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ABSTRACT 

An efficient healthcare system always takes advantage of observation and interpretation of 

medical data that include narrative, textual data, numerical measurement, recorded signals, 

radiographs and pathological images. Medical imaging is one of the most important tools for 

disease diagnosis. Digitization and analysis of imaging data have been attracting attention in 

recent years due to their societal impact in the domains of diagnosis, observation and the 

training of doctors. From simple chest X-rays (CXR) to pathological microscopic images 

(sputum smear image) require the highest levels of quality for acquisition, storage and 

processing. Infectious disease like tuberculosis which is caused by Mycobacterium 

tuberculosis requires radiological (CXR) and pathological (sputum smear microscopy) tests 

for the effective diagnosis. The former is not a confirmatory test due to its non-specific and 

redundant patterns. Therefore, Ziehl-Neelsen stained conventional bright field microscopic 

(CM) test is the most widely used confirmatory method in low and middle income countries. 

However, the manual screening of tuberculosis bacilli using sputum smear CM microscopy 

may misdiagnose 33 to 50% of active cases due to patient load at the hospital. The majority 

of current issues on tuberculosis diagnosis can be addressed by incorporating automated 

methods. Autofocusing, auto-stitching, and image segmentation and classification are the 

three sequential steps in automated microscopy system for the tuberculosis screening. 

However, lack of unified datasets impedes the development of robust algorithms on these 

three domains. Keeping in view of these limitations, the proposed thesis work is based on 

four objectives which are described in the four different chapters (Chapter 2, 3, 4 & 5). In the 

1
st
 objective, Ziehl-Neelsen Sputum smear Microscopy image Database (ZNSM-iDB) has 

been developed to facilitate the development of algorithms and methods related to automated 

microscopy system, and it is freely available at http://14.139.240.55/znsm. In the 2
nd 

objective,   the robust focus measure functions were identified for the automated capturing of 

Ziehl-Neelsen (ZN) sputum smear images. In the 3
rd

 objective, a robust hybrid focus measure 

function system was established as a universal method for auto-focusing. In the final 

objective, automatic bacilli segmentation was performed using watershed segmentation 

method to identify whether a patient is tuberculosis positive or negative. Accomplishment of 

these objectives has advanced the knowledge of automated microscopy development for 

tuberculosis diagnosis. 

http://14.139.240.55/znsm
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CHAPTER 1 

INTRODUCTION 

From the beginning, the treatment of any unhealthiness was always based on the observation 

and interpretation of medical data[1]. Collection and interpretation of these data into 

meaningful information is always primary to healthcare process whether it is early Greek 

literature for disease description, guideline and management, or the contemporary way of 

using laboratory and X-ray studies to diagnose and treat disease [1]. The total amounts of 

data that may be used in patient care have become enormous due to the technology 

advancement and use of medical imaging modalities to evaluate risks, prognosis and response 

to therapy. The crucial and vital role of gathering, analyzing and using data in the process of 

“decision making” is currently recognized as a core part of the entire healthcare [1]. This data 

helps to categorize or differentiate a subgroup of patient(s) from a larger population of 

patients. This data and its subsequent analysis also help a medical doctor to decide what 

additional information is required further, or how to gain a better insight in patient‟s problem 

and treat the diagnosed problem in the most effective way [1]. 

1.1. Type of medical data 

The medical data ranges from narrative, textual data and numerical measurement to record 

signals, drawing, and radiographs and pathological images (Fig. 1.1) [1].  

The first one (narrative data)  is collected in the care of patients by asking several 

questions like symptoms of present illness of patient. Doctors verbally ask specific questions 

regarding the illness and recorded as text in the medical record which also includes the 

familial and social history, and the clinical report of physical examination. Traditionally, 

these narrative data were handwritten by physicians, clinicians and then stored in patient‟s 

medical records. Increasingly, the narrative summaries are transcribed by typist and included 

as electronic records which has several advantages than traditional one. It not only includes 

patient histories and physical examinations but also other descriptions like specialty 

consultations reports, pathologic tests, surgical procedures, and hospitalization details [1]. 

Several data in medicine uses discrete numeric values. These include laboratory tests, 

pulse rate, temperature, and certain measure during physical examination. However, the issue 

of precision becomes important in interpretation. For example, can physicians differentiate 

reliably between a 9-cm and a 10-cm span of liver during the examination of a patient‟s 
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abdomen? Is a fluctuation of 1-kg in weight since last week significant? Analog data in the 

form of continuous signals are particularly important in some fields of medicine. 

Electrocardiogram (ECG), a tracing of the electrical activity from a patient‟s heart is a well 

known example. A graphical tracing is included with a written interpretation when such data 

are stored in medical records [1].  

Visual images acquired from machines (radiological or microscopic) or sketched by 

the physician are very important category of medical data. Radiologic images such as X-Ray, 

CT, ultrasound, MRI, etc., or pathological imaging (e.g. sputum smear microscopy) are the 

most significant tools for disease diagnosis and monitoring the progress of the treatment. 

These imaging data enable medical professionals to see the actual complications or 

treatment‟s effectiveness on internal body organs without surgical biopsies procedures [1].  

 

 

Fig. 1.1 Types of medical records and their applications. 
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1.2. Necessity of medical data 

Healthcare data are recorded for a variety of reasons. Clinical data may be needed for proper 

treatment of the patient from whom they were acquired. It also can contribute to clinical 

research through the acquisition of knowledge through analyses of these data from 

populations of individuals [1, 4]. The major usages of medical data are as follow: 

1.2.1. Create the Basis for the Historical Record 

Medical records are intended to provide a detailed compilation of information about 

individual patients [4]. They provide the answers for the following questions. 

 What is the patient‟s history (present illness; coexisting diseases; past illness that is 

resolved; familial, social, and demographic information)? 

 What patient‟s symptoms have been reported? When they began, and what has provided 

relief? 

 What physical signs have been reported on examination? 

 What are the changes in symptoms and signs over the time? 

 What types of laboratory results are available? 

 What other tests, like radiologic, have been performed? 

 What medications are being prescribed and are there any allergies reported? 

1.2.2. Support Communication among Providers 

In the recent years, emergence of specialization in healthcare professionals has emphasized 

the central role of the medical record [1]. Now this record not only contains observations by a 

physician for reference, but they also serves as a communication among physicians and other 

medical personnel who are dealing with same patients, such as physical or respiratory 

therapists, nursing staff, radiology technicians, etc [1]. In remote areas, patients receive 

treatment over time from a variety of physicians, and medical records enable them to avoid 

repetitive tests. 

1.2.3. Anticipate Future Health Problems 

Better health care not only involves responding to patients‟ health problems but also educate 

patients about how their environment and lifestyle could contribute to, or reduce the risk of, 

future progression of disease [1]. Clinical data are significant in identifying risk factors, and 

guiding patient for preventive interventions like diet, medication, exercise, etc. 

  



 

4 
 

1.2.4 Standard Preventive Measures 

The medical record also used to provide data on interventions which have been performed to 

prevent several disorders [1, 9, 10]. For example, if a patient casualty room with a wound, the 

physicians check when the patient had a tetanus immunization. If this information is easily 

accessible in the record, it can prevent unnecessary treatments which may be costly or 

associated with risk [1]. 

1.2.5. Identify Deviations from Expected Trends 

Sometime medical data is useful in examining temporal changes in patent‟s response to the 

treatment [1, 11, 12]. For example, the routine monitoring of children for normal growth and 

development by pediatricians is required [1]. Single observation regarding height and weight 

may not be informative, while multiple observations over months or years may provide the 

interpretation to a medical problem.  

1.2.6. Support Clinical Research 

Clinical data also support research through the statistical and other analysis of observations 

collected from population of patients to identify and validate common clinical patterns that 

can have general applicability [1, 13, 14]. Clinical research can also be performed on new 

large patient‟s datasets even for people who did not enrolled earlier in any clinical research 

directly, often called as retrospective studies. For example, risk of tobacco smoking based on 

statistics derived from populations with and without heart disease, lung cancer and other 

pulmonary disease [1]. 

1.3. Limitations of the Traditional Medical Record System 

The preceding section highlighted the positive points of medical records storage and retrieval. 

However, medical professionals face the problems associated with traditional paper records, 

which limit their access leading to poor effectiveness for its anticipated use [1]. 

1.3.1. Pragmatic and Logistical Issues 

Firstly, medical data can only be used effectively for the delivery of better healthcare if they 

are recorded in organized manner. It is important that the recorded data can be find when it is 

needed. For example, medical personnel should have easy access to the paper medical 

records in which data were recorded; he/she must be able to find the data within the record; 

he/she must be able to access specific information quickly; finally, once he/she find the data, 

is it easily to read or interpret. However, the traditional records fails to provide 
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aforementioned information efficiently and medical personal may not be able to use it for 

better healthcare services [1].   

1.3.2. Redundancy and Inefficiency 

Health professionals use variety of techniques to find data quickly in chart or medical records 

that leads to redundant recording [1, 17]. For example, radiological results or typically 

recorded on radiology reporting form, and same data often reported as brief notes in the 

narrative part of the chart. Furthermore, these results often mentioned in reports of admitting 

and consulting physicians and nursing staff. Theses redundant information accelerate the 

growth of paper document and complicates the management of medical data (chart). It is 

often difficult to access specific data due to this redundancy which often leads to re-capturing 

of the same data and again increase in redundancy by entering it to the records. 

1.3.3. Storage and management of medical images 

Management and storage of medical image is one of the biggest challenges in medicine [1, 

18]. Patients with complicated medical problems may require several radiological studies 

when they consult doctors at different places. Therefore, these studies may be unknowingly 

duplicated. Simultaneous access to radiological images to multiple physicians may be needed 

for better interpretation. The film-based radiological system cannot meet these expectations, 

and may lose as storage of these films is relatively high. 

1.3.4. Influence on Clinical Research 

Retrieving information from traditional record is tedious, laborious and time consuming task 

which is prone to transcription errors. It requires several days to extract and format data for 

their structured statistical analysis [1, 19]. Often, huge medical data is untouched in paper 

record because there is no easy and efficient way to extract and analyze these data. 

1.3.5. The Passive Nature of Paper Records 

Another limitation of paper records is that traditional medical system is manual [1]. The chart 

is insensitive to the properties of the data recorded in the same page. Paper records cannot 

respond to the implications present in their pages [1]. 

1.3.6. Computer aided analysis of medical images 

In recent years, automation of diagnosis process has been the attraction point for researchers. 

Analyzing medical or pathological images requires them in digital form which is not feasible 

with traditional film records. Therefore; traditional records keeping process is the main 
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bottleneck in development of computer aided diagnosis which can provide second opinion to 

the doctors regarding the disease. 

1.4. Solution of these limitations 

Medical data contains narrative, numerical, signal and two-dimensional and three 

dimensional images [20]. Currently, digitization of such data is underway to unify patient 

information, accelerate information access, prevent loss of any data and improve the 

diagnosis process [20]. The ultimate aim of the digitization of medical data is to create a 

paperless/filmless system to quickly access the entire patient‟s information anytime and 

anywhere [20]. Digitized system address all the issues associated with traditional Medical 

Record System. This digitized system with all the facilities is called electronic health record 

(EHR). 

1.4.1. Electronic Health Records (HER) 

Electronic health record (EHR) systems address all these practical problems of traditional 

paper records, and film of radiological and pathological images. Therefore, several hospitals 

and individual practitioners are implementing EHRs. 

Presently, the term EHR represents the comprehensive, cross-institutional, and 

longitudinal collection of healthcare data [21]. It not only includes the data related to 

patient‟s medical treatment but also patient‟s health in general. The patient is actively 

involved in his/her treatment by accessing, adding, and managing his/her healthcare data 

[21]. Automated record systems in EHR provide the opportunities for dynamic responses to 

the data that is being recorded. Computational techniques make it possible to develop the 

record systems that can monitor their contents and produce warnings or advice for providers 

based on observation and trends erroneous data [1]. 

EHRs overcome the need to retrieve the hard copy of charts, and researcher can use 

computational data retrieval and analysis techniques to find specific patients, locating 

relevant data, and formatting the data for statistical analyses (Fig. 1.2) [1].  

Picture archiving and communication system (PACS): Most of the medical data such as 

textual and numerical information can be handled without specialized hardware and software. 

Whereas medical images cannot be stored and managed in the usual manner; rather, 

specialized software and hardware are required to store, retrieve and view these images. A 

specialized system is known as picture archiving and communication system (PACS) [22] 
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which generally include one or more imaging modalities consisting images of a patient using 

X-ray, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine 

(NM), and ultrasound (US), microscopic images, to name a few. This PACS system 

addresses the limitations of film-based systems by providing storage, rapid retrieval and 

simultaneous access to images acquired with multiple modalities at multiple sites [22]. 

 

Fig. 1.2 Electronic health record contents and its applications 

Digitization and storage of medical images on centralize computer system also 

provide the opportunity to automatically analyze these high resolutions images using CAD 

approaches. Automated analyses provide faster and effective results with less human 

interventions that could be used as second opinion regarding a disease. Automation also helps 

in the early diagnosis of the disease as several patients data can be visualized on the go in 

lesser time. These CAD systems can also improve the accuracy of poorer test like bright-field 

sputum smear test by analyzing large numbers of images. 

1.5. Diagnostics in developing countries 

Several low- and middle- income countries with poorly resourced healthcare systems are 

burdened with levels of infectious disease. However, tuberculosis (TB), Ebola and HIV/AIDS 

remain major public health concerns and are the most frequently recorded cause of adult 

death in parts of sub-Saharan Africa [23]. Laboratories in developing countries are often 

limited and access to these laboratories is difficult by economic or geographical factors. 
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These laboratories also have limited resources, and basic amenities like electricity and water 

may not be available properly. Lack of skilled technical is also a problem in some countries, 

particularly in remote areas [23]. Majority of population may not used particular diagnostic 

test for infectious diseases due to its high cost or lack of robustness [24]. Appropriate tests 

have not yet been developed for tropical or neglected diseases. Weak regulation and protocols 

have also contributed to poor diagnostics services. In some countries, tests of unknown or 

low quality are sold without any obstacle [25, 26]. 

Tuberculosis is an endemic disease that affects people worldwide. In 2015, 10.4 

million new cases of TB reported; therefore, WHO has started several initiatives to eradicate 

TB [27]. However, In spite of WHO recommendation for sputum smear fluorescent 

microscopy test for tuberculosis screening, low and middle income countries are using less 

accurate conventional sputum smear test due its low cost, easy availability, least expertise 

and minimal bio-safety standard [28]. Also, the most accurate and gold standard test like 

culture is time-taking and not feasible due to the higher patient load in TB-endemic countries 

[29]. Technological advances like computer aided diagnosis (CAD) and the development of 

novel devices that can be used outside of the laboratory have the potential to overcome some 

of the challenges faced by healthcare providers in developing countries [30]. The CAD can 

improve the accuracy and reduce the time complexity of poor test like conventional 

microscopy or non-confirmatory chest X-Ray. As we already discussed, the digitization of 

medical data, including medical images, is primary step to provide better healthcare outcomes 

by managing record electronically and using CAD system for disease screening. 

In the following sections, medical imaging modalities, digitization and computer 

aided diagnosis (CAD) using medical images are discussed. Initially, all the available 

imaging techniques (radiology and histopathology) with their limitations are described. 

Furthermore, CAD and its assistance for tuberculosis diagnosis and their limitations are 

discussed. Finally, Automated CAD for histopathology images (automated microscopy) with 

their limitations is presented. 
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1.6. Medical Imaging 

1.6.1. Radiology  

(i). Different radiological imaging modalities 

An imaging modality is a particular imaging technique or system that is used to capture 

abnormalities in internal part of bodies. In this section, we have provided a brief overview of 

common imaging modalities.  

Two-dimensional radiography (2D X-ray), computed tomography (CT), and nuclear 

medicine use ionizing radiation. The first two transmit x-rays through the body part, and 

body‟s tissues selectively reduce the x-ray intensities to form an image [31]. These modalities 

transmit the energy through body; hence, termed as transmission imaging modalities. In 

nuclear medicine, radioactive compounds are injected into the body that moves selectively to 

different organs or regions within the body. These compounds emit gamma rays with 

different intensity based on the compound‟s local concentration [31]. Radioactive sources 

emit radiation from within the body; hence, nuclear medicine is also termed as emission 

imaging modalities. 

Ultrasound imaging modalities transmits the high-frequency sound into the body and 

receives the echoes from structures within the body. This method relies on acoustic 

reflections to create images; hence, often called reflection imaging. Finally, magnetic 

resonance (MRI) requires a strong magnetic field and radio frequency Faraday induction to 

image properties of the proton nucleus of the hydrogen atom. This technique exploits the 

property of nuclear magnetic resonance; hence, called magnetic resonance imaging [31]. 

Different modalities reveal the different properties of human body or organ. 

Therefore, it is often useful to use multiple imaging modalities to capture images from a 

patient. This is called medical image fusion. For example, CT and MRI can be combined to 

look at bones and soft tissues, respectively, or MRI and PET can be used to examine brain 

structure and brain function, respectively. Similarly, CT and PET are particularly useful for 

combining functional and structural information, respectively and also because the CT data 

can be directly used to improve the reconstructed PET images. Therefore, virtually all 

modern PET modality systems are sold as PET/CT systems that integrate the two modalities 

in a single platform [31]. 

(ii). Limitations of Radiology 
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Radiation exposure is the main disadvantage of radiology which can cause cancer and other 

health issues. Ionic radiation, a proven carcinogen, is the high frequency form of radiation. 

Even chemical used to develop x-ray films can be hazardous (Applied Industrial Hygiene). 

American Cancer Society has linked radiation to the breast cancer, thyroid cancer, skin 

cancer, lung cancer, stomach cancer and multiple myeloma [32, 33]. Barium, a chemical used 

in x-ray diagnostic work, can cause harm to patient undergoing radiography. According to 

Los Alamos National Laboratory's Chemistry Division website, Barium can cause deathly 

anaphylaxis, an allergic. Radiography has also linked to the sterility in men and women. It is 

reported that male radiographers were at a higher risk for reproductive problems. In women 

who partnered with the male radiographer, a higher rated of miscarriages were reported. 

Congenital anomalies, infertility and still births were also higher among the radiographer 

group [34]. 

Sometimes, ultrasound results may identify an area as potential concern that is not 

malignant. These false-positive results could lead to more complicated procedures like 

invasive biopsies which are not essential .  The higher false-positive results with ultrasounds 

than with mammography (2.4%-12.9% for ultrasound and 0.7%-6% for mammography) were 

reported . Several cancers cannot be diagnosed via an ultrasound . Sometime calcifications 

are not visible on ultrasound scans; therefore early diagnosis of the portion of breast cancers 

that begin with calcifications can be neglected . 

MRI generates powerful magnetic fields which will attract metal objects. It can also 

pull any metal containing objects inside the body, such as aneurysm clips and medicine 

pumps. MRI scan can cause malfunction of pacemakers, cochlear implants and defibrillation 

devices .  

