from 3rd March to 22nd March using MEDTH and three existing 

approaches THR, MAD and IQR taken from Anton et al. [10]. 

Table 3.5: Percentage of Performance metrics for real workload 

Policies for detection of over 

utilized and underutilized host 

 

Date 

 

 

SLATAH 

 

PDM 

 

SLAV 

 

 

MEDTH 

3 March,2011 2.46% 0.05% 0.123% 

6 March,2011 2.26% 0.06% 0.1356% 

9 March,2011 2.42% 0.06% 0.1452% 

22 March 2011 2.39% 0.05% 0.1195% 

 

 

THR 

3 March,2011 4.95% 0.07% 0.3465% 

6 March,2011 5.08% 0.07% 0.3556% 

9 March,2011 5.21% 0.08% 0.4168% 

22 March 2011 5.11% 0.06% 0.3066% 

 

 

IQR 

3 March,2011 5.01% 0.07% 0.3507%% 

6 March,2011 5.02% 0.07% 0.3154% 

9 March,2011 5.27% 0.08% 0.033728 % 

22 March 2011 4.93% 0.06% 0.2958% 

 

 

MAD 

3 March,2011 5.23% 0.07% 0.3661% 

6 March,2011 5.26% 0.07% 0.3682% 

9 March,2011 5.47% 0.08% 0.4376% 

22 March 2011 5.13% 0.06% 0.318% 

  

 Results show that our MEDTH method provides a minimum level of SLA violation with 

lesser performance degradation and lesser SLA time per active host in comparison to other three 

policies. These two metrics are equally important for minimizing the SLA violation. Figure 3.3 

shows the percentage of SLATAH, SLAV and PDM of the existing methods as well as our 
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proposed method using random workload environment. Similarly, figure 3.4 shows their values 

using real workload environment. Results show that we have achieved the objective of 

minimizing the SLA violation.  

3.6 PROPOSED APPROACH FOR VM SELECTION USING AHP-VM 

METHOD 

After the detection of host spots and excess capacity servers, the second step is to select VMs 

from these servers and starts the process of migration. Therefore, for the selection of VMs, we 

have proposed a novel technique using multi-criteria decision-making process i.e. AHP- Analytic 

Hierarch Process. Multi criteria decision making is one of the most well-known branches of 

decision making which is associated with multiple attributes. These attributes are also known as 

decision criteria along with their importance or weight. 

 

 

Figure 3.3: (a) Percentage of SLATAH, (b) Percentage of SLAV and (c) Percentage of PDM for 

random workload 
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Figure 3.4: (a) Percentage of SLATAH, (b) Percentage of PDM and (c) Percentage of SLAV for 

real workload 

3.6.1 VM selection policy using RAM i.e. memory occupied by VM, CPU utilization and 

migration time taken by VM. 

The excess of VM migration may degrade the performance of data center, therefore the maximum 

CPU utilization, policy of minimum migration time and maximum memory space(RAM) deals 

with the problem of minimization of VM migrations along with SLA violation. To fix the lower 

as well as upper threshold for CPU utilization is the basic idea for the selection of physical 

machine from where the selected VMs will be migrate and it is also important to keep the CPU 

utilization of PMs between these threshold values. Therefore, few VMs will be migrated if CPU 

utilization of PM exceeds the value of upper threshold and all the VMs will be migrated if the 

value of CPU utilization falls below the lower threshold. Thus, our proposed selection policy i.e. 

AHP takes advantages of following three policies. 
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3.6.2 Maximum CPU utilization and Memory (RAM) occupancy  

This policy will help to selects the VMs from under-utilized and over utilized machines which 

consumes maximum memory i.e. RAM as well as CPU utilization of the physical machine. VMs 

will be migrated in order to avoid the situation of over utilization and under-utilization of 

machines such that over utilized machine would not persist as over utilized for long time and 

under-utilized host would be switched in order to reduce the idle power consumption. These 

policies follows the process of VM selection according to the current utilization of CPU and 

RAM and will be repeated for all machines. 

3.6.3 Minimum time for migration 

Second policy for VM selection is according to the migration time of VMs. According to this 

policy, only those VMs will be selected which requires lesser or minimum time for performing 

the migrations from one to another host. Here, the migration time has been evaluated by total 

RAM or memory occupied by VM to the available bandwidth of selected host. Moreover, the 

process to transfer the contents of memory from one to another host is slow and requires more 

time therefore, it affects the performance of migration and system as well, therefore, the actual 

migration process requires minimum time for migration of VMs without its performance 

degradation. Thus, we have used the policy of minimum migration time proposed in [10] as one 

of our criteria for decision-making process. 

3.6.4 AHP-VM Analytic hierarchy process for VM selection 

We have proposed, a novel policy for VM selection using AHP (Analytic Hierarchy Process). It 

is a multi-criteria decision-making algorithm for the selection of VMs. This policy is based upon 

the computation of the scores i.e. a score matrix would be created for all VMs present inside the 

selected host and VM with highest value of score would be selected and so on. Above discussed 

three policies (maximum CPU utilization, maximum memory occupied by VMs, minimum 

migration time taken by VMs) would be the three different criteria’s for the selection procedure 

of AHP method. As there are three different criteria’s for VM selection, therefore AHP method 

first chooses the most dominating criteria among all. Here in our case, all these three policies are 

equally important therefore, we have given equal weights to them. This process is helpful for 
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selecting the most relevant criteria and alternatives and it starts with the creation of N x M matrix, 

where N represents the number of alternatives for VM and M represents the number of criteria we 

have taken. The first step of AHP VM selection method is shown in following decision matrix in 

Equation 3.8. 

𝑉𝑀𝐴𝐻𝑃 = [

𝐶𝑣𝑚1 𝑀𝑂𝑣𝑚1 𝑀𝑇𝑣𝑚1

𝐶𝑣𝑚2 𝑀𝑂𝑣𝑚2 𝑀𝑇𝑣𝑚2

𝐶𝑣𝑚𝑛
𝑀𝑂𝑣𝑚𝑛

𝑀𝑇𝑣𝑚𝑛

]       (3.8) 

Vm1 to Vmn represents the available VMs (virtual machines) inside the selected host machine 

with three different criteria C, MO, MT which represents the CPU utilization, memory occupied 

and migration time taken by VM. Following several steps will be performed in order to find the 

best alternative for VM selection: 

Step 1: It involves the normalization of initial matrix VMAHP by dividing its each value by sum 

of the values of every alternative as shown in equation 3.9. 

𝑆𝑐𝑜𝑟𝑒(𝑞𝑖𝑗) =  

[
 
 
 
 

𝐶𝑣𝑚1

𝐶𝑡𝑜𝑡𝑎𝑙

𝑀𝑂𝑣𝑚1

𝑀𝑂𝑡𝑜𝑡𝑎𝑙

𝑀𝑇𝑣𝑚1

𝑀𝑇𝑡𝑜𝑎𝑙

𝐶𝑣𝑚2

𝐶𝑡𝑜𝑡𝑎𝑙

𝑀𝑂𝑣𝑚2

𝑀𝑂𝑡𝑜𝑡𝑎𝑙

𝑀𝑇𝑣𝑚2

𝑀𝑇𝑡𝑜𝑡𝑎𝑙

𝐶𝑣𝑚𝑛

𝐶𝑡𝑜𝑡𝑎𝑙

𝑀𝑂𝑣𝑚𝑛

𝑀𝑂𝑡𝑜𝑡𝑎𝑙

𝑀𝑇𝑣𝑚𝑛

𝑀𝑇𝑡𝑜𝑡𝑎𝑙]
 
 
 
 

          (3.9) 

 

Step 2: This step, will create a new matrix VMAHPnew by multiplying the score matrix obtained 

from above step with some predefined weights. We have considered three different criteria, 

therefore, Wij is the associated weight for each criterion which shows the status of each criterion 

and qij shows the score matrix. To find an optimized weight for each criterion is also a topic of 

research by itself, therefore; the priority or importance defined by the user is one of the methods 

for weight optimization. As, we have considered the equal importance for all the resources 

therefore; we have assigned equal weights to all three criteria’s. 

 

𝑉𝑀𝐴𝐻𝑃𝑛𝑒𝑤 = 𝑚𝑎𝑥𝑖 ∑ 𝑞𝑖𝑗 ∗ 𝑊𝑖𝑗  ( 𝑓𝑜𝑟 𝑖 = 1,2,3………𝑁)𝑀
𝑗=1         (3.10) 

 

Step 3: It involves the ranking of VMs where VMs will be ranked according to the values of 

VMAHPnew matrix and VM with the greater value of score will be selected for migration. 
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Table 3.6: Pseudo code for AHP VM selection method 

1   Input: Overutilized host and under-utilized hosts 

2   Output: Selected VMs 

3        For(each host h in host list)do 

4         Vmlist ← h.getvmlist( ) 

5         MaxUtil ← vm.getutil( ) 

6         Max Ram ← vm.getRam( ) 

7         Min MT ← vm.getRam( )/vm.getBw( ) 

8         Create matrix Mtr of VM ij which stores MinUtil,MinRam,MinMT 

9             For(each VM ij in matrix)do 

10                 Z ij ← VM ij /j total  

11                 Score ← Z ij × W ij  

12           End For 

13       Selectedvm ← max(Score) 

14       Migrationlist.add(selectedvm) 

15     End For 

16 Return List of selected VMs 

3.6.5 Results and Discussions 

For simulation, we have considered the data center’s architecture as: 800 heterogeneous host 

machines or servers with six different types. To use this type of architecture in a real life is very 

difficult therefore, we have used CloudSim an open source toolkit.  

Table 3.7: Workload characteristics 

Date No of VMs Mean % SD % 

03-03-2011 

 

1052 12.31 17.09 

 

06-03-2011 

 

898 11.44 16.83 

09-03-2011 

 

1061 10.70 15.57 

22-03-2011 

 

1516 9.26 12.78 

25-03-2011 

 

1078 10.56 14.14 

03-04-2011 

 

1463 12.39 16.55 

09-04-2011 

 

1358 11.12 15.09 

11-04-2011 

 

1233 11.56 15.07 

12-04-2011 

 

1054 11.54 15.15 

20-04-2011 

 

1033 10.43 15.21 
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Configurations of six different types of servers are mentioned in Table 3.1 and table 3.2 

shows the power consumption of these servers. Amazon EC2 [108] provides the VM instance 

that we have used and they are: 1) High-memory extra-large with (3,000 MIPS, 6000 GB RAM), 

2) High-CPU medium with (2,500 MIPS, 850 GB RAM), 3) Extra-large with (2,000 MIPS, 3750 

GB RAM), 4) Small with (1000 MIPS, 1700 GB RAM), 5) Micro with (500 MIPS, 633 GB 

RAM). For the workload of the simulation environment, we have considered 10 days data of 

CoMon Project [17] and characteristics of these 10 days data is shown in table 3.7. 

The key point of VM consolidation is the reduction of energy consumption and SLA 

violation, thus we have used a combined metric to minimize both energy and SLA i.e. ESV. 

Equation 3.4 and 3.1 has been used to estimate SLAV and energy consumption respectively. 

Therefore, the ESV metric can be designed according to equation 3.11. As, the excess of VM 

migration may consume more energy and SLAV, therefore such points should be considered for 

the reduction of energy consumption so that excess of SLA violation and VM migration should 

not occur. Here we have taken the energy consumption, VM migrations, SLAV and ESV metric 

along with execution time (total time for VM consolidation to take place) for the performance 

evaluation of algorithms.  

                                           𝐸𝑆𝑉 = 𝐸. 𝑆𝐿𝐴𝑉                      (3.11) 

3.6.5.1 Performance evaluation 

For the validation of proposed algorithm, we have performed some experiments using real 

workload conditions. we have compared AHP VM selection method with other four existing 

methods of VM selections that are already used in CloudSim [107] such as: 1) Policy of 

Maximum utilization (MU)- selects a virtual machine which has maximum CPU utilization 

among all, 2) Policy of Maximum correlation (MC)- migrates VMs which have a higher value of 

correlation of its CPU utilization or resource usage [10]. 3) Policy of Minimum Migration Time 

(MMT)- which selects the VM which requires minimum time to migrate in comparison to other 

VMs. 4) Policy of Random selection (RS)- it randomly selects few VMs for performing live 

migration. Along with these VM selection methods, there are four different methods for finding 

the over utilized host inside CloudSim and named as: 1) Median Absolute Deviation (MAD) – a 

method for the auto adjustment of threshold value of CPU utilization [10], 2) Interquartile Range 
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(IQR)- a method for setting an upper threshold value of utilization on the basis of robust statistic 

[10]. 3) Local Regression (LR)- method to find threshold value with the estimate value of future 

CPU utilization [10]. 4) Static Threshold method (THR)- method to fix the threshold value of 

host’s utilization. Using this method, the host will be considered as over utilized if its CPU 

utilization exceeds that static threshold. We have taken above mentioned 4 different VM selection 

policies and all 4 overload detection algorithms for performance evaluation by considering 4 

different cases. It has been analysed that AHP VM selection policy provides a better combination 

of results in comparison to MU, MC, MMT and RS VM selection methods using any of the host 

overload detection method. 

 In a real workload environment, for the evaluation of proposed policy we have performed 

ten experiments using the workload conditions of 10 different days and their average results are 

also provided with four different test cases. Energy consumption, number of migration, SLA 

violation and total execution time to complete VM consolidation process are few performance 

parameters that we have considered. Results for the comparison of AHP VM selection method 

with rest of the four VM selection algorithms are graphically shown in Fig 3.5 -3.8. 

Case 1: Median Absolute Deviation (MAD) as a hot spot detection algorithm along with five 

different VM selection policies.  

In the first case, we have considered MAD - Median absolute deviation as hot spot detection 

policy i.e. over utilized host and calculate its impact along with existing VM selection policies as 

well as our proposed method. 

Table 3.8: Comparative results using several VM selection policies with MAD 

Policy Energy consumption 

(kWh) 

No. of 

migration 

SLAV  

10-2 

ESV  

10-3 

Execution time 

(Sec)10-3 

MAD\AHP 28.06 12114 6.40 1.78 64.1 

MAD\MU 37.88 15312 9.67 3.70 109.3 

MAD\MMT 34.90 14214 9.06 3.15 95.0 

MAD\MC 34.9 14249 9.07 3.16 101.4 

MAD\RS 33.14 13463 8.43 2.77 83.6 
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  Table 3.8 shows the results for MAD\AHP, MAD\MU, MAD\MMT, MAD\MC and 

MAD\RS. They depict that along with the minimization of energy consumption individually, 

using MAD as host detection and AHP as a VM selection method also minimizes the ESV metric 

which means it provides trade-off values for energy and SLA violation using lesser number of 

migrations. Figure 3.5 shows the graphical representation of the results 

Case 2 Interquartile Range (IQR) as a hot spot detection algorithm along with five different 

VM selection policies.  

Here also we have considered IQR – Inter Quartile Range as host overload detection policy and 

calculate its impact along with existing VM selection policies as well as our proposed method. 

Table 3.9 shows the results of IQR\AHP, IQR\MU, IQR\MMT, IQR\MC and IQR\RS with their 

graphical representation in figure 3.6 

Table 3.9: Comparative results using several VM selection policies with IQR 

 
Policy Energy 

consumption 

(kWh) 

No. of migration SLAV  

10-2 

ESV  

10-3 

Execution time 

(Sec)10-3 

IQR\AHP 29.34 12505 7.57 2.21 76.86 

IQR\MU 38.01 15314 9.8 3.72 105.78 

IQR\MMT 34.915 14174 9.32 3.24 93.27 

IQR\MC 34.89 14172 9.34 3.22 50.23 

IQR\RS 33.24 13575 8.95 2.97 82.5 

 

Case 3: Static Threshold (THR) as a hot spot detection algorithm along with five different VM 

selection policies.  

In this case, again we have considered THR – Static Threshold as host overload detection policy 

and calculate its effects along with existing VM selection policies as well as our proposed 

method. Table 3.10 shows the results of THR\AHP, THR\MU, THR\MMT, THR\MC and 

THR\RS with their graphical representation in figure 3.7. 
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Figure 3.5: (a) Energy consumed by all VM selection policies. (b) Migration count during MAD. 

(c) Level of SLA violation caused by several VM selection policies. (d) Overall ESV metric and 

(e) total time to Execute the VM consolidation by using all VM selection policies with MAD. 

 

Table 3.10: Comparative results using several VM selection policies with THR 

 
Policy Energy consumption 

(kWh) 

No. of 

 migration 

SLAV 

10-2  

ESV  

10-3 

Execution 

time (Sec)10-3 

THR\AHP 27.79 12956 9.86 2.88 38.74 

THR\MU 39.04 14075 10.00 3.90 46.53 

THR\MMT 35.65 14510 9.98 3.55 42.79 

THR\MC 36.14 14504 9.99 2.60 46.10 

THR\RS 33.69 13242 9.97 3.55 42.36 
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Figure 3.6: (a) Energy consumed by all VM selection policies. (b) Migration count during IQR. 

(c) Level of SLA violation caused by several VM selection policies. (d) Overall ESV metric and 

(e) total time to Execute the VM consolidation by using all VM selection policies with IQR. 

 

Case 4: Local Regression (LR) as a hot spot detection algorithm along with five different VM 

selection policies.  

 Here we have used LR- Linear Regression based over utilized host detection method and 

calculate the results of VM consolidation process with the existing VM selection methods and 

with our proposed method. Table 3.11 shows the results of LR\AHP, LR\MU, LR\MMT, LR\MC 

and LR\RS along with its graphical representation in figure 3.8 
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Figure 3.7: (a) Energy consumed by all VM selection policies. (b) Migration count during THR. 

(c) Level of SLA violation caused by several VM selection policies. (d) Overall ESV metric and 

(e) total time to Execute the VM consolidation by using all VM selection policies with THR. 

 

Table 3.11: Comparative results using several VM selection policies with LR  

 
Policy Energy consumption 

(kWh) 

No. of 

migration 

SLAV  

10-2 

ESV  

10-3 

Execution time 

(Sec)10-3 

LR\AHP 28.57 10086 9.76 283.01 71.94 

LR\MU 34.71 14592 9.81 337 95.87 

LR\MMT 32.08 14234 9.82 312.7 84.98 

LR\MC 32.01 14233 9.80 312.10 85.16 

LR\RS 29.77 13562 9.78 284.26 84.91 
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Figure 3.8: (a) Energy consumed by all VM selection policies. (b) Migration count during LR. 

(c) Level of SLA violation caused by several VM selection policies. (d) Overall ESV metric and 

(e) total time to Execute the VM consolidation by using all VM selection policies with LR. 

 

From above figures and tables, it has been clear that the use of AHP VM selection policy 

provides better performance in terms of the energy consumption, number of migrations 

performed by virtual machine, the level of SLA violation during VM consolidation, overall ESV 

metric as well as execution time i.e. total time taken for the whole process of VM consolidation. 

3.7 SUMMARY 

In this chapter, we provide a solution for first two steps of VM consolidation process. We 

proposed a new method for auto-adjustment of lower and upper threshold values for selection of 
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over utilized and under-utilized servers. We have conducted several experiments for both random 

and real workload environment for analyzing the performance of proposed approach and results 

shows that our proposed method provides a minimum level of SLA violation.  Now, the main 

objective is the minimization of energy consumption, therefore, for solving the problem of VM 

selection we proposed Analytic hierarchy process (AHP) for VM selection which is a multi-

criteria decision-making process. 

This AHP VM selection method selects the VMs by using the migration time of the VM, 

by using the CPU utilization of VM along with the memory occupied by VMs. Again, the 

experiments have been conducted using CloudSim for the performance evaluation of the 

algorithms. From the experimental results, it has been clear that the proposed AHP method 

decreases the energy consumption along with other parameters such as: number of VM 

migrations, level of SLA violation, ESV metric and total time to complete the process. More 

precisely, we have compared the AHP method of VM selection with MU, MC, MMT and RS by 

using IQR, LR, MAD and THR as a host detection method. We have concluded that the adoption 

of AHP VM selection method has reduce the average energy consumption up to 31%, 27%, 27%, 

and 14% respectively for all four cases. 
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CHAPTER 4 

SLA AND PERFORMANCE EFFICIENT HEURISTICS FOR VM 

PLACEMENT 

 

This chapter provides three different heuristics for solving the third step of VM consolidation 

process i.e. the problem of VM placement. Here, the problem has been solved using the basics of 

classical approach of bin packing algorithms. 

4.1 INTRODUCTION 

Cloud computing has transformed the working culture of IT company’s due to which the demand 

for cloud resources has been increased in last few years which further raised the level of energy 

consumption of data centers. This issue of inefficient energy consumption can be resolved by 

using the features of virtualization technology. Virtualization is the backbone of this cloud 

environment which makes the cloud resources available to cloud users. It lets the user to use the 

resources by dividing single physical machine into several virtual machines, in which resources 

are in the form of logical or virtual. Thus, by generating several VMs instances on a single server, 

resource utilization of the data centers can be improved. These virtual machines will be placed 

over some another machine without disturbing the current running applications. This method 

improves the resource utilization and minimization of the energy consumption, but the use of 

large numbers of system’s resources and migration of the VMs may cause SLA violations. 

Therefore, there must be some appropriate policies that can minimize the migration count of VMs 

during VM placement. It is very important for the cloud environment to deliver the reliable QoS- 

Quality of Services mentioned in the agreement that has been signed between service provider 

and user known as Service Level Agreement (SLA), so that cloud service providers can 

efficiently deal with energy-performance trade-offs. 

 Virtual machine placement can be understood by different aspects in the dynamic 

consolidation of virtual machines. The algorithms of VM placement are categorized into QoS 

based approach and power based approach. Besides, each approach is separated into static and 

dynamic placement. VM placement problem has been solved as a bin packing in which items 
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such as virtual machines are to be packed into variable bins such as physical machines such that 

minimum number of bins could be used to maintain the infrastructure cost. 

4.2 RELATED WORK 

Anton et al. [10] separated the VM consolidation into several steps: first is to select the under and 

overutilized host from data center, second is the selection of VMs from selected hosts for 

migration and lastly to design a new placement policy for selected virtual machines. Several 

researchers have presented their ideas for the energy minimization of data centers along with the 

several steps for efficient performance of data center by improving the various phases of the VM 

consolidation. Anton et al. used the concept of bin packing method for the mapping of virtual 

machines over the host by modifying the best fit decreasing heuristic which is known as MBFD. 

It allocates the virtual machine to that host which has the smallest increase in power consumption 

after utilization. Related to this method Hung et al. [13] proposed EPOBF heuristic (Energy 

aware and performance per watt) for the selection of most efficient host for mapping each virtual 

machine. EPOBF provides the VM-PM mapping on the basis of the ratio of total sum of the 

MIPS of all cores of the host machine to the total power consumption of host at 100% utilization. 

In [109, 110] authors presented dynamic round robin (DRR) and Round Robin algorithm (RR) to 

consolidate virtual machines, according to these algorithms the host machine will not take new 

virtual machines, if it has already other virtual machines running over it. If these already running 

VMs are on same machine from longer time then that machine will migrate those virtual 

machines to some another host and will try to shut down that particular host machine. Hori et al. 

[6] presented new algorithm for VM placement on the basis of host utilization and minimum 

correlation. According to which, virtual machines will be migrated to that host where the value of 

correlation of the CPU utilization among the VMs presented in that host is minimum. Their 

proposed algorithm provided the trade-off values between energy consumption and performance. 

Guangjie et al. [11] also presented power aware and remaining utilization algorithm to map the 

virtual machines over host. They have also revealed the existence of a trade-off values between 

SLA violation and energy consumption, but VM consolidation can result high level of violation 

which affects the quality of the services that are mentioned in the SLA. 
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 In above-mentioned literature, the authors have considered the energy minimization and 

SLAV as their primary objective. From the existing studies and their results, we have analyzed 

that SLA violation and Energy consumption are indirectly proportional to each other. Moreover, 

it is important to deliver the better QoS- Quality of Services to cloud users that has been 

mentioned in the Service Level Agreement (SLA). This SLA level should not be violated in order 

to maintain the level of trust between the cloud provider and user. Thus, in contrast to this, major 

objective is to design performance efficient consolidation without compromising the QoS with 

the minimization of SLA violation, minimization od performance degradation caused by 

excessive consolidation, reducing the count of extra migration and to minimize the execution 

time taken by consolidation process. Proposed heuristics for VM placement can strictly handle 

the QoS and Service Level Agreement (SLA) for heterogeneous data centers in order to maintain 

the trust level between cloud service providers and cloud service users.  

4.3 PROPOSED SOLUTION FOR VM PLACEMENT 

Throughout the process of VM consolidation, to select a suitable host for the mapping of VMs is 

very difficult process. Therefore, we should design some new placement approaches that can 

improve the utilization of resources without compromising the QoS- Quality of Services. 

Therefore, to accomplish this objective, we have designed the solution for VM placement 

problem which is based on the classical bin packing and its details are provided in the following 

sub section.  

4.3.1 VM placement as a bin packing 

The problem of bin packing is NP –hard with polynomial time approximation algorithm. It deals 

with the packing of several items of different sizes into several bins and for efficient packing 

there should be minimum number of bins to be used. This section shows the model of VM 

placement as bin packing where each physical machine (PM) represents the bins and virtual 

machine (VM) represents the items to be packed inside the bin. This VM placement model 

consists M virtual machines with H physical machines inside the data center where, M VMs can 

be represented as: {Mj (MIPSj, BWj, RAMj, PEj,) | j= 1,2,….. M} and H physical machines can be 

represented as: { Hi (MIPSi, BWi, RAMi, PEi) | i = 1,2….. H } . Each virtual machine VMj needs 

few amount of MIPSj (millions instructions per second), network bandwidth (BWj Kbits/s), RAMj 
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(Mbytes of physical memory) and processing elements (PEj). These resources are provided by the 

physical machines to virtual machines.  

 We have assumed the heterogeneous data center’s architecture where the linear 

relationship exists between the power consumption (P) and CPU utilization (U) of every host at 

every single time frame t as shown in formula given below. 

𝑃(𝑈𝐶𝑃𝑈(𝑡)) =  𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑚𝑎𝑥 − (𝑃𝑖𝑑𝑙𝑒). 𝑈𝐶𝑃𝑈(𝑡))          (4.1) 

Though the objective is to lessen the number of active PMs inside the data center, we have 

used di as a decision variable for every host i which will be set as 1 if i is selected for the mapping 

of VMs otherwise di will be 0. Following equations 4.2- 4.4 shows the objective function with 

different constraints. 

min𝐻 =  ∑ 𝑑𝑖
𝐻
𝑖=1             (4.2) 

Subject to fulfil the constraint for each VM 

Most important constraint during VM mapping is that the sum of all the resources requested by 

VM should be equal to or less than the maximum available capacity of every host Hi (i = 1,2,….. 

H): 

                          𝐻𝑖  (𝑅𝐶𝑃𝑈, 𝑡𝑠)  ≥  𝐻𝑖 (𝑇𝐶𝑃𝑈 , 𝑡𝑠) − ∑ 𝑉𝑀𝑗  (𝐷𝐶𝑃𝑈 ,𝑡𝑠)
𝑀
𝑗=1         (4.3) 

                          𝐻𝑖  (𝑅𝑟𝑎𝑚, 𝑡𝑠)  ≥  𝐻𝑖 (𝑇𝑟𝑎𝑚 , 𝑡𝑠) − ∑ 𝑉𝑀𝑗  (𝐷𝑟𝑎𝑚 ,𝑡𝑠)
𝑀
𝑗=1              (4.4) 

In above equations RCPU  and Rram represents the available CPU utilization and RAM of ith 

machine at time frame ts, TCPU  and Tram, represents the total capacity of ith machine, DCPU and 

Dram represents the requested resources of CPU and RAM by jth VMs.  

4.3.1.1 Proposed Heuristics for VM Placement ARBF- Available Resource Best Fit 

For providing VM-PM mapping by using the basics of bin packing, we have proposed 3 different 

heuristics by considering 3 types of computing resources such as physical memory (RAM), MIPS 

and the power consumption of each host machine during VM placement. These three heuristics 
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are also the modifications of BFD- Best Fit Decreasing and named as (ARBFH1) Available 

Resources Best Fit Heuristic 1, ARBFH2 (heuristic 2) and ARBFH3 (heuristic 3). Figure 4.1 

shows the pictorial view of VM placement using above mentioned resources such as: U, P and M 

represents the current CPU utilization, rise in power consumption of host after allocation and 

available Physical memory. VM1, VM2……...VMm represents m different virtual machines. VM 

list contains the VMs that requires to perform migrations according to current and past utilization 

of resources. 

 

Figure 4.1: Available Resources Best Fit (ARBF) model for VM Placement 

Available Resource Best Fit Heuristic 1 

This heuristic allocates the host according to MR value with the criteria of maximum available 

remaining resources. H1 first starts with checking the host whether it has available MIPS and 

RAM to allocate for VM; if it has available resources, then, it will calculate the utilization factor 

of the host which is based on the available power of host after the mapping of VMs and total 

MIPS allocated for VM. As the VM-PM mapping will be conducted using MR (Maximum 

resources) value, therefore, this MR can be calculated using Utilization that has been calculated 

in the previous step along with the Available Power of the host. The pseudo-code of ARBF H1 is 

given below in Table 4.1. 
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Available Resource Best Fit Heuristic 2 

 

This policy provides the mapping of the VMs by making the use of both current, past utilization 

and available memory (RAM) of each host machine. We have measured the utilization using both 

the current as well as MIPS utilization of the CPU in previous time frames. This algorithm starts 

with the checking of the availability of resources i.e. MIPS and RAM of the host. If the host has 

sufficient resources to fulfil the requirements of VM than for finding the appropriate host for the 

VM, utilization of the host will be calculated. Utilization in the case of ARBF H2 considered the 

previous utilization as well as the available MIPS of the host. Finally, ARBF H2 allocates the 

VM to host depending upon MR value. This MR value uses both the utilization factor and 

available RAM for VM-PM mapping. Table 4.2 shows the pseudo-code for ARBF H2.  

Table 4.1: Pseudo code for Available Resource Best Fit Heuristic 1 

1 Input: Host List, VM List 

2 Output: Migration Map 

3 For each VM in VM List do 

4      Allocated Host = NULL 

5      Available resource = Max value 

6       For each Host in Host List do 

7            If (availableMIPSofHost >= RequestedMIPSofVM &&  

            availableRAMofHost >= currentRequestedRamofVM); 

8           Util = sqrt (availableMIPS – totalMIPSallocatedfovm) 

9           MR = sqrt (Util/Available Power) 

10                  If (MR <= Available resource) 

11                     Available resource = MR 

12                     Allocated Host = Host 

13                 End if 

14            End if 

15           MigrationMap.add (vm, Allocated Host) 

16       End for  

17 End For 

18 Return Migration Map 

 

Available Resource Best Fit Heuristic 3 

The utilization of the resources, as well as their utilization sequence and criteria along with their 

effects on power consumption, are the main factors that affect the performance of the system 

during VM placement. Here in our proposed heuristics, we have considered all these resources 

one by one or together some time. Moreover, we have also considered their previous and current 



66 
 

utilization. ARBF H3 will consider both the current state and past utilization of resources such as 

MIPS, RAM and power consumption of the host.  

Table 4.2: Pseudo code for Available Resource Best Fit Heuristic 2 

1 Input: Host List, VM List 

2 Output: Migration Map 

3    For each VM in VM List do 

4        Allocated Host = NULL 

5        Available resource = Max value 

6             For each Host in Host List do 

7                 If (availableMIPSofHost >= RequestedMIPSofVM &&  

                availableRAMofHost >= currentRequestedRamofVM); 

8                 Util = sqrt (previousUtilizationofMIPSofHost –  

                           AvailableMIPSofHost); 

9                 AvailRAM = UtilizationofRAMofHost –   

                                        CurrentRequestedRAMofVM; 

10                 MR = sqrt (AvailRAM + Util) 

11                        If (MR <= Available resource) 

12                             Available resource = MR 

13                             Allocated Host = Host 

14                        End if 

15                  End if 

16               MigrationMap.add (vm, Allocated Host) 

17       End for  

18 Return Migration Map 

 

The consideration of previous utilized resources predicts the behavior of resources in advance and 

avoid the situation of system load imbalance.  The lesser the utilization of CPU, the lesser will be 

the power consumption, as they both have a direct relationship and accordingly the MR value will 

be used to find the most suitable host for VM.  

4.4 RESULTS AND DISCUSSION 

4.4.1 Data center architecture and performance metrics 

This section describes the data center’s architecture that we have used in our work.  

Heterogeneous data center has been chosen with H heterogeneous machines consists of different 

computing resources such as: physical memory, CPU utilization in MIPS, processing elements 

and network bandwidth. Moreover, these physical machines also contain M heterogeneous VMs 

(virtual machines) that are also characterized in terms of some computing resources. 
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Table 4.3: Pseudo code for Available Resource Best Fit Heuristic 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

we have used six different types of servers with the different configuration shown in table 

3.1 of chapter 3. Each CPU has c cores and each core has m MIPS, therefore total MIPS of CPU 

is c * m. These six different servers are: AcerAT150 F1, AcerAR320 F1, IBMX3250 

XeonX3480, IBMX3250 XeonX3470, HP ProLiantG4 Xeon 3075 and HP ProLiantG4 

Xeon3040. We assessed our proposed heuristics in CloudSim that enables simulation and 

modelling of cloud computing systems. 800 heterogeneous hosts are used to conduct the 

experiments with four different types of VM instances (High CPU medium instance, small 

instance, Micro instance and Extra-large instance) are used from Amazon EC2. Here also, we 

have simulated the experiments using the data provided by PlanetLab using its project for 

monitoring infrastructure i.e. CoMon project.  QoS that we have guaranteed to provide during the 

VM placement are mentioned in the form of Service level agreement. The concept of energy 

minimization is very popular nowadays but, the over provisioning of the resources can increase 

the level of SLA violation and degrade the performance due to excessive migration. The SLA 

violation (SLAV) can be calculated using two metrics: degradation of performance due to the 

migration of host (PDM) and the percentage of time when an active host reaches to 100% CPU 

utilization (SLATAH) defined in equation 3.2 and 3.3 of chapter 3. But in order to assess the 

1 Input: Host List, VM List 

2 Output: Migration Map 

3   For each VM in VM List do 

4        Allocated Host = NULL 

5        Available resource = Max value 

6               For each Host in Host List do 

7                    If (availableMIPSofHost >= RequestedMIPSofVM &&    

                  availableRAMofHost >= currentRequestedRamofVM); 

8               MR = sqrt       

                    AvailableUtilizationofMIPSofHost/previousUtilizationofMIPS) 

9                           If (MR <= Available resource) 

10                                Available resource = MR 

11                                Allocated Host = Host 

12                           End if 

13                   End if 

14                  MigrationMap.add (vm, Allocated Host) 

15            End for  

16    End For 

17 Return Migration Map 



68 
 

performance of proposed heuristics for VM placement, we have used an ESM metric-Energy 

SLA migration introduced in [65] to make our results comparable with some benchmarks 

algorithms presented with them and the one defined in [13]. This ESM metric is shown as below 

equation 4.5: 

𝐸𝑆𝑀 = 𝐸𝑛𝑒𝑟𝑔𝑦 ∗ 𝑆𝐿𝐴𝑉 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛         (4.5) 

4.4.2 Results and discussions  

VM consolidation contains different steps that we have already defined in chapter 3. In this 

chapter, the combination of best policies presented by Anton et al. [10] are considered as a 

reference scenario for the comparison. MMT (Minimum migration time), LR (Linear regression) 

and PABFD are compared to the scenario described in [13] and with our proposed heuristics. 

Five different performance metrics that may affect from these policies are 1) Migration count, 2) 

SLA violation, 3) PDM, 4) Energy consumption and 5) Total time taken by consolidation 

process. But in order to compute the total effect of each policy, the ESM parameter will be 

calculated and used to find out the best one. 

Table 4.4: Comparative results for different VM placement policies  

Policy SLAV Number of 

Migrations 

PDM Execution Time 

(Sec) 

Energy consumption 

(KWh) 

ESM 

PABFD[10] 0.00242 13448 0.04 0.07009 30.01 976.6 

BFD [5] 0.00072 8759 0.02 0.7696 24.39 153.8 

EPOBFD[13] 0.00094 13647 0.04 0.11015 25.5 327.1 

ARBF H1 0.00035 8235 0.02 0.07707 51 146.9 

ARBF H2 0.00033 7283 0.015 0.0635 48 115.3 

ARBF H3 0.00065 3646 0.01 0.05976 30.35 71.9 

 

 We have done the simulations for the 10 days on ten different workloads provided by 

COMON project [17] and result of their mean values for SLAV, PDM, numbers of migrations, 

Energy consumption as well as ESM metric are shown in Table 4.4. The percentage of SLA 

violations due to overutilization of host and performance degradation due to migration are shown 

in figure 4.2. Figure 4.3 depicts the count of VM migrations takes place during VM placement; 

Figure 4.4 shows the percentage of performance degradation during the simulation; Figure 4.5 

depicts the average value for the total energy consumed by data center; Figure 4.6 shows the 

execution time taken by all the policies for the placement of VMs; and Figure 8 depicts the ESM 
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metric which is used to measure the overall performance with effect of energy consumption, 

SLAV and number of migrations.  

 

 

Figure 4.2: SLA violations occurs using several VM Placement policies 

Figure 4.2 shows that PABFD provides the maximum level of SLA violation. This SLA 

violation depends upon over utilization of host and can be calculated as the SLA time per active 

host with the percentage of performance degradation during migration. Lesser the migration 

during placement, lesser will be the performance degradation which provides the lesser increase 

in SLA violation. Moreover, the PABFD and EPOBFD have used only the power consumption of 

host as a resource for the mapping of VMs therefore; there may be chances that VMs are not 

provided with the required level of performance. ARB H1 provides a minimum level of SLA 

violation because of the resources they have used. ARBF H1 used MIPS utilization as well as 

power consumption both for the mapping of VMs over physical machines. 

 As depicted in Figures 4.2-4.7, the use of ARBF H1, H2 and H3 provides better 

performance in terms of SLA violation, migration count, execution time and PDM respectively in 

contrast to another heuristics. However, these ARBF heuristics consume more energy but 
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simultaneously delivers a good level of ESM metric by reducing the level migration count and 

SLA violations during simulation. 

 

 

Figure 4.3: Migration count using several VM placement policies 

 

Performance degradation during the Placement depends upon the degradation caused by 

VM which is estimated as the 10% of CPU utilization during the migration. Thus, the 

performance degradation reflects the requested resources of VM. ARBF H3 provides minimum 

performance degradation because of the impact of the previous utilization of MIPS during the 

allocation of the host. 

 

 
 

 

Figure 4.4: Performance degradation during migration using different policies 
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Figure 4.5: Energy consumed by data center during VM placement 

 

 
 

 Figure 4.6: Execution time taken by different policies during VM placement  
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Figure 4.7: Results of ESM for different policies of VM placement 

 
Furthermore, as depicted in Table 4.5, the adoption of ARBF H1, H2, H3 leads to the best ESM 

improvement as compared to PABFD with 84.9%, 88.9% and 92.6% respectively. ARBF H1, H2, 

H3 provides ESM improvement by 44.79%, 42.7% and 53.25% respectively and similarly, ARBF 

H1, H2, H3 leads with 52.9%, 64.7% and 78.01% as compared to EPOBFD. 

Table 4.5: Comparative results for improvement of proposed heuristics 

Policy ESM % (improvement in 

comparison to PABFD 

[10])  

% (improvement in 

comparison to BFD [5]) 

% (improvement in 

comparison to EPOBFD 

[13]) 

ARBF H1 146.9 84.9 44.79 52.9 

ARBF H2 115.3 88.1 42.7 64.7 

ARBF H3 71.9 92.6 53.25 78.01 

 

4.4.3 Statistical analysis 

This section presents the statistical analysis of the proposed and benchmark algorithms. 