1.6.2 Histopathology 

Histopathology is used to diagnose the diseases using microscopic examination of a biopsies 

or surgical specimens that are processed and fixed onto glass slides [39]. One or more stains 

are used to dye sections so that different components of the tissue can be visualized under the 

microscope [39]. One stain is used to reveal cellular component or bacterial, while counter 

stains are used to provide contrast. Hematoxylin-Eosin (H&E), Ziehl-Neelsen (ZN) and 

Auramine-O stain are the most popular staining techniques. The first-one stains cell nuclei 

blue, while the counter Eosin stains cytoplasm and connective tissue pink [40]. Similarly, ZN 

staining is used in conventional bright field microscopy (CM) whereas Auramine-O staining 
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requires fluorescence microscopy (FM). These are the most widely used non-invasive 

techniques for the screening of endemic infectious disease like tuberculosis by sputum smear. 

CM is used in low and middle income countries, and employed as primary technique for 

tuberculosis screening due to its low cost and minimal bio-safety standard, while FM is in 

practice in developed countries due to its better sensitivity rate. 

Digital histology diagnostics: Digital histology (DH) is the process by which histology slides 

are digitized to produce high-resolution images. DH is becoming more common due to the 

growing availability of computerized whole slide digital scanners [41]. Whole slide scanners 

have addressed the issues associated with previous static and live systems [42]. There are 

several advantages of digitization of histology images: 

 Digitization of microscopic slides facilitates telepathology, i.e. the transfer of digital 

images of pathology across several locations for the diagnosis, research and education. It 

also has the potential to improve clinical service by reducing the need of storing glass 

slides physically, and reducing the risk of slides getting lost or broken.  

 Automated image analysis will enhance diagnostic efficacy in histopathology. Automated 

screening of pathogens like Mycobacterium Tuberculosis can also be performed by 

developing automated algorithms. This automated system will assist pathologists in 

efficient and accurate diagnosis. It can also facilitate the mass screenings in shorter time 

for endemic diseases.  

1.7 Computer Aided Diagnosis (CAD) 

Radiology is facing the problems by its own success [43]. The number of expert radiologists 

still is limited, the workload of radiologist has increased drastically, and the costs of medical 

imaging have increased fast [44]. Novel approaches are needed to handle the rapid increment 

of imaging data. The CAD can overcome this problem by speeding up the diagnosis, 

improving the quantitative evaluation and reducing the diagnostic errors. CAD also stands for 

computer-aided detection as it is mostly used for the detection of disease condition. The CAD 

provides second opinion in medical image interpretation [44-54]. These CAD systems can be 

a game changer in resource limited low- and middle-income countries where radiologists and 

pathologist are limited but the patent load is significantly higher due to the endemic disease 

like TB, HIV and Ebola. The CAD facilitates radiologists for mass screening of cases in 

faster and effective manner by decreasing inter-observer variation. This method also provides 

the quantitative support for clinical decision like whether biopsy is required or not for the 

disease confirmation. This method helps in reducing the false-positive biopsy and 
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thoracotomy. One of the major applications of CAD is the identification of tumor‟s 

benignancy/malignancy [48, 49, 54-58]. To differentiate between disease or control cases, 

CAD performs mainly three steps: feature extraction [48, 50, 51, 58-62], feature selection 

[62-65] and classification. These three steps need to be performed in efficient manners for 

better performances of whole CAD system. 

1.7.1. CAD for TB diagnosis (Jaeger, S et al., 2013) 

Computer and medical scientists are not only working for CAD in cancer diagnosis but also 

for endemic disease like tuberculosis which affects mainly the lung. Generally, patient with 

TB undergoes X-ray study to screen active TB, and ensure a proper treatment [66]. Standard 

chest X-ray (CXR) is an inexpensive test to screen the TB in patients, but interpretation of it 

is subject to human error and depends on the expertise of radiologist [66-70]. Furthermore, 

manual mass screening of large population is a time-consuming and laborious task which 

needs considerable amount of time and efforts. Therefore, the development of CAD for TB 

detection has great importance in TB-endemic countries. This system can provide the mass 

screening of cases with minimal detection error with higher accuracy rate. 

The abnormalities in the CXR of TB patients show the changes in texture and 

geometry of the lungs [66]. Therefore, previous studies described the methods for texture and 

geometry feature extraction to classify CXRs as TB-positive or negative [68, 71-85]. Some 

studies try to address TB diagnosis as a whole, while others address only a specific TB 

manifestation. Chauhan et al. (2014) used Gist and PHOG features in CAD of tuberculosis 

without segmentation [86]. They have used Gabor, Gist, histogram of oriented gradients 

(HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the 

whole CXR image to discriminate between TB and non-TB CXRs in an automated manner. 

TB detection is the complex process as it posses large variety of TB manifestation, 

which ranges from subtle milliary pattern to obvious effusions [66]. Several texture 

abnormalities occur in TB but these are also occurred in other diseases that make them 

unspecific [66]. The CXRs of some active TB patients does not exhibit any of above patterns 

and looks normal to the human eye, and some do demonstrate very subtle findings that may 

be missed by the radiologists [87]. Therefore, CXRs are not the confirmatory test for TB 

diagnosis. 
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1.7.2. Differences between Radiology and Histopathology CAD System 

Currently, the CAD systems for radiological imaging modalities are being used in diagnosis 

of different diseases [39]. However, the questions arise that can this CAD enable disease 

detection overcome inherent limitation associated with spatial resolution of radiological data 

[39]. For example, in mammography, the CAD systems have been developed to 

automatically classify the mammographic legions, whereas in histopathology, simple 

identification of presence or absence of tumor/legion may not be as important as 

sophisticated finding such as what is the stage of cancer [39]? Furthermore, on histological 

(microscopic) scale, different subtypes of cancer can de differentiate which is quite difficult 

or impossible in radiological scale.  

CAD for histopathology is still evolving, and pathology data are not as well 

articulated as some of radiological problems being investigated. This is may be due to the 

enormous density of data that histology posses compare to radiology. Histopathology images 

are required to be processed in multi resolution framework due to their relatively large size 

and content. Also, radiological CAD mostly deal with gray-scale images, while 

histopathological CAD system require to process color images. These fundamental 

differences in histopathology and radiology data have resulted in the need of specialized 

CAD approaches for histopathology data. 

1.7.3. Automated microscopy for histopathological diagnosis: an automated CAD system 

Generally, the CAD systems are semi-automated and need radiologist or pathologist 

intervention to input the images, select region of interest, and segment the images. An 

automated CAD system requires minimal intervention of humans for diagnosis. Here, 

automated microscopy: an automated CAD system for diagnosis from microscopic image is 

discussed in detail. Automation of microscopy prevents physical & mental fatigue and 

reduces the time of view-fields analysis [28, 29, 88, 89]. Further, it allows to store and share 

image as an electronic health record for review of cases in future for monitoring diagnosis 

processes. Therefore, automations could assist diagnosis with better sensitivity and specificity 

[29, 88, 89]. The automated microscopy requires efficient algorithms in following three 

domains: (i) autofocusing, (ii) autostitching and (iii) object segmentation and 

classification. 

(i). Autofocusing: Generally, autofocus technology calculates a focus value for each image 

captured at different focus position by moving the microscope objective lens. Autofocusing 
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of any imaging system is accomplished by searching for the focal length that provides the 

best focused image [28, 29, 90-93]. In a stack of images captured from a single view-field 

with different focuses, an image with the best average focus over entire view-field is defined 

as the focused one. Generally, a focus measure function (FMF) processed all the pixels in the 

images to calculate the degree of focus. In spatial viewpoint, a focused image can be thought 

of as one that has higher intensity difference among neighboring pixels. While in a frequency 

viewpoint, higher frequencies component are directly proportional to the degree of focus. 

Higher the frequency contents, the better focused is the image. The maximum/minimum 

value of the FMF corresponds to the best-focused image [94]. This method would facilitate 

automated capturing of the best-focused image. In recent years, various autofocusing 

algorithms have been proposed and implemented in microscopy images including 

fluorescence and conventional microscopy for various biological applications [28, 90-105].  

(ii). Autostitching: This method stitches view-fields of a smear-slide to form a mosaic or 

virtual-slide map. This technique facilitates whole slide imaging (WSI), which can be stored 

in high resolution and can be used further for CAD, research and education. Though many 

autostitching methods were developed [106-108], they were not validated on diverse datasets. 

Many studies have already been performed for image stitching that used Harris corner 

detection [109], and scale invariant feature transform (SIFT) [110, 111] and speeded up 

robust feature (SURF) feature extraction algorithms for extracting features. A MicroMos, 

open-source software, builds mosaics using digital microscopy images of view field [108]. 

Autostitch software uses SIFT features extraction technique for image stitching to building 

slide map [106].  

(iii). Object segmentation and classification: Object segmentation and classification step is 

similar to the semi automated CAD. Segmentation and classification algorithms detect the 

objects based on their shape, size and color, and classify image into different categories such 

as diseased and non-diseased. Generally, object segmentation and classification is performed 

in to two steps: (a) segmentation and (b) Feature extraction and classification. 

(a). Segmentation 

Segmentation is the process of partitioning the image into more meaning full regions and 

identify region of interests for further processing. Segmentation helps to focus on only 

specific region of interest (ROI), and then remove unwanted regions to improve the accuracy 

of classification techniques. In recent years, several segmentation algorithms have been 



 

15 
 

proposed which follow the discontinuity or the similarity principle [29]. Segmentation 

enables us to differentiate between ROI and background pixels. Several segmentation 

methods have been proposed for segmenting M. tuberculosis to detect TB. These methods 

can be broadly classified as (i) thresholding methods, (ii) neural network-based approaches, 

(iii) K-means clustering, (iv) fuzzy segmentation, (v) Bayesian segmentation, etc [29]. For 

example, color is the most important feature previously used to detect M. tuberculosis by 

above mentioned methods. In ZN stained microscopy bacteria and background turned red and 

blue respectively [112], while in auramine-O stained fluorescent microscopy, bacteria 

appears in the range between green and yellow and background turns to black [113]. Most of 

the previous studies had used color-based segmentation [29]. 

(b). Feature extraction and classification 

Segmentation itself cannot provide accurate results as small artifacts and unwanted region 

may still present in the images. Standard classification methods can be used to extract true 

objects from the images [29]. These methods use set of features which can characterized 

these objects in a better manner. For an instance, the shape of M. tuberculosis bacteria are rod 

shaped with length of 1-10μm [114]. Eccentricity, axis ratio, perimeter, area, Hu‟s moments 

and Fourier descriptors were commonly used shape feature descriptors that were being used 

to extract the shape of M. tuberculosis bacilli [29]. Once the feature vectors are obtained, 

bacilli can be separated from non-bacillus object using various classification techniques. 

Several methods such as support vector machine (SVM), k-nearest neighbor (kNN) classifier, 

Bayesian classifiers, artificial neural networks (ANNs) and probabilistic neural networks 

(PNNs) are used for classifying objects like bacteria, cell etc. 

1.7.4. Automated microscopy for tuberculosis Diagnosis 

Apart from CXR, variety of other methods such as tuberculin skin test (TST), sputum, smear 

microscopy, culture test, interferon-γ release assay (IGRA), and GeneXpert are available for 

TB screening. However, microscopic (histopathological) examination of extracted sputum 

from the lung using a bright field microscope is the most widely used confirmatory method 

due to its low cost, requirement of least expertise, easy to perform and obtaining fast results 

[29].  

Sputum smear test can be performed either by conventional bright field microscopy 

(CM) or fluorescent microscopy (FM). Former is in practice in low- and middle-income 

countries due to its low cost, easy to handle and minimal bio-safety standards [28, 29, 115]. 
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The World Health Organization (WHO) recommended that at least 100 view-fields of CM 

images need to be observed to infer a patient as TB-positive or negative, but microscopist 

only observe very few view-fields due to the high load of patients in TB-endemic countries 

[28, 116]. As a result, this test exhibits high false negative rate and misdiagnose 33-50% of 

active TB cases [29], especially in the cases of extra-pulmonary, pediatric or patients co-

infected with HIV due to very low bacterial load in their sputum [117]. Majority of current 

limitations on TB screening can be addressed by CAD that increase the sensitivity and 

specificity by analyzing 100-300 view-fields of CM images in an efficient and fast manner 

for Mycobacterium tuberculosis identification [89]. 

Automated microscopy could provide a better and faster diagnosis in TB endemic 

countries where mass screening of cases is needed. Automated microscopy needs least human 

intervention to screen the TB cases. Therefore, early and mass screening of TB patient can be 

performed in an efficient manner in TB-endemic countries like India. Several efforts were 

made in this direction, but researchers did not attain success on major level due to the 

different factors like changes in image contents, presence of debris, improper staining of 

sputum smear slides, etc. The availability of fully automated systems is limited, and these 

systems are in initial stage of development. For example, Lewis et al., (2012) have developed 

an automated TB screening system called TBDx for auramine-stained smear fluorescence 

microscopy [118]. It is capable of automatic loading of slides onto a microscope, focusing, 

digital capturing of images and then classifying the sputum smear as positive or negative 

using image processing techniques. However, it is still in Proof-of-Concept stage and 

attainment of success is limited [118]. As per author‟s knowledge, no automated microscopy 

system is available for TB bacilli screening using conventional microscope. The following 

section discusses the past work on automated microscopy algorithm development for TB 

diagnosis. As discussed earlier, algorithms were developed for autofocusing, autostitching 

and bacilli segmentation and classification for conventional and fluorescent microscopes. 

(i). Autofocusing of sputum smear images 

In recent years, several studies have been performed related to autofocus algorithms 

development for automated capturing of sputum smear images from fluorescent and 

conventional microscopes. Some of those studies are discussed below:  

A comparative evaluation of different focus measure functions (FMFs) have been performed 

by Mateos-Pe´rez et al. [98]. Authors have determined the accuracy as well as time 

complexity of all the implemented algorithms to check their feasibility to implement in real-
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time systems. Robustness of these algorithms to different imaging conditions like filtering, 

noise and uneven illumination were also tested. It is observed that filtering with appropriated 

filter size can reduce the mean error, while the noise level can significantly deteriorate the 

performance of autofocus functions. Modified discrete coefficients transform (MDCT) and 

Tenengrad (TNG) has performed better in term of accuracy. 

The comparative evaluation of different autofocus algorithms were also performed on 

conventional bright-field microscopes (Ziehl-Neelsen and Kinyoun stained). Junior et al. 

[97], CostaFilho et al. [94], Russel et al. [102] and Osibote et al. [28] separately evaluated 

autofocus functions on conventional microscopic images. Junior et al. and CostaFilho et al. 

have evaluated nine FMFs and suggest that variance and entropy are the best focus measure 

functions in term of accuracy and computational time, respectively. Russel et al. considered 

only three (Gaussian derivative, variance of a log histogram and the energy of the image 

Laplacian) FMFs in their study and not included variance and entropy FMFs which have 

performed better in aforementioned studies. In this study, the energy of the image Laplacian 

outperformed others. Osibote et al. have evaluated six FMFs and recommended that Vollath‟s 

F4 and Brenner gradient are better in term of accuracy. Variance and entropy were not 

considered in this study. 

Although several FMFs have been proposed for autofocusing, there is no single FMF 

that performs best for all type of imaging contents and modalities. Their performance 

depends on various factors like noise, image characteristics, debris and artifacts, and the 

background of image. For example, FMFs performed differently in FM and CM images as 

features acquired from both the modalities are different. In several studies, authors have 

applied different filtering techniques to get rid of noise and improve the performance of 

FMFs. However, implementation of preprocessing techniques increases the computational 

time. Generally, the time complexity of most of the FMFs are in the order of O(MN), where 

M and N are image dimensions in the x and y direction, respectively. However, the total 

acquisition time also vary due to the step motors, experimental setups, etc. A comprehensive 

and extensive study considering all the commonly available FMFs is required to identify a 

robust FMF for conventional microscopic images. It is also required to identify a robust FMF 

which can perform better on different imaging modalities like conventional and fluorescent 

microscopes. 

(ii). Autostitching of sputum smear images 
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WHO recommended analysis of 300 view-fields which can be achieved faster and efficiently 

by automated stitching of overlapping view-fields to make a mosaic (virtual slide map), and 

number of bacilli can be determined by using segmentation methods [119]. The bacilli 

segmentation algorithms use bacilli shape and size as the potential features to identify the 

bacilli from the other objects [113, 120]. Therefore, the autostitching also facilitates 

automatic detection of bacilli on the edge by joining half bacillus structures on the boundaries 

of two different view-fields.  

To achieve autostitching in bright-field TB microscopy, Bhavna et al. (2013) 

[121]proposed a method that uses geometric hashing technique for model-based object 

recognition [122-124]. This technique was also applied to the microscopy of lung and 

prostate tissue [125] and microscopy of integrated circuits [126]. Robustness of this 

algorithm was evaluated on real distorted query images. Dogan et al. (2014) have used four 

different steps to perform autostitching of ZN stained images [127]. In the first step, feature 

extraction was performed by SIFT (scale invariant feature transform), Harris corner detection 

and SURF (Speeded Up Robust Feature) feature extraction algorithms. In the second step, 

feature point matching was performed among the different images. Nearest Euclidean 

distance and cross-correlation algorithms were used to find relation between feature points of 

different images. In the third step, minimization of matching error and model fitting were 

performed by RANSAC (random sample consensus) method. Finally image blending was 

performed to compose to images into one large image. 

Chauhan et al., 2015 have also performed autostitching of ZN stained images [128]. 

The overlapping subparts of the view-fields were stitched together into a mosaic using scale-

invariant feature transform (SIFT) feature extraction and random-sample-consensus 

(RANSAC) selection method. The divide and conquer algorithm was implemented for faster 

stitching and mosaic formation. Comparison of similarity between original and stitched 

image was performed using correlation (COR), structural similarity (SSIM) and feature 

similarity (FSIM) methods. 

(iii). Bacilli segmentation and classification 

It is the process of segmentation and counting of bacilli either from a view-field or stitched 

mosaic or slide-map. Pattern recognition and machine learning techniques have been used to 

detect the bacilli in images [113, 116, 120, 129-131][4, 5, 7, 12, 21, 22], but their efficacy 

and scopes are limited due to the implementation on non-unified and limited datasets. 
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Automatic TB bacilli segmentation on bright-field microscopic images was performed 

first time by Costa et al. [129]. They have eliminated green channel from their RGB images 

as their analysis shows that bacilli are more visible in R(-G)B images than RGB or HSV 

images. Artifacts present in the segmented images were removed using morphological and 

size filters. However, the sensitivity of method was low. Sadpal et al. [132], have used a 

Bayesian segmentation method to segment M. tuberculosis. Shape features were used on 

segmented object to classify whether the segmented object is true or false bacilli. In this 

study, axis ratio and eccentricity were used as shape feature. Authors have also incorporated 

size-invariant shape selection which allows to segment bacilli in differing magnification and 

to increase the robustness of method. However, experimental analysis shows that method was 

not promising in identifying overlapping bacilli. 

Makkapati et al. (2009) later proposed an approach based on HSV color space [112]. 

Adaptive hue range was selected to segment the bacilli. However, the segmented objects also 

includeed artifacts and out-of-focus bacilli. Therefore, the beaded structures inside the 

segmented objects were considered to refine the segmentation results. In 2009, Sotaquir´a et 

al. [116],  performed bacilli segmentation on RGB, LAB, HSV, YIQ and YCbCr color spaces 

and achieved the best results on YCBCr color space with fewer false positives. 

Osman et al. [133] have used the hybrid multi-layered perceptron network (HMLP) 

for the detection of TB bacilli in HSV color space. In another study, Osman et al. [28] 

performed image segmentation using moving k-means clustering followed by feature 

extraction using Zernike moments. In both the studies, authors have implemented 5x5 median 

filter to remove unwanted objects in the image. Neural network based approaches were also 

used in some other studies [134-136] to segment TB bacilli. In Osman et al. (2011) [135] 

study, a single-layer feed-forward neural network was used for the segmentation of TB 

bacilli. This network was trained by extreme learning machine (ELM) technique. In Osman et 

al., (2010) [134], genetic algorithm-neural network (GA-NN) was used. Although above 

methods produces acceptable results, the effectiveness of the proposed method was limited in 

different imaging backgrounds. 

Khutlang et al. have performed two separate studies in which a combination of pixel 

classifiers was proposed to detect the TB bacilli from convention bright-field images [120, 

137]. In the first study, a combination of two-class pixel classifier was used to segment and 

classify bacilli [137]. Feature subset selection and Fisher trans-formation were used to extract 
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the features from the images followed by the classification of TB bacilli. In second study, two 

one-class classifiers were used for bacilli screening [120]. One class was used to classify 

pixel and other class was used to classify object. The former class uses color features and 

pixel intensity values followed by invariant feature extraction of geometric transformation, 

while latter one uses shape features (such as compactness, eccentricity, moments and Fourier 

features). Different classifiers such as Gaussian, mixture of Gaussians (MoG), principle 

component analysis, and the K-nearest neighbor using ROC were evaluated on extracted 

shape features. Nevertheless, these methods are unable to detect overlapped bacilli.  

Even though many methods were presented for TB bacilli segmentation from 

conventional microscopic images, one common drawback of most of the methods is their 

inability to classify touching or overlapped bacilli as true bacilli. Most of the available 

methods do not work on overlapping or occluded bacilli, and they detect it as artifacts. 

Sometime smear slides contains large number of occluded bacilli that may be missed in 

screening process, and false negatives cases may increase. Therefore, algorithms to deal with 

this type of problems are needed. 

1.7.5. Database available for automated microscopy algorithm development for 

tuberculosis screening 

Mateos-Pérez et al., 2012 have developed an image database for autofocusing algorithms 

evaluation on auramine-stained sputum smear fluorescent microscopy images [98]. Database 

contains three hundred stacks belonging to 10 different TB-positive patients. Each stack 

consisted of 20-images acquired at different focus points using a constant Z step (Z = 3 µm) 

over the same view-field. This database does not contain datasets for autostitching, and 

segmentation and classification. However, the best focused image of every stack can be used 

for bacilli segmentation and classification. 

Costa et al. [138] have developed an image database for testing TB bacilli detection in 

2014. The database comprises two parts: an autofocus database with 1200 images and a 

segmentation and classification database with 120 images. The ground truth was also marked, 

which can be used as gold standard for the validation of the algorithms. Images with different 

background in the database will help to do extensive experiments to see how the existing and 

new algorithms perform on various conditions. However, images in this database are not 

Ziehl-Neelsen stained. This database contains Kinyoun-stained sputum smear bright-field 

images from single microscope for autofocusing and bacilli segmentation [37], and bacilli in 
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these images are less visible than those in ZN-stained images. Bacilli detection using 

Kinyoun-stained images had low sensitivity, and tuberculosis-affected countries do not use 

this staining for smear microscopy test [38]. Apart from staining, datasets for autostitching 

methods are not available in this database. This database contains only two categories of 

images, which are low and high density background. Therefore, a unified and diverse 

resource for automated microscopy development using Ziehl-Neelsen stained sputum smear 

images is needed. 

1.8. Problem Identification 

Limitations of current diagnosis techniques in developing countries motivated us to 

contribute towards better disease diagnosis by implementing image analysis techniques. The 

proposed work has focused on improving diagnosis of tuberculosis as it is ranked 1
st
 

alongside HIV for worldwide death by single infectious agent. 

As discussed earlier, conventional sputum smear microscopy test is a primary and 

most widely techniques in TB-endemic developing countries like India which accounts for 

highest number of TB incidence (2.2 million). This technique is cost effective, need least 

maintenance and expertise, and has minimal bio-safety standards. However, the sensitive is 

the limiting factor for this test. Sensitivity of CM is 10-20% less than FM test. CM needs the 

higher numbers of view-fields to examine as the images are acquired at 100x magnification, 

while FM is acquired at 40x magnification. Therefore, the current work has put the efforts to 

improve the tuberculosis diagnosis using CM images. 

1.9. Objectives of the Thesis 

To overcome the limitations of automated microscopy domain, we have defined the 

following four objectives. 

1. Development of a Ziehl–Neelsen Sputum smear Microscopy image DataBase   (ZNSM-

iDB) which facilitate the validation of automated microscopy algorithms. 

2. Identification of robust focus measure functions for the automated capturing of focused 

images from Ziehl-Neelsen stained sputum smear microscopy slide. 

3. Establishment of hybridized focus measure functions as universal method for auto-

focusing. 

4. Automatic detection and classification of tuberculosis bacilli from ZN-stained sputum 

smear images using watershed segmentation. 
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1.10. Organization of the Thesis 

The thesis has been organized into distinct six chapters as follows. 

In this chapter (Chapter 1), introductory part and related work of the thesis has been 

presented. In Chapter 2, a newly developed Ziehl–Neelsen Sputum smear Microscopy 

image DataBase (ZNSM-iDB) has been presented which can assist the development and 

validation of automated microscopy algorithms. In Chapter 3, a systematic analysis on 

identification of robust focus measure functions for the automated capturing of focused 

images from Ziehl-Neelsen stained sputum smear microscopy slide has been discussed. In 

Chapter 4, a detailed study is provided on establishment of hybridized focus measure 

functions as universal method for auto-focusing. In Chapter 5, a study on automatic detection 

and classification of tuberculosis bacilli from ZN-stained sputum smear images using 

watershed segmentation has been presented. In final chapter (Chapter 6), conclusion of the 

thesis and future prospect has been presented. 
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CHAPTER 2 

ZIEHL-NEELSEN SPUTUM SMEAR MICROSCOPY IMAGE 

DATABASE (ZNSM-IDB): A RESOURCE TO FACILITATE 

AUTOMATED BACILLI DETECTION FOR TUBERCULOSIS 

DIAGNOSIS 

 

Summary 

Ziehl-Neelsen stained sputum smear microscopy is the most widely used test for tuberculosis 

diagnosis, but its success rate is limited. The world health organization (WHO) recommends 

the observation of 100-300 view-fields to improve the sensitivity, but only a few view-fields 

are examined due to the higher patient load. Therefore, automated screening of sputum smear 

sample through automated capturing of focused image (autofocusing), stitching of multiple 

view-fields to form mosaic (autostitching), and automatic bacilli segmentation (grading) is 

required to significantly improve the sensitivity and reduce the computation time. 

Nevertheless, unavailability of a unified database hindered the development of automated 

screening algorithms on these three domains. Therefore, Ziehl-Neelsen Sputum smear 

Microscopy image Database (ZNSM-iDB) has been developed and freely accessible at 

http://14.139.240.55/znsm. The seven categories of diverse datasets acquired from three 

different bright-field microscopes are included in this database. Autofocusing, autostitching 

and manually segmented bacilli datasets can be used for developing algorithms, while 

remaining four datasets can be used to improve the sensitivity and specificity of segmentation 

methods.  The datasets were validated using different automated algorithms of autofocusing, 

autostitching and bacilli segmentation. This unified referral resource can also be used for the 

validation of robust algorithms as images available in this database have diverse imaging 

content with high noise and artifacts. The ZNSM-iDB may assists for the development of 

automated microscopy. 
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2.1. Introduction 

Tuberculosis, alongside the human immunodeficiency virus (HIV) infection, is the primary 

cause of death from a single infectious agent [27]. Early and accurate diagnosis of 

tuberculosis is crucial to achieve better health outcomes [139]. Sputum smear microscopy is 

the widely used test and considered as a key factor in misdiagnosis of this disease, mainly in 

underdeveloped and developing countries [140]. This test is mainly performed using 

fluorescence microscopy (FM) or bright-field microscopy/conventional microscopy (CM). 

The latter is the most preferred and available test in low and middle-income countries due to 

its cost-effectiveness, minimal bio-safety standard and handling [120, 131]. CM is also used 

as the primary technique for tuberculosis screening in remote areas with limited resources 

[120, 131] .  

The WHO guidelines emphasize that 100-300 view-fields of a CM smear should be 

observed within twenty-four hour of collection of sputum sample for efficient diagnosis 

[141].  It takes 40 minutes to 3 hours to analyze even 40-100 view-field images from a single 

slide as manual identification and counting of bacilli using CM is very time consuming and 

labor intensive task [116]. Therefore, the sensitivity of tuberculosis diagnosis depends on the 

experience and expertise of microbiologists, and it may compromise [97]. The effectiveness 

of diagnosis is largely comprised for extra-pulmonary, pediatric or HIV-patients co-infected 

tuberculosis due to the less bacterial load in sputum samples [117]. All of these issues can be 

overcome through an automated microscope, which will not only improve the accuracy but 

also faster the diagnostic process [28, 142]. Several methods were proposed to improve the 

sensitivity of this test by incorporating automated methods [113, 129], but the success rate is 

limited mainly due to the scantiness of data, and performance variation of automated methods 

on different image contents [100]. 

The automated microscopy for tuberculosis bacilli screening requires efficient 

algorithms in following domains: 

(i) Autofocusing: An image with the best average focus over entire view-field is defined as 

the focused one in a stack of images captured from a single view-field with different focus 

points. The maximum value of the focus measure function (FMF) corresponds to the best-

focused image, and value decreases as defocusing increases [28]. Algorithms from this 

domain would facilitate automated capturing of the best-focused image. Several autofocusing 
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algorithms have been proposed and implemented on microscopy images for diverse 

biological applications [28, 93, 98].  

(ii) Autostitching: This method stitches multiple adjacent overlapping view-fields of a smear-

slide to form a slide map or mosaic. Observation of 300 view-fields can be performed faster 

and efficiently by automated stitching of view-fields followed by detection of bacilli in a 

stitched-image by segmentation methods [107]. Bacilli segmentation algorithms use shape 

and size of tuberculosis bacilli as the potential features to segment the bacilli from other 

objects [113, 120]. Therefore, Autostitching also facilitates automatic detection of bacilli on 

the boundaries by joining half bacillus structures on the edges of different view-fields. 

Though several autostitching algorithms were developed [106, 107, 110, 111], they were not 

evaluated on diverse datasets.  

(iii) Automatic bacilli segmentation and grading: It is a process of segmentation of bacilli 

either from view-field or mosaic, and classifying the image as TB positive or negative. 

Several techniques have been used to segment and classify the bacilli in images [59, 113, 

116, 120, 130, 131], but these are not validated on a unified and diverse imaging datasets.  

The better diagnosis of cancer and other diseases were already assisted through 

databases and automated tools development [59, 143]. Databases were used to validate the 

algorithms/methods of computer aided diagnosis (CAD) systems which provide the second 

opinion about a disease [144-146]. The databases and CADs are also facilitated the early 

diagnosis of diseases by accelerating the process. Keeping in view of these accomplishments 

of unified databases, the Ziehl-Neelsen Sputum smears Microscopy image Database (ZNSM-

iDB) has been developed (http://14.139.240.55/znsm). ZNSM-iDB contains diverse 

categories of image datasets with different imaging contents and medium to high density 

backgrounds. It provides datasets for all three processes required for automated microscope 

development. Standard laboratory protocols were used to capture the images [141], and the 

datasets were also validated by algorithms to establish their robustness. This database can be 

used to develop and validate efficient and robust algorithms related to automated microscopy. 

2. Material and methods 

2.2.1. Data Collection 

In total, 10 ZN-stained sputum smear slides of TB-positive patients were used to acquire the 

digital images of view-fields under the supervision of two microscopists. Three different 

microscopes were used to acquire the triplicate data for each category (Table 2.1 & Section 
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2.2.1 – 2.2.7). The objective lens with 100x magnification was used to capture the 

Mycobacterium tuberculosis (width and length are about 0.5µm and 2-4µm, respectively) . 

Images are in RGB (red, green and blue) color space with “.jpg” file-format. Detailed 

configurations of all the microscopes and acquired image properties are mentioned below: 

(i) Labomed Digi 3 digital microscope (MS-1) was used to acquire first datasets, which 

features Lx400 trinocular and an iVu 5100 digital camera with 5.0 megapixel CMOS 

sensor. The dimension, bit depth and resolution of acquired images were 800x600 

pixels, 24 (eight per channel) and 120 DPI, respectively.  The pixel pitch of each pixel 

is 2.2µm.  

(ii) Motic BA210 digital microscope (MS-2) was used to acquire second datasets, which 

features Siedentopf type Binocular head and Moticam 2500 digital camera with 5.0 

megapixel CMOS sensor. The dimensions of acquired images were 1280x1024 and 

2592x1944 pixels. Bit depth and resolution of each image were 24 and 96 DPI, 

respectively. The pixel pitch of each pixel is 2.2µm. 

(iii) Olympus CH20i digital microscope (MS-3) was used to acquire third datasets, which 

features trinocular and digital camera of Smartphone with 16-megapixel BSI-CMOS 

sensor. The Smartphone was attached to the microscope using microscope mobile 

phone interface. The dimensions of acquired images were 5312x2988 (16MP), 

3984x2988(12MP) and 2048x1152(2.4MP) pixels with bit depth of 24 and resolution of 

72 DPI. The physical size (pixel pitch) of a pixel is 1.12µm. 

2.2.2. Smartphone Camera-enabled Microscope 

The images from 3rd microscope were acquired using smartphone camera (Fig. 2.1). This 

setup for capturing digital microscopy images is very inexpensive as a smartphone camera 

was attached to the old microscope. Laboratories in remote areas of developing countries 

have very limited resource and generally digital microscopes are not available. Therefore, the 

basic bright-field microscope can be used to capture the digital images using smarpthone 

camera. These dataset will help research community to develop and validate automated 

microscopy algorithms for inexpensive digital microscope facility. Smartphone-based disease 

diagnosis has potential to be used in remote areas of TB-endemic countries where 

Smartphone is available extensively [88]. Additionally, the advantage of using Smartphone 

camera is that it can simultaneously be used for automatic bacilli detection using image 

processing methods, and maintaining electronic health records [88]. 
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Fig. 2.1 Smartphone camera enabled microscope 
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2.2.3. Description of Datasets  

The architecture and application of ZNSM-iDB is described in Fig.2.2. The ZNSM-iDB 

contains digital images in triplicates (one set from each microscope) for each of seven 

categories, which can be downloaded on local disk or visualize online for further processing 

and applications (Table 2.1). Multiple and diverse datasets in term of image contents were 

provided to develop the robust algorithms for automated microscopy.   

 

Fig. 2.2 Architecture and applications of ZNSM-iDB 

Table 2.1 Category-wise presentation of datasets available in ZNSM-iDB 

Group Category of Data No. of digital images from different Microscope 

(MS) 

MS-1 MS-2 MS-3 

1. Autofocusing dataset
*
  9 stacks  10 stacks 30 stacks 

2. Overlapping view-fields for 

autostitching 

7 Sets (50 to 90 

Images/Set) 

6 Sets (50 

Images/ Set) 

10 Sets (50 

Images/Set) 

3. Manually segmented bacilli 

in a view-field 

2 Sets (50 

Images/Set) 

2 Sets (50 

Images/Set) 

2 Sets (50 

Images/Set) 

4. View-fields without bacilli 50 50 50 

5. Single or few bacilli 100 100 100 

6. Overlapping (occluded) 

bacilli 

200 200 200 

7. Over-stained view-fields 

with bacilli and artifacts 

250 250 250 

*
 Each stack contains 20 images. 

Detailed description for each category of data is given below: 
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(i) Autofocusing dataset  

Every stack in this category contain at least 20 images captured at different focus 

point from a single view-field in which one is marked as focused one, while the others are 

defocused images to different extents.  These images were taken in sequential manner for a 

given view-field from unfocused to focused and again unfocused. Mostly, The 10
th

 image is 

the best focused one in each stack. 

(ii) Overlapping view-fields for auto-stitching 

Adjacent overlapping view-fields images can be stitched to make the slide map or 

mosaic using image processing methods. In this dataset, ten overlapping view-field images 

were acquired in a row and then the slide was moved left or right to take the images of next 

row (Fig. 2.3). Every row was also overlapped with its adjacent row. 

 

Fig. 2.3 A depiction of direction in which the images were acquired from a ZN-stained slide. Each 

square box corresponds to a view-field 

(iii) Manually segmented bacilli in a view-field 

View-fields images in this datasets were manually segmented or marked for bacilli 

and artifacts. Different shapes such as a circle or oval shape for single bacillus, square or 

rectangle for occluded bacilli, diamond for unclassified red structures and hexagon for the 

artifacts were used for marking (Fig. 2.4a). 

(iv)View-fields without bacilli 

Images in this group range from medium to very high-density background due to 

over-staining and artifacts, but view-fields images are bacilli negative (Fig. 2.4b). 

(v) View-fields with a single or few bacilli  

In this dataset, the number of bacilli in each view-field image varies from 1 to 10. 

This group also has medium to high-density backgrounds due to overstraining patches and 

artifacts (Fig. 2.4c). 
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(vi)View-fields with overlapping (occluded) bacilli 

Several times, two or more tuberculosis bacilli are overlapped at the same position 

and form an occluded bacilli cluster. Generally, segmentation methods are unable to segment 

these bacilli effectively. Images in this category are diverse in terms of high and medium 

density backgrounds. The former images are noisy and over-stained, and bacilli are not 

clearly visible, while the bacilli are clearly visible in low density background images (Fig. 

2.4d).  

(vii) Over-stained view-fields with bacilli and artifacts 

The overstaining during slide preparation and artifacts leads to the poor quality of 

ZN-stained CM images. Therefore, the bacilli detection in this slide is difficult using 

automatic segmentation method, and only robust methods can attain better success rate. In 

this group, >200 images from each microscope are included that posses over-stained (blue) 

regions with artifacts and/or bacilli (Fig. 2.4e). 