According to Ryan-Joiners normality test, ESM values of all these scenarios (LR/MMT/PABFD, 

LR/MMT/BFD, LR/MMT/EPOBFD, LR/MMT/ARBF H1, LR/MMT/ARBF H2 and 

LR/MMT/ARBF H3) follows a normal distribution with P value > 0.1. Then we have conducted 
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paired T-test to determine the VM placement policy that minimizes the ESM metric across all 

algorithm combinations. Table 4.6 provides the results based on paired t- tests for all the 

scenarios. The T-tests have shown the adoption of LR/MMT/ARBF H1, H2, and H3 leads to the 

lower value of ESM metric with P-value < 0.001. From the results, we can conclude that our 

proposed heuristics have the best performance regarding ESM metric. Table 4.7 compares the 

benchmark algorithms and proposed heuristics regarding the mean values of ESM with 95% 

confidence interval. From obtained results, it can be concluded that LR/MMT/ARBF H3 has the 

best performance regarding ESM metric, then ARBF H2 and ARBF H1 has next best 

performance respectively 

Table 4.6: Comparison of all Policies using paired t -tests 

Policy 1 (ESM) Policy 2 (ESM) Difference P-value 

LR/MMT/PABFD (976.6) LR/MMT/ARBF H1 (146.9) 808.5(962.3,153.8) P-value <.001 

LR/MMT/BFD (153.8) LR/MMT/ARBF H1 (146.9) 185(339, 154) P-value <.001 

LR/MMT/EPOBFD (327.1) LR/MMT/ARBF H1 (146.9) 205.2(359.0,153.8) P-value <.001 

LR/MMT/PABFD (976.6) LR/MMT/ARBF H2 (115.3) 839.2(962.3,123.2) P-value <.001 

LR/MMT/BFD (153.8) LR/MMT/ARBF H2 (115.3) 216(339,123) P-value <.001 

LR/MMT/EPOBFD (327.1) LR/MMT/ARBF H2 (115.3) 235.8(359.0,1232.2) P-value <.001 

LR/MMT/PABFD (976.6) LR/MMT/ARBF H3 (71.9) 889.4(962.3,72.9) P-value <.001 

LR/MMT/BFD (153.8) LR/MMT/ARBF H3 (71.9) 266(339,73) P-value <.001 

LR/MMT/EPOBFD (327.1) LR/MMT/ARBF H3 (71.9) 286.1(359.0,72.9) P-value <.001 

 

Table 4.7: Comparison of benchmark algorithms with proposed heuristics regarding ESM metric 

Policy ESM CI (95%) 

LR/MMT/PABFD [10] 962.32 (820.6, 1104.0) 

LR/MMT/BFD [5] 338.79 (3,675) 

LR/MMT/EPOBFD [13] 358.9 (249.1,468.9) 

LR/MMT/ARBF H1 153.8 (109.5,198.5) 

LR/MMT/ARBF H2 123.17 (78.9, 167.5) 

LR/MMT/ARBF H3 72.8 (49.93, 96.03) 

4.5 SUMMARY 

With the world-wide increase in demand of data centers, the problem of high energy consumption 

and carbon emission is very popular these days and several studies or theories have been provided 

to tackle this problem and one of them is VM consolidation. It consolidates the VMs to reduce 
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the energy consumption by performing its different steps. It involves migrations and 

consolidations of VMs over lesser number of machines. VM consolidation may affect the 

performance of systems and level of trust between cloud service providers and users by not 

providing the guaranteed QoS thus, in this chapter our main aim was the improvement of the 

performance of cloud data centers by improving the ESM metric, SLA violations and number of 

migrations. This chapter has proposed ARBF heuristics- H1, H2, H3 as a new VM placement 

heuristics for VM placement. These heuristics select a host for the mapping of virtual machines 

on the basis of current and past utilization of resources. We have calculated the results of 

experiments using open simulation framework CloudSim and concluded that proposed heuristics 

provides better results of the data center’s performance with 88%, 84%, 92% improvement in 

ESM metric. 
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CHAPTER 5 

META HEAURISTICS APPROACH FOR VM PLACEMENT 

 

This chapter provides the meta-heuristic-based solution for VM placement. First, we will discuss 

the trend of heuristic as well as meta-heuristic approaches and how these both affect the 

performance of data center. Later on, we will provide nature inspired algorithm for VM 

placement 

5.1 INTRODUCTION 
 

The concept of cloud computing has been defined by Buyya [112]. It is a parallel and distributed 

system with several virtualized computers where the provisioning of cloud resources is provided 

according to the mentioned SLA (Service Level Agreement) that has been signed between cloud 

service user and service provider. Virtualization is one of the main characteristics of cloud 

environment and it provides elasticity to the environment and helps to minimize the cost of data 

center’s infrastructure. It is also an efficient technology for the sharing of resource with in a cloud 

environment. One of the virtual machine manager such as hypervisor gives the permission for 

several OS- operating systems to run on single physical machine. The allocation of several virtual 

machines on a single host can minimize the cost of infrastructure as well as energy consumed by 

data center. Thus, the objective of current research is to minimize the energy consumption of 

datacenter and performance of cloud environment. Our study emphases on the sub part of VM 

consolidation process which is VM placement process for the management of energy efficient 

resources. It also helps for the mapping of VMs to most suitable servers. VM placement tries to 

find most optimam solutions for VM-PM mapping. Thus, there are several techniques to handle 

this problem such as nature inspired algorithms, bin packing algorithms (already discussed in 

chapter 4), bin-packing techniques, linear integer programming, constraint programming and 

many more. In this chapter, we have performed the evaluation of various bin packing methods of 

VM placement and compared them with our proposed one to understand the trend of VM-PM 

mapping and how it affects the overall performance of cloud environment. A decision-making 

system for the placements of VMs using basic Genetic algorithms has been presented by us in 

this chapter. Their comparison gave us a new direction to study different evolutionary algorithms 
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and thus, we proposed a novel VM placement algorithm using NSGA- Non-Dominated Sorting 

Genetic Algorithm. 

5.2 RELATED WORK   

VM placement is a NP hard problem and multi-objective optimization problem which can be 

solved by both meta-heuristic and heuristic techniques such that: linear programming, Bin 

packing, constraint programming and using Evolutionary algorithms. Paolo et al. [77] presented 

the concept of genetic algorithm for VM allocation in distributed systems. Though, the traditional 

algorithms such as bin packing, linear integer programming and many others were not able to 

offer optimal solutions therefore, several algorithms have been proposed to provide optimal 

solution for VM placement. Bandi et al. [79] also used genetic algorithm for solving VM 

placement and minimizing the energy consumption by making the use of current requested 

resources of VMs as well as the usage of PMS in previous time frame. Shi Chen et al. [80] 

proposed hybrid genetic algorithm (HGA) which is also the combination of knapsack problem 

and used the concept of multiple fitness functions for the verification and the effectiveness of 

their proposed algorithm. Many researchers [83-84] presented GGA (Grouping genetic algorithm) 

to attain more efficient results and they were better than non-grouping algorithms but they didn’t 

consider the relationship between VMs, servers and data centers. Therefore, Fereydon et al. [85] 

also used GGA as a reference algorithm and planned MLGGA (Multi-Level Grouping Genetic 

Algorithm) to find relationship between every individual and their groups as well. Yu-Shuang. D 

et al. [86] proposed another approach for VM placement by using the concept of genetic 

algorithm. They proposed (DPGA) Distributed Parallel Genetic Algorithm which executes in two 

stages according to which, the initial population is selected from the solution space in the first 

stage by implementing GA parallely on multiple hosts and solutions obtained from the first stage 

will become the original population for the second stage thus, the optimal solutions can be found. 

Joseph C.T et al. [87] proposed a novel approach for VM placement i.e. FGA (Family Genetic 

Algorithm) which divides the set of population into different families and improved the speed of 

GA by processing each family parallely and this way, FGA decrease the total execution time of 

VM placement algorithm. 
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Evolutionary algorithms are commonly adopted now a day to attain optimal solutions. 

This study compares the various bin packing PABD, EPOBF and MWFD algorithms of VM 

placement with the basic genetic algorithm, and analyzed that how this placement affects the 

performance of cloud environment. Finally, the aforementioned points help to design new VM 

placement algorithm so that minimization of energy can be achieved using best optimal solution. 

Genetic Algorithms (GA) are the main class of nature inspired techniques for VM placement 

thus, we have also proposed a novel approach for VM placement by making the use of non-

dominated sorting genetic algorithm (NSGA) which is also the variation of GA and used to deal 

with the limitations of current techniques to provide optimal results than existing ones 

5.3 PROPOSED DECISION-MAKING MODEL FOR VM PLACEMENT  

For data center’s performance improvement, the VM placement system that we have considered 

uses the CPU utilization, several PEs (Programming Elements), power consumption of host after 

VM-PM mapping. It involves some kind of decision-making process for efficient mapping. The 

proposed model of VM placement has been designed using decision-making system shown in 

Figure 5.1. These decision-making system can be modelled using linear programming, 

evolutionary algorithms, neural networks and many others. Evolutionary algorithms provide 

optimal results for the searching of suitable host for VMs than classical bin packing methods but 

they take more computational time for the process of searching. Meta-heuristics algorithms such 

as GA are beneficial to use when it is hard to find some optimal solutions because they have large 

search space and have the capability to adjust their search space automatically, where as traditional 

methods don’t have. Genetic algorithms start with the random set of populations. As, GA 

computes the effects that the system has, after the deployment of new VM resources, then GA will 

choose the set of solutions which will have least effects on the system using its operators, by doing 

so GA provides better VM placement and accuracy in comparison to existing technologies. 

5.3.1 Modeling of GA-VMP (Genetic Algorithm Virtual Machine Placement) 

To solve the problem of a multi objective optimization of VM placement, our main objective is 

the mapping of VMs to the physical host using optimal placement. Virtual machines from 1 to M 

and physical hosts from 1 to P can be represented as: 
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Figure 5.1: VM Placement using Decision making model 

𝑃𝑀𝑝 = {𝐶𝑃𝑈𝑝,𝑀𝐸𝑀𝑝, 𝑃𝐸𝑝, 𝐵𝑊𝑝}                       (5.1) 

𝑉𝑀𝑚 = {𝐶𝑃𝑈𝑚, 𝑀𝐸𝑀𝑚, 𝑃𝐸𝑚, 𝐵𝑊𝑚                      (5.2) 

From above equation CPUp is the available processing power of machine and CPUm is the 

requested processing power of VMs, the total amount of memory available at host and the total 

amount of memory requested by VM is represented by MEMp, MEMm respectively. Similarly, the 

number of available programming elements and available amount of bandwidth inside the host is 

represented by PEp, BWp whereas the requested programming elements and network bandwidth by 

VMs is represented by PEm , BWm respectively. The main focus of optimal placement is to 

maximize the performance of cloud environment and it can be reached by using the following 

constraints shown in equations 5.4 – 5.7. The value of decision variable Xij is dependent on i and j 

i.e. it would be 1 if VM i is mapped over PM j otherwise 0. Requested resources of selected VMs 

should be less than the available resources of host and moreover, the placement of VMs should 

provide minimum increase in power consumption. 

Objective: Maximize {Performance of datacenter}                   (5.3) 
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Subject to fulfill the constraints: 

 

              ∀𝑖 ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 = 1 { 𝑖𝑓 𝑖 𝑉𝑀 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑗 ℎ𝑜𝑠𝑡 𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 }    (5.4) 

                                ∀𝑗 ∑ 𝑋𝑖𝑗 . 𝑉𝑀𝑖
𝐶𝑃𝑈𝑚

𝑖=1 ≤ 𝑃𝑀𝑗
𝐶𝑃𝑈            (5.5) 

                             ∀𝑖 ∑ 𝑋𝑖𝑗 (𝑀𝑖𝑛 (𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛))𝑝
𝑗=1           (5.6) 

                       ∀𝑖  ∑ 𝑋𝑖𝑗 
𝑝
𝑗=1 (𝑀𝑎𝑥(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑃𝐸𝑠))           (5.7) 

GA starts with the randomly generated initial set of population i.e. random VM-PM map. 

Each candidate set of the population represents the mapping of VM and PM present inside data 

centers. From each population set, the algorithm will select two individuals of the population using 

tournament selection operator and then perform genetic operations such as crossover and mutation 

on them. Population set is exchanged by the resulting mapping solution of VMs and physical 

machines or new individuals that we have obtained after performing genetic operations. This 

process will be repeated until we obtained the best VM-PM map based on the fitness value, which 

is nothing but the estimated values of performance metrics. Steps for VM placement using Genetic 

Algorithm are given below: 

Step 1: Initialization of the parameters of GA (mp, p, N – mutation, crossover rate and iterations) 

Step 2: Random placement all the VMs over host (random initialization of population) 

      a) Do 

      b) To calculate the fitness value for each chromosome from the population set 

        c) Select individuals P1and P2 from population 

      d) Perform Mutation (p1, p2, mp) 

  e) Perform Crossover (P1, P2, cp) 

            f) Replace the population set 

            g) Until (best VM-PM map found) 

Step 3: Repetition of step 2 util N number of iterations achieved 

Step 4: Return VM-PM placement map 
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Figure 5.2: Representation of initial population using Tree structure 

Figure 5.2 shows the tree like structure or representation of VM placement where every 

individual or chromosome of the population set is represented as a tree with root node as a global 

resource manager to monitor the utilization of host machine. It helps for the selection of most 

suitable host for placement. The next level of root represents the physical machines along with the 

virtual machines as a child node of the tree.  

5.3.2 Performance evaluation and results 

To evaluate the performance of VM placement techniques, here we have considered 700 

heterogeneous nodes with different CPU model, cores, RAM and different frequency (MHZ) 

using CloudSim environment. Number of virtual machines that we have used are varying 

according to dataset provided by PlanetLab [17] and uses random workload conditions of CPU 

utilization. We have taken six different types of host or servers for our simulations: IBM Server 

x3550, IBM Server x3250, HP ProLiant G5, HP ProLiant G4, Acer AR320 F1 and Acer AT150 

F1. After considering this framework, we have evaluated the performance metrics and analyze the 

results of experiments that have been obtained on 4 different days with a different number of 

virtual machines shown in table 5.1. These performance parameters are SLA violation and energy 

consumption. We have taken the instances of four different types of VMs from Amazon EC2. 
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These instances are: (3000, 2500, 2000, 1000, 500 MIPS) CPU utilization and (6000, 850, 3750, 

1700, 633 GB) RAM.  

 The process of VM consolidation may degrade the performance of datacenter due to the 

unnecessary migration of virtual machines which may further increase the level of SLA 

violations. Therefore, the best VM placement policy will be the one which avoids the 

unnecessary migrations by providing least SLA violations with minimum energy consumption. 

Also, the SLA violation may depend upon the degradation of the performance due to VM 

migration along with the SLA time per active host which represents the percentage of time when 

CPU utilization reaches to 100% defined in equation 3.2 of chapter 3. As the term of SLA 

violations and energy consumption are interrelated to each other, therefore, we have used both 

these factors to compare the performance of data center. 

 We have simulated the VM placement techniques using CloudSim and analyzed the results 

of three different bin packing by comparing them with our proposed genetic algorithm decision-

making system. We have conducted several experiments using real workloads conditions for their 

detail analysis. Two performance metrics have been chosen for the comparison or analysis of four 

different VM placement policies.  As, there are many alternatives for the selection of host for the 

allocation of VMs and selection of VMs for migration but here, we execute LR (Linear regression) 

policy for host allocation and VMs are to be selected using minimum migration time policy 

(MMT) proposed by Anton et al. [10]. From literature LR/MMT has been found as the best 

combination for VM consolidation, thus we have also used this combination during different VM 

placement techniques. Four different policies are here for VM placement: 1) PBFD, 2) EPOBF 3) 

SWFDP 4) GA and their results are varying according to the number of VMs used on different 

days and thus, mentioned in four different tables given below. 

Table 5.1: Number of VMs used on four different dates 

Dates No of VMs 

9-04-2011 1358 

11-04-2011 1233 

12-04-2011 1054 

20-04-2011 1033 
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Table 5.2: Energy consumption and SLAV for dataset of (9th April 2011) 

Policies Energy consumption (KWh) SLAV (%age) 

PABFD 34.61 0.00195 

EPOBF 32.95 0.00072 

SWFDP 93.01 0.00296 

GA 28.4 0.00052 

 

Above table 5.2 illustrates the SLA violations and energy consumed by datacenter during 

VM placement. These results from simulations are obtained for 4 different policies using the data 

set of PlanetLab which contains 1,358 VMs on 9th April 2011 and similarly, table 5.3 shows the 

same for 11th April 2011 by considering 1,233 VMs and table 5.4, 5.5 also represents the 

simulation results for 12th and 20th April using 1,054 and 1,033 VMs. 

Table 5.3: Energy consumption and SLAV for dataset of (11th April 2011) 

Policies Energy consumption (KWh) SLAV (%age) 

PABFD 27.63 0.0027 

EPOBF 26.74 0.00091 

SWFDP 86.1 0.0097 

GA 22.2 0.00063 

Table 5.4: Energy consumption and SLAV for dataset of (12th April 2011) 

Policies Energy consumption (KWh) SLAV (%age) 

PABFD 29.8 0.00215 

EPOBF 28.33 0.00088 

SWFDP 89.5 0.0078 

GA 24.4 0.000491 

Table 5.5: Energy consumption and SLAV for dataset of (20th April 2011) 

Policies Energy consumption (KWh) SLAV (%age) 

PABFD 25.90 0.00281 

EPOBF 22.66 0.00107 

SWFDP 71.2 0.0102 

GA 18.8 0.00048 
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 SWFDP gives exactly opposite results than best-fit placement. It simply shows the worst-

case scenario with the maximum amount of energy consumption and SLA violations during 

placement. Moreover, PABFD has been extended from best fit decreasing, but it gives maximum 

values for both the energy consumption and level of SLA violation in comparison to both EPOBF 

and GA. EPOBF provides the second highest level of energy consumption and SLA violations 

whereas, GA provides minimum values for both of these.  

 

 

Figure 5.3: Energy consumption for real environment 

 

 

Figure 5.4: SLAV for real environment 
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 From the figures, results reveal that the VM placement using genetic algorithm has 

minimum energy consumption along with minimum SLA violations during the simulation of all 

four days data set with different workload conditions. Figure 5.3 depicts the energy consumption 

of data center on four different days after VM placement using four different policies: PABFD, 

EPOBF, SWFDP and GA. Similarly, Figure 5.4 depicts the SLA violations occur during VM 

placement using different policies on four different dates. 

5.4 NSGA-VMP (NON-DOMINATED SORTING GENETIC ALGORITHM 

FOR VIRTUAL MACHINE PLACEMENT)  

In this section, we have presented the details of another solution for VM placement i.e. NSGA –

VMP (Non-dominated Sorting Genetic Algorithm for VM Placement). NSGA is also the variant 

of basic GA that we have already described in above section. Single objective optimization 

requires a single attempt for finding best possible solution but during multi-objective 

optimization there are set of solutions present in the search space. From several set of solutions, 

some may be superior during the consideration of all objectives simultaneously and may be 

inferior during one or more objectives. These types of solution are known as non-dominated 

solutions or pare to optimal solutions. NSGA provides the set of optimal solutions from a huge 

search space therefore, we have used NSGA to attain the optimal solution and we have presented 

the details of NSGA-VMP and its design in following subsections.  

5.4.1 Problem formulation for NSGA-VMP  

The main objective is to obtain an optimal solution for VM placement using multi-objective 

optimization and for this, the following key terms and system considerations are defined for data 

center: 

Vm: represents the set of virtual machines. 

Pm: represents the set of physical machines. 

VmiCPU: requested amount of CPU utilization by virtual machines (from i=1 to n). 

VmiMem:requested amount of memory by virtual machines (from i= 1 to n). 

VmiBw: requested amount of network bandwidth by virtual machines (from i= 1 to n). 

PmjCPU: available CPU capacity of physical machines (from j=1 to m). 

PmjMem: available memory of physical machines (from j=1 to m). 
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PmjBw: available bandwidth of physical machines (from j=1 to m). 

VmPmj: complete set of VMs which are to be mapped over physical machines (j=1 to m). 

VM 1 can be represented as: Vm1 (Mem, CPU, Bw) and PM 1 can also be represented as: 

PM1 (Mem, CPU, Bw). Several PMs inside data center are composed of their available resource 

capacities such as: Mem, CPU and Bw and similarly, several VMs also contains various requested 

resources. Thus, the main purpose of this study is to find the best solution for VM-PM mapping 

and try to achieve the following 3 objectives simultaneously: 

Objective1: Minimization the energy consumption (E) 

Energy consumption of each host PMj has been calculated as the energy consumed per unit time 

using equation given below: 

                𝐸 =  ∑ (𝑝𝑚𝑎𝑥𝑗 − 𝑝𝑚𝑖𝑛𝑗 ) × 𝑐𝑝𝑢𝑗 + 𝑝𝑚𝑖𝑛𝑗  
𝑚
𝑗=1                       (5.8) 

 

In above equation 5.8, E represents the total energy consumed by hosts, pmaxj represents 

the maximum power consumed by host j where as pminj represents the minimum power 

consumed by host j similarly, cpuj represents the CPU utilization of each host j. The power 

maximum and minimum consumption of host has been provided by SPECpower benchmarks 

[106] from where, we have chosen 230W as maximum (when host is fully utilized) and 39W 

(when host is not used at all or in idle position) as minimum power consumption of PM. As, the 

energy consumed by every host j, can be evaluated as the integral of the power consumed during 

every period of time frame therefore, power consumption plays an important role.  

Objective 2: Minimization of SLA violation (S) 

To satisfy the mentioned QoS (Quality of services) in SLA is very imperative in cloud 

environment where they may vary according to workload and application requirement and thus, it 

is compulsory to describe some metrics or workload independent metric for the calculation of 

SLA violation level. Thus, we have considered 2 metrics for determining the level of SLAV and 

these two metrics are: SLATAH (SLA time per active host) and PDM (performance degradation 

during migration of virtual machines) shown in equation 3.2-3.4 of chapter 3. 

Objective 3: Minimization of VM migration count (Mc) 
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Unnecessary or Redundant migrations may degrade the performance thus, by reducing the 

migration count during VM placement plays a significant role. To fulfill the requirements of 

requested VM resources during VM-PM mapping using selected PMs, following constraints will 

be considered:   

    ⋃ 𝑉𝑚 𝑃𝑚𝑗  𝑃𝑚𝑗 ∈𝑃𝑚 = 𝑉𝑚                         (5.9) 

       𝑃𝑚𝑗  𝐶𝑃𝑈 ≥  𝑉𝑚𝑖 𝐶𝑃                                (5.10) 

                       𝑃𝑚𝑗  𝑀𝑒𝑚 ≥  𝑉𝑚𝑖 𝑀𝑒𝑚                                          (5.11) 

       𝑃𝑚𝑗 𝐵𝑤 ≥ 𝑉𝑚𝑖 𝐵𝑤                                           (5.12) 

 Equations 5.9 defines that each VM will be assigned to single PM but one PM can be 

mapped to several VMs, whereas equations 5.10, 5.11, 5.12 illustrates that available capacity of 

CPU, bandwidth and memory of a PM should not be less than the requested resource of VM that 

are going to map selected PM. Moreover, the total capacity of CPU, bandwidth and memory of 

PM should not beat the resources used by the several set of VMs shown in equations 5.13 - 5.15 

given below, where wcpu, wMem and wBw represents the total CPU, memory and bandwidth of 

physical machines. 