2.2.3. Data Validation 

ZNSM-iDB contains image datasets for autofocusing, autostitching, and bacilli segmentation 

and classification. Algorithms/methods reported in these three domains were also 

implemented on the datasets to validate the datasets. 

In total, Twenty-four focus measure functions (FMFs) widely used in different 

application were implemented on autofocusing datasets to determine the best-focused image 

in each stack. Accuracy, focus error, false maximum and full width at half maximum were 

used to evaluate the performance of FMFs in classifying a stack. Various preprocessing steps 

(e.g. median filtering, noise addition, contrast reduction, saturation increment and non-

uniform illumination addition) were also applied to check the robustness of FMFs to the 

different imaging conditions (see Chapter 3 for detail).  

Autostitching was performed on the overlapping view-fields datasets of ZNSM-iDB and 

reported in other study [128]. The overlapping view-fields were stitched together using 

feature extraction and selection techniques called scale-invariant feature transform (SIFT) 

and random-sample-consensus (RANSAC), respectively. Images were converted to grayscale 

prior to feature extraction. SIFT features are present at scale space maxima or minima of a 

difference of Gaussian (DoG) function. These features are invariant to rotation and scale 

changes; therefore, they perform better on images with varying illumination and orientation 

as [128]. After feature extraction, RANSAC separate inliers (point of interest) from outliers. 



 

31 
 

This method remove the wrongly mapped points coming due to inaccuracies of the SIFT 

method. Finally, filtered features set were used to stitch the view-fields images. The faster 

stitching and mosaic formation were achieved using divide-and-conquer algorithm as linear 

stitching of is computationally intensive. Furthermore, the final stitched image were  

 

Fig. 2.4 Sample images of five different category datasets available in ZNSM-iDB. (a) Manually 

segmented view-field, (b) View-field without bacilli, (c) View-field with single or few bacilli, (d) 

View-field with occluded bacilli, and (e) Over-stained view-fields with bacilli and artifacts 
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to the original image using various similarity measures such as Correlation (COR), structural 

similarity (SSIM) and feature similarity (FSIM). 

Watershed algorithm [147] was used for bacilli segmentation and classification on 

ZNSM-iDB database. In total, forty images were randomly extracted and grouped into 

medium- and high-density background datasets to check the performance in both the cases. 

Shape and size of the objects were used to filter the true bacilli. Similarly, the watershed 

algorithm was implemented separately on Smartphone enabled microscope (MS-3). In total, 

thirty images were randomly extracted from MS-3 datasets. The sensitivity and specificity of 

the segmentation method were calculated in both the studies. Furthermore, images from 

ZNSM-iDB were divided into four groups based on tuberculosis infection level or number of 

bacilli (Table 2.2) [148], and sensitivity and specificity of watershed segmentation method 

for classifying a view-field image as TB-positive or negative were determined for each group. 

Sensitivity and precision rate of this segmentation method for identifying true bacilli were 

also calculated. Furthermore, to evaluate the percent of pairs where the observation with TB-

positive has a lower predicted probability than TB-negative, discordance rate was calculated 

for watershed segmentation method [149, 150]. Binary logistic regression model was used to 

calculate predicted probability [150]. Detailed analysis is presented in Chapter 5 of the thesis. 

Table 2.2 Grading of view-fields on the basis of infection level. 

Number of Bacilli Number of View-Fields to be 

Examined 

Grading 

1-9 in 100 view-fields 100 Scanty
a 

10-99 in 100 view-fields 100 1+ 

1-10 in each view-field 50 2+ 

>10 in each view-field 20 3+ 

a
Report exact number of bacilli present in the view-fields 

2.3. Results and discussion 

2.3.1. Applications of the data resource 

Low- and middle-income countries contribute to around 95% TB cases and 98% deaths, and 

these poverty-stricken countries rely on sputum smear microscopy for the detection of disease 

[115]. The sensitivity of this test is poor due to time constraints and the high volume of 

patients. The performance is also grossly compromised when sputum sample contains M. 

tuberculosis bacterial load less than 10,000 bacilli/ml. The objective of developing ZN 
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sputum smear microscopy image database (ZNSM-iDB) is to provide a unified image 

resource that has the potential to facilitate the development of novel algorithms and tools 

related to automated grading (computer aided detection of bacilli) using image processing 

techniques. The database is available at http://14.139.240.55/znsm and contains seven 

different diverse datasets (Table 2.1). Users have opportunities to access the data online (Fig. 

2.5) or download it through “Download” link (Fig. 2.5c). A tutorial is provided to assist the 

user with exploring this database. For conventional bright field microscopy (CM), the smear 

slides are prepared using either Kinyoun cold (KC) or Ziehl-Neelsen (ZN) staining. Though a 

Kinyoun-stained specimen images are provided for autofocusing and segmented bacilli view-

field, bacilli in these images are less visible than those in ZN-stained images [138]. Most of 

the TB affected countries use ZN-staining instead of Kinyoun as it has low sensitivity [151]. 

Major usage and applications of the database in automated microscopy is provided in Fig. 

2.6. 

Manual screening of TB smears is a time consuming process and a microscopist needs 

to analyze 100-300 view-fields for accurate diagnosis [152]. The time required to analyzing 

one case varies from 40 minutes to 4 hours, depending on severity of infection [129]. As most 

of the TB diagnosis centers have high patient load, false negative rates resulting in poor 

sensitivity is the stark reality [116]. Sensitivity of the CM varies from 0.32 to 0.94, whereas 

for fluorescence microscopy it varies from 0.52 to 0.97 [153]. The specificity is 

approximately similar in both microscopes ranges from 0.94 to 1.0 [153]. Automation of 

microscopy to analyze view-field has the potential to overcome the variation of sensitivity 

arising from manual screening. Sensitivity and accuracy were found to be improved 

significantly by increasing the number of view-fields to be analyzed using automated (bacilli 

detection) methods [113]. 

 

http://14.139.240.55/znsm
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Fig. 2.5 Screenshots of ZNSM-iDB. (a) Home page, (b) Methodology page, and (c) Image 

visualization and data download page 

(a) 

(b) 

(c) 
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Fig. 2.6 Application of ZNSM-iDB database in automated microscopy 

Autofocusing and autostitching datasets (Group 1 & 2) have been provided to 

complete the first two steps of automated microscopy. Though many autofocusing methods 

have been proposed [93, 98], the best method remains task-dependent [104].  According to 

WHO guideline, 300 view-fields should be analyzed before grading a smear as TB-negative 

[152]. This can be achieved faster and efficiently by automated stitching of overlapping view-

fields to make a mosaic (virtual slide map), and number of bacilli may be determined by 

segmentation methods [107]. Autostitching also facilitates automatics detection of bacilli on 

the edge by joining half bacillus structures on the edges of two different view-fields. Datasets 

from different microscopes including Smartphone have been provided to evaluate available 

methods as well as development of more robust algorithms.  Manually segmented view-fields 

(Group 3) can be used as a reference standard for the development and validation of bacilli 

grading algorithms. 

The remaining four categories (Group 4, 5, 6 & 7) of datasets are provided to evaluate the 

performance of automatic and semiautomatic bacilli detection algorithms on highly noisy 

images. A patient is diagnosed as TB if 1-9 acid fast bacilli per 100 fields are presented 

[154]. So, datasets of single or very few bacilli in view-field images (Group 5) can be used to 

develop an algorithm with improved sensitivity. As most of the slides are over-stained, view-

fields without bacilli can be utilized to evaluate the performance of algorithm in high noise 

images. View-field images without bacilli but containing artifacts in over-stained slide can 
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also be helpful for the development of algorithm with improved specificity. Group 6, images 

with two or more occluded bacilli (overlapped at the same position), and group 7, over-

stained view-fields with bacilli and artifacts, datasets are expected to improve sensitivity, as 

these overlapping bacilli are difficult to detect using automated methods. These occluded 

bacilli are detected as artifacts by available algorithms [116]. These two related datasets assist 

to develop more efficient methods that discriminate between occluded bacilli and artifacts.  

Automation of disease diagnosis provides second opinion and recognized as significant 

factor for efficient diagnosis of complicated diseases [155]. Interstitial lung disease (ILDs) 

database [143] was used to develop and validate an automated system which detects different 

texture patterns such as emphysema, ground glass, fibrosis, micronodules and healthy with 

the accuracy rate of 96%, 88%, 90%, 90% and 88% respectively [155]. Similarly, lung image 

database consortium (LIDC) database was used for automated/semi-automated segmentation 

of lung nodules and achieved an accuracy rate of 79%, 80.4% and 91.7% in three different 

studies [145, 156, 157]. Automated lung texture analysis on HRCT was used to identify 

nodules related to lung cancer with a multi-classification accuracy of 76.9%.  Several 

automatics bacilli detection methods were proposed, but none of them evaluated on same 

datasets [113, 116, 120, 129-131]. Lewis et al. [118] have proposed an automatic TB 

screening system called “TBDx” for FM images. TBDx automatically loads the slide and 

capture the focused image, and classifies the slide as TB positive or negative. There is no 

automated system (like TBDx) is available for ZN sputum smear bright-field microscope. 

The ZNSM-iDB database can serve as a referral resource for the development and 

validation of algorithms related to autofocusing, autostitching and detection of TB bacilli 

using ZN sputum smear bright-field microscope. Since these methods are necessary for 

automated microscope development, this resource works as a standard platform to compare 

existing methods as well as to develop new algorithms in the above mentioned three domains 

of automated microscopy (Fig. 2.6). The ZNSM-iDB is well diverse in terms of image 

acquisition technology and content of acquired images. To ensure that the data is diverse, 

images were acquired from three different microscopes with different configurations and 

scope. The images from 3
rd

 microscope used a Smartphone camera and these datasets can be 

used to check the robustness of developed algorithms related to automated microscopy. Auto-

focusing and auto-stitching algorithms were successfully implemented to images obtained 

using a Smartphone attached to a microscope. Smartphone-based disease diagnosis is 
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inexpensive and has potential to be used in remote areas of TB-endemic countries where 

Smartphones are widely available [88]. The advantage of using Smartphone camera is that it 

can simultaneously be used for automatic bacilli detection using image processing methods, 

and maintaining electronic health record [88]. Breslauer et al. have developed an inexpensive 

mobile phone based clinical microscopy system with automated image analysis [88] for CM 

and FM images. The Diverse data available in this resource can facilitate the development of 

algorithms/model on one microscope, while the validation of the method is done on another 

microscope(s). Performance of bacilli detection algorithms also varies due to the image 

quality such as high and low noise backgrounds, occluded bacilli, etc. [94] So diverse 

datasets were included to evaluate the robustness of existing and new algorithms. 

2.3.2. Validation 

Automated microscopy algorithms (i.e. autofocusing, autostitching, and bacilli segmentation 

and classification) were implemented and validated on ZNSM-iDB datasets.  

(i) Performance of focus measure functions (FMFs)  

A Comprehensive analysis of twenty-four FMFs in different imaging conditions is 

performed to determine the best focus image in CM stacks (see Chapter 3 for details). This 

study provided Gaussian derivative (GDR), Tenengrad gradient (TGR), steerable filters 

(SFB), and Hemli and Scherer‟s mean (HSM) as the most robust and accurate FMFs in all 

three microscopes. These four FMFs were robust to different imaging conditions such as 

median filtering, noise addition, saturation increment, contrast reduction and non-uniform 

illumination addition). An earlier study also agreed on the Tenengrad method as better FMF 

for CM images [28]. Detail analyses of these FMFs are presented in Chapter 3. 

(ii) Autostitching of view-fields 

The overlapping datasets of MS-1 (Microscope-1 of ZNSM-iDB) were used to 

evaluate different autostitching methods. To generate a mosaic, SIFT and RANSAC methods 

were used for feature extraction and selection, respectively [128]. COR, SSIM and FSIM 

similarity scores between the stitched and original images were 0.997, 0.988 and 0.98, 

respectively. These outcomes were considerably better than the Autostitch [106] and 

MicroMos [108] software (Fig. 2.7).    



 

38 
 

 

Fig. 2.7 Comparison between images of original view field with stitched mosaic. (a) Original image, 

(b) mosaic formed using Autostitch, (c) MicroMos and (d) divide-and-conquer. 

(iii) Bacilli Segmentation and Classification 

The watershed segmentation method was used to segment tuberculosis bacilli from 

ZNSM-iDB datasets (see Chapter 5 for details). The sensitivity and specificity of 100% and 

93% were achieved for medium density background images, respectively, while sensitivity 

remained unchanged, but specificity was reduced to 72% in the high-density background 

images due to over-staining and artifacts. Likewise, the sensitivity and specificity of 93.3% 

and 87% were achieved for classifying a Smartphone enabled microscopic images (medium 

to high-density background), respectively. Performance of watershed method on different 

infection level was also evaluated and  presented in Chapter 5 of the thesis. 

2.4. Conclusion 

The ZNSM-iDB is a unified and well diverse in terms of imaging contents and acquisition 

technology. Three microscopes with different configurations and scope were used to acquire 

images. This repository may facilitate a standard platform to compare existing algirthms as 

well as to develop new ones for automated microscopy (i.e. autofocusing, autostitching and 

automated grading) (Fig. 2.6). Computer-aided diagnosis (CAD) assists in better diagnosis of 

complicated diseases by improving sensitivity and specificity [155]. Although an established 

CAD system, “TBDx”, is available for mycobacterium tuberculosis bacilli detection in FM 

images [118], most of low- and middle-income TB-endemic countries are using CM due to 

its easy handling, cost-effectiveness, accessibility and minimal bio-safety standard. Although 

Kinyoun-stained bright-field microscopic images are available for autofocusing and bacilli 

segmentation [138], it has poor sensitivity than ZN-stained images due to the poor visibility 

of bacilli [151].  

Smartphone-based inexpensive disease diagnosis system can be develop and validated 

with the help fo MS-3 datasets of ZNSM-iDB, which can be used in the remote areas of TB-
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endemic countries where laboratory resources are limited but Smartphones are widely 

available. Furthermore, Smartphone camera is also a portable computer which can be used 

simultaneously for automatic bacilli segmentation and grading using image processing 

techniques and maintaining electronic health record [88]. The ZNSM-iDB datasets were 

validated using autofocusing, autostitching, and bacilli segmentation and classification 

methods. Results of validation suggested that the datasets are robust and diverse, and can be 

used for the development and validation of automated microscopy. Development of 

algorithms/model can be performed on one microscope, while the validation of the same 

method can be done on another microscope(s) as resource contain diverse data from three 

microscopes. The ZNSM-iDB is expected to serve as a referral resource to the research 

groups working in the domains of automated microscopy algorithms development. 
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CHAPTER 3 

IDENTIFICATION OF ROBUST FOCUS MEASURE FUNCTIONS FOR 

THE AUTOMATED CAPTURING OF FOCUSED IMAGES FROM 

ZIEHL-NEELSEN STAINED SPUTUM SMEAR MICROSCOPY SLIDE
 

 

Summary 

Autofocusing for the capturing of the best-focused image using focus measure function 

(FMF) is a very important step in automated microscopy. Screening of bacilli from Ziehl-

Neelsen (ZN) stained sputum smear conventional microscopy (CM) is a primary and widely 

used test for tuberculosis diagnosis. Generally, Performances of FMFs are sensitive to 

different imaging contents and noises. In this study, twenty-four FMFs were evaluated on 

CM‟s view-field images obtained from three different microscopes. In total, seven FMFs 

have shown the accuracy rate of >90% in determining the best focused image from a stack. 

Performance of each FMF was evaluated by assigning overall score and rank using three 

criteria namely, accuracy, focus error and false maxima. Robustness of every FMF was also 

checked in different imaging conditions (noise, contrast, saturation illumination, etc.). 

Gaussian derivative, steerable filters, Tenengrad, and Hemli and Scherer‟s FMFs were 

identified as the most robust and accurate functions with the accuracy >90%, and minimal 

focus error and false maxima. Rate of convergence to the best focus point was identified by 

computing full width at half maximum. These four FMFs can be used for the autofocusing of 

ZN-stained sputum smear CM images. Gaussian derivative FMF is effective in both CM and 

fluorescence microscopes. 
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3.1. Introduction 

It is described in Chapter 2 that the manual screening of tuberculosis bacilli may misdiagnose 

33 to 50% of active cases [29] due to patient load at the hospital [28, 116, 117]. Therefore, 

the increase in sensitivity of popular, cost-effective and non-invasive smear microscopy (CM) 

test can bring better health outcomes against tuberculosis. Incorporation of automated 

methods can improve the sensitivity and specificity of this test by examining a large number 

of view-fields for tuberculosis bacilli screening [89]. Automation prevents physical and 

mental fatigue, and faster the process of view-fields analysis [28]. Additionally, it allows 

sharing and storing of the images for future analysis. Autofocusing, auto-stitching, and bacilli 

segmentation and grading are the three sequential steps in automated microscopy for the 

tuberculosis diagnosis. Autofocusing of a view-field is very crucial in any automated 

microscopy as subsequent steps (autostitching and bacilli segmentation) rely on it [28].   

An image with the best average focus over entire view-field is the focused one in a stack 

of images captured with different focus points. Focus measure function produces maximum 

value at best focus point and value decreases as defocusing increase [97]. Several FMFs were 

implemented on the commercial cameras and synthetically generated image sequences, and 

the Laplacian- and statistical-based FMFs were performed better [100]. Thirteen FMFs were 

evaluated on FM smear images where mid-frequency discrete cosine transform (96.67%), 

Vollath‟s autocorrelation (89%) and Tenengrad (89%) methods were efficient [98]. Costa et 

al., [94] had employed nine FMFs on Kinyoun stained sputum smear images which have 

lower sensitivity rate than CM images[151]. Osibote et al., [28]  and Russell et al., [102] had 

separately evaluated six (GNV, BGR, MLP, ELP, VCR and TGR) and three (ELP, GDR and 

Variance of the log-histogram) FMFs on CM images, respectively. VCR and BGR were 

reported as the best FMFs in the former study, while ELP was the best in the latter study. 

These studies did not narrow down to a single or few FMFs for in CM images, and produced 

different outcomes. It is also noted that FMFs performed significantly better in fluorescence 

microscopy images [103, 158, 159], but produced average outcomes in CM images. Though 

several FMFs are available for auto-focusing, their performances are largely dependent on the 

image contents and instrument [29, 97, 98, 102, 160].  

The performances of FMFs also vary due the background of an image which categorized 

as the lower, medium and higher density [93, 102]. Background of CM images have higher 

density than FM. Additionally, overstaining through ZN dye make focusing more challenging 

as FMFs consider these regions as significant factor for identifying the best-focused image. 
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These images also distinctive due to their shape, size, artifacts and debris which make 

autofocusing even more challenging [28]. In this study, 24 FMFs were selected on the basis 

of their performance in different auto-focusing applications. These FMFs were evaluated on 

diverse datasets from three different microscopes (Chapter 2) to identify efficient FMFs for 

CM images.  These FMFs are grouped into five different categories based on their working 

principles. Robustness of FMFs was also checked after incorporation of median filtering and 

image distortion namely, noise addition, contrast reduction, saturation increment and uneven 

illumination. Comparisons of FMFS with earlier studies were also performed for better 

interpretation.  

3.2. Material and Methods 

In total, 31 autofocusing stacks were extracted from Ziehl-Neelsen Sputum smear 

Microscopy image Database (ZNSM-iDB) accessible at http://14.139.240.55/znsm/ (Chapter 

2). Sputum smear slide of 10 TB-positive patients were used to acquire the images from three 

different microscopes. Each stack contains twenty view-field images captured at different 

focus points (Fig. 3.1). These images were diverse and ranges from medium density to high 

density background. Image contents vary due to the over-staining, under-staining and 

artifacts. Configuration of microscope and properties of images are described in detail in 

Chapter 2. 

3.2.1 Focus Measure Functions 

A wide range of FMFs was evaluated in this study to identify the best-focused image from a 

stack CM images. In total 24 most commonly used FMFs in various autofocusing 

applications have been implemented in this study. Value of an ideal FMF is maximum at the 

best focus position, and it decrease as defocusing. This function produces a Gaussian or bell-

shaped curve when focus measure values are plotted against image series with different focus 

points (Fig. 3.2). The FMFs which have not produced the bell shape like curve were excluded 

in the first step of study as it is a preliminary criterion for a good FMF. The MATLAB is 

used to implement the FMFs from five major categories. Mean execution time of each focus 

measure function was calculated by Intel® Core™ i3-3220 CPU at 3.30 GHz with 8 GB 

RAM. Detail description of every category and function is presented below. 

 

http://14.139.240.55/znsm/
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Fig. 3.1 A stack of 20 images were acquired on different focus distances. 10
th
 image is the best 

focused while defocusing increases toward both ends (9
th
 to 1

st
 and 11

th
 to 20

th
) 

 

Fig. 3.2 A typical bell-shaped curve produced by a focus measure function (FMF). X-axis represents 

sequence of images acquired at different focus distances and Y-axis represents FMF value determined 

using Gaussian derivative method. In the data, tenth image of the stack is the best focused one. 
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(i). Gradient-based FMFs: These functions assume that well-focused image has more high-

frequency content. Therefore, the large intensity difference between neighboring pixels leads 

to sharper edges. The higher gradient represents more sharp edges, hence these FMFs use the 

gradient or first order derivative of the image to find well-focused one.  

(a). Brenner gradient (BGR) [161]: This focus measure computes the difference between two 

neighboring pixels with horizontal or vertical distance of two.  

 𝐹𝐵𝐺𝑅 =   |𝐼 𝑖, 𝑗 −  𝐼(𝑖 + 2𝑗)|2

(𝑖 ,𝑗 )

 ( 1 ) 

 Where |𝐼 𝑖, 𝑗 −  𝐼(𝑖 + 2𝑗)|2 ≥  𝜃 ( 2 ) 

(b). Energy gradient (EGR) [162]: The sum of squares of the first derivative in the 𝑥 and 𝑦 

directions can be used as a focus measure 

 𝐹𝐸𝐺𝑅 =   𝐼𝑥(𝑖, 𝑗)2

 𝑖 ,𝑗   ∈ 𝛺  𝑥 ,𝑦 

+ 𝐼𝑦(𝑖, 𝑗)2, 
( 3 ) 

(c). Gaussian derivative (GDR): Geusebroek et al. used first order Gaussian derivative to 

compute the focus measure [91]. 

 𝐹𝐺𝐷𝑅 =    𝐼 ∗  Γ𝑥 
2 + 

 𝑥 ,𝑦 

 𝐼 ∗  Γ𝑦 
2

, 
( 4 ) 

Where Γ𝑥  and Γ𝑦  are the 𝑥 and 𝑦 partial derivatives of the Gaussian function Γ  x, y, σ  

respectively. 

 
Γ  x, y, σ =  

1

2πσ2
exp −

x2 + y2

2σ2
  ( 5 ) 

In this study, the value of σ was selected such that total five σ′s were contained along W for 

the neighborhood of 𝑊 × 𝑊 size. 

(d). Thresholded absolute gradient (THR) [100]: The first derivative of the image in 

horizontal dimension is used as a focus measure 

 𝐹TGR =  |𝐼𝑥 𝑖, 𝑗 |
 𝑖 ,𝑗   ∈ 𝛺  𝑥 ,𝑦 

,  𝐼𝑥 𝑖, 𝑗  ≥ 𝑇 ( 6 ) 

This method is modified according to where maximum of vertical and horizontal image 

derivatives has been used as focus measure. For more generalized results, threshold T has not 

been used in this study. 
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(e). Squared gradient (SGR) [159]: Instead of (Eq.6), the first derivative is squared to 

increase the impact of larger gradient on focus measure. 

 𝐹SGR =  𝐼𝑥(𝑖, 𝑗)2

 𝑖 ,𝑗   ∈ 𝛺   𝑥 ,𝑦 

 
( 7 ) 

(f). Tenengrad (TGR) [99, 159]: Magnitude of image gradient is used as focus measure. 

Image I is convolved with Sobel operators to obtain the image gradient. 

 𝐹TGR =    𝐺𝑥 𝑖, 𝑗 
2 +  𝐺𝑦 𝑖, 𝑗 

2 
 𝑖 ,𝑗   ∈ 𝐼 𝑥 ,𝑦 

, ( 8 ) 

Where 𝐺𝑥  and 𝐺𝑦   are the image gradients in 𝑥 and 𝑦 directions respectively. 

(g). Tenengrad variance(VGR) [99]: Variance of the image gradient is used as a focus 

measure. 

 𝐹VGR =    𝐺 𝑖, 𝑗 −  𝐺 
2

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

, ( 9 ) 

 

Where 𝐺 is the mean gradient magnitude and computed as: 𝐺 =   𝐺𝑥2 +  𝐺𝑦2 

(ii). Laplacian-based FMFs: These functions also measure the amount of sharp edges in 

images but use the second-order of derivatives or Laplacian. 

(a). Energy of Laplacian (ELP) [102]: The image is convolved with Laplacian mask to 

compute the second derivative ∆𝐼. Sum of the square of the image Laplacian is used as focus 

measure. 

 𝐹ELP =   ∆𝐼(𝑖, 𝑗)2

 𝑖 ,𝑗   ∈ 𝛺  𝑥 ,𝑦 

, ( 10 ) 

(b). Modified Laplacian (MLP) [163]: Nayar & Nakagawa proposed a new focus measure 

based on modified Laplacian ∆𝑚 𝐼 of image I. 

 𝐹MLP =   ∆𝑚 𝐼(𝑖, 𝑗)
 𝑖 ,𝑗   ∈ 𝛺  𝑥 ,𝑦 

, ( 11 ) 

Where, 

 ∆𝑚 𝐼 =  𝐼 ∗  ℒ𝑋 +  𝐼 ∗  ℒ𝑌 .  ( 12 ) 

The convolution masks ℒ𝑋  and ℒ𝑦  are 
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ℒ𝑋 =   −1 2 −1  

And ℒ𝑌 =  ℒ𝑋
𝑇  

(c). Diagonal Laplacian (DLP) [164]: Thelen et al., have used two more Laplacian mask 

along with 𝓛𝑋  and 𝓛𝑦  defined in (Eq.12) to include vertical variations of the image [164]. 

 ∆𝒎𝑰 =  𝑰 ∗  𝓛𝑿 +  𝑰 ∗  𝓛𝒀 +  𝑰 ∗  𝓛𝑿𝟏 +  𝑰 ∗  𝓛𝑿𝟐 , ( 13 ) 

where 𝓛𝑿𝟏 and 𝓛𝒙𝟐 are given by 

ℒ𝑋1 =  
1

 2
  

0 0 1
0 −2 0
1 0 0

 ,  ℒ𝑋2 =  
1

 2
  

1 0 0
0 −2 0
0 0 1

  

(iii). Wavelet-based FMFs: These functions calculate the frequency and spatial contents of 

image using discrete wavelet transform coefficients. 

(a). Sum of wavelet coefficients (SWC) [165]: Statistical properties of the discrete wavelet 

transform (DWT) coefficients are mostly used in wavelet-based focus measure. Firstly, 

Daubechies D6 wavelet filter is applied on an image than this image is further divided into 

four sub-images, where 𝑊𝐿𝐻1 , 𝑊𝐻𝐿1 , 𝑊𝐻𝐻1  and 𝑊𝐿𝐿1  refer to the three detail sub-bands and 

the coarse approximation sub-band, respectively. This information further used to calculate 

focus measure.  

Yang and Nelson sums the absolute values in the 𝑊𝐿𝐻1 , 𝑊𝐻𝐿1 , 𝑊𝐻𝐻1  and 𝑊𝐿𝐿1 detail 

sub-band to compute focus measure [165]  

 𝐹SWC =    𝑊𝐿𝐻1  𝑖, 𝑗  +  𝑊𝐻𝐿1  𝑖, 𝑗  

 𝑖 ,𝑗   ∈ 𝐼(𝑥 ,𝑦) 

+   𝑊𝐻𝐻1  𝑖, 𝑗  , 

( 14 ) 

(b). Variance of wavelet coefficients  (VWC) [165]: This algorithm sums the variances of the 

wavelet coefficients to compute the focus measure. 

 𝐹VWC =    𝑊𝐿𝐻1  𝑖, 𝑗 −  𝜇𝐿𝐻1 +  𝑊𝐻𝐿1  𝑖, 𝑗 −  𝜇𝐻𝐿1 

 𝑖 ,𝑗   ∈ 𝛺𝐷  

+   𝑊𝐻𝐻1  𝑖, 𝑗 −  𝜇𝐿𝐿1 , 

( 15 ) 

where 𝜇𝐿𝐻, 𝜇𝐻𝐿 and 𝜇𝐿𝐿 represent the mean values calculated in the respective detail sub-

bands. 
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(c). Ratio of the wavelet coefficient (RWC) [166]: In this algorithm, the ratio between high 

frequency coefficients 𝑀𝐻  and the low frequency coefficients 𝑀𝐿 of the wavelet transform is 

used to compute focus measure [166]. 

 
𝐹RWC =  

𝑀𝐻
2

𝑀𝐿
2 , ( 16 ) 

 

where 𝑀𝐻  and 𝑀𝐿 are  

 𝑀𝐻
2 =    𝑊𝐿𝐻𝑘   𝑖, 𝑗 

2 

 𝑖 ,𝑗   ∈ 𝛺𝐷𝑘

+ 𝑊𝐻𝐿𝑘   𝑖, 𝑗 
2 + 𝑊𝐻𝐻𝑘   𝑖, 𝑗 

2  ( 17 ) 

 𝑀𝐿
2 =    𝑊𝐿𝐿𝑘   𝑖, 𝑗 

2 

 𝑖 ,𝑗   ∈ 𝛺𝐷𝑘

. ( 18 ) 

𝑘 represent that the coefficients is calculated using k-th level wavelet. The coefficients of the 

first and third level DWT are used in (Eq.17) and (Eq.18) respectively. 

(iv). Statistics-based FMFs: Functions in this group use various image statistics such as 

standard deviation, variance, autocorrelation, etc., to calculate the degree of focus of an 

image. In general, these functions are less sensitive to high-frequency noise as compared to 

derivative-based operators. 

(a). Gray-level variance (GLV) [92]: Image gray-levels variance is a statistical measure 

which is used to compute the relative degree of focus of an image. 

 
𝐹GLV =  

1

𝑥𝑦
  𝐼 𝑖, 𝑗 −  𝜇 2

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

, ( 19 ) 

where 𝜇 is the mean gray-level value of image  𝐼 𝑥,𝑦 . 

(b). Gray-level local variance (LLV) [99]: Pech et al., proposed the local variance of gray-

levels as a focus measure for autofocus of diatoms in bright-field microscopy [99]. Local 

variance of gray-levels is defined as 

 𝐹LLV =    𝐿𝑣 𝑖, 𝑗 −  𝐿𝑣 
2

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

, ( 20 ) 

Where 𝐿𝑣 𝑖, 𝑗  is local variance of pixels within a neighborhood of 𝑤𝑥 × 𝑤𝑦  size with center 

at (𝑖, 𝑗). 𝐿𝑣 is the mean gray-level value of 𝐿𝑣. 
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(c). Normalized gray-level variance (GNV) [92]: Difference in image brightness among 

different images of same stack is compensated by mean gray-level 𝜇 of the image. 

 
𝐹GNV =  

1

𝑥𝑦𝜇
  𝐼 𝑖, 𝑗 −  𝜇 2

 𝑖 ,𝑗   ∈ 𝛺   𝑥 ,𝑦 

, ( 21 ) 

 

(d). Standard deviation (SD) [94]: Image standard deviation is a statistical measure which is 

used to compute the relative degree of focus of an image. 

 
𝐹𝑆𝐷 =   

1

𝑁
  (𝑥𝑖𝑗 − 𝜇)2

 𝑖 ,𝑗   ∈ 𝛺  𝑥 ,𝑦 

 ( 22 ) 

(e). Vollath’s autocorrelation (VCR) [151, 158]: Vollath‟s autocorrelation method for 

autofocus measure is based on image autocorrelation and can be given as  

 𝐹VCR =   𝐼 𝑖, 𝑗 ∙ 𝐼 𝑖 + 1, 𝑗  
 𝑖 ,𝑗   ∈ 𝛺   𝑥 ,𝑦 

−   𝐼 𝑖, 𝑗 ∙ 𝐼 𝑖 + 2, 𝑗  
 𝑖 ,𝑗   ∈ 𝛺   𝑥 ,𝑦 

 

 

( 23 ) 

(f). Histogram entropy (EHS) [90]: Entropy and range of the image histogram describes the 

higher information content of image and can be used as focus measure. Histogram entropy 

function is defined as 

 

𝐹EHS = − 𝑃𝑘

𝑙

𝑘=1

log(𝑃𝑘), 
( 24 ) 

Where 𝑃𝑘  denotes the relative frequency of the 𝑘 -th gray-level. 

(g). Histogram Range (RHS) [90]: Histogram range function is defined as 

 𝐹RHS = max 𝑘 𝐻 > 0 − min 𝑘 𝐻 > 0  ( 25 ) 

Where the histogram H is computed for 𝐼 𝑥,𝑦  

(v). Other FMFs: Functions in this group are those which are not in above categories due to 

their working principles. 
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(a). Image curvature (ICR) [167]: Image surface can be employed for gray-levels 

interpolation, and the curvature of same surface may used as focus measure 

 𝐹𝐼𝐶𝑅 =  𝑐0 +   𝑐1 +   𝑐2 +   𝑐3 , ( 26 ) 

Where 𝐶 =  (𝑐0, 𝑐1, 𝑐2, 𝑐3)𝑇 is the coefficients vector use to interpolate a quadratic 

surface 𝑓 𝑥, 𝑦 =  𝑐0𝑥 +  𝑐1𝑦 +  𝑐2𝑥
2 +  𝑐3𝑦

2. Following two convolution masks are applied 

to compute c using least square 

𝑐0 =  𝑀1 ∗ 𝐼 𝑐2 =  
3

2
 𝑀2 ∗ 𝐼 −  𝑀2 

𝑇 ∗ 𝐼 

𝑐1 =  𝑀1
𝑇 ∗ 𝐼  𝑐3 =  

3

2
 𝑀2

𝑇 ∗ 𝐼 −  𝑀2 ∗ 𝐼𝑟𝑣𝑒𝑥, 

Where  

𝑀1 =  
1

6
  
−1 0 1
−1 0 1
−1 0 1

   𝑀2 =  
1

5
  

1 0 1
1 0 1
1 0 1

  

(b). Hemli and Scherer’s mean (HSM) [167]: Local contrast is measured by computing the 

ratio, 𝑅 𝑥,𝑦 , between the intensity level of each pixel 𝐼(𝑥, 𝑦) and the mean intensity level of 

its neighborhood 𝜇(𝑥,𝑦). Sum of this local contrast ratio is used as focus measure 

 

𝑅 𝑥,𝑦 =  

 
 
 

 
 𝜇(𝑥,𝑦)

𝐼(𝑥,𝑦)
, 𝜇 𝑥, 𝑦 ≥  𝐼(𝑥,𝑦)

𝐼(𝑥,𝑦)

𝜇(𝑥,𝑦)
         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,            

  

 

( 27 ) 

Ratio will be near to one if image is defocused due to low contrast. 𝜇(𝑥,𝑦) is calculated by 

centering 𝑀 × 𝑁 neighborhood at (𝑥,𝑦). 

(c). Steerable filters-base (SFB) [168]: Filtered version of the image (𝐼𝑓) is used as focus 

measure by Minhas et al. 

 𝐹𝑆𝐹𝐵 =   𝐼𝑓  

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

 𝑖, 𝑗 , ( 28 ) 

 Where 𝐼𝑓   𝑖, 𝑗 = max  𝑅 𝑖 ,𝑗  
𝜃1 ,  𝑅 𝑖 ,𝑗  

𝜃2 ,…𝑅 𝑖 ,𝑗  
𝜃𝑁  , ( 29 ) 

Where 𝑅𝜃𝑛  , 𝑛 = 1, 2,…𝑁,  is the response of image to the n-th steerable filter defined as: 

 𝑅𝜃𝑛  =  cos 𝜃𝑛  𝐼 ∗  Γ𝑥 + sin 𝜃𝑛  𝐼 ∗  Γ𝑦 , ( 30 ) 

With Γ𝑥  and Γ𝑦  are the Gaussian derivatives described in (Eq.4) 
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(d). Spatial frequency measure (SFM) [96]: This function was proposed by Huang W et al., 

for multi-focal image fusion and can be defined as  [96]  

 
𝐹𝑆𝐹𝑀 =    𝐼𝑥(𝑖, 𝑗)2

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

+   𝐼𝑦(𝑖, 𝑗)2

 𝑖 ,𝑗   ∈ 𝐼  𝑥 ,𝑦 

, ( 31 ) 

 

Where 𝐼𝑥  and 𝐼𝑦  are the first derivatives of an image in the horizontal and vertical direction, 

respectively. 

3.2.2. Image Preprocessing 

(i). Filtering 

Median filtering is used to remove the noise for improving the quality of image. The median 

filter with 2x2, 4x4 and 8x8 mask sizes were used to see the effect on the performance of 

FMFs. 

(ii). Image distortion 

Poisson noise was incorporated to check the robustness of FMFs on noisy images. Poisson 

noise was generated from the image instead of adding artificial noise. Generally, FMFs 

performances compromise due to the higher level of noise [98]. 

Reduced contrast level smoothen the edges in images which affect the discrimination 

of the best focus image from defocused ones. The contrast was incorporated to check the 

robustness of FMFs to poor contrast. Generally, a robust FMF does not affect by low contrast 

[100]. The image pixels intensity values were mapped to the narrower range for reducing the 

contrast. Following MATLAB function were used for contrast reduction: 

 RC =  imadjust (I, [0 1], [0 0.8]); ( 32 ) 

Where I = input image and RC = contrast reduced output image.  