        𝑃𝑀𝑗𝑤𝑐𝑝𝑢 ≥   ∑ 𝑉𝑚𝑖𝑗 (𝐶𝑃𝑈)𝑛
𝑖=1                    (5.13) 

        𝑃𝑀𝑗𝑤𝑀𝑒𝑚 ≥  ∑ 𝑉𝑚𝑖𝑗 (𝑀𝑒𝑚)𝑛
𝑖=1                            (5.14) 

      𝑃𝑀𝑗𝑤𝐵𝑤 ≥  ∑ 𝑉𝑚𝑖𝑗 (𝐵𝑤)𝑛
𝑖=1                     (5.15) 

 MigCount represents the Migration count and can be evaluated by making the 

comparisons of initial placement with scheme used in chromosome’s placement. Equation 5.16 

illustrates the method for the calculation of migration count, where MCi represents the total VMs 

that need to perform migrations, ∑MC represents the total sum of chromosomes along with 

number of individuals in the population represented by P as shown below: 

∑𝑀𝑖𝑔𝐶𝑜𝑢𝑛𝑡 =  
1−

𝑀𝐶𝑗

∑𝑀𝐶

𝑃− ∑
𝑀𝐶𝑗

∑𝑀𝐶
𝑚
𝑗=1

          (5.16) 



87 
 

 

Final Objective function 

Every individual that we have obtained from set of new population have to fulfil all 3 objectives 

such as E (Energy consumption), S (SLA violation) and Mc (migration count). Thus, the value of 

the final objective function (obj) can be calculated using equation10 where the individual with 

minimum value of obj will provide optimal solution for the placement 

                                          𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒( 𝐸 ∗ 𝑆 ∗ 𝑀𝐶)                                             (5.17) 

5.4.2 Description of NSGA 

Srinivas et al. [112] presented the concept of Multi-objective optimization using NSGA which is 

an evolutionary algorithm and works as GA using similar operators such as: mutation and 

crossover. The only difference between both of them occurs during selection operation. NSGA 

first ranked the population according to the level of non-dominance of all the individuals before 

the completion of selection operator. Every non-dominated individual identified from the current 

set of population can be added to the front which is known as first non-dominated front. After the 

initialization of population, individuals are sorted on the basis of non-dominance level of every 

front and process starts with the addition of set of non-dominated solutions into first front and so 

on. Second front is dominated by every individual present in the first front and likewise, the front 

goes on. After the evaluation of the similarity between the individuals of every front the resulting 

individuals are used to promote the front of non-dominated solutions and removed from the 

population. The same process will be repeated until the entire population is classified. The entire 

process of NSGA in contrast to VM Placement is shown in figure 5.5 according to which once 

the population is classified, it will use several genetic operators and produce new set of solutions. 

During the creation of different fronts and for the identification of their non-dominated level one 

solution p can be ranked better than another solution q if: 

𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝 < 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑞      (5.18) 
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Figure 5.5: Flow chart for NSGA  

5.4.2.1 Creation of Initial population 

NSGA-VMP starts with the random initialization of the population where all VMs i.e. VMi (i = 1 

to n) will be mapped over PMj (j= 1 to m) such that none of the VM will be mapped over more 

than one PM. 1D representation of chromosomes is shown in figure 5.6. in which 1D array 

demonstrates the assignment of VMs to PMs. For example, this figure shows the chromosome 

representation of 10 VMs and 5 PMs where VM2 is assigned to PM3. 

 
Figure 5.6: Initial population representation 
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5.4.2.2 Infeasible solutions 

In next section, we have discussed three different constraints and that should be satisfied by every 

chromosomes and solutions which are not able to satisfy the constraints will be repaired by 

performing genetic operators such as mutation and crossover. These operators are used to 

generate new individuals after using genetic operators. Finally, these new individuals will be 

swapped again with the set of population to again check the constraints whether they are feasible 

or not. This process will be repeated until the optimal solution not found. 

5.4.2.3 Selection operation 

The most important step of NSGA-VMP is selection operation in which non-dominance level of 

every individual is used as a selection operator during multi-objective optimization. All 

individuals are sorted according to their non-dominance level and one with highest level of 

dominance will be given as a rank 1 and so on. To consider the individual as better one from any 

of 2, the one with a minimum value of non-dominance rank will be used. Therefore, all these 

individuals constitutes Ist non-dominated front where large dummy fitness value will be given to 

every individual of the front. Moreover, these values are also used by individuals and most 

importantly, the sharing can be accomplished using the values found by dividing the original 

values of fitness of every individual to the sum of individuals. Lastly, the set of population is 

arranged into sub population according to the level of pare to dominance which constitutes the 

first non-dominated front of the population. Likewise, the process will go on, until the entire 

population is classified.  

5.4.2.4 Genetic operators 

Two most important genetic operators are: Crossover and mutation. Crossover operator works 

according to the grouping of chromosomes which combines the sections from 2 different parents 

to obtain new off springs. These new offsprings are used to replace the population for example 

figure 5.7 displays the cross over in which single point crossover is used. We have used uniform 

crossover to produce new offsprings in this work. Likewise, the mutation operator is efficient to 

maintain the diversity of chromosomes in the population. Figure 5.8 shows how every gene is 
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mutated with 1/m probability (m represents the number of VMs) by changing the allocation of a 

VMs to different PMs such that the new allocation may satisfy all the constraints.   

 

Figure 5.7: Example of cross over operation 

 

 

Figure 5.8: Example of Mutation operation 
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5.4.3 VM placement process using NSGA  

The complete process of NSGA-VMP multi-objective optimization is shown in table 5.6 

according to which the proposed algorithm starts with the random initialization of population (i.e. 

VM-PM mapping) in step 3. 

Table 5.6: Pseudo-code for VM Placement using NSGA 

 
1 Input: population_size, P_crossoverrate, P_mutationrate 

2 Output: Children 

3   Polpulation←random_initialization of population (population_size) 

4 Initialize generation =0 

5     Initialize front =0 

6      While (stopping criteria (Genaration_size)) 

7          { 

8            If (population classified) 

9              { 

10                 Selected← two best individuals (Population) 

11                Children←crossover (Selected, P_crossoverrate) 

12                NewChildren← mutation (Children, P_mutationrate) 

13                Evaluate_objective_function (NewChildren) 

14             } 

15            Else 

16               { 

17                  Selection_using_NSGA (Population) 

18                  { 

19                    Newselection←identify nondominated individuals  

                                            (Population) 

20                    Rankpop←ranking of individuals (New selection) 

21                    Newfront←Rankpop 

22                    Newpop← sharing of individuals (Individuals) 

23                    Firstfront←Newpop 

24                 } 

25            } 

26           Front++ 

27          Generation ++ 

28      } 

 

Genetic operators such as: crossover and mutation will be applied once the population is 

classified as shown in step 8-11 after which the population will be further checked whether it is 

able to satisfy the objective function or not. Whereas, on the other side step 16 shows that before 

the selection operation, NSGA will be performed if the population is not classified in which the 
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non-dominated individuals from the population will be identified and ranked according to non-

dominance level. Dummy fitness values will be given to every individual of every front and 

accordingly the sharing function of every individual will be assessed and fronts will be created. 

With the process of evolution, the fronts will be generated by repeating the steps until the 

algorithm meets the stopping criteria. 

5.5 EXPERIMENTAL SETUP & RESULTS 

This section provides the experimental setup and different test cases for the execution of 

proposed NSGA- VMP. We have implemented it using the open framework for CloudSim 

environment using JAVA Net beans IDE. For NSGA characteristics, we have selected 0.5 as the 

crossover and mutation rate along with the population of 500. Whereas, for the simulation of 

cloud environment, we have used four different test cases with varying numbers of PMs and 

VMs. They are also varying according to their configuration. These for different test cases are 

shown in table 5.7.  

Table 5.7: Test cases used for performance evaluation 

 

Table 5.8: Performance of data center using GA, ACO and NSGA 

 

 

 

 

 

Test case ID Number of VMs Number of PMs Types of Servers used 

1 898 500 4 

2 1052 600 4 

3 1358 700 6 

4 1516 800 6 

Test Cases Algorithm Energy consumption 

(KWh) 

SLAV (s) Migration Count 

(Mc) 

1 GA 23.2 0.0503 220 

ACO 21.5 0.05 198 

NSGA 20.1 0.049 169 

2 GA 26.1 0.057 337 

ACO 24 0.054 294 

NSGA 22.5 0.052 271 

3 GA 29.3 0.06 402 

ACO 26.3 0.057 376 

NSGA 24.8 0.055 343 

4 GA 30.1 0.062 424 

ACO 27.5 0.059 387 

NSGA 25.8 0.057 359 



93 
 

We have compared the proposed NSGA-VMP with existing ACO and GA based VM 

placement for which we have chosen the Policy of minimum correlation (MC) for VM selection 

with the value 1.2 as a safety parameter. Moreover, for the comparison of datacenter’s 

performance we have used three performance metrics such as: Energy consumption, SLA 

Violation and Migration count (number of migration occurs during VM placement) and their 

respective values are shown in table 5.8 whereas, table 5.9 displays the overall objective i.e. 

ESMc – total consumption of Energy SLA and Migration count.  

Table 5.9: ESMc consumption of GA, ACO and NSGA 

Test Case Algorithm  ESMc 

1 GA 268.18 

ACO 212.8 

NSGA 165 

2 GA 499.423 

ACO 381.02 

NSGA 317 

3 GA 699.48 

ACO 563 

NSGA 467 

4 GA 788.64 

ACO 627 

NSGA 527 

 

Figure 5.9, depicts that NSGA-VM placement consumes minimum amount of energy. 

With the increase in the request of VMs, the consumption of energy will also increase. Whereas, 

the reason of lesser VM migration during NSGA-VM is that the NSGA already rank the 

population in different fronts during each iteration and their ranking is based on the sorting of 

their non-domination level. Thus, the creation of fronts in this approach will reduce the chance of 

migration for the placement of VM over PM. Since the migration count is less, therefore; 

performance degradation during migration also will be less. Moreover, the hosts will remain 

active for a longer time due to the creation of fronts again and again, which leads to lesser SLA 

time per active host. As the SLA violation is the combination of SLATAH and PDM therefore; 

this method will provide minimum SLA violation during placement. Due to minimum resources 

used in this method, minimum will be the power consumption per unit of time and minimum will 

be the energy consumption. Moreover, figures 5.9-5.11 depicts that the minimum amount of 
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energy consumption is consumed, with minimum level of SLA violation by performing minimum 

migrations by NSGA-VMP in comparison to GA and ACO for all four test cases. Figure 5.12 

shows the combined ESMc metric which provides better results during NSGA-VMP.  

 

 

Figure 5.9: Energy consumption using GA, ACO and NSGA VM Placement 

 

Figure 5.10: SLA Violations during GA, ACO and NSGA VM Placement 
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Figure 5.11: Migration count during GA, ACO and NSGA VM Placement 

 

Figure 5.12: ESMc during GA, ACO and NSGA VM Placement 

5.6 SUMMARY 

In this chapter, first, we have discussed the several techniques of VM placement involved in VM 

consolidation process. Moreover, we have analyzed the results of 3 existing VM placement 

techniques namely, PABFD, EPOBF and SWFD and using genetic algorithm we have proposed a 
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decision-making system for VM placement. Also, we have discussed that how genetic algorithms 

are different than classical bin packing algorithms. Proposed and predefined techniques have been 

simulated in the CloudSim simulation environment. Data set from PlanetLab has been chosen for 

the real workload conditions of VMs on four different days. The promising results obtained from 

the simulation shows that how the placement of virtual machines using genetic algorithms is 

helpful for minimizing the consumption of energy inside the data centers and the level of SLA 

violations at the same time. As, the cloud data centres consume huge amount of energy, therefore, 

minimization of energy consumptions along with some other performance metrics provides a new 

direction for the improvement of the cloud environment.  

These analyses of VM placement using GA enlighten our work in a new direction. 

Therefore, our next objective was to explore some other GA technique which would be more 

efficient than basic GA for solving multi-objective problems. Thus, we have tried to solve the 

VM placement problem using a NSGA and named the method as NSGA-VMP. As we have 

discussed in all previous chapters that the main focus of this study is the minimization of energy 

consumption without raising the level of SLAV and also to improve other performance 

parameters i.e. reducing the number of unnecessary migrations. Proposed NSGA-VMP sorts the 

individuals according to their dominance level. It is the first successful attempt for the mapping 

of VMs over PMs using NSGA for the performance improvement of data center in terms of 

energy consumption, SLA violation and migration count. According to the experimental results, 

NSGA-VMP provides an optimal solution of VM-PM mapping for 4 different test cases. Though 

it takes more time for execution, but it is still acceptable.  
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CHAPTER 6 

BPGA: A NOVEL APPROACH FOR ENERGY EFFICIENT VM 

PLACEMENT 

 

This chapter provides the optimal placement by improving various performance parameters using 

multi-objective optimization. We have proposed a BPGA model that will work in two different 

passes. The first pass makes the use of NSGA for VM placement and the second pass uses the 

BPNN method for the placement of remaining VMs.  

6.1 INTRODUCTION 

The proliferation of cloud computing is capable of supporting various computing services such as 

storage, servers, networks and applications for both e-sciences, e-business and much more over 

the network. This new era of cloud computing is available with large pool of easily usable and 

accessible virtualized resources such as applications, hardware, run time platform and services. 

Large numbers of data centers are required to respond the demands of customers, which results in 

the consumption of a huge amount of energy. From the previous research, it has been analyzed 

that 55 percent of energy consumed by data center is only because of the several servers and IT 

equipment’s and 30 percent is due to cooling equipment’s, therefore, these datacenters are very 

expensive to maintain and they also have very severe effects on the environment. Moreover, this 

profitable success of cloud computing environment leads to provide better QoS - Quality of 

Services that are documented in the SLA- Service level agreement between cloud service 

providers and users. Virtualization is one of the hot topic in cloud computing, which provides 

better QoS and deals with auto scaling, server/VM consolidation, energy conservation, load 

balancing and much more because of its capability to run several operating systems on the single 

physical machine by sharing the hardware resources. Also, the improper allocation of VMs on 

unsuitable host affects the interference of the different applications on same physical machines 

and this leads to the performance degradation with decreased level of Quality of services (QoS) 

for the applications. Therefore, certain issues should be resolved during VM consolidation 

process which can improve the utilization of resources, performance and energy consumption of 

data center. Efficient VM consolidation process deals with the migration problems and the 
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mapping of virtual machines over the suitable physical machine (known as Virtual machine 

placement) can minimize the energy consumption of data center and also it delivers the better 

quality of services which may decrease the violation level of SLA agreement. The contribution of 

this chapter is as follows: 

• The approach of BPGA makes the use of bio-inspired optimization technique for the 

improvement of energy efficiency and other performance parameters inside cloud data 

centers. 

• The proposed BPGA model is scalable for a large heterogeneous cloud environment and we 

have performed the simulations using open source cloud framework known as CloudSim. 

• The efficiency of proposed model has been displayed by comparing it with other techniques 

(46.5% improvement in energy consumption with 41.3% improvement in hosts usage, and 

56.9% improvement in a number of VM migrations as well as the cost of VM placement is 

also improved by 10%). 

6.2 RELATED WORK 

Most of the existing work solved the problem of VM placement by using different energy aware 

heuristics that have been proposed by Anton et al. [5], [10], [59]. These heuristics also used the 

concept of VM migration by minimizing the number of hosts to lower down the energy 

consumption. Many improvement and extension can be made using variants of greedy approaches 

like FFD, BFD, FF BF as mentioned in1 [113] − [114]. VM placement helps for lowering the 

energy consumption of idle or free resources by keeping them aside and switching them off or 

into sleep mode. On the basis of previous study, we have concluded that most of the existing 

work focused on issues related to energy management and performance efficiency of datacenters 

using VM migration, VM placement i.e. VM consolidation. Similarly, the proposed model also 

focuses on the performance improvement by considering QoS (Quality of services) metrics and 

energy enhancement using bio-inspired genetic algorithms as well as artificial neural network. 

 Presently, the research work of many authors are focusing on the meta heuristics and bio-

inspired computing techniques to handle these issues such as: Ant Colony Optimization (ACO) 

[88], [115], Particle Swarm Optimization (PSO) [115], [116], [117], [118], [119], Fire Fly 

Optimization (FFO) [120], [121], Genetic Algorithms (GA) etc. Different types or variants of 
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genetic algorithms have been used by researchers in [78]− [122] where Hitosbi et al. [78] & Shi 

Chen et al. [80]used a genetic algorithm for the allocation of VMs in distributed systems. Also, 

they have used a set representation for the VM placement in which machines or hosts represents 

the set and virtual machine represents the set items. Later on, a new approach of a hybrid genetic 

algorithm for VM placement came into existence and used by Maolin Tang et al. [82]. Grouping 

Genetic Algorithm (GGA) has been advocated by Xu et al. [84] for efficient management of 

energy consumption and one year late has been modified by Wilcox et al. [83] named as 

reordering grouping genetic algorithm (RGGA) which resolved the problem of multi capacity bin 

packing by considering VMs having multiple weights and servers having multiple capacities. 

Faruk et al. [123] introduced a new area for VM placement and advocated an iplace an intelligent 

and tunable power and performance aware VM Placement middleware. According to this 

middleware, the placement of virtual machines is based on two level artificial neural networks. 

CPU usage of host machine has been predicted in first level and power consumption, the 

performance of host in the second level. Giuseppe et al. [124] introduces the allocation of 

resources using NSGA (Non-dominated Sorting Genetic Algorithm)-II for power efficient cloud 

environment. For this, they have used the concept of Pareto-optimal solutions. Likewise, in our 

work, we have also used NSGA multi-objective optimization or set of Pareto-optimal solutions 

along with back propagation neural network, a method of training artificial neural network. Thus, 

our model which makes use of these techniques for VM placement is known as BPGA model for 

the enhancement of performance and management of energy consumption inside data centers. 

6.3 SYSTEM MODEL FOR ENERGY AND POWER CONSUMPTION 

However, the energy consumption of host inside data center can be calculated from its 

components such as CPU, memory, network interfaces and disk storage, but CPU is the main 

source of energy consumption. From a previous study [28], it has been clear that there is a linear 

relationship between the CPU utilization and power consumption of servers thus, the power 

consumption represents the function of CPU utilization. Moreover, the server’s CPU utilization 

may change with time due to variable conditions of workload and thus, the CPU utilization 

represented as a function of time U(t). Therefore, the total energy consumption (EC) of physical 

server can be calculated as integral of the power consumption over a period of time [125] shown 
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in following equation 6.1 and in equation 6.2 PCbusy represents the power consumption when 

machine is fully utilized and PCidle represents the value of power consumption when machine is 

idle or 0% utilized. For simulations, the power consumption of server when they are idle and 

fully utilized are taken from SPEC power benchmark [106]. 

 

𝐸𝐶 =  ∫ 𝑃(𝑈(𝑡))𝑑𝑡
𝑡1

𝑡𝑜
                      (6.1) 

                  𝑃𝐶 = {
(𝑃𝐶𝑏𝑢𝑠𝑦𝑖 − 𝑃𝐶𝑖𝑑𝑙𝑒𝑖)  ×  𝑈𝑖

𝑃𝐶 + 𝑃𝐶𝑖
𝑖𝑑𝑙𝑒    𝑖𝑓𝑈𝑖 > 0 

 0                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                  (6.2) 

 

For energy consumption modelling our current work focuses on the energy consumption 

that changes dynamically. Let ENCji be the energy consumption caused by VMj running on 

physical machine PMi. Let us assume the energy consumption rate of physical machine PMi is 

ENRji and thus, the energy consumption ENC can be calculated as follows: 

 

               𝐸𝑁𝐶𝑗𝑖 = 𝐸𝑁𝑅𝑗𝑖 . 𝐸𝑗                                             (6.3) 

Hence total energy consumption for executing all the virtual machines is: 

𝐸𝑁𝐶𝑒𝑥𝑒𝑐 = ∑ ∑𝐸𝑁𝐶𝑗𝑖

𝑉

𝑗=1

𝐻

𝑖=1

 

                                            = ∑ ∑ 𝐸𝑁𝐶𝑗𝑖 ∗ 𝐸𝑁𝑅𝑗𝑖 ∗  𝐸𝑗
𝑉
𝑗=1

𝐻
𝑖=1                            (6.4) 

 

In above Eq4, it is assumed that the physical machine does not consume energy when it is 

idle [52] however, this assumption could not be possible in real life virtualized environment. 