The saturation level of an image can also perturbed the performance of FMFs [100]. 

Initially, The RGB (red, green and blue) images were converted to HSV (Hue, saturation and 

value). Furthermore, saturation of HSV images was increased to check the robustness of 

FMFs. Following MATLAB function was used to accomplish this task: 

 I (: , ∶, 2)  =  I(: , ∶, 2)  ∗  S; ( 33 ) 

Where, I is the HSV input image and S is the multiplication factor used to increase the 

saturation level. The saturation level was increase by 25% and 50% using the S values of 1.25 

and 1.50, respectively.  
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Uneven illumination was incorporated to images using a luminance gradient for 

evaluating the efficacy of FMFs in low signal-to-noise ratio. The quadratic polynomial 

function is used to represent luminance gradient as grey-scale image, and this gray-scale 

image is multiplied with original one to get resultant image. Different maximum intensity 

values (0.8, 0.9 and 1.0) and same minimum intensity value (0.0) were used to check the 

efficacy of FMFs.  

3.2.3. Evaluation of FMFs 

The following criteria were used to evaluate the FMFs.  

Accuracy criterion: The accuracy score of 1, 0.5 or 0 was assigned if the best-focused image 

was correctly identified; if the second best-focused (with marginal difference) was identified 

as the best-focused; or if the FMF was failed, respectively. The accuracy in percent is 

calculated as follow:  

 Sum of all score

Total number of stacks 
× 100 

( 34 ) 

The higher is the percent, better is the algorithm.  

Focus error: The motor step difference between predicted and manually obtained best 

focus image was considered as the focus error [98]. Each motor step corresponds to a 

different focus distance. The difference between two neighboring motor steps is about 2-3 

µm. 

Number of false maxima: The number of false maxima produced by an FMF was 

computed. It is the total number of maxima without the global maxima.  

Full width at half maximum (FWHM): This criterion was used to calculate the 

narrowness of the peak as narrower curve indicates rapid convergence rate of FMFs to the 

best focus point. The width of focus curve was determined at half of its height for the top 

FMFs to evaluate their efficacy. The DC offset was removed prior to calculate the FWHM. 

Finally, the FWHW values with and without DC offset removal were presented for better 

interpretation. 

Ranking of FMFs: every FMF was ranked base on its accuracy, focus error and 

number of false maxima. These values were summed to get an overall score for each FMF. 

Overall score was calculated before and after each preprocessing step. The smaller is the 

score, better is the rank. Top five ranked FMFs were selected with minimal scores before 
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applying preprocessing techniques. The robustness of the FMFs was evaluated by analyzing 

their invariance to preprocessing techniques. It was evaluated through calculating the global 

score by summing all the overall ranks. Global rank is assigned to each FMF based on its 

global score. The smaller is the score, the better is the rank; therefore more robust is the FMF. 

3.3. Results and Discussion 

Accurate autofocusing helps in capturing of focused images that contribute significantly to 

automated microscopy development by performing better bacilli screening through 

segmentation methods on focused images [28]. Although several studies were performed to 

find out the effective FMFs for microscopic images, most of their results led to different 

conclusions [28, 29, 97, 98, 102]. Identification of the best focused images of CM using 

FMFs is challenging and difficult task due to the higher density background (overstaining) 

and artifacts. In this study, most commonly used 24 FMFs were evaluated to determine the 

robust focusing functions for CM images. These FMFs were implemented in MATLAB. 

Each FMF is evaluated on unbiased approach. FMFs were also evaluated on Smartphone 

camera-enabled microscope as these were not tested in the previous studies. Four focus 

measures (BGR, GLLV, RWC and RHS) were not producing a Gaussian curve which (a 

preliminary criterion for a good FMF); therefore, excluded from the study (Fig. 3.2) [94]. 

Every FMF was evaluated separately on different microscopes to check the effect of different 

configurations, and the overall performance was also evaluated (Table 3.1, Fig. 3.3 and Table 

3.2 ). Mean execution time of every FMF is presented in Table 3.3. Most of the FMFs have 

time complexity of O(XY), where X and Y are the dimensions of an image [29], which shows 

that the computation time is directly proportional to the size of the input image. Following 

sections provide the performance of FMFs in different imaging conditions. 
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Table 3.1 Performance of focus measures functions (FMFs) without pre-processing 

Methods
*
 Accuracy Focus Error False Max Overall Score Overall Rank 

GDR 96.77(1) 0.03(1) 0.07(1) 3 1 

TGR 96.77(1) 0.03(2) 0.1(2) 5 2 

HSM 95.16(2) 0.05(2) 0.28(5) 9 3 

THR 95.16(2) 0.34(6) 0.1(2) 10 4 

SFB 90.32(3) 0.39(7) 0.07(1) 11 5 

GNV 88.71(4) 0.27(5) 0.17(3) 12 6 

GLV 87.1(5) 0.16(3) 0.21(4) 12 6 

ICR 95.16(2) 0.03(1) 0.69(11) 14 7 

SD 88.71(4) 0.6(9) 0.17(3) 16 8 

SFM 90.32(3) 0.39(7) 0.41(9) 19 9 

VCR 85.48(6) 0.66(10) 0.21(4) 20 10 

VGR 80.65(7) 0.23(4) 0.41(9) 20 10 

EGR 75.81(8) 1.15(12) 0.34(7) 27 11 

SGR 74.19(9) 0.52(8) 0.48(10) 27 11 

MLP 75.81(8) 1.37(13) 0.34(7) 28 12 

EHS 74.19(9) 0.68(11) 0.38(8) 28 12 

DLP 72.58(10) 1.92(15) 0.31(6) 31 13 

SWC 64.52(12) 1.94(16) 0.17(3) 31 13 

ELP 67.74(11) 2.1(17) 0.76(12) 40 14 

VWC 62.9(13) 1.66(14) 6.03(13) 40 14 

 

Fig. 3.3 Microscopes-wise accuracy and mean accuracy in percentage of FMFs without pre-

processing 
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Table 3.2 Microscopes wise Performance of focus measure functions (without preprocessing) 

Method MS-1
b
 MS-2

b
 MS-3

b 

 (Smartphone) 

Mean Accuracy 

GDR 100 90.91 100 96.97 

TGR 92.86 95.45 100 96.1 

HSM 92.86 90.91 100 94.59 

THR 92.86 100 92.31 95.06 

SFB 85.71 81.82 100 89.18 

GNV 92.86 77.27 96.15 88.76 

GLV 92.86 72.73 96.15 87.25 

ICR 92.86 90.91 100 94.59 

SD 92.86 81.82 92.31 89 

SFM 92.86 86.36 92.31 90.51 

VCR 92.86 81.82 84.62 86.43 

VGR 78.57 59.09 100 79.22 

EGR 92.86 72.73 69.23 78.27 

SGR 64.29 68.18 84.62 72.36 

MLP 92.86 45.45 92.31 76.87 

EHS 85.71 45.45 92.31 74.49 

DLP 92.86 36.36 92.31 73.84 

SWC 78.57 22.73 92.31 64.54 

ELP 85.71 27.27 92.31 68.43 

VWC  78.57  18.18 92.31 63.02 
b
MS-1, MS-2 & MS-3 indicate Microscope 1, 2 & 3 respectively. 

Table 3.3 Mean execution time of focus measure functions (FMFs) with standard deviation on overall 

datasets collected from three microscopes 

Methods
 

Mean (Sec.) SD (Sec.) Methods
 

Mean (Sec.) SD (Sec.) 

GDR 4.43 1.96 VCR 2.46 1.11 

TGR 2.41 1.11 VGR 3.23 1.49 

HSM 5.21 2.35 SGR 0.79 0.35 

THR 2.90 1.30 EGR 2.40 1.08 

SFB 20.30 9.10 EHS 0.43 0.18 

GNV 0.90 0.40 MLP 2.17 0.98 

GLV 0.97 0.44 DLP 4.39 2.04 

ICR 3.30 1.55 SWC 21.41 9.84 

SD 0.88 0.40 ELP 1.30 0.59 

SFM 2.71 1.21 VWC 24.31 11.14 

 

3.3.1. Without image preprocessing 

Average performances of 20 FMFs were determined on 31 datasets from three microscopes 

(Table 3.1). Performance of each individual microscope is also provided to show the 

consistent performance of FMFs w.r.t different instrument configurations (Fig. 3.3, Table 

3.2). The Gaussian derivative (GDR), Tenengrad (TGR), Helmli‟s measure (HSM), 

thresholded gradient (THR) and steerable filter-based (SFB) focus measures were identified 

as top five FMFs based on their rank computed by accuracy (>90%), focus error and number 
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of false maxima (Fig. 3.3, Table 3.1). The performances of top five FMFs were almost 

invariant to three different microscopes with accuracy rate of >90%. Performances of The 

Laplacian and wavelet-based FMFs had varied significantly across the three microscopes 

(Fig. 3.3), which suggest that these FMFs might be sensitive to different brightness, 

illumination level, etc. Performance of top FMFs were better in Smartphone camera-enable 

microscope (MS-3) which encourages the use of this cost-effective facility for the automatic 

bacilli detection, especially in remote areas of TB-endemic countries. GDR and TGR 

performances were also better on FM images with the accuracy of 86.67% and 89%, 

respectively [98]. In this study, the GDR method outperformed and ranked 1
st
 in all the 

criteria. Additionally, the HSM and SFB, which were not previously tested on microscopic 

data, ranked among top five FMFs on CM images (Table 3.1). ICR and SFM have achieved 

the accuracy >90% but not considered as robust FMFs due to the high rate of focus error and 

false maxima. 

3.3.2. Image Preprocessing 

(i). Robustness of focus measures w.r.t pre-processing filtering methods 

Generally, The median filters are used to remove noise from the images as the performance 

of several FMFss were improved slightly after applying the filter with 2x2 mask size, 

whereas the accuracy was reduced by increased mask size of 8x8 [98]. In this study, median 

filters with 2x2, 4x4 and 8x8 mask size were used to determine their effects on the 

performance of FMFs (Fig. 3.4, and Table 3.4 ). The performance of top five FMFs were 

mostly invariant to all the median filters except in THR where performance was reduced 

considerably for 8x8 window size. The performance of GDR was independent to all the 

median filters; while VGR was failed drastically may be due to the less variation in the 

intensity levels due to the smoothening. Performances of modified Laplacian and diagonal 

Laplacian were improved significantly. Performances of other methods were inconsistent 

w.r.t. different window sizes. 
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Fig. 3.4 Accuracies of focus measure functions (FMFs) in percent (without preprocessing vs.  median filtering) 
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Table 3.4 Performances of focus measure functions (FMFs) after median filtering with mask size of 2x2, 4x4 and 8x8. 

Methods AC 2x2
a,b 

FE 2x2
 a,b 

FM 2x2
 a,b 

OS 2x2
 a,b 

AC 4x4
 a,b

 FE 4x4
 a,b

 FM 4x4
 a,b

 OS 4x4
 a,b

 AC 8x8
 a,b

 FE 8x8
 a,b

 FM 8x8
 a,b

 OS 8x8
 a,b

 

GDR 96.77(1) 0.03(1) 0.07(1) 3(1) 96.77(2) 0.03(2) 0.07(1) 5(2) 96.77(1) 0.03(1) 0.07(1) 3(1) 

TGR 96.77(1) 0.03(1) 0.07(4) 6(2) 98.39(1) 0.02(1) 0.07(2) 4(1) 91.94(3) 0.63(8) 0.1(5) 16(4) 

HSM 91.94(3) 0.05(2) 0.45(10) 15(5) 91.94(4) 0.08(3) 0.66(16) 23(7) 93.55(2) 0.06(2) 0.83(19) 23(8) 

THR 95.16(2) 0.18(4) 0.07(3) 9(3) 95.16(3) 0.18(5) 0.07(3) 11(3) 72.58(8) 2.24(13) 0.31(10) 31(10) 

SFB 87.1(5) 0.27(5) 0.1(2) 12(4) 87.1(7) 0.42(8) 0.1(4) 19(6) 87.1(5) 0.42(5) 0.1(4) 14(3) 

GNV 91.94(3) 0.18(4) 0.17(5) 12(4) 90.32(5) 0.03(2) 0.14(5) 12(4) 85.48(6) 0.34(4) 0.21(7) 17(5) 

GLV 88.71(4) 0.15(3) 0.21(8) 15(5) 90.32(5) 0.16(4) 0.17(7) 16(5) 83.87(7) 0.26(3) 0.21(8) 18(6) 

ICR 91.94(3) 0.18(4) 0.24(19) 26(8) 88.71(6) 0.37(7) 0.34(11) 24(8) 83.87(7) 0.52(6) 0.28(9) 22(7) 

SD 61.29(12) 3.06(15) 0.45(6) 33(12) 69.35(11) 2.66(15) 0.34(12) 38(12) 72.58(8) 2.08(11) 0.38(12) 31(10) 

SFM 88.71(4) 0.27(5) 0.45(16) 25(7) 88.71(6) 0.31(6) 0.66(17) 29(10) 83.87(7) 0.52(6) 0.86(20) 33(12) 

VCR 82.26(7) 0.95(9) 0.38(9) 25(7) 77.42(10) 1.65(14) 0.76(20) 44(14) 72.58(8) 1.82(10) 0.52(15) 33(12) 

VGR 40.32(15) 3.85(16) 0.66(15) 46(16) 38.71(16) 4.39(19) 0.66(18) 53(16) 38.71(16) 4.1(17) 0.66(18) 51(15) 

EGR 83.87(6) 1.03(10) 0.38(12) 28(9) 66.13(13) 3.02(17) 0.55(14) 44(14) 64.52(11) 3.03(14) 0.55(17) 42(14) 

SGR 74.19(8) 1(10) 0.45(17) 35(13) 67.74(12) 1.42(13) 1.14(24) 49(15) 51.61(12) 3.39(15) 2.48(24) 51(15) 

MLP 83.87(6) 0.77(6) 0.21(13) 25(7) 82.26(9) 0.79(11) 0.21(9) 29(10) 90.32(4) 0.58(7) 0.1(3) 14(3) 

EHS 72.58(9) 0.89(8) 0.38(14) 31(11) 69.35(11) 0.85(12) 0.41(13) 36(11) 69.35(10) 0.95(9) 0.41(13) 32(11) 

DLP 83.87(6) 0.77(6) 0.21(11) 23(6) 85.48(8) 0.69(9) 0.17(6) 23(7) 90.32(4) 0.58(7) 0.1(2) 13(2) 

SWC 64.52(10) 1.07(12) 0.45(7) 29(10) 82.26(9) 0.73(10) 0.17(8) 27(9) 70.97(9) 2.13(12) 0.1(6) 27(9) 

VWC 59.68(13) 0.83(7) 0.31(24) 44(14) 48.39(15) 2.74(16) 0.24(10) 41(13) 45.16(14) 3.45(16) 0.31(11) 41(13) 

ELP 62.9(11) 1.79(14) 0.86(20) 45(15) 50(14) 3.37(18) 0.83(21) 53(16) 41.94(15) 4.48(19) 1(21) 55(16) 

a
AC, FE, FM and OS indicate accuracy, focus error, false maximum and overall score after median filtering with window size of 2x2, 4x4 and 8x8. Overall score for a FMF 

is calculated by summing individual ranking of three criterions. Values in parenthesis denotes anks in three different criterion (accuracy, Focus error and false maximum). 

b
Values in parentheses values indicate ranking of that parameter. 



 

59 
 

(ii). Robustness to image distortion 

The robustness of FMFs in various types of noises is very important, especially for CM 

images with relatively higher noise and density than FM images. Poisson noise, reduced 

contrast, increased saturation and uneven illumination were incorporated to determine the 

effect of image distortion on FMFs performance.  

In the 1
st
 step, Poisson noise was incorporated in all the images. The performance of 

most of FMFs was reduced marginally or drastically after noise addition (Fig. 3.5, and Table 

3.5 ). The performances of top five FMFs were relatively invariant except for THR where 

accuracy was reduced drastically. GLV, ICR, standard deviation (SD) and GNV were the 

other FMFs which were invariant to the Poisson noise. FMFs such as THR, SFM, EGR, SGR, 

Laplacian and wavelet based FMFs were failed in noisy condition. TGR and GDR were also 

invariant to noise addition in a previous study [100], while GNV was the most robust FMF 

[105]. 

 

Fig. 3.5 Accuracy comparison (Without preprocessing vs. noise addition) of focus measures functions 

(FMFs) 
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Table 3.5 Performance of focus measure functions (FMFs) after noise addition 

Methods Average accuracy
b 

Focus Error
b
 False Maximum

b
 Overall Score

a, b 

GDR 93.55(1) 0.06(1) 0.07(1) 3(1) 

TGR 93.55(1) 0.06(1) 0.1(2) 4(2) 

HSM 90.32(2) 0.1(2) 0.17(3) 7(3) 

THR 62.90(6) 1.34(9) 0.24(5) 20(9) 

SFB 90.32(2) 0.29(5) 0.07(1) 8(4) 

GNV 85.48(4) 0.31(6) 0.17(3) 13(7) 

GLV 87.1(3) 0.19(4) 0.21(4) 11(5) 

ICR 93.55(1) 0.06(1) 0.07(1) 3(1) 

SD 87.1(3) 0.19(4) 0.21(4) 11(5) 

SFM 62.9(6) 1.4(10) 0.24(5) 21(10) 

VCR 79.03(5) 0.76(7) 0.21(4) 16(8) 

VGR 87.1(3) 0.13(3) 0.38(6) 12(6) 

EGR 51.61(8) 2.97(12) 0.41(7) 27(12) 

SGR 51.61(8) 1.58(11) 0.45(8) 27(12) 

MLP 11.29(13) 5.53(16) 0.45(8) 37(14) 

EHS 61.29(7) 1.23(8) 0.48(9) 24(11) 

DLP 19.35(10) 5(14) 0.45(8) 32(13) 

SWC 14.52(12) 5.31(15) 0.59(10) 37(14) 

ELP 17.74(11) 5.79(17) 0.86(12) 40(15) 

VWC 27.42(9) 4.05(13) 0.69(11) 33(13) 

a
Overall score for a FMF is calculated by summing individual ranking of three criterions. 

b
Values in parentheses values indicate ranking of that parameter. 

In the 2
nd

 step, image contrast was reduced using “imadjust” function of MATLAB. 

Generally, minor change in contrast does not have any effects on FMFs performance [91, 

100].  In this study, the performances of all the FMFs were affected marginally by reduced 

contrast (Fig. 3.6). Performances of most of the FMFs were remained relatively similar after 

contrast reduction (Table 3.6 ). 

 

Fig. 3.6 Performance of focus measure functions (FMFs) after contrast reduction (%) 
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Table 3.6 Performance of focus measure functions (FMFs) after contrast reduction. 

Methods
a 

Average accuracy
c 

Focus Error
c 

False Maximum
c 

Overall Score
b, c 

GDR 90.32(1) 0.1(1) 0.1(1) 3(1) 

TGR 90.32(1) 0.27(3) 0.14(2) 6(2) 

HSM 88.71(2) 0.18(2) 0.17(3) 7(3) 

THR 88.71(2) 0.44(5) 0.1(1) 8(4) 

TGR 87.1(3) 0.58(8) 0.14(2) 13(6) 

SFM 82.26(5) 0.73(10) 0.24(5) 20(8) 

SFB 83.87(4) 0.48(6) 0.1(1) 11(5) 

GNV 82.26(5) 0.37(4) 0.21(4) 13(6) 

SD 83.87(4) 0.48(6) 0.24(5) 15(7) 

GLV 83.87(4) 0.48(6) 0.24(5) 15(7) 

VCR 70.97(8) 1.39(12) 0.62(11) 31(13) 

VGR 72.58(7) 0.5(7) 0.52(9) 23(9) 

EGR 69.35(9) 1.37(11) 0.45(8) 28(11) 

MLP 69.35(9) 2.11(13) 0.38(7) 29(12) 

EHS 67.74(10) 1.39(12) 0.38(7) 29(12) 

SGR 74.19(6) 0.65(9) 0.52(9) 24(10) 

DLP 66.13(11) 2.31(14) 0.34(6) 31(13) 

ELP 59.68(12) 2.37(15) 1.59(12) 39(15) 

SWC 59.68(12) 2.5(16) 0.52(9) 37(14) 

VWC 58.06(13) 2.87(17) 0.59(10) 40(16) 

b
Overall score for a FMF is calculated by summing individual ranking of three criterions 

c
Parentheses values indicate ranking of that parameter. 

In the 3
rd

 step, saturation levels of all the images were increased by 25% and 50%. 

Generally, increased saturation level affects the performance of FMFs [100].  The 

performance of top five FMFs was dropped slightly with increase in saturation by 25% and 

50% (Fig. 3.7).  

 

Fig. 3.7 Accuracy in percent of focus measures (Without preprocessing vs. increase saturation level) 

Performances of top five FMFs were relatively remained similar (Table 3.7). Pertuz et al. 

[100]  checked the effect of saturation level on the images acquired from the commercial 

camera and synthetically generated sequences. Laplacian-based operators were sensitive to 
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increased saturation, whereas in this study, wavelet-based methods were also inconsistent to 

saturation level. 

Table 3.7 Performance of focus measure functions after increased saturation level (25% and 50%) 

Methods
 

AC 

25%
b,c 

FE 

25%
 b,c 

FM
 

25%
b,c 

OS 

25% 

AC 

50% 

FE 50% FM 

50% 

OS 50% 

GDR 91.94(2) 0.11(3) 0.07(1) 6(2) 91.94(1) 0.15(1) 0.07(1) 3(1) 

TGR 93.55(1) 0.03(1) 0.07(1) 3(1) 88.71(2) 0.18(2) 0.14(3) 7(2) 

HSM 90.32(3) 0.06(2) 0.14(3) 8(3) 82.26(4) 0.56(8) 0.17(4) 16(5) 

THR 88.71(4) 0.56(9) 0.1(2) 15(5) 83.87(3) 0.65(10) 0.17(6) 19(6) 

SFB 85.48(5) 0.53(8) 0.1(2) 15(5) 88.71(2) 0.37(6) 0.07(2) 10(3) 

GNV 80.65(8) 0.32(6) 0.24(5) 19(7) 79.03(6) 0.37(6) 0.28(11) 23(9) 

GLV 82.26(7) 0.18(4) 0.28(6) 17(6) 80.65(5) 0.29(3) 0.31(13) 21(7) 

ICR 83.87(6) 0.77(11) 0.17(4) 21(8) 74.19(9) 1.68(15) 0.24(9) 33(14) 

SD 82.26(7) 0.18(4) 0.28(6) 17(6) 80.65(5) 0.29(3) 0.31(14) 22(8) 

SFM 88.71(4) 0.24(5) 0.1(2) 11(4) 83.87(3) 0.35(5) 0.17(5) 13(4) 

VCR 79.03(9) 0.98(13) 0.38(8) 30(10) 77.42(7) 1(12) 0.28(12) 31(13) 

VGR 75.81(10) 0.34(7) 0.41(9) 26(9) 74.19(9) 0.32(4) 0.38(16) 29(12) 

EGR 74.19(11) 0.87(12) 0.31(7) 30(10) 75.81(8) 0.6(9) 0.28(10) 27(11) 

SGR 70.97(12) 0.61(10) 0.45(10) 32(11) 80.65(5) 0.43(7) 0.34(15) 27(11) 

MLP 74.19(11) 1.87(16) 0.28(6) 33(12) 80.65(5) 0.94(11) 0.21(8) 24(10) 

EHS 69.35(13) 1.27(14) 0.38(8) 35(14) 62.9(12) 1.66(14) 0.45(18) 44(16) 

DLP 74.19(11) 1.94(17) 0.28(6) 34(13) 80.65(5) 0.94(11) 0.21(7) 23(9) 

SWC 66.13(14) 1.76(15) 0.45(10) 39(15) 69.35(10) 1.45(13) 0.41(17) 40(15) 

ELP 59.68(16) 2.37(18) 0.83(12) 46(17) 59.68(13) 1.92(18) 0.83(21) 52(19) 

VWC 61.29(15) 2.71(19) 0.66(11) 45(16) 64.52(11) 1.9(17) 0.48(19) 47(17) 
b
AC, FE and FM denote accuracy, focus error, false maximum and overall score for 25% and 50% saturation 

levels increment. 
C
Parentheses values indicate ranking of that parameter 

In the 4
th

 step, uneven illumination was added in all the images with different 

maximum intensity if 1, 0.9 and 0.8. Mateos-Pérez et al. have tested it on FM images but did 

not find any negative effect on the performance of FMFs [98]. In this study, Performance of 

FMFs were significantly changed after incorporating illumination, but the top five FMFs 

were mostly invariant to different uneven illumination conditions. (Fig. 3.8, and Table 3.8). 

 

Fig. 3.8 Accuracy in percent of focus measure functions (Without preprocessing vs. uneven 

illumination) 
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3.3.3. Discussion 

The main goal of this study was to discover the most accurate and robust FMFs 

implementable to sputum smear CM images acquired at 100x magnification. From the earlier 

studies, it is concluded that the effectiveness of FMFs rely on different imaging contents. 

Comprehensive and comparative analysis of 24 FMFs have been carried out to identify the 

most robust FMFs. The effectiveness of these FMFs in various imaging conditions (e.g. 

noise, saturation level, uneven illumination, etc.) was evaluated to check their robustness. 

Seven FMFs namely, GDR, TGR, HSM, THR, ICR, SFB and SFM have achieved the 

accuracy >90% (Table 3.1 and Fig. 3.2). Top five FMFs i.e. GDR, TGR, HSM, THR and 

SFB were determined based on overall ranks calculated by accuracy, focus error and number 

of false maxima. Four out of five FMFs i.e. GDR, TGR, SFB and HSM were identified as the 

most robust as these FMFs were invariant to the filtering and image distortions conditions i.e. 

noise, contrast, saturation and uneven illumination (Fig. 3.2, Table 3.1). These four FMFs 

alongside THR were also tested on a single (MS-1) microscope with different imaging 

conditions (Table S9). Performance was similar to the combined results of three microscopes 

(Fig. 3.4, Fig.4, Fig.5, Fig.6, Fig.7).  

To further verify our results, the global ranking (Table 3.9, and Table S10) and the 

differences in FMFs performances before and after preprocessing (Table 3.10, 3.11 and 3.12) 

were computed. Outcomes of this analysis also support our previous findings that GDR (1st), 

TGR (2nd), SFB (3rd) and HSM (4th) are the most robust and accurate FMFs, and have 

minor differences in accuracy, focus error and false maxima rate of before and after 

preprocessing results. However, THR and GNV along with other FMFs were less robust and 

differences in performance were high. GDR (86.67%) and TGR (89%) FMFs can be used in 

FM images as they showed better performances in both modalities. The Laplacian and 

Wavelet-based operators have shown better performances in commercial camera and 

synthetically generated images, but these FMFs had shown poor accuracy in CM images due 

to the higher sensitivity to noise [100]. SFB and HSM are the significant finding of this study 

as their performances were not evaluated on microscopic images, and their accuracies were 

not good in real image of scenes [100]. SFB and HSM were also evaluated on FM images, 

but both have produced poor accuracies of 20% and 61.4% respectively. 
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Table 3.8 Performance of focus measure functions after addition of uneven illumination. 

Methods AC 0.8
a,c 

FE 0.8
a,c 

FM 0.8
a,c 

OS 0.8
a,c 

AC 0.8 FE 0.9 FM 0.9 OS 0.9 AC 1.0 FE 1.0 FM 1.0 OS 1.0 

GDR 95.16(1) 0.02(1) 0.03(1) 3(1) 95.16(1) 0.02(1) 0.03(1) 3(1) 91.94(2) 0.02(1) 0.03(1) 4(1) 

TGR 93.55(2) 0.03(2) 0.07(2) 6(2) 93.55(2) 0.03(2) 0.07(2) 6(2) 93.55(1) 0.03(2) 0.07(2) 5(2) 

HSM 91.94(3) 0.05(3) 0.1(3) 9(4) 91.94(3) 0.21(4) 0.1(3) 10(4) 91.94(2) 0.05(3) 0.1(3) 8(4) 

THR 93.55(2) 0.03(2) 0.07(2) 6(2) 93.55(2) 0.03(2) 0.1(3) 7(3) 91.94(2) 0.03(2) 0.1(3) 7(3) 

SFB 91.94(3) 0.15(4) 0.03(1) 8(3) 91.94(3) 0.15(3) 0.03(1) 7(3) 91.94(2) 0.15(4) 0.03(1) 7(3) 

GNV 75.81(6) 1.24(10) 0.28(4) 20(7) 72.58(7) 1.5(10) 0.31(6) 23(8) 79.03(5) 0.73(7) 0.31(5) 17(7) 

GLV 45.16(14) 3.16(17) 0.62(11) 42(17) 45.16(14) 3.48(17) 0.62(11) 42(16) 48.39(14) 2.61(17) 0.62(8) 39(16) 

ICR 48.39(13) 4.06(18) 0.55(10) 41(16) 48.39(13) 4.16(19) 0.55(10) 42(16) 50(13) 3.52(19) 0.55(7) 39(16) 

SD 45.16(14) 3.16(17) 0.62(11) 42(17) 45.16(14) 3.61(18) 0.62(11) 43(17) 45.16(15) 3.16(18) 0.62(8) 41(18) 

SFM 88.71(4) 0.21(5) 0.1(3) 12(5) 88.71(4) 0.24(5) 0.14(4) 13(5) 88.71(3) 0.21(5) 0.14(4) 12(5) 

VGR 43.55(16) 2.6(16) 4.79(15) 47(18) 59.68(11) 0.95(8) 1.45(13) 32(12) 66.13(10) 0.94(10) 1.21(11) 31(13) 

VCR 70.97(8) 1.13(8) 1.59(12) 28(10) 64.52(10) 1.52(11) 2.48(15) 36(13) 74.19(6) 0.87(8) 1.24(12) 26(10) 

EGR 77.42(5) 0.42(6) 0.55(10) 21(8) 80.65(5) 0.39(6) 0.45(8) 19(6) 82.26(4) 0.37(6) 0.31(5) 15(6) 

SGR 56.45(13) 1.55(13) 2.93(14) 40(15) 67.74(9) 0.84(7) 1.31(12) 28(10) 66.13(10) 0.9(9) 0.83(10) 29(12) 

EHS 61.29(12) 1.74(14) 0.41(7) 33(13) 54.84(12) 2.61(16) 0.48(9) 37(14) 54.84(12) 1.52(15) 0.48(6) 33(14) 

MLP 75.81(6) 0.98(7) 0.31(5) 18(6) 75.81(6) 1.15(9) 0.28(5) 20(7) 72.58(7) 0.98(11) 0.31(5) 23(8) 

DLP 74.19(7) 1.16(9) 0.34(6) 22(9) 70.97(8) 1.81(12) 0.34(7) 27(9) 70.97(8) 1.16(12) 0.31(5) 25(9) 

SWC 66.13(10) 1.47(11) 0.48(9) 30(12) 64.52(10) 2.03(13) 0.45(8) 31(11) 61.29(11) 1.47(14) 0.76(9) 34(15) 

ELP 62.9(11) 2.4(15) 2.38(13) 39(14) 64.52(10) 2.32(14) 1.86(14) 38(15) 61.29(11) 2.42(16) 2.17(13) 40(17) 

VWC 68.33(9) 1.5(12) 0.45(8) 29(11) 64.58(10) 2.44(15) 0.34(7) 32(12) 67.74(9) 1.42(13) 0.48(6) 28(11) 

b
AC, FE and FM denote accuracy, focus error, false maximum and overall score for uneven illumination with maximum intensity rate of 0.8, 0.9 and1.0 

C
Parentheses values indicate ranking of that parameter 
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Table 3.9 “Global Score” and “Global Ranking” of focus measure functions (FMFs) based on overall ranking of FMFs without preprocessing and post 

preprocessing. Parenthesis values denote rankings. 

Methods WPP
b 

2x2
b 

4x4
b 

8x8
b 

Noise
 

Cont SAT 25
b 

SAT 50
b 

ILU 0.8
b 

ILU 0.9
b 

ILU 1.0
b 

GS
b 

GDR 3(1) 3(1) 5(2) 3(1) 3(1) 3(1) 6(2) 3(1) 3(1) 3(1) 4(1) 13(1) 

TGR 5(2) 6(2) 4(1) 16(4) 4(2) 6(2) 3(1) 7(2) 6(2) 6(2) 5(2) 22(2) 

HSM 9(3) 15(5) 23(7) 23(8) 7(3) 7(3) 8(3) 16(5) 9(4) 10(4) 8(4) 49(4) 

THR 10(4) 9(3) 11(3) 31(10) 20(9) 13(6) 15(5) 19(6) 6(2) 7(3) 7(3) 54(5) 

SFB 11(5) 12(4) 19(6) 14(3) 8(4) 11(5) 15(5) 10(3) 8(3) 7(3) 7(3) 44(3) 

GNV 12(6) 12(4) 12(4) 17(5) 13(7) 13(6) 19(7) 23(9) 20(7) 23(8) 17(7) 70(6) 

GLV 12(6) 15(5) 16(5) 18(6) 11(5) 15(7) 17(6) 21(7) 42(17) 42(16) 39(16) 96(8) 

ICR 14(7) 26(8) 24(8) 22(7) 3(1) 8(4) 21(8) 33(14) 41(16) 42(16) 39(16) 105(10) 

SD 16(8) 33(12) 38(12) 31(10) 11(5) 15(7) 17(6) 22(8) 42(17) 43(17) 41(18) 120(13) 

SFM 19(9) 25(7) 29(10) 33(12) 21(10) 20(8) 11(4) 13(4) 12(5) 13(5) 12(5) 79(7) 

VCR 20(10) 25(7) 44(14) 33(12) 16(8) 31(13) 30(10) 31(13) 47(18) 32(12) 31(13) 126(15) 

VGR 20(10) 46(16) 53(16) 51(15) 12(6) 23(9) 26(9) 29(12) 28(10) 36(13) 26(10) 130(16) 

EGR 27(11) 28(9) 44(14) 42(14) 27(12) 28(11) 30(10) 27(11) 21(8) 19(6) 15(6) 112(11) 

SGR 27(11) 35(13) 49(15) 51(15) 27(12) 24(10) 32(11) 27(11) 40(15) 28(10) 29(12) 135(17) 

MLP 28(12) 25(7) 29(10) 14(3) 37(14) 29(12) 33(12) 24(10) 33(13) 37(14) 33(14) 119(12) 

EHS 28(12) 31(11) 36(11) 32(11) 24(11) 29(12) 35(14) 44(16) 18(6) 20(7) 23(8) 121(14) 

DLP 31(13) 23(6) 23(7) 13(2) 32(13) 31(13) 34(13) 23(9) 22(9) 27(9) 25(9) 103(9) 

SWC 31(13) 29(10) 27(9) 27(9) 37(14) 37(14) 39(15) 40(15) 30(12) 31(11) 34(15) 137(18) 

ELP 40(14) 44(14) 41(13) 41(13) 40(15) 39(15) 46(17) 52(19) 39(14) 38(15) 40(17) 166(19) 

VWC 40(14) 45(15) 53(16) 55(16) 33(13) 40(16) 45(16) 47(17) 29(11) 32(12) 28(11) 157(18) 

b
WPP denote performance without preprocessing. 2x2, 4x4 and 8x8 denote performance after median filtering with window size of 2x2, 4x4 and 8x8 respectively. SAT 25 

and SAT 50 denotes the accuracy after increased saturation level of 25% and 50% respectively. ILU denote the performance after uneven illumination addition with 

maximum intensity value of 0.8, 0.9 and 1.0. GS denote global score computed by summing the ranking in every imaging condition. 
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Table 3.10 Accuracy difference of each focus measure function (FMF) without preprocessing and post-processing. Mean and standard deviation of these 

differences are provided in last two columns 

Methods
 

2x2
b 

4x4
b 

8x8
b 

Noise
 

Cont
 

SAT 25
b 

SAT 50
b 

ILU 0.8
b 

ILU 0.9
b 

ILU 1.0
b 

Mean SD
b 

GDR 0.00 0.00 0.00 3.23 6.45 4.84 4.84 1.61 1.61 4.84 2.74 2.29 

TGR 0.00 1.61 4.84 3.23 6.45 3.23 8.06 3.23 3.23 3.23 3.71 2.17 

HSM 3.23 3.23 1.61 4.84 6.45 4.84 12.90 3.23 3.23 3.23 4.68 3.01 

THR 0.00 0.00 22.5 32.26 8.06 6.45 11.29 1.61 1.61 3.23 8.71 10.21 

SFB 3.23 3.23 3.23 0.00 6.45 4.84 1.61 1.61 1.61 1.61 2.74 1.77 

GNV 3.23 1.61 3.23 3.23 6.45 8.06 9.68 12.90 16.13 9.68 7.42 4.52 

GLV 1.61 3.23 3.23 0.00 3.23 4.84 6.45 41.94 41.94 38.71 14.52 17.34 

ICR 3.23 6.45 11.2 1.61 6.45 11.29 20.97 46.77 46.77 45.16 20.00 17.91 

SD 27.4 19.35 16.1 1.61 4.84 6.45 8.06 43.55 43.55 43.55 21.45 16.15 

SFM 1.61 1.61 6.45 27.42 8.06 1.61 6.45 1.61 1.61 1.61 5.81 7.61 

VCR 3.23 8.06 12.9 6.45 14.5 6.45 8.06 14.52 20.97 11.29 10.65 4.96 

VGR 40.3 41.94 41.9 6.45 8.06 4.84 6.45 37.10 20.97 14.52 22.26 15.45 

EGR 8.06 9.68 11.2 24.19 6.45 1.61 0.00 1.61 4.84 6.45 7.42 6.58 

SGR 0.00 6.45 22.5 22.58 0.00 3.23 6.45 17.74 6.45 8.06 9.35 8.12 

EHS 1.61 4.84 4.84 12.90 6.45 4.84 11.29 12.90 19.35 19.35 9.84 5.97 

MLP 8.06 6.45 14.5 64.52 6.45 1.61 4.84 0.00 0.00 3.23 10.97 18.32 

SWC 0.00 17.74 6.45 50.00 4.84 1.61 4.84 1.61 0.00 3.23 9.03 14.5 

DLP 11.2 12.90 17.7 53.23 6.45 1.61 8.06 1.61 1.61 1.61 11.61 14.87 

VWC 3.23 14.52 17.7 35.48 4.84 1.61 1.61 5.43 1.68 4.84 9.10 10.25 

ELP 4.84 17.74 25.8 50.00 8.06 8.06 8.06 4.84 3.23 6.45 13.71 13.77 

b
WPP denote accuracy without preprocessing. 2x2, 4x4 and 8x8 denote accuracy after median filtering with window size of 2x2, 4x4 and 8x8 respectively. SAT 25 and SAT 

50 denotes the accuracy after increased saturation level of 25% and 50% respectively. ILU denote the performance after uneven illumination addition with maximum 

intensity value of 0.8, 0.9 and 1.0. SD denotes standard deviation in accuracies. 
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Table 3.11 Focus error differences of each focus measure function (FMF) without pre-processing and 

post-processing. Mean and standard deviation of these differences are provided in last two columns. 