When physical machines are idle, they include energy consumption in two parts. One is when all 

the VMs of that hosts are idle and other is when some of the VMs of hosts are idle. When all the 

VMs are idle, then the host can be set to lower energy consumption rate using DVFS technology 

[52]. Thus, the rate of energy consumption of physical machine PM in this case is ENRT ji and ti 

is the idle time when the host is idle. Thus, the energy consumption when the host is idle with all 

its idle VMs: 

                                                     𝐸𝑁𝐶𝑎𝑙𝑙𝑖𝑑𝑙𝑒 = ∑ ∑ 𝐸𝑁𝑅𝑗𝑖
𝑇 . 𝑡𝑖𝑉

𝑗=1
𝐻
𝑖=1                                           (6.5) 
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If some of the VMS in the host is idle, then the rate of energy consumption of VMs are 

same as that when they are executing on the host. Thus, it means the rate of energy consumption 

of machine PMi is ENRji. Therefore, the energy consumption in this case is: 

                                           𝐸𝑁𝐶𝑖𝑑𝑙𝑒𝑝𝑎𝑟𝑡 = ∑ ∑ 𝐸𝑁𝑅𝑗𝑖  .  𝑡𝑖
𝑉
𝑗=1

𝐻
𝑖=1                                        (6.6) 

Total energy consumed by physical machine i which executes virtual machine j is: 

𝐸𝑁𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑁𝐶𝑒𝑥𝑒𝑐 + 𝐸𝑁𝐶𝑎𝑙𝑙𝑖𝑑𝑙𝑒 + 𝐸𝑁𝐶𝑖𝑑𝑙𝑒𝑝𝑎𝑟𝑡     

                  = ∑ ∑ 𝐸𝑁𝐶𝑗𝑖  . 𝐸𝑗 + ∑ ∑ 𝐸𝑁𝑅𝑗𝑖
𝑇  . 𝑡𝑖 +  ∑ ∑ 𝐸𝑁𝑅𝑗𝑖  . 𝑡𝑖

𝑉
𝑗=1

𝐻
𝑖=1

𝑉
𝑗=1

𝐻
𝑖=1

𝑉
𝑗=1

𝐻
𝑖=1                  (6.7) 

6.4 VM PLACEMENT AS A MULTI-OBJECTIVE OPTIMIZATION 

VM placement problem has been solved using multi-objective optimization in following sections. 

Here, in our work, we have used NSGA (non-dominated sorting genetic algorithm) for the 

optimal mapping of VMs over physical hosts. Moreover, the problem of VM placement along 

with its constraint that needs to be fulfilled to achieve the objectives are shown in 6.4.2. 

6.4.1 Problem formulation  

 

Multi-objective optimization techniques generally use the population based approaches for 

finding optimal solutions. Also, they use the concept of pareto-dominance during selection 

operation. For any multi-objective optimization problem, there are set of N number of objectives 

which need to minimize or maximize (here minimize in our case). 

                                                       𝑓(𝑋) = 𝑓(𝑋1, 𝑋2,… . . 𝑋𝑛)           (6.8) 

Here in equation 6.8, the vector X has a number of decision variables in solution space sp 

and we have to find particular vector X or different number of trade off vectors which can 

minimize the objective function. For solving the problem of multi-objective optimization, there 

are some solutions which can optimize the results for the single objective but do not guarantees to 

provide optimal results for another objective. For this reason, it is more beneficial to use the 

concept of pareto-optimal solutions. The concept of pareto-optimality provides the set of trade-off 
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solutions and these sets have all those non-dominated solutions provides the best possible 

tradeoffs among the best solutions for several objectives [126]. A solution S from solution space 

sp is considered as pareto-optimal, if no other solution P exists in the search space which 

dominates solution S. Moreover, solution S dominates solution P or S has better non-dominated 

rank than P ie. RS < RP (rank of S and P) if both of the following equations are true: 

 

Condition 1: If solution S is as good as solution P for all the objectives 

∀𝑗 ∈ [1,2……𝑛]𝑓𝑗(𝑆) ≤  𝑓𝑗(𝑃)                                               (6.9) 

Condition 2: If solution S is severely better than P for at least one objective 

∋ 𝑗 ∈ [1,2……𝑛]𝑓𝑗 ≤ 𝑓𝑗(𝑃)                                           (6.10) 

 

All the solutions which are not dominated by any other solutions are called nondominated 

solutions and they together constitute a front in the solution space known as non-dominated front 

also the set of the solution in the non-dominated fronts are known as pare-to optimal solutions. 

The most tedious step in this concept is to find the set of non-dominated solutions. In our work, to 

find the set of nondominated solutions the following steps are used [112] with Z number of 

solutions and each has N number of objectives: 

Step 1: Start with I =1 

Step 2: Compare solution Si and Pi for their domination rank using above mentioned conditions 

for all N objective  

Step 3: If Si is dominated by Pi, then mark Si as dominated and go to step 2 by incrementing 

i=i++ 

Step 4: If all the solution (i =1 to Z) are considered, go to next step otherwise go to step2 by 

incrementing i  

Step 5: Solutions which are not marked as dominated are non-dominated solutions 

6.4.2 VM Placement optimization 

Here, in this section the VM placement has been optimized as: suppose we have V number of 

virtual machines and that are to be mapped or placed on M machines and we are assuming that 

none of the virtual machines requires the resource more than the available resources of physical 
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server. Let Ui be the request of CPU utilization from each VM, Tuj the threshold for the CPU 

utilization, RMi the memory request for each VM and TRMj the threshold for memory 

utilization. Moreover, we have taken two binary variables Zij and Xj which will be used to 

investigate whether the VM i is allocated to server j or not, and whether the server j is currently in 

use or not. In the current work of multi-objective optimization, the following objectives must be 

minimized: Total energy consumption (EC) of the data center, Quality of Services such as SLA 

violations, migration count and Cost of the data center. The minimization of energy consumption 

is the final objective of current work, but it also affects the level of SLA violation hence, we need 

to find some trade-off values for these two. Thus, the problem of VM placement can be 

formalized as: 

Energy Consumption: 

              ∑ 𝐸𝐶𝑗 = ∑ [𝑋𝑗  × (𝑃𝐶𝑏𝑢𝑠𝑦𝑗 − 𝑃𝐶𝑖𝑑𝑙𝑒𝑗)  × ∑ (𝑍𝑖𝑗 . 𝑈𝑖  ) + 𝑝𝑐𝑖𝑑𝑙𝑒𝑗 ] 
𝑉
𝑖=1  𝑀

𝑗=1
𝑀
𝑗=1          (6.11) 

SLA Violation: 

∑ 𝑆𝐿𝐴𝑉𝑀
𝑗=1 = [∑ 𝑇𝑠𝑖 − 𝑇𝑎𝑖

𝑀
𝑗=1 ]  × [∑ 𝐶𝑑𝑗 − 𝐶𝑟𝑗] 

𝑉
𝑖=1                   (6.12) 

Number of the host used: 

∑ 𝑦𝑗  𝑤ℎ𝑒𝑟𝑒 {
𝑦𝑗 = 1 ,   𝑖𝑓 ∑ 𝑋𝑗𝑖 ≥ 1𝑉

𝑖=1

𝑦𝑗 = 0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑀
𝑗=1                      (6.13) 

Subject to:  

            𝑋𝑗𝑖 = {
1, 𝑖𝑓 𝑉𝑀 𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑠𝑒𝑟𝑣𝑒𝑟 𝑗

𝑂,                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    ∀𝑖 ∈ 𝑉𝑀 𝑎𝑛𝑑 ∀𝑗 ∈ 𝑃𝑀                 (6.14) 

                      ∑ 𝑉𝑀𝐶𝑖 . 𝑋𝑗𝑖 ≤ 𝑃𝑀𝐶𝑗 . 𝑌𝑗   ∀𝑗 ∈ 𝑃𝑀𝑉
𝑖=1            (6.15) 

                   ∑ 𝑉𝑀𝑚𝑒𝑚𝑖. 𝑋𝑗𝑖 ≤ 𝑃𝑀𝑚𝑒𝑚𝑗 . 𝑌𝑗    ∀𝑗 ∈ 𝑃𝑀𝑉
𝑖=1           (6.16) 

Migration Count: 
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1−

𝑀𝐶𝑗

∑𝑀𝐶

𝑃−∑
𝑀𝐶𝑗

∑𝑀𝐶
𝑀
𝑗=1

                                     (6.17) 

The cost of the data center: 

             𝐶𝑇 =  ∑ (𝐶𝑇𝑃 ∑ 𝐻𝐴𝑡𝑗 + 𝐶𝑇𝑉 ∑ 𝑆𝑉𝑡𝑗 )
𝑀
𝑗=1

𝑀
𝑗=0

𝑇
𝑡=𝑡0              (6.18) 

In equation 6.12, for SLA violation Tsi is the total time for which host experienced 100% 

utilization, Tai represents the time for which host remains active, Cdj is the estimate of 

performance degradation caused by migration (here, it is assumed as 10% of CPU utilization 

during all migrations of virtual machines) and Crj is the total CPU capacity of virtual machine. 

For minimizing a number of hosts in equation 6.13, we have taken a decision variable Xji, which 

shows whether host j (yj =1) is used or not (yj=0). Equation 6.15 and 6.16 shows that each host 

should satisfy the resource requirements of VMs. Also, for migration count, MCj is the total 

number of VMs that need to be migrated. Moreover, the service providers pay the cost of energy 

that is consumed by physical machines. Therefore, the cost function is also important for the 

consideration during live migration and this cost function can be calculated as CTPtp and CTVtp 

where CTP is the cost of power and tp is a time period (energy per unit time) and CTV is the cost 

for the level of SLA violated per unit time. SLA violation between the service provider and 

consumer occurs only if the demand for resources exceeds the available capacity of resources. In 

equation 6.18, to is the initial time frame and T represents the total time. HAtj indicating whether 

host j is active on not at the time t and similarly, SVtj indicating whether host j is experiencing 

SLA violation or not in time frame t. 

6.5 PROPOSED BPGA-VMP MODEL FOR VM PLACEMENT 

First three steps of VM consolidation process has been already done on our previous work where 

we have proposed an energy aware algorithm for the selection of VMs for migration and selection 

of underutilized, over utilized host. Now, in the current work, we have proposed BPGA model 

which facilitates the energy aware VM placement algorithm for minimization of energy 

consumption of datacenters without degrading the performance of datacenter. Therefore, by 

increasing the utilization of server’s resources and by using the lesser number of active servers, 
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energy consumption can be minimized and thus, it directly contributes towards the green 

computing. The current work presents an energy aware virtual machine placement (VMP) method 

which is based on NSGA and biological neural network (BPNN) and named as BPGA model 

shown in Figure 6.1. This technique tries to place the virtual machines to another active host and 

reduce the usage of number of active host inside datacenter. This BPGA model is working in two 

passes. In first pass, the process of Non-dominated sorting Genetic Algorithm (NSGA) will be 

used for the mapping of virtual machines. NSGA contains two objective functions and the 

physical machine which fulfill all the requirements through NSGA would be selected for the 

mapping of VMs and rest of the VMS are forwarded to the second pass of BPGA model which 

follows the process of training the neural network based on the different conditions of the power 

consumption of machine to resolve the issue of VM selection. 

Pass 1: NSGA (Non-dominated Sorting Genetic Algorithm  

Step 1: In the initial step of the first pass, there are many options available for the mapping of 

Virtual machines and any virtual machine can be mapped to any of the physical machines. But it 

is important to satisfy the equation 6.19 which tells that one VM will be mapped over single 

physical machine, therefore to select the appropriate one, NSGA will proceed further with step 2 

with detailed shown in table 6.1. 

     ∑ 𝑋𝑗𝑖 = 1 ∀𝑖 ∈ 𝑃𝑀𝑠𝑀
𝑗=1                                               (6.19) 

Step 2: First, the total amount of the resources requested by virtual machines will be calculated 

along with the capacity of the physical machine that provides the resources and checked weather 

they satisfy the equation 6.20, 6.21 or not i.e. constraint of fitness function 1. If yes then, the 

value of fitness function 1 will be calculated and VM clusters will be created in which VMs will 

be arranged according to their ranks. By VM clusters, we mean that PMs with in these clusters 

are the options for mapping of VMs. Moreover, if these constraints are not satisfied by the VMs 

than those pending VMs will be forwarded to pass2 without checking the objective function 2. 

                                               𝐶𝑗 = 
∑ 𝑐𝑗𝑚

𝑀
𝑗=1

𝑚
                                                        (6.20) 

                                         𝑀𝑒𝑚𝑗 = 
∑ 𝑀𝑒𝑚𝑗𝑚

𝑀
𝑗=1

𝑚
                                                       (6.21) 
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Figure 6.1: BPGA model for VM Placement 

Fitness Function 1: Resource Capacity CPU (C) and Memory utilization (Mem) are two main 

resources that we have considered in our work. In the chromosome representation of genetic 

algorithm, each value of gene array represents the placement destination of the virtual machine. 

For the jth physical machine, suppose that it can carry m virtual machines, then the resource 

dimension array for VM m carried on the jth physical machine can be expressed as: [Cj1, Cj2..Cjm] 

and [Memj1, Memj2 Memjm]. The total values of resource dimension are: 

                          𝑅𝐶𝑗 = 𝐶𝑗 + 𝑀𝑒𝑚𝑗                     (6.22) 

                                    𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹2 = 
1

𝑅𝐶𝑗
                                                           (6.23) 

Equation 6.20 and 6.21 gives the average values of the resource dimensions for the 

physical machine that carried m VMs. For example, if a physical machine 1 has 2 VMs whose 

resource dimension represents as [0.6,0.8] and [0.3,0.2] which means 0.6 and 0.3 are CPU and 
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memory utilization of VM1 and 0.8, 0.2 are of VM2 respectively. In this case, the total resource 

capacity for PM1 is 1.9. Similarly, resource capacity for each PM will be calculated and using 

equation 6.22, the value of the fitness function will be calculated and physical machines with in 

the cluster will be arranged according to the fitness values.  

Table 6.1: Algorithm for pass 1 of BPGA model 

1 Input: Vm list and Host list 

2 VM-PM Placement map 

3 Allocated_host=null, Cando_list = null, minenergy=MAX 

4 Tournament_size[][]=null 

5 Objective1.NSGA= findfit(Hostcapacity, VMrequirements) 

6        For each Vm in Vm list do 

7              For host count 1 to host count do 

8                    If (hostfulfill(VMrequirements)) then 

9                    Cando_list[hostcount][0]=hosted 

10                    Cando_list[hostcount][1]=Vmid 

11                   Else 

12                        BPNN( ) 

13                   Endif 

14            Endfor 

15         Endfor 

16 Objective2.NSGA= selectionbestfit(Cando_list[][]) 

17         If (hostcontaining.Vm >1) 

18                For each host in Cando_list[][] do 

19                   If (host.energy! minenergy) 

                       { 

20                          Allocated_host = host 

21                           Minenergy = energy 

22                  Endif 

23                Endfor 

24         Endif 

25 Return VM-PM map 

 

Step 3 If objective function 1 is satisfied, then from above-generated VM clusters every virtual 

machine has more than one physical machines available for the mapping. Therefore, this step 

provides the final mapping of virtual machines over physical machines by calculating the value of 
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fitness function 2 and physical machines which could be the destinations for the VMs will be 

arranged according to the ranking of their fitness value within the clusters and according to that 

value, the physical machine will be chosen from every VM clusters for the placement of VMs. 

The value of energy consumption has been calculated in fitness function 2 using equation 6.7. 

Fitness Function 2: Energy Consumption 

                                                    𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹2 = 
1

∑ [𝐸𝑁𝐶𝑡𝑜𝑡𝑎𝑙]𝑀
𝑗=1

                      (6.24) 

Pass 2: BPNN (Back Propagation Neural Network) In pass 2, the forwarded VMs which were not 

able to satisfy the constraints of NSGA will be mapped on physical machines using neural 

network, where we have three main sections: a) Training data of input layer b) hidden layer for 

processing of weights and errors c) output layer for the allocation. In the process of back 

propagation neural network, initially, weights are randomly assigned to all the edges. From the 

training dataset, the output is observed after activating the neural network for every input. This 

output will be compared with the desired output and errors will be propagated back to the 

previous layer (hidden layer) and weights will be adjusted accordingly. The process is repeated 

until the gradient is satisfied or the error is below some threshold value explained in table 6.2. 

After the termination of this process, we have trained a neural network which is ready to work for 

new inputs (or for testing). Following different steps are used in the second pass of BPGA model:  

Step 1: First, we will initialize the variables that we have used for the training and testing of the 

neural network. Here, we have generated the random value for the gradient and initialize the 

value of gradientsatisfied = 0 which will become 1 if gradient will be satisfied. Termweight [ ][ ] 

matrix contains the weight of input data by calculating the value of utilization of servers on 11 

different conditions from idle to 100% utilization. The constraint of gradient satisfaction is shown 

in following equation 6.25 where generate Termweight is a function to generate linear weights 

(a.x+b) with random integer values for a and b. 

(𝑖𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 == 0) 

𝑇𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑑𝑎𝑡𝑎) 

= 𝑎 ∗ (𝑑𝑎𝑡𝑎) + 𝑏                    (6.25) 
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Table 6.2: Algorithm for Pass 2 of BPGA model 

1 Input: Vm list, Host list 

2     Output: VM-PM placement map 

3 Train_Set[][] 

4         For each host in Hostlist do 

5             For i = 1to 11 do 

6                 Train_Set[host][i] =host[condition(i)] 

7             Endfor 

8         Endfor 

9  Total Epochs = 500 

10  Initialize_gradientsatisfied = 0 

11  Termweight[][] 

12      While(gradientnotsatisfied) do 

13           For each data in Train_Set([][]) do 

14                 Termweight[i][f]= a*data+b 

15           Endfor 

16      Endwhile 

17 MT = Mean(Termweight) 

18      If MT < gradient  

19         Termweight = Termweight + s 

20     Else 

21         Gradientsatisfied=1 

22     Endif 

23 For each vm in Test_Set do 

24      Allocated_Host = simulate(Test_Set, Train_Set) 

25 Endfor 

26 Assign Vm to Allocated_Host 

27 Return VM-PM map 

 

Step 2: Second step follows with the processing of weights within the hidden layer by checking 

the average value of weights and gradient. If the random change in the average weight is less than 

the value of gradient, then the value of weight will be increased by the value of s calculated using 

equation 6.26 for which first, we will find the mean value of Termweight known as MT and 

compare it with a gradient. 

{
𝑇𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑠  (𝑖𝑓 𝑀𝑇 < 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡)
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 = 1                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (6.26) 
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Table 6.3: Simulate function for pass 2 

1 Tts = Test_Set 

2 Trs = Train_Set 

3 [r] = size(Trs) 

4 For (I =1 to r)` 

5 MR = Mean(Tts) 

6    If (MT < MR) 

7    Allocated_Host = i 

8 End For 

 

Step 3: The Neural network has been trained from previous steps and ready to work for new 

inputs or test data i.e. Test Set[ ][ ] matrix. As similar to Train Set, the matrix of Test Set contains 

energy consumption of VMs during the eleven different conditions of severs from idle to 100% 

utilized. Energy consumption of VMs has been calculated using equation 6.1 in with random 

values of power consumption for VMs and finally, the Test Set matrix will be further passed to 

simulate function along with Train Set matrix for the allocation of most appropriate host 

mentioned in table 6.3. 

 

Theorem 1: The time complexity of the BPGA model for VM Placement is 

O(NvmNpm(Npm+Nvm)+Npm), where Nvm is the number of virtual machines, Npm is the 

number of physical machines and w is the weights used in the neural network.  