Methods
a 

2x2
b 

4x4
b 

8x8
b 

Noise
 

Cont
 

SAT 

25
b 

SAT 

50
b 

ILU 

0.8
b 

ILU 

0.9
b 

ILU 

1.0
b 

Mea

n 

SD
b 

GDR 0.00 0.00 0.00 0.03 0.06 0.08 0.11 0.02 0.02 0.02 0.03 0.04 

TGR 0.00 0.02 0.60 0.03 0.24 0.00 0.15 0.00 0.00 0.00 0.10 0.18 

HSM 0.00 0.03 0.02 0.05 0.13 0.02 0.52 0.00 0.16 0.00 0.09 0.15 

THR 0.16 0.16 1.90 1.00 0.24 0.23 0.31 0.31 0.31 0.31 0.49 0.52 

SFB 0.12 0.03 0.03 0.10 0.10 0.15 0.02 0.24 0.24 0.24 0.13 0.08 

GNV 0.10 0.24 0.06 0.03 0.10 0.05 0.10 0.97 1.23 0.45 0.33 0.40 

GLV 0.02 0.00 0.10 0.03 0.32 0.02 0.13 3.00 3.32 2.45 0.94 1.32 

ICR 0.15 0.34 0.48 0.03 0.40 0.74 1.65 4.03 4.13 3.48 1.54 1.59 

SD 2.47 2.06 1.48 0.40 0.11 0.42 0.31 2.56 3.02 2.56 1.54 1.07 

SFM 0.11 0.08 0.13 1.02 0.34 0.15 0.03 0.18 0.15 0.18 0.24 0.27 

VCR 0.29 0.98 1.16 0.10 0.73 0.32 0.34 0.47 0.85 0.21 0.55 0.34 

VGR 3.63 4.16 3.87 0.10 0.27 0.11 0.10 2.37 0.73 0.71 1.60 1.63 

EGR 0.48 0.90 2.87 1.06 0.13 0.10 0.08 1.03 0.32 0.39 0.74 0.80 

SGR 0.11 1.87 1.89 1.82 0.23 0.27 0.55 0.73 0.76 0.77 0.90 0.67 

EHS 0.21 0.18 0.27 0.55 0.71 0.60 0.98 1.06 1.94 0.84 0.73 0.50 

MLP 0.60 0.58 0.79 4.16 0.74 0.50 0.44 0.39 0.23 0.39 0.88 1.11 

SWC 0.29 0.98 1.16 0.10 0.73 0.32 0.34 0.47 0.85 0.21 0.55 0.34 

DLP 1.15 1.23 1.34 3.08 0.39 0.02 0.98 0.76 0.11 0.76 0.98 0.82 

VWC 0.87 1.21 0.19 3.37 0.56 0.18 0.49 0.47 0.10 0.47 0.79 0.92 

ELP 0.31 1.27 2.39 3.69 0.27 0.27 0.18 0.31 0.23 0.32 0.92 1.14 

b
WPP denote accuracy without preprocessing. 2x2, 4x4 and 8x8 denote accuracy after median 

filtering with window size of 2x2, 4x4 and 8x8 respectively. SAT 25 and SAT 50 denotes the 

accuracy after increased saturation level of 25% and 50% respectively. ILU denote the performance 

after uneven illumination addition with maximum intensity value of 0.8, 0.9 and 1.0. SD denotes 

standard deviation in accuracies. 
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Table 3.12 False maximum (FM) differences of each focus measure function (FMF) without pre-

processing and post-processing. Mean and standard deviation of these differences are provided in last 

two columns. 

Methods
a 

2x2
b 

4x4
b 

8x8
b 

Noise
 

Cont
 

SAT 

25
b 

SAT 

50
b 

ILU 

0.8
b 

ILU 

0.9
b 

ILU 

1.0
b 

Mea

n 

SD
b 

GDR 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.03 0.03 0.01 0.02 

TGR 0.03 0.03 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 

HSM 0.17 0.38 0.55 0.10 0.10 0.14 0.10 0.17 0.17 0.17 0.21 0.14 

THR 0.03 0.03 0.21 0.14 0.03 0.00 0.07 0.03 0.00 0.00 0.06 0.06 

SFB 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.01 

GNV 0.00 0.03 0.03 0.00 0.03 0.07 0.10 0.10 0.14 0.14 0.07 0.05 

GLV 0.00 0.03 0.00 0.00 0.03 0.07 0.10 0.41 0.41 0.41 0.15 0.18 

ICR 0.45 0.34 0.41 0.62 0.59 0.52 0.45 0.14 0.14 0.14 0.38 0.18 

SD 0.28 0.17 0.21 0.03 0.07 0.10 0.14 0.45 0.45 0.45 0.23 0.15 

SFM 0.03 0.24 0.45 0.17 0.17 0.31 0.24 0.31 0.28 0.28 0.25 0.10 

VCR 0.17 0.55 0.31 0.00 0.41 0.17 0.07 1.38 2.28 1.03 0.64 0.69 

VGR 0.24 0.24 0.24 0.03 0.10 0.00 0.03 4.38 1.03 0.79 0.71 1.27 

EGR 0.03 0.21 0.21 0.07 0.10 0.03 0.07 0.21 0.10 0.03 0.11 0.07 

SGR 0.03 0.66 2.00 0.03 0.03 0.03 0.14 2.45 0.83 0.34 0.66 0.83 

EHS 0.00 0.03 0.03 0.10 0.00 0.00 0.07 0.03 0.10 0.10 0.05 0.04 

MLP 0.14 0.14 0.24 0.10 0.03 0.07 0.14 0.03 0.07 0.03 0.10 0.06 

SWC 0.10 0.14 0.21 0.14 0.03 0.03 0.10 0.03 0.03 0.00 0.08 0.06 

DLP 0.17 0.55 0.31 0.00 0.41 0.17 0.07 1.38 2.28 1.03 0.64 0.69 

VWC 0.28 0.00 0.07 0.41 0.34 0.28 0.24 0.31 0.28 0.59 0.28 0.16 

ELP 0.10 0.07 0.24 0.10 0.83 0.07 0.07 1.62 1.10 1.41 0.56 0.59 

b
WPP denote accuracy without preprocessing. 2x2, 4x4 and 8x8 denote accuracy after median filtering with 

window size of 2x2, 4x4 and 8x8 respectively. SAT 25 and SAT 50 denotes the accuracy after increased 

saturation level of 25% and 50% respectively. ILU denote the performance after uneven illumination addition 

with maximum intensity value of 0.8, 0.9 and 1.0. SD denotes standard deviation in accuracies. 

Finally, the full width at half maximum (FWHM) was calculated for top four FMFs 

(GDR, TGR, SFB and HSM) to find out their convergence rate to the best focus point (Fig. 

3.9). In this study, GDR and SFB were rapidly converged to the best focus position, while 

HSM was slowest due to the marginal difference between the highest and the lowest focus 

measure values. An FMF is efficient for implementation in a real system when the manual 

intervention and the effect of different imaging conditions are minimal. Therefore, GDR, 

TGR, SFB and HSM are the most robust FMFs for high density (noisy) bright-field CM 

images, and these methods may be implemented in CM microscopes for automated capturing 

of images. 
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Fig. 3.9 Mean full width at half maximum (FWHM) of top four focus measure functions. FWHM 

values before and after DC offset removal: GDR = (2.68 (before DC removal), 2.53 (after DC 

Removal)), TGR = (5.35, 3.30), HSM = (6.72, 3.35) and SFB = (3.52, 3.27). Lesser DC offset value 

indicates the significance of an FMF. Lesser the FWHM value, better is the focus measure function. 

3.4. Conclusion 

Autfocusing using focus measure functions (FMFs) assists segmentation methods in 

segmenting bacilli more effectively. Studies have revealed that the performance of FMFs is 

sensitive to different imaging contents [100]. Therefore, the identification of robust and 

accurate FMFs for a particular imaging system assumes lots of significance for the 

development of auto-focusing instrument. A comprehensive analyses of 24 FMFs on diverse 

bright-field CM images provided GDR, TGR, SFB and HSM as the most robust and accurate 

FMFs. These FMFs can be used for the development of new automated conventional 

microscopy system which can capture an image directly from ZN stained sputum smear slide.  
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CHAPTER 4 

ESTABLISHMENT OF HYBRIDIZED FOCUS MEASURE FUNCTIONS 

AS UNIVERSAL METHOD FOR AUTO-FOCUSING 
 

Summary 

Exact focusing is essential for any automatic image capturing system. Performances of focus 

measure functions (FMFs) used for autofocusing are sensitive to image contents and imaging 

systems. Therefore, identification of universal FMF assumes a lot of significance. In this 

study, eight FMFs were hybridized in a pair of two and implemented simultaneously on a 

single stack to calculate the hybrid focus measure. In total, 28 hybrid FMFs (HFMFs) and 

eight FMFs were implemented on stacks of images from three different imaging modalities 

such as Ziehl-Neelsen stained sputum smear conventional microscope images (CM), 

Auramine-O stained fluorescent microscope images and multispectral images.  Performance 

of FMFs was found to be the best at 50% region-sampling. Accuracy, focus error and false 

maximum were calculated to evaluate the performance of each FMFs. Nineteen HFMFs 

provided more than 90% accuracy. Image distortion (noise addition, contrast reduction, 

saturation increment and uneven illumination) were performed to evaluate robustness of 

HFMFs. Hybrid of Tenengrad variance and steerable filter based (VGRnSFB) HFMFs was 

identified as the most robust and accurate function with the accuracy of ≥90% and relatively 

less focus error and false maximum rate. Sharpness of focus curve of the VGRnSFB along 

with eight individual FMFs was also computed for determining the efficacy of HFMF for 

optimization process. VGRnSFB HFMF can be implemented for automated capturing of an 

image for any imaging system.  
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4.1 Introduction 

Automated focusing techniques were widely implemented in various optical imaging systems 

such as microscopes, industrial inspection tools and cameras [28, 98, 168, 169]. This 

technique determines the best focused image by analyzing the content of sequenced image of 

same view field acquired on different focal position. A focused image is defined as the best 

average focus over an entire view-field on a stack of images acquired at different focuses 

from a single view-field. The maximum value of the focus measure function (FMF) generally 

corresponds to the best focused image [97]. Studies have indicated that the performance of 

FMFs depend on image content which is broadly classified as higher, medium and lower 

density background [93, 102]. General images have low density background whereas images 

captured from different experiments such as conventional bright-field microscope (CM) have 

higher density background due to the presence of artifacts, dye to stain the bacteria, etc. 

Similarly, fluorescent microscope (FM) images have medium density background. Most of 

the FMFs efficiently work on visible optical system like commercial cameras, and have a 

higher accuracy rate due to the high resolution and sharp edges of visible image. However, it 

is difficult to obtain high accuracy rate for the infrared optical system (near infrared, thermal, 

etc.) due to the poor resolution, low contrast and blur edges in infrared images [95]. Studies 

have also indicated that the significantly better performing FMFs in fluorescence microscopy 

images produced average outcome in CM [103, 158, 159] and vice versa [29].  

Several studies were performed to determine the efficient FMFs on microscopic (CM & 

FM) data, but most of their outcomes led to different conclusions [28, 29, 97, 98, 102]. 

Mateos-Pérez et al. found that mid-frequency discrete cosine transform (96.67%), Vollath‟s 

autocorrelation (VCR) (89%) and Tenengrad (TGR) (89%) were the efficient FMFs in FM 

images [98]. Six (Normalized gray-level variance (GNV), Brenner gradient (BGR), modified 

Laplacian (MLP), energy of Laplacian (ELP), VCR and TGR) and three (ELP, Gaussian 

derivative (GDR) and Variance of the log-histogram) were the most commonly used FMFs 

on Ziehl-Neelsen (ZN) stained sputum smear CM images [98, 102]. VCR and BGR were 

reported as the best FMFs in first study, while ELP was the best in the second. GNV, gray-

level variance (GLV) and VCR were reported as the most efficient FMFs in bright-field 

pathological images [101]. Studies were also performed to determine the efficient FMFs on 

visible [98, 169-171] and infrared optical system [95, 172, 173]. Energy of Laplacian 

operator was the best FMF for visible and near-infrared images, while fast Hessian detector 

based FMF was the best in thermal spectrum [173].  
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Incorporation of automated methods in microscopy can increase the sensitivity and 

specificity by analyzing large number of view-fields [89]. Exact focusing is very crucial in 

any automatic microscopy system as performance of successive steps such as automatic 

object segmentation and classification depend on it [28]. Autofocusing is also very significant 

in developing consumer-level user friendly digital cameras which can capture high quality 

images with minimal user intervention [174]. 

To overcome inconsistent performances of FMFs, this study evaluated the performance of 

hybrid FMFs across the different modalities as well as to different imaging conditions (noise, 

saturation, etc.). Eight most common autofocus algorithms were hybridized by 

simultaneously implementing two FMFs on well versed datasets from three different 

modalities, namely CM, FM and multispectral (MS) images to identify the efficient hybrid 

FMFs for any imaging system. MS datasets contain diverse images from visible, near-

infrared and thermal spectrum, and these datasets can be helpful to determine a robust and 

global hybrid FMF. The FMF algorithms incorporated in this study belong to three different 

categories according to their working principle. The changes in performances of hybrid FMFs 

were also analyzed after image distortion using noise addition, saturation increment, contrast 

reduction and uneven illumination to evaluate their effectiveness of this approach. The 

performance of every hybrid FMF is also compared with individual FMFs for better 

interpretation. 

4.2 Material and Methods 

4.2.1 Datasets 

Three different image modalities containing 87 stacks of images were used to evaluate the 

performance of individual and hybrid focus measure functions. Three diverse data types 

covering ZN (CM), FM and multi-spectral (MS) images were used to evaluate hybrid FMFs. 

Detailed description for each imaging modalities are given below (Fig. 3.1).  

(i). ZN Sputum Smear Microscopy 

In total, thirty-one autofocusing stacks were extracted from Ziehl-Neelsen Sputum smear 

Microscopy image Database from http://14.139.240.55/znsm/index.php [175]. These stacks 

were prepared from ten different ZN-stained sputum smear slides of tuberculosis patient 

using three different microscopes. Each stack contains 20 images captured at different focus 

points over the same view-field (Fig. 4.1a). Acquired images were diverse as image contents 
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ranges from medium to high noisy background. Image contents also vary due to improper use 

of staining dye (over- and under-staining).  

(ii). Fluorescent Sputum Smear Microscopy 

In total, thirty-five autofocusing datasets, prepared from slides of 10 patients, were randomly 

extracted from http:// biig.uc3m.es/autofocus_stacks/ [98]. Every stack has 20 images that 

were acquired at different focus points over the same view-field (Fig. 4.1b). 

(iii). Multi-Spectral (MS) Dataset 

In total, twenty-one autofocusing datasets in visible, near-infrared and thermal spectrum were 

retrieved from http://splab.cz/en/download/databaze/multispec [173]. The images acquired in 

visible spectrum (VS) were divided into 7 sets where each set contains a stack of 12 images 

(Fig. 4.1c). Acquired objects in the VS include headphones, keyboard, keys, loudspeaker, 

mixer, sunglasses and guitar. The images acquired in near-infrared spectrum (IS) were 

divided into 7 sets where each set contains a stack of 21 images (Fig. 4.1d). Acquired objects 

in IS include building, car, corridor, head, keyboard, office desk and pens. The images 

acquired in thermal spectrum (TS) were divided into 7 sets where each set contains a stack of 

27 images (Fig. 4.1e). Acquired objects in TS include building, circuit breaker, circuit, car 

engine, printer, server and tube. 

4.2.2 Focus Measure Functions (FMFs) 

Eight most common FMFs were included in this study as their performances in ZN (CM) and 

FM images were good [28, 98, 176]. Other FMFs such as Laplacian based operator, wavelet 

based operator, etc. were drastically failed on CM images; therefore, not included in the 

current study. These eight FMFs were hybridized and their performances were evaluated in 

this study to identify the best focused images from ZN, FM and MS images (Table 4.1). An 

FMF has highest value at the best focus position, and values reduce sequentially in both 

directions as focusing decreases (Fig. 3.2). These three major categories FMFs and their 

HFMFs were implemented in MATLAB (Table 4.1). 

(i). Gradient-based FMFs 

These functions assume that a well focused image have more high frequency content. 

Therefore, large intensity difference between neighboring pixels leading to sharper edges. 

Higher gradient represents more sharp edges; therefore, these FMFs use the gradient (first-

order derivative) of the image to find the best focused image.  

http://splab.cz/en/download/databaze/multispec
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(ii). Statistics-based FMFs  

These FMFs use various statistical measures like standard deviation, variance, 

autocorrelation, etc., to identify the best focused image. Generally, these FMFs are more 

consistent in high frequency noise as compared to derivative-based functions. 

(iii). Other FMFs 

This group contains the functions which are not in above two categories due to their working 

principles. 

 

Fig. 4.1 Image modalities used to evaluate HFMFs. (a) Image acquired from ZN sputum smear conventional 

microscopy (CM), (b) Image acquired from sputum smear fluorescent microscopy (FM), (c) Image acquired