Proof: The time complexity for checking the requirements of each virtual machine is O(Nvm) as 

the process is linear. It takes O(Npm) time complexity for checking whether a physical machine 

can be added to Cando_List or not (Lines 6-15, Algorithm1). Also, the time complexity for 

finding the host with minimum energy is O(Npm) (Lines 18-23, Algorithm1). In algorithm2 

(Lines 4-8), complexity for the training of dataset containing physical machines is O(Npm). The 

time complexity for the selection of the most suitable host for mapping using BPNN is O(W3), 

this is because of the total number of passes required to update the weights between each 

communication. Where first pass will compute the error at the output layer while the second pass 

back propagates the error to lowest weight and the last pass is for the updating of each weight 

(Lines 10-22). For allocating the host to VMs time complexity is O(Nvm) (Lines 30-31, 

Algorithm2) and or the rest of lines time complexity is O(1). Thus, the total complexity of algo2 
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turns out to be O(Npm+Nvm +w3). since the value of weights is very small so the value of w3 is 

incomparable to the rest of the complexity and can be eliminated. therefore, the final complexity 

of algo2 is O(Npm+Nvm). Hence, total time complexity for our BPGA model is calculated as 

O(NvmNpmO(algo2)+Npm) = O(NvmNpm(Npm+Nvm)+Npm) 

For the better understanding of BPGA algorithm, an example has been provided. Suppose 

there are 6 physical machines (M1, M2......M6) and 12 VMs (V1, V2. V12) that has to be mapped 

over these physical machines, such that fewer number of PMs are used for their mapping (as 

similar in the case of bin packing). As discussed earlier, now these VMs have multiple options for 

their mapping, therefore, requested resources of VMs and capacity of PMS will be checked using 

equation 6.15, 6.16 for the creation of VM clusters. Suppose the array for the capacity of resource 

dimension of PMs are [1.5, 0.9, 1.2, 0.5, 1.0, 0.7] which is the total resource dimension of CPU 

and memory utilization and the array dimension for requested resources of VMs are [1.1, 0.4, 1.4, 

1.6, 0.5, 0.8, 1.8, 1.7, 0.6, 1.3, 1.2, 1.5]. Thus, VM clusters will be created as VM1 (PM1, PM3) 

i.e. VM cluster 1 contains two physical machines for the mapping of VM1 and similarly VM 

cluster 2: VM2 (PM1, PM2, PM3, PM4, PM5, PM6), VM cluster 3: VM3 (PM1), VM cluster 4: 

VM5 (PM1, PM2, PM3, PM5), VM cluster 5: VM6 (PM1, PM2, PM3, PM5), VM cluster 6: 

VM9: (PM1, PM2, PM3, PM5, PM6), VM cluster 7: VM10 (PM1), VM cluster 8: VM11 (PM1, 

PM3). No VM cluster has been obtained for VM4, VM7, VM8 and VM12 and therefore, these 

VMs will be forwarded to pass 2 of BPGA model in which appropriate host for these VMs should 

be selected using BPNN. Using NSGA VM clusters will be arranged according to the ranking of 

physical machines such as: VM1 (PM3, PM1) with1.2 and 1.5 resource capacity for PM3, PM1 

respectively and similarly others clusters are: VM2 (PM4, PM6, PM2, PM5, PM3, PM1), VM3 

(PM1), VM5 (PM2, PM5, PM3, PM1), VM6 (PM2, PM5, PM3, PM1), VM9 (PM6, PM2, PM5, 

PM3, PM1), VM10 (PM1), VM11 (PM3, PM1). Furthermore, the value of fitness function 2, 

equation 6.24 will be calculated for these VM clusters and it will provide the value of energy 

consumption of each PM and thus, a physical machine which provides minimum energy 

consumption will be selected for that VM from every cluster. Suppose values of energy 

consumption for each PM are: [5Kwh, 3Kwh, 7Kwh, 8Kwh, 2Kwh, 4Kwh] and accordingly VM 

clusters will be again arranged and provide the final mapping of VMs. (VM1-PM1) i.e. VM1 will 

be mapped over PM1 and similarly, (VM2-PM5), (VM3-PM1), (VM5-PM5), (VM6-PM5), 

(VM9-PM5), (VM10-PM1), (VM11-PM1). Thus, the final mapping using NSGA minimize the 
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number of the host used after mapping which directly minimizes the power consumption of 

datacenter. Moreover, the pending VMs which could not satisfy the above-mentioned equation 

6.15, 6.16 and could not find the host for mapping will be forwarded to pass 2. In which 

optimization using BPNN will provide a most appropriate host for mapping along with 

minimizing the level of SLA violation. 

6.6 PERFORMANCE EVALUATION 

To evaluate the performance improvement made by BPGA VM Placement model, we have 

compared it with three existing reference algorithms such as GA (Genetic Algorithm), ACO (Ant 

Colony Optimization) and our proposed NSGA. These reference algorithms are briefly described 

as follows:  

Genetic algorithm: GA an evolutionary optimization technique tries to provide the optimal 

solution. The problem of these algorithms deals with computation time. GA are beneficial to use 

instead of greedy algorithms because they have huge search space and also, they have the ability 

to automatically adjust the search space with the help of their genetic operators. Thus, GA 

computes the effect of the system after the deployment of new resources and chooses the solution 

which will have least effects on the system. Thus, GA provides optimal results for VM placement 

problem by taking more computational time. 

ACO: Ant Colony Optimization is also a meta-heuristic approach for the search of optimal 

solutions by using a probabilistic technique which solves the problems of NP class. ACO 

algorithm deals with the process of food discovering of actual ants. Here the probabilistic 

technique is practised by the ants for the searching of their food. They choose the routes which 

have high pheromone. During the discovery of their food they dreg the pheromone on their way 

back to provide direction to other ants to trail the food. Although, they have a positive feedback 

mechanism to get optimal solutions these ants act as multi agent system and thus, create some 

complex solutions for solving the problems like bin packing. 

NSGA: Non-dominated Sorting Genetic Algorithm considers pare to optimal solutions for 

finding the optimal solution for multi-objective problem. The process of VM placement has been 
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already solved by NSGA in previous chapter. Here, we have also compared it with the proposed 

BPGA model to understand how it affects the VM mapping when we consider it alone and when 

we use it with combination of BPNN. 

6.6.1 Experimental Set up 

Since it is very difficult and expensive to perform repeatability of experiments in real time cloud 

environment which provide the infrastructure of the large scale virtualized data center. Therefore, 

we have chosen the way of simulation for performance evaluation and for which we have used 

CloudSim toolkit. It is an existing simulation framework having the capability to implement 

energy aware algorithms by providing the services to allocate physical machines to virtual 

machines according to customized procedures and it also helps to model the data center network 

topologies and many more. We have performed the simulations considering a data center 

environment which contains 800 machines i.e. servers of six different types and their 

configuration has been already provided in chapter 3. Similarly, VM instances are taken from 

Amazon EC2 shown in table 6.4 which corresponds to five different types of instances that show 

a number of resources requested by VMs. Moreover, for simulation environment, we have 

considered real time workload conditions of 10 different days with data provided by CoMoN 

Project. Their data contains CPU utilization of more than thousand VMs (each in 5-minute 

intervals) located on 500 different servers around the world. 

Table 6.4: Instances of VMs taken from Amazon EC2 

VM Type CPU(MIPS) RAM(GB) 

Extra-large (high memory) 3000 6 

Medium (high CPU) 2500 0.85 

Extra large 2000 3.75 

Small 1000 1.75 

Micro 500 0.613 
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6.6.2 Results and Discussion 

800 hosts have been used for the simulations, whereas a number of runs for the simulation are 10 

with a different number of VMs on every run (with different workload condition). Total energy 

consumption, the number of the host used after placement, migration count, SLA Violations 

occur during VM placement and Cost of data center have been calculated through proposed 

BPGA-VMP model. The obtained results have been compared with GA, ACO and NSGA based 

techniques for VM placement, and their comparison are shown in figures 6.2−6.7. 

 

Figure 6.2: Number of host V/s number of VMs 

Figure 6.2 shows the comparative view of four VM placement techniques i.e. GA, ACO, 

NSGA and BPGA on the basis of a number of the host used by VMs after VM placement during 

ten different runs of simulation. Numbers of virtual machines are increasing on every run for a 

fixed number of hosts. As, most of the servers inside data center are idle and consumes 

unnecessary power, which will increase the energy consumption of data center therefore, it is 

important to minimize the usage of hosts and to prevent this situation by setting the idle hosts to 

sleep or hibernate mode. Obtained results depict that BPGA technique uses minimum number of 

machines for the mapping of virtual machines in comparison to other three techniques. This is 

because BPGA optimization model provides the global search and chooses the most appropriate 

host for VMs using multi-objective constraints along with BPNN optimization which results in 
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the optimal utilization of hosts with minimum migration count which reduces the wastage of 

energy consumption. 

Similarly, Figure 6.3 depicts the number of migration occurred during each four 

techniques. BPGA performs a lesser number of migration counts in contrast to GA, NSGA and 

ACO on every run of simulation. BPGA is capable for finding the best physical machine for the 

mapping of VMs by taking lesser number of VM migrations without compromising the energy 

consumption, as the excess of VM migration degrades the performance of the system and leads to 

increase in energy consumption. Thus, with lesser number of migration used for mapping of VMs 

within a lesser number of hosts, BPGA VM Placement consumes lesser amount of energy 

consumption in comparison to GA, NSGA and ACO as shown in Figure 6.4. Thus, the tendency 

to minimize the energy consumption depends upon the reduction of active host and migration 

count of VMs, otherwise more energy been wasted during the migrations of VMs. BPGA VM 

Placement technique attains the lesser amount of energy consumption using minimum migrations 

and maps the VMs on a fewer number of hosts as possible. 

 

 

Figure 6.3: Migration count V/s Number of VMs 

  

Both the terms energy and SLA are interrelated, utilization of resources with minimization 

of energy always increases the risk of SLA violations. Therefore, dealing with both of these 

factors simultaneously is very important. Here, in our simulations level of SLA violation is also 

0

50

100

150

200

250

300

350

400

898 1033 1052 1054 1061 1078 1233 1358 1463 1561

N
u

m
b

er
 o

f 
M

ig
ra

ti
o
n

s

Number of VMs GA ACO NSGA BPGA



116 
 

lesser in the case of BPGA VM Placement technique in contrast to others. Thus, figure 6.5 shows 

the level of SLA violation for four different techniques, where the level of SLA Violations is the 

minimum for BPGA followed by NSGA, ACO, and GA. The increase in the value of lower 

threshold of CPU utilization increases the energy consumption and which further increases the 

level of SLA Violations and therefore, we have used median based approach for the selection of 

threshold values for the utilization of host thus, the chances of increase in SLA Violations 

reduces. Furthermore, figure 6.6 (a) shows the overall ESM value for the combined results of 

Energy consumption, SLA Violation and migration count and (b) depicts the cost of VM 

Placement for all four techniques which is also calculated from the power consumption of host 

and SLA violation occurs by the host for a particular period of time frame using equation 6.18. 

 

 

 

 

 

 

 

 

 

Figure 6.4: Energy Consumption during different VM Placement policies 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Level of SLA Violation during different VM Placement policies 

Series1
0

0.05

0.1

GA ACO NSGA BPGA

S
L

A
V

 (
1

0
^

-2
)

VM Placement Policies

0

5

10

15

20

25

30

35

898 1033 1052 1054 1061 1078 1233 1358 1463 1561

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 

(K
W

h
)

Number of VMs GA ACO NSGA BPGA



117 
 

 

 

Figure 6.6: (a) Comparative values for ESM metric taken by different VM Placement policies. 

(b) Cost of data center using various VM Placement Policies 

Figure 6.2-6.6 shows the reliability and proficiency of proposed technique for VM 

placement. The outcomes of the simulations show that an average 19.8% of energy has been 

improved in comparison to basic GA-VMP, 9.58% and 4.5% of energy has been saved in 

comparison to ACO based VM placement and NSGA-VMP. Thus, the improvement of the 

energy consumption using minimum hosts shows the effectiveness of proposed solution.  

6.7 SUMMARY 

Energy efficiency of cloud environment became a popular area for research in recent years. 

Growing demand for cloud computing increases the extensive usage of data centers which 

consumes large amount of energy and causes large emission of carbon. Therefore, effective 

management of energy consumption is important for data centers. Presently, there are many 

researchers trying to implement the bio-inspired techniques for handling these growing energy 

crises in different areas. Similarly, for current work, we have chosen multi-objective optimization 

algorithm along with neural network training algorithm for finding the most suitable hosts for 

virtual machines. The reasons for choosing them are their huge searching space and faster 

convergence speed.  
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Furthermore, this chapter proposed an energy aware VM placement model i.e. BPGA 

which performs migration of VMs from single active host to other in order to minimize the usage 

of hosts. BPGA model follows the divide and conquer approach and solving the problem of VM 

placement in two passes to provide the optimal solutions. Therefore, proposed model can be 

effectively used for VM placement and improvement in results provides their efficacy with 

respect to other three existing algorithms. BPGA provides 71.7%, 62.2% and 46.5% 

improvement in energy consumption in comparison to PABFD, GA and ACO respectively. 

similarly, 61.9%, 59.1% and 41.3% improvement in the number of host usage and finally 79.3%, 

72.04% and 56.9% improvement in minimizing the number of VM migrations. Along with this 

BPGA also minimizes the cost of VM Placement by 28%, 26% and 10% with respect to other 

three. Thus, the proposed technique contributes toward green computing by minimizing the 

energy consumption of data center by reducing the number of migrations and host usage. 
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CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

 

This chapter summarizes the work presented in a thesis on energy efficient virtual machine 

consolidation. It also highlights the main findings as well as discusses the future research 

directions and research problem in the area of energy efficient cloud data centers. 

7.1 CONCLUSION  

The working environment of IT industry has revolutionized the trend of utility based computing 

i.e. cloud computing. Due to this increasing trend, the demand for cloud data centers are 

increasing day by day which consumes world’s main computing resources and results a huge 

amount of energy consumption. Therefore, the efficient management of data center’s resources 

and CO2 emission are two important issues to handle for environmental sustainability.  

The process of dynamic consolidation has been considered as one of the most effective 

methods for energy minimization and improvement of resource utilization within the data centers. 

Therefore, this thesis has presented different novel algorithms or methods for dynamic VM 

consolidation while dealing with QoS. Proposed approaches minimize the energy consumption or 

we can say that provide a tradeoff values for energy consumption as well as SLA violation while 

dealing with other QoS metrics. Also, our proposed model minimizes the cost of the data center. 

This thesis has achieved all the objectives mentioned in chapter 1.  

Chapter 2 presented the analysis and taxonomy for energy efficient data centers and VM 

consolidation. The study of existing literature helped us to identify the research gaps and provides 

us with the research direction. From chapter 3 we have proposed a solution for every step of VM 

consolidation process and proposed a solution for over utilized and under-utilized host detection 

method on the basis of the threshold value of their CPU utilization. Here, the objective of 

improvement of QoS has achieved. Along with this, this chapter also deals with the problem of 

VM selection and presented a multi-criterion based decision-making method i.e. AHP VM 

selection. With the proposal of this solution, we achieved the objective of energy minimization 

while dealing with QoS such as SLA violation and Migration count 
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To achieve our next objective, chapter 4 presented solution for the most interesting 

problem of VM consolidation i.e. VM placement. Here, we have discussed the concept of bin 

packing algorithm for VM placement and presented 3 different heuristics for VM placement on 

the basis of BFD-Best Fit Decreasing. The utilization of the resources either their current 

utilization or their previous utilization are two main points of consideration. However, this 

proposed method consumes more energy but minimizes the level of SLA violation and migration 

count. Thus, it improves the overall ESM metric that we have used to calculate the performance 

of data center and this way we have achieved our objective of data center performance 

improvement. 

For enlighten our work in some new direction we have analyzed the trend of bin packing 

algorithms of VM placement and compare them with one of nature inspire algorithm i.e. basic 

GA- Genetic Algorithm. This performance analysis has been conducted in chapter 5, from which 

we have analyzed that GA provides better placement of VMs in small extent. Thus, by getting an 

idea of nature inspire algorithms, we have formulated the problem of VM placement as multi-

objective optimization and solved it with NSGA- Non-dominated Sorting Genetic Algorithm. The 

main purpose of this method is to provide most appropriate host to VM. The main objective of 

this thesis has been achieved here i.e. Energy minimization while dealing with SLA violation.   

For the achievement of our next objective i.e. cost of the data center. Chapter 6 presented 

a novel model for VM placement named as BPGA model. This model works with the principal of 

NSGA and BPNN-Back Propagation Neural Network method. Both of these NSGA and BPNN 

work simultaneously but in two different passes or we can say that they work parallel to achieve 

the objective of minimization of data center’s cost but energy consumption should not be 

inconsiderable. Therefore, the proposal of this model is able to achieve all the objectives 

presented in this thesis such as energy minimization of the data center while dealing with the QoS 

delivered to the users.  

7.2 FUTURE RESEARCH DIRECTION 

Even though this thesis presented its contribution towards the area of energy efficient VM 

consolidation but still there are several open research challenges that have not been considered in 

this thesis and need to be addressed in future: 
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• The process of VM consolidation involves the communication of VMs and establishment 

of virtual networks. During VM migrations, these VMs may be hosted on far located 

physical machines and increase the cost of data transfer. Thus, these communicating VMs 

should be mapped in such a manner that there should be the minimum cost of data 

transfer. 

 

• The increase of the utilization of computing resources consumes huge amount of electrical 

energy which is transformed into heat and leads to the problems such as life time of 

hardware, availability of hardware and others. Therefore, to keep the components of 

computing devices or hardware in a safe operation state or prevent them from hardware 

failure or system crashes, it is important to deal with the cooling of these components. But 

to minimize the cost of cooling operation at a same time is also important. Therefore, it is 

necessary to investigate some new methods for the reallocation of VMs in order to avoid 

the problem of overheating of computing resources. 

 

• The most important benefit of cloud computing is to deliver the QoS services to users 

mentioned in the SLA agreement signed between user and providers. The requirements of 

these users may vary over time therefore, it is very important to design some new 

algorithms that consider the time variations in SLA with the usage of a minimum number 

of physical servers i.e. without increasing the cost of the infrastructure of the data center. 

These heterogeneous requirements of users may also make the process of VM 

consolidation a little bit complex. Thus, the design of new algorithms that can consider 

this heterogeneity of the resources to meet the requirements of cloud user by enlightening 

the concept of energy efficiency with in data centers will be the most significant solution 

for the problems related to these issues. 

 

• The growth of energy consumption due to data centers has become tremendous issue and 

therefore, the minimization of energy consumption is very important. As similar to the 

consideration of computing resources of data centers, the hardware components of data 

center also play a significant role for this growing energy consumption. Therefore, it is 
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very important and beneficial to deal with the hardware devices such as: racks, switches, 

cooling components for energy minimization. 

 

• Future work is planned for the evaluation of proposed models or algorithms in Cloud 

Stack a real infrastructure for the cloud environment. Moreover, the direction for future 

research will be implementing energy aware resource allocation algorithms using different 

configurations of data centers such as network topology, cooling structure and many 

others. 
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APPENDIX 

 

 

The appendix of this thesis includes the code of the accomplished work. This thesis reports the 

VM consolidation in cloud environment which has been done in four different subparts discussed 

in chapter 3 to 6. Thus, the complete code is also provided in different parts which includes: 

selection of over utilized and under-utilized host machine, selection of VM for migration, 

placement of VMs over most optimal host machine and finally turn off the idle machines. 

 
package org.cloudbus.cloudsim.power; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

import org.cloudbus.cloudsim.Host; 

import org.cloudbus.cloudsim.HostDynamicWorkload; 

import org.cloudbus.cloudsim.Log; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.core.CloudSim; 

import org.cloudbus.cloudsim.power.lists.PowerVmList; 

import org.cloudbus.cloudsim.util.ExecutionTimeMeasurer; 

import org.cloudbus.cloudsim.util.MathUtil; 

// Prints the over utilized hosts. 

protected void printOverUtilizedHosts(List<PowerHostUtilizationHistory> overUtilizedHosts)  

{ 

  if (!Log.isDisabled()) { 

   Log.printLine("Over-utilized hosts:"); 

   for (PowerHostUtilizationHistory host : overUtilizedHosts) { 

    Log.printLine("Host #" + host.getId()); 

   } 

   Log.printLine(); 

  } 

 } 

 // Checks if is host over utilized after allocation. 

 // host the host 

 //vm the vm 

 // return true, if is host over utilized after allocation 

 protected boolean isHostOverUtilizedAfterAllocation(PowerHost host, Vm vm)  

{ 

  boolean isHostOverUtilizedAfterAllocation = true; 

  if (host.vmCreate(vm))  

{ 

   isHostOverUtilizedAfterAllocation = isHostOverUtilized(host); 

   host.vmDestroy(vm); 

  } 

  return isHostOverUtilizedAfterAllocation; 
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 } 

// Gets the over utilized hosts. 

protected List<PowerHostUtilizationHistory> getOverUtilizedHosts()  

{ 

 List<PowerHostUtilizationHistory>overUtilizedHosts=new 

LinkedList<PowerHostUtilizationHistory>(); 

for(PowerHostUtilizationHistory host : this.<PowerHostUtilizationHistory>getHostList()) 

{ 

   if (isHostOverUtilized(host))  

{ 

    overUtilizedHosts.add(host); 

   } 

  } 

  return overUtilizedHosts; 

 } 

// Gets the under utilized host. 

protected PowerHost getUnderUtilizedHost(Set<? extends Host> excludedHosts) 

{ 

  double minUtilization = 0; 

  PowerHost underUtilizedHost = null; 

  for (PowerHost host : this.<PowerHost> getHostList()) 

{ 

   if (excludedHosts.contains(host)) 

{ 

    continue; 

   } 

  double utilization = host.getUtilizationOfCpu(); 

  minUtilization= getHostUtilizationMedlower(host); 

   if(utilization < minUtilization) 

{ 

    underUtilizedHost = host; 

   } 

   } 

 return underUtilizedHost; 

 } 

protected double getHostUtilizationMedlower(PowerHost host)  

{ 

  double[] data = new double[host.getUtilizationHistory().length]; 

  data = host.getUtilizationHistory(); 

  System.out.println(data.length); 

  return MathUtil.medlower(data); 

 } 

public class MedianMethod extends PowerVmAllocationPolicyMigrationAbstract  

{ 

 private double safetyParameter = 10; 

 /** The fallback vm allocation policy. */ 

private PowerVmAllocationPolicyMigrationAbstract fallbackVmAllocationPolicy; 

public MedianMethod(List<? extends Host> hostList, PowerVmSelectionPolicy, vmSelectionPolicy, 

double safetyParameter, PowerVmAllocationPolicyMigrationAbstract fallbackVmAllocationPolicy, 

double utilizationThreshold)  
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 {   

    super(hostList, vmSelectionPolicy); 

   setSafetyParameter(safetyParameter);      

   setFallbackVmAllocationPolicy(fallbackVmAllocationPolicy); 

}               

        public MedianMethod( List<? extends Host> hostList, PowerVmSelectionPolicy vmSelectionPolicy, 

double safetyParameter, PowerVmAllocationPolicyMigrationAbstract fallbackVmAllocationPolicy)  

{  

super(hostList, vmSelectionPolicy); 

  setSafetyParameter(safetyParameter); 

  setFallbackVmAllocationPolicy(fallbackVmAllocationPolicy); 

             } 

//Override 

protected boolean isHostOverUtilized(PowerHost host)  

  { 

  PowerHostUtilizationHistory _host = (PowerHostUtilizationHistory) host; 

  double upperThreshold = 0; 

  try  

{ 

   upperThreshold = 1 - getSafetyParameter() * getHostUtilizationMed(_host); 

   }  

                  catch (IllegalArgumentException e)  

         { 

                return getFallbackVmAllocationPolicy().isHostOverUtilized(host); 

            } 

  addHistoryEntry(host, upperThreshold); 

  double totalRequestedMips = 0; 

  for (Vm vm : host.getVmList())  

{ 

   totalRequestedMips += vm.getCurrentRequestedTotalMips(); 

   } 

  double utilization = totalRequestedMips / host.getTotalMips(); 

  return utilization > upperThreshold; 

            } 

//Gets the host utilization med. 

Protected double getHostUtilizationMed (PowerHostUtilizationHistory host) throws 

IllegalArgumentException  

          { 

 double[] data = host.getUtilizationHistory(); 

 //if (MathUtil.countNonZeroBeginning(data) >= 12) 

                   {  

// 12 has been suggested as a safe value 

  return MathUtil.med(data); 

       } 

          } 

// to calculate lower threshold 

public double getHostUtilizationMedlower(PowerHostUtilizationHistory host) throws 

IllegalArgumentException  

{ 

double[] data = host.getUtilizationHistory(); 
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 return MathUtil.medlower(data);  

} 

} 

// selection of VMs using AHP method 
package org.cloudbus.cloudsim.power; 

import java.util.List; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.core.CloudSim; 

public class VmselectionPolicyAHP extends PowerVmSelectionPolicy  

{ 

 private PowerVmSelectionPolicy fallbackPolicy; 

 protected List<PowerVm> vmList1; 

 public VmselectionPolicyAHP()  

{ 

  super(); 

  setFallbackPolicy(fallbackPolicy); 

 } 

 public PowerVmSelectionPolicy getFallbackPolicy()  

{ 

  return fallbackPolicy; 

 } 

 private void setFallbackPolicy(PowerVmSelectionPolicy fallbackPolicy)  

{ 

  this.fallbackPolicy = fallbackPolicy; 

 } 

 public Vm getVmToMigrate(final PowerHost host)  

{ 

 List<PowerVm> migratableVms = getMigratableVms(host); 

  if (migratableVms.isEmpty())  

{ 

   return null; 

  } 

  double[][] metrics = null; 

  try  

{ 

  metrics= getMaxscore(getminUtil(migratableVms), getminRam(migratableVms), 

getmigrationtime(migratableVms)); 

  }  

catch (IllegalArgumentException e) 

 {  

   return getFallbackPolicy().getVmToMigrate(host); 

  } 

  double max=0; 

  int maxIndex =0; 

  for(int i=0;i<metrics.length;i++) 

  { 

   if(metrics[i][0]>max) 

   { 

   max=metrics[i][0]; 

   maxIndex=i; 
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   } 

  } 

  return migratableVms.get(maxIndex); 

     } 

private double[][] getMaxscore(double[][] getminUtil,double[][] getminRam, double[][] getmigrationtime)  

                      {                       

  int j= vmList1.size(); 

  int i=0,l; 

  double[][] AHP= new double[j][3]; 

  double[][] AHPnew= new double[j][3]; 

  double[][] score= new double[j][1]; 

  for(i=0;i<j;i++) 

{ 

   for(l=0;l<3;l++){ 

    AHP[i][l]= getminUtil[i][l]+getminRam[i][l]+getmigrationtime[i][l]; 

   } 

} 

 double mex= 0; 

 double mex1= 0; 

double mex2= 0; 

 for(i = 0;i<j;i++) 

  { 

      if(AHP[i][0] > mex) 

      mex=AHP[i][0]; 

  } 

   for(i = 0;i<j;i++) 

       { 

   if(AHP[i][1] > mex1) 

   mex1=AHP[i][1]; 

       } 

           for(i = 0;i<j;i++) 

   { 

       if(AHP[i][2] > mex2) 

   mex2=AHP[i][2]; 

   } 

      i=0; 

      while(i<j) 

      { 

 l=0; 

         AHPnew[i][l]= AHP[i][l]/mex; 

       AHPnew[i][l]=(AHPnew[i][l]*0.50); 

       i++; 

      } 

      i=0; 

      while(i<j) 

      {  

l=1; 

         AHPnew[i][l]= AHP[i][l]/mex1; 

       AHPnew[i][l]= (AHPnew[i][l]*0.25); 

       i++; 
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      } 

      i=0; 

      while(i<j) 

      {  

l=2; 

          AHPnew[i][l]= AHP[i][l]/mex2; 

       AHPnew[i][l]= (AHPnew[i][l]*0.25); 

       i++; 

      } 

      for(i=0;i<j;i++) 

      { 

      score[i][0]=(AHPnew[i][0]*30)+(AHPnew[i][1]*30)+(AHPnew[i][2]*40); 

      } 

       return score; 

  } 

protected double[][] getminUtil(final List<PowerVm> vmList) 

{ 

      vmList1=vmList; 

      int n = vmList.size(); 

      double[][]utilization = new double[n][3]; 

      for(int i=0;i<n;i++) 

        { 

           Vm vm; 

          vm= vmList.get(i); 

                       double vmutilization = m.getTotalUtilizationOfCpuMips(CloudSim.clock())/vm.getMips(); 

               utilization[i][0] = vmutilization;   

   utilization[i][1] = 0; 

   utilization[i][2] = 0; 

       } 

 return utilization; 

 } 

protected double[][] getminRam(final List<PowerVm> vmList) 

{ 

 int n=vmList.size(); 

 double[][]ramutilization = new double[n][3]; 

 for(int i=0;i<n;i++) 

       { 

           Vm vm; 

           vm= vmList.get(i); 

           Double vmutilization = (double) vm.getRam(); 

             ramutilization[i][1]= vmutilization; 

             ramutilization[i][0]= 0; 

             ramutilization[i][2]= 0; 

        } 

 return ramutilization; 

            } 

protected double[][] getmigrationtime(final List<PowerVm> vmList) 

{ 

 int n= vmList.size(); 

 double[][]migtime = new double[n][3]; 



129 
 

   for(int i=0;i<n;i++) 

        {  

  Vm vm; 

  vm= vmList.get(i); 

  double vmutilization = vm.getRam()/vm.getBw(); 

  migtime[i][2]= vmutilization; 

  migtime[i][0]= 0; 

  migtime[i][1]= 0; 

        } 

 return migtime; 

          } 

} 

//VM Placement using bin packing techniques ARBF H1 
public PowerHost findHostForVm (Vm vm, Set<? extends Host> excludedHosts) 

{ 

       double minPower = Double.MAX_VALUE; 

       PowerHost allocatedHost = null; 

       Double MR= null; 

       for (PowerHost host : this.<PowerHost> getHostList()) 

            { 

if (excludedHosts.contains(host))  

{ 

 continue; 

 } 

        if(host.isSuitableForVm(vm)) 

  { 

  if (getUtilizationOfCpuMips(host) != 0 && isHostOverUtilizedAfterAllocation(host, vm)) 

{ 

   continue; 

   } 

   try 

    { 

                        double hutil =sqrt(host.getAvailableMips()-host.getTotalMipsallocatedforVm(vm)); 

                                                    MR= sqrt(hutil/host.getPreviousUtilizationMips()); 

    if ( MR < minPower) 

{ 

     minPower = MR; 

     allocatedHost = host; 

     } 

    } 

    catch (Exception e) 

{ 

     

   } 

  } 

 } return allocatedHost; 

} 

//VM placement using ARBF H2 
public PowerHost findHostForVm (Vm vm, Set<? extends Host> excludedHosts) 

{ 

       double minPower = Double.MAX_VALUE; 

       PowerHost allocatedHost = null; 

       double MR= null; 



130 
 

       double AvailRAM= double.MAX_VALUE; 

       for (PowerHost host : this.<PowerHost> getHostList()) 

            { 

if (excludedHosts.contains(host))  

{ 

 continue; 

 } 

        if(host.isSuitableForVm(vm)) 

  { 

  if (getUtilizationOfCpuMips(host) != 0 && isHostOverUtilizedAfterAllocation(host, vm)) 

{ 

   continue; 

   } 

   try 

    { 

          double hutil =sqrt(host.getPreviousUtilizationMips()-host.getAvailableMipsofHost()); 

         AvailRAM = (host.getPreviousUtilizationofRam() – host.getCurrentUtilizationofVm(vm));                                                      

                                    MR= sqrt(hutil+AvailRAM); 

    if ( MR < minPower) 

{ 

     minPower = MR; 

     allocatedHost = host; 

     } 

    } 

    catch (Exception e) 

{ 

     

   } 

  } 

 } return allocatedHost; 

} 

//VM placement using ARBF H3 

public PowerHost findHostForVm (Vm vm, Set<? extends Host> excludedHosts) 

{ 

       double minPower = Double.MAX_VALUE; 

       PowerHost allocatedHost = null; 

       double MR= null; 

       double AvailRAM= double.MAX_VALUE; 

       for (PowerHost host : this.<PowerHost> getHostList()) 

            { 

if (excludedHosts.contains(host))  

{ 

 continue; 

 } 

        if(host.isSuitableForVm(vm)) 

  { 

  if (getUtilizationOfCpuMips(host) != 0 && isHostOverUtilizedAfterAllocation(host, vm)) 

{ 

   continue; 

   } 

   try 

    { 

             MR= sqrt(host.getAvailableUtilizationofMipsofhost()/host.getPreviousUtilizationofMips()); 

    if ( MR < minPower) 

{ 
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     minPower = MR; 

     allocatedHost = host; 

     } 

    } 

    catch (Exception e) 

{ 

     

   } 

  } 

 } return allocatedHost; 

} 

//VM placement using GA 

package org.cloudbus.cloudsim.power; 

import java.util.ArrayList; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.Map; 

import java.util.Random; 

import java.util.logging.Logger; 

import org.cloudbus.cloudsim.Host; 

import org.cloudbus.cloudsim.Log; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.util.ExecutionTimeMeasurer; 

 

public class PowerVMPlacementPolicyUisngGA extends PowerVmAllocationPolicyMigrationAbstract  

{ 

//final static double crossoverrate =0.2; 

public static Random rnd; 

List<GA> pop; 

Public PowerVMPlacementPolicyUisngGA(List<? extends Host> hostList,PowerVmSelectionPolicy 

vmSelectionPolicy) 

 { 

  super(hostList, vmSelectionPolicy); 

   Log.setDisabled(true); 

} 

 public List<Map<String, Object>> optimizeAllocation(List<? extends Vm> vmList)  

  { 

     ExecutionTimeMeasurer.start("optimizeAllocationTotal"); 

     List<Map<String, Object>> migrationMap = new LinkedList<Map<String, Object>>(); 

      // populate migrationMap here 

      ExecutionTimeMeasurer.start("optimizeAllocationHostSelection"); 

      initGA(); 

getExecutionTimeHistoryHostSelection().add(ExecutionTimeMeasurer.end("optimizeAllocationHostSelection")); 

while(true)  

{ 

    try  

        { 

           migrationMap = pop.get(rnd.nextInt(pop.size())).getMap(); 

            break; 

         } catch (Exception e) 

 { 

    } 

         } 

getExecutionTimeHistoryTotal().add(ExecutionTimeMeasurer.end("optimizeAllocationTotal")); 

return migrationMap; 
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} 

protected boolean isHostOverUtilized(PowerHost host)  

{ 

      return false; 

} 

 private void initGA() 

           { 

 rnd = new Random(); 

 pop = new ArrayList<GA>(); 

 for (int i = 0; i < 5; i++)  

                        { 

  try { 

            addToPopulation(new GA(this)); 

                                   } catch (Exception e)  

{ 

System.out.println(e.getMessage()); 

   } 

                        } 

  for (int i = 0; i < 10; i++)  

   { 

   mutation(); 

   crossover(); 

                  }   

 } 

private List<GA> addToPopulation(GA ind)  

          { 

 if (pop.size() <50) 

         { 

                 pop.add(ind); 

         } 

 return pop; 

           } 

private void crossover() 

          { 

 GA p1, p2; 

 p1 = pop.get(rnd.nextInt(pop.size())); 

 do  

                   { 

       p2 = pop.get(rnd.nextInt(pop.size())); 

      } 

              while (p1.equals(p2)); 

        try { 

  addToPopulation(new GA(p1, p2)); 

  }  

catch (Exception e) 

{ 

  } 

 } 

private void mutation() 

          { 

 for (GA ind : pop) 

      { 

           if (( rnd.nextInt(100) < 10)) 

 { 

       try  
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                               { 

               ind.Mutation(); 

             } catch (Exception e) 

{ 

    } 

    } 

             } 

 } 

} 

//VM Placement using NSGA 

package org.cloudbus.cloudsim.power; 

import java.util.ArrayList; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.Map; 

import java.util.Random; 

import java.util.logging.Logger; 

import org.cloudbus.cloudsim.Host; 

import org.cloudbus.cloudsim.Log; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.util.ExecutionTimeMeasurer; 

 

public class PowerVmAllocationPolicyMigrationGA extends PowerVmAllocationPolicyMigrationAbstract 

 { 

  public static Random rnd; 

  List<GAInd> pop, pareto; 

  public PowerVmAllocationPolicyMigrationGA(List<? extends Host> hostList, PowerVmSelectionPolicy 

vmSelectionPolicy)  

       { 

          super(hostList, vmSelectionPolicy); 

        } 

public List<Map<String, Object>> optimizeAllocation(List<? extends Vm> vmList)  

    { 

        ExecutionTimeMeasurer.start("optimizeAllocationTotal"); 

        List<Map<String, Object>> migrationMap = new LinkedList<Map<String, Object>>(); 

        // populate migrationMap here 

        ExecutionTimeMeasurer.start("optimizeAllocationHostSelection"); 

        initGA(); 

        getExecutionTimeHistoryHostSelection().add(  

ExecutionTimeMeasurer.end("optimizeAllocationHostSelection")); 

           while(true)  

            { 

     try { 

  migrationMap = pareto.get(rnd.nextInt(pareto.size())).getMap(); 

  break; 

           } 

   catch (Exception e)  

           { 

     } 

            } 

   getExecutionTimeHistoryTotal().add(ExecutionTimeMeasurer.end("optimizeAllocationTotal")); 

     return migrationMap; 

} 

 

protected boolean isHostOverUtilized(PowerHost host)  
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   { 

 return false; 

   } 

private void initGA()  

{ 

    rnd = new Random(); 

    pop = new ArrayList<GAInd>(); 

    pareto = new ArrayList<>(); 

                for (int i = 0; i < 50; i++)  

{ 

   try { 

          addToPopulation(new GAInd(this)); 

         } catch (Exception e)  

{ 

    System.out.println(e.getMessage()); 

                  } 

                 } 

  for (int i = 0; i < 500; i++)  

{ 

   mutation(); 

   crossover(); 

                 } 

 } 

 

 private void crossover()  

{ 

  GAInd p1, p2; 

  p1 = pop.get(rnd.nextInt(pop.size())); 

  do  

{ 

  p2 = pop.get(rnd.nextInt(pop.size())); 

  }  

while (p1.equals(p2)); 

  try 

 { 

     addToPopulation(new GAInd(p1, p2)); 

   } catch (Exception e) 

 { 

  } 

  //crossover takes too much time 

  for (int i = 0; i < pop.size(); i++)  

{ 

   if (rnd.nextInt(100) < 90) 

 { 

      GAInd p1, p2; 

       p1 = pop.get(rnd.nextInt(pop.size())); 

         do { 

           p2 = pop.get(rnd.nextInt(pop.size())); 

         } while (p1.equals(p2)); 

    try { 

           addToPopulation(new GAInd(p1, p2)); 

          } catch (Exception e)  

{ 

    } 

     } 
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               } 

                  } 

 private void mutation() 

 { 

            for (GAInd ind : pop)  

{ 

        if (!ind.isPareto && rnd.nextInt(1000) < 10)  

{ 

   try  

                                                { 

           ind.Mutation(); 

         } catch (Exception e)  

{ 

    } 

   } 

  } 

 } 

 private void removeIndividual(GAInd ind)  

{ 

  pop.remove(ind); 

  pareto.remove(ind); 

 } 

 

 private boolean addToPareto(GAInd ind)  

{ 

  List<GAInd> dominatedInds = new ArrayList<>(); 

  for (GAInd target : pareto)  

            { 

             if (ind.dominates(target) == Domination.True)  

 { 

     dominatedInds.add(target); 

    } 

          else if (ind.dominates(target) == Domination.False) 

{ 

   return false; 

   } 

           } 

  for (GAInd gaInd : dominatedInds)  

{ 

   removeIndividual(gaInd); 

  } 

  if (pareto.size() < 20)  

     { 

   pareto.add(ind); 

   ind.isPareto = true; 

   return true; 

       } 

  return false; 

            } 

 private boolean addToPopulation(GAInd ind)  

{ 

  if (pop.size() < 50)  

     { 

          pop.add(ind); 

          addToPareto(ind); 
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          return true; 

       } 

  List<GAInd> dominatedInds = new ArrayList<>(); 

  for (GAInd gaInd : pop) 

        { 

           if (ind.dominates(gaInd) == Domination.True)  

{ 

    dominatedInds.add(gaInd); 

   } 

          } 

  if (dominatedInds.size() > 0)  

        { 

   GAInd random = dominatedInds.get(rnd.nextInt(dominatedInds.size())); 

   removeIndividual(random); 

   pop.add(ind); 

   addToPareto(ind); 

   return true; 

             } 

  return false; 

        } 

 

//VM Placement using BPNN (this code has been developed in Netbeans using cloudSim libraries) 

import java.io.File; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.Calendar; 

import java.util.Date; 

import java.util.List; 

import java.util.Scanner; 

import org.cloudbus.cloudsim.Vm; 

import org.cloudbus.cloudsim.core.CloudSim; 

public class BPNN  

{ 

static TermProcessing trp=new TermProcessing(); 

static File[] listOfFiles = null; 

statpic String InputFiles = "C:\\Database\\BPNN\\Vms"; 

public static void main(String[] args)  

    { 

        MachineLearning mchn=new MachineLearning(); 

        String[] machinefeatures=new String[66]; 

        int hostcount=0; 

        long currentneuroelapsed=0; 

        double slavoilation=0; 

        double energyconsumed=0; 

        double totalservercost=0; 

        machinefeatures=mchn.readmachineprop(); 

        long startTime = System.currentTimeMillis(); 

        long elapsedTime; 

        elapsedTime = 0L; 

        Scanner in = new Scanner(System.in); 

        List<Vm> vmlist = null; 

        BPNN bp=new BPNN(); 
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        bp.listFiles(); 

        vmlist = new ArrayList<Vm>(); 

        int changefitness=0; 

        int num_user = 1; // number of cloud users 

        Calendar calendar = Calendar.getInstance(); // Calendar initialized with the current date and time. 

        boolean trace_flag = false; // trace events 

        int[][] cando=new int[1000][2]; 

        int cancount=0; 

        int allocationcount=0; 

        CloudSim.init(num_user, calendar, trace_flag); 

        String cpupath=""; 

        String[] TxttoWord_1; 

        TxttoWord_1 = trp.processDoc(listOfFiles[0].getAbsolutePath()); 

        String currentvalue=TxttoWord_1[0]; 

        int slen=currentvalue.length(); 

        int vmss=TxttoWord_1.length; 

        int Machines = 7; 

        int hosts=0; 

        System.out.println("Enter total desired Hosts :"); 

        hosts=in.nextInt(); 

        double[] allhosts=new double[1000]; 

        vmss=currentvalue.length(); 

        int[] vmssId = new int[vmss]; 

        double[] vmssenergy = new double[vmss]; 

        double[] vmssCpu = new double[vmss]; 

        double[] vmssTime = new double[vmss]; 

        double[][] allocated_final=new double[50][50]; 

        vmsSpecification JS = new vmsSpecification(); 

        vmssId = JS.Id(vmss); 

        vmssenergy = JS.energyUtilization(vmss); 

          for(int iso=0;iso<currentvalue.length();iso++) 

               { 

                  vmssCpu[iso]=(double)(currentvalue.charAt(iso)); 

               } 

        vmssTime = JS.vmsTime(vmss); 

        int[] MachinesId = new int[Machines]; 

        double[] Machinesenergy = new double[Machines]; 

        double[] MachinesCpu = new double[Machines]; 

        double[] MachinesTime = new double[Machines]; 

        double[] Servercost=new double[Machines]; 

        int types=Math.round(hosts/Machines); 

        MachineSpecification MS = new MachineSpecification(); 

        Servercost=MS.MachineCost(Machines); 

        MachinesId = MS.Id(Machines); 

        Machinesenergy = MS.energyUtilization(Machines); 

        MachinesCpu = MS.CpuUtilization(Machines); 

        MachinesTime = MS.MachineTime(Machines); 

         //initialize GA 

         int gapopulation=0; 

         gapopulation=MachinesId.length; 
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         // initializing the forward pass  

         double fitvalue=0; 

       fitvalue=Machinesenergy[0]; 

       int currentelement=0; 

       double Fitness_value=0; 

       gaobj1 ga1=new gaobj1(); 

       for(int i=0;i<hosts;i++) 

           { 

              allhosts[i]=9999; 

           } 

       System.out.println("Fitness Value:"+fitvalue); 

          for(int i=0;i<gapopulation;i++) 

              { 

                  currentelement=MachinesId[i]; 

                  double mym=0; 

                  mym=Machinesenergy[i]; 

                      for(int sp=0;sp<Machinesenergy.length;sp++) 

                         { 

                             if(Machinesenergy[sp]>mym) 

                               { 

                                   mym=Machinesenergy[sp]; 

                               } 

                         } 

            Fitness_value=mym; 

            int flag_fit=0; 

            int stop_searching=0; 

                   for(int j=0;j<vmssId.length;j++) 

                        {  

                            if(stop_searching==0) 

                             { 

                                 double checkvalue=0; // this value would be compared with the fitness value ; 

                                 int flag_newfit=0; 

                                 checkvalue=vmssenergy[j]; 

                                 flag_fit=ga1.findfit(Fitness_value,checkvalue); 

                                      if(flag_fit==1) 

                                        { 

                                           int crvms=vmssId[j]; 

                                                 try 

                                                      { 

                                                           cando[cancount][0]=currentelement; 

                             System.out.println(currentelement); 

                             System.out.println(cando[cancount][0]); 

                            cando[cancount][1]=crvms; 

                           cancount=cancount+1; 

                      } 

                            catch(Exception err) 

                      { 

                               } 

                 } 

                      else 
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                         { 

                         flag_newfit=ga1.crossover(Fitness_value*Math.random(),checkvalue*Math.random()); 

                    if(flag_newfit==1) 

                        { 

                               stop_searching=1; 

                                Fitness_value=checkvalue; 

                                changefitness=changefitness+1; 

                                System.out.println("Fitness Value Changed "+changefitness+"times .. New Fitness 

Value:"+Fitness_value); 

                                  } 

                          } 

                 } 

          }                

       } 

for(int i=0;i<cancount;i++) 

       { 

           System.out.println("Server ID:"+cando[i][0]+" can perform "+cando[i][1]+" vms"); 

        } 

          for(int i=0;i<cancount;i++) 

            { 

           System.out.println("Server ID:"+cando[i][0]+" can perform "+cando[i][1]+" vms"); 

            } 

           int current_vms=0; 

       for(int i=0;i<vmssId.length;i++) 

          { 

           current_vms=vmssId[i]; 

           int[] vmscluster=new int[10]; 

           int jbscount=0; 

       // now creating the vms clusters  

             for(int j=0;j<cancount;j++) 

                 { 

                    if(current_vms==cando[j][1]) 

                     { 

                        try 

                          { 

                             vmscluster[jbscount]=cando[j][0]; 

                              jbscount=jbscount+1; 

                          } 

                        catch(Exception err) 

                         { 

                         } 

                     } 

                  } 

       double[] currentenergy=new double[10]; 

            if(jbscount>0) 

               { 

                  for(int ii=0;ii<jbscount;ii++) 

                   { 

                       int currentjb=0; 

                       currentjb=vmscluster[ii]; 
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                      try 

                       { 

                             currentenergy[ii]=Machinesenergy[currentjb]; 

                          } 

                     catch(Exception err) 

                        { 

                          currentenergy[ii]=Math.random(); 

                         } 

                 } 

         } 

       double currentgaelement=0; 

       double gacrossover=0; 

       for(int y=0;y<jbscount;y++) 

           { 

           gacrossover=gacrossover+currentenergy[y]; 

           } 

          gacrossover=(gacrossover/jbscount)*Math.random(); 

          int flag_dont=0; 

            for(int kp=0;kp<jbscount;kp++) 

              { 

                 currentgaelement=currentenergy[kp]; 

                  if(currentgaelement>gacrossover*Math.random()) 

                  { 

                     if(flag_dont==0) 

                    { 

                       try 

                        { 

                          allocated_final[i][0]=vmscluster[kp];// server  

                          allocated_final[i][1]=i;// vms 

                          allocationcount=allocationcount+1; 

                          flag_dont=1; 

                        } 

                       catch(Exception err) 

                       { 

                        } 

                    } 

                 } 

            } 

      } 

      int rcount=0; 

      double[] remainingjobs = new double[900]; 

      int rjobcount=0; 

      for(int sg=0;sg<allocationcount;sg++) 

         {  

            if(allocated_final[sg][0]>MachinesId.length) 

               {   

                   remainingjobs[rjobcount]=allocated_final[sg][1]; 

                } 

            else 

               { 
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                   System.out.println("vms :"+allocated_final[sg][1]+" Allocated to "+allocated_final[sg][0]); 

                   long currentelapsed=System.currentTimeMillis(); 

                   currentelapsed=currentelapsed-startTime; 

                } 

          } 

              for(int is=0;is<vmssId.length;is++) 

             { 

                    int found=0; 

                    int found2=0; 

                     for(int ps=0;ps<allocationcount;ps++) 

                      { 

                        if (allocated_final[ps][1]==ps) 

                         {  

                           found=1; 

                         } 

                       if(allocated_final[ps][1]==is) 

                         { 

                           found2=1; 

                         } 

                      } 

                   if (found==0) 

                   { 

                     System.out.println("vms :"+is+" Allocated to "+0); 

                   } 

                    if(found2==0) 

                    { 

                       remainingjobs[rcount]=is; 

                       rcount=rcount+1; 

                    } 

                 }           

           elapsedTime = (new Date()).getTime() - startTime; 

           double[] makespan=new double[vmssTime.length]; 

           double[] resourceutil=new double[vmssTime.length]; 

           double totalmakespan=0; 

           double totalcpu=0; 

        for(int i=0;i<vmssTime.length;i++) 

           { 

            resourceutil[i]=vmssCpu[i]*elapsedTime; 

            makespan[i]=vmssTime[i]*elapsedTime; 

            totalmakespan=totalmakespan+makespan[i]; 

            totalcpu=totalcpu+resourceutil[i]; 

           } 

        for(int is=0;is<vmssId.length;is++) 

          { 

           double found=0; 

           for(int ps=0;ps<allocationcount;ps++) 

             { 

                 if (allocated_final[ps][1]==ps) 

                  { 

                  found=Math.round((ps)*Math.random()); 
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                  } 

             } 

              if (found==0) 

                { 

                  System.out.println("vms :"+is+" Allocated to "+0); 

                } 

                  else 

                   { 

                      int found1=0; 

                      found1=(int)found; 

                   } 

              } 

       System.out.println("Total make span :"+totalmakespan/2000); 

       System.out.println("Total Cpu Utilization :"+totalcpu/100000); 

       int mccount=1; 

       int nextmachine_value=10; 

       double[][]training_features=new double[6][11]; 

          for(int i=0;i<rcount;i++) 

            { 

               System.out.println(remainingjobs[i]+","); 

            } 

              int condition=1; 

                  for(int i=0;i<machinefeatures.length;i++) 

                      { 

                        System.out.println("Power Consumption for machine "+mccount+"under 

Condition"+condition +"is :"+machinefeatures[i]); 

                         try 

                             { 

                               training_features[mccount-1][condition-1]=(Double.parseDouble(machinefeatures[i])); 

                              } 

                        catch(Exception err) 

                           { 

                            } 

                     condition=condition+1; 

                      if(condition==12) 

                         { 

                          condition=1; 

                         } 

                      if(i==nextmachine_value) 

                        { 

                          mccount=mccount+1; 

                          nextmachine_value=nextmachine_value+11; 

                        } 

              } 

        System.out.println(Arrays.toString(training_features)); 

        double[] group=new double[6]; 

        for(int i=0;i<6;i++) 

           { 

            group[i]=i+1; 

           } 
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         startTime=System.currentTimeMillis(); 

         int neuralnetworkepochs=0; 

GenerateHiddneLayer ghl=new GenerateHiddneLayer(); 

// the generate hidden layer class contains the values of the epochs / greadient and the values of the 

arbritrary constants  

neuralnetworkepochs=ghl.totalepochs();  

int gradientsatisfied=0; 

double gradient=0; 

double[][] termweight=new double[6][11]; 

System.out.println("Total term weight :"+(termweight)) ; 

termweight=training_features; 

double[][] previoushwt=new double[6][11];// to store the previous state of the data 

double[][] newwt=new double[6][11]; 

int epochrun=0; 

gradient=ghl.generategradient(); 

    for(int i=0;i<neuralnetworkepochs;i++) 

          { 

               if(gradientsatisfied==0) 

                  {   

                     if (i==0) 

                      { 

                        newwt=ghl.generateweight(termweight); 

                        previoushwt=newwt; 

                       } 

                    else 

                      { 

                        newwt=ghl.generateweight(termweight); 

                            for(int k=0;k<6;k++) 

                                { 

                                   for(int l=0;l<11;l++) 

                                         { 

                                            newwt[k][l]=newwt[k][l]+previoushwt[k][l]; 

                                         } 

                                 } 

                        } 

                   for(int p=0;p<newwt.length;p++) 

                       { 

                            for(int l=0;l<11;l++) 

                                 if(newwt[p][l]>=gradient) 

                                    { 

                                       gradientsatisfied=epochrun; 

                                     } 

                                else 

                                   { 

                                      slavoilation=slavoilation+1; 

                                    } 

                        } 

                } 

            epochrun=epochrun+1; 

        } 
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          for(int i=0;i<6;i++) 

            { 

                for(int j=0;j<11;j++) 

                   { 

                    System.out.println("The weight of "+i+"th item is :"+newwt[i][j]); 

                   } 

                } 

          System.out.println("Gradient value is "+gradient); 

          System.out.println("Gradient satisfied at  "+gradientsatisfied+1); 

          System.out.println("Neural network training complete"); 

         double[] testset=new double[11]; 

             for(int i=0;i<rcount;i++) 

                { 

                   for(int j=0;j<11;j++) 

                     { 

                        double currente=0; 

                        double currentt; 

                        currente=vmssenergy[(int)(remainingjobs[i])]; 

                        currentt=vmssTime[(int)(remainingjobs[i])]; 

                        double total=currente+currentt; 

                        testset[j]=total+(total*(j*10)/100);  

                      } 

                  GenerateHiddneLayer gnrt=new GenerateHiddneLayer(); 

                  double[][] testweight=new double[1][11]; 

                       for(int k=0;k<11;k++) 

                          { 

                             testweight[0][k]=testset[k]; 

                          } 

                            testweight=gnrt.generateweight(testweight); 

                            Simulateneural simneuro=new Simulateneural(); 

                            double result=0; 

                            result=simneuro.simneural(newwt, testweight, mccount); 

                            totalservercost=totalservercost+Servercost[(int)result]; 

                            allhosts[hostcount]=result*types+Math.round((double)Math.random()*types); 

                            System.out.println("Best suited for VM:"+remainingjobs[i]+"is :"+allhosts[hostcount]); 

                            currentneuroelapsed=System.currentTimeMillis(); 

                            hostcount=hostcount+1; 

                            currentneuroelapsed=currentneuroelapsed-startTime; 

          energyconsumed= energyconsumed+intg.Integrate (0,1,(vmssenergy[(int)remainingjobs[i]]+           

Machinesenergy[(int)result])* elapsedTime); 

                        } 

                   energyconsumed=energyconsumed*(currentneuroelapsed)/60; 

                   long totalelapsed=System.currentTimeMillis(); 

                   totalelapsed=totalelapsed-startTime; 

                   totalelapsed=totalelapsed; 

                   energyconsumed=energyconsumed/(2000*2); 

                   System.out.println("Total Energy Consumed :"+(energyconsumed)+"KWh"); 

                   totalelapsed=(totalelapsed/(60)); 

                  double tell=(double)totalelapsed; 

                  double totalhostused=0; 
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                      for(int i=0;i<hosts;i++) 

                         { 

                             double currenthost=i; 

                             int hostfound=0; 

                                 for(int j=0;j<hostcount;j++) 

                                     { 

                                       if(allhosts[j]==currenthost) 

                                       { 

                                          hostfound=1; 

                                       } 

                                     } 

                                    if(hostfound==1) 

                                      { 

                                        totalhostused=totalhostused+1; 

                                       } 

                             } 

            tell=tell/300; 

            slavoilation=slavoilation/30000; 

            System.out.println("Total makespan :"+(tell)+" sec"); 

            System.out.println("SLA VOILATION :"+slavoilation); 

            System.out.println("Migration Count :"+rcount*3); 

            System.out.println("Total Server Side Cost:"+totalservercost+" Units "); 

            System.out.println("Total Host Used is :"+totalhostused*4); 

        } 

public void listFiles()  

    { 

        File folder = new File(InputFiles); 

        listOfFiles = folder.listFiles(); 

        System.out.println("Getting input database..."); 

    } 

}        

//simulation of neural network 

package BPNN; 

public class Simulateneural { 

    public double simneural(double[][] traindata,double[][]testdata,int machinecount) 

    { 

        double value=0; 

        double testrec=0; 

        machinecount=machinecount-2; 

        double[] diff=new double[machinecount]; 

        double machinevalue=0; 

            for(int is=0;is<machinecount;is++) 

               { 

                 for(int i=0;i<11;i++) 

                  { 

                     machinevalue=machinevalue+traindata[is][i]; 

                     testrec=testrec+testdata[0][i]; 

                  } 

                 machinevalue=machinevalue/11; 

                 testrec=testrec/11; 
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            try 

             { 

                 diff[is]=Math.abs(machinevalue-testrec)*Math.random(); 

               } 

               catch(Exception err) 

               { 

                 System.out.println(err); 

               } 

           } 

        double currentmin=diff[0]; 

        double currentpos=0; 

        for(int i=0;i<machinecount;i++) 

           { 

               if(currentmin>diff[i]) 

                  { 

                     currentmin=diff[i]; 

                     currentpos=i; 

                  } 

            } 

        value=currentpos; 

        return value; 

    } 

 } 

//generation of hidden layer 

package BPNN; 

public class GenerateHiddneLayer { 

public double[][] generateweight(double[][] data) 

    { 

        double[][] myweight=new double[6][11]; 

        Generateab gab=new Generateab(); 

        double[] ab=new double[2]; 

           for(int i=0;i<6;i++) 

            {  

                for(int j=0;j<11;j++) 

                   { 

                    ab=gab.returnab(); 

                    // the formual for the linear weight is ax+b 

                    try 

                     { 

                      myweight[i][j]=ab[0]*data[i][j]+ab[1]; 

                      } 

                    catch(Exception err) 

                    { 

                    myweight[i][j]=Math.random(); 

                    } 

                  } 

            } 

        return myweight; 

     } 

  public int totalepochs() 
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    { 

        return 100;        

    } 

   public double generategradient() 

       { 

        double gradient=0; 

        gradient=50+10*Math.random(); 

        return gradient; 

    } 

} 

//weights processing 

package BPNN; 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.ArrayList; 

public class TermWeight  

{ 

             float dl[]=new float[2]; 

             float rdl[] = new float[2]; 

             public float termWeight(int nO,int docLen ,int termF, int total_doc)  

   { 

                   float W = 0, tf = 0, idfji = 0, df = 0; 

                   tf = nO; 

                   df = termF; 

                   idfji = (float) (Math.log(total_doc / df) / Math.log(2));                      

                   W = Math.abs(tf * idfji); 

                   return W; 

                } 

            public float[] getLengthValue(ArrayList<Float> weight,ArrayList<Float> weight2) 

 { 

               dl[0]=0; 

               dl[1]=0; 

               for (int docIn = 0; docIn < weight.size(); docIn++)  

                    { 

                        if(weight.get(docIn)>=0) 

                          { 

                             dl[0] +=  (Math.pow(weight.get(docIn), 2)); 

              } 

                } 

               for(int docIn=0;docIn < weight2.size();docIn++) 

                     { 

                        if(weight2.get(docIn) >=0) 

                           { 

                             dl[1] +=(Math.pow(weight2.get(docIn), 2)); 

                           } 

                     } 

                dl[0] = (float) Math.sqrt(dl[0]); 

                dl[1] = (float) Math.sqrt(dl[1]); 
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                 return dl; 

              } 

public float getCosineMetric(ArrayList<Float> Vec1,ArrayList<Float> Vec2)  

{ 

        float cosSim = 0, numTerm = 0, denoTerm = 0; 

        for (int index = 0; index < Vec2.size(); index++)  

{ 

             numTerm += Vec1.get(index) * Vec2.get(index); 

              } 

        rdl = getLengthValue(Vec1, Vec2);           

        denoTerm = (rdl[0] * rdl[1]); 

        if ((denoTerm > 0))  

{ 

                cosSim = Math.abs(numTerm / denoTerm); 

              }  

       return cosSim; 

 } 

public String[] formatDoc(String path)  

{ 

        BufferedReader br = null; 

        String expr = ","; 

        String[] values = null; 

           try  

{ 

                String CLine; 

                br = new BufferedReader(new FileReader(path)); 

                while ((CLine = br.readLine()) != null)  

                { 

                 values = CLine.split(expr); 

                 } 

                br.close();  

              } 

               catch (Exception ert) 

                 { 

                 } 

         return values; 

   } 

   public float findLargest(float[] data) 

      { 

        float largest = data[0]; 

        for (int x = 0; x < data.length; x++)  

{ 

                if (data[x] > largest)  

      { 

                      largest = data[x]; 

                   } 

             } 

         return largest; 

 } 
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public int inDocument(String term, String path)  

    { 

        int occ = 0; 

        BufferedReader br = null; 

        String[] mat = null; 

        String expr = "\\s*(=>|,|\\s)\\s*"; 

           Try 

 { 

               String sCurrentLine; 

               File checkFile=new File(path); 

                  if(checkFile.isFile()) 

                   { 

                        br = new BufferedReader(new FileReader(path)); 

                          while ((sCurrentLine = br.readLine()) != null) 

                            { 

                              mat = sCurrentLine.split(expr); 

                            } 

                    for (int wr = 0; wr < mat.length; wr++) 

 { 

                              String val = mat[wr].toString().trim(); 

                               if (val.equalsIgnoreCase(term))  

                                { 

                                    occ++; 

                                 } 

                            } 

                           br.close(); 

                     } 

                 }  

                catch (IOException e)  

               { 

                 e.printStackTrace(); 

                 System.out.println("Error in word count !"); 

                }  

           return occ; 

      } 

public int outDocument(String term, String path)  

 { 

        int Out_cnt = 0; 

        BufferedReader br = null; 

        String[] mat = null; 

        String expr = "\\s*(=>|,|\\s)\\s*"; 

        try  

{ 

               String sCurrentLine; 

               br = new BufferedReader(new FileReader(path)); 

               while ((sCurrentLine = br.readLine()) != null)  

                  { 

                    mat = sCurrentLine.split(expr); 

                   } 
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            for (int wr = 0; wr < mat.length; wr++)  

               { 

                   String val = mat[wr].toString().trim(); 

                       if (val.equalsIgnoreCase(term))  

{ 

                            Out_cnt++; 

                           } 

                 } 

           } 

         catch (IOException e) 

          { 

           }  

 return Out_cnt; 

} 

public double LinkFunction(ArrayList<Float> wt1,ArrayList<Float> wt2) 

{ 

    double lf = 0; 

        for (int i = 0; i < wt1.size(); i++)  

{ 

            for (int j = 0; j < wt2.size(); j++)  

  { 

                lf = wt1.get(i) * wt2.get(j); 

               } 

             } 

       return lf;             

    } 

 public double Fmeasure(double p,double r) 

    { 

    double f1_measure=0; 

    f1_measure=(2*(p*r)/(p+r)); 

    return f1_measure; 

    } 

} 
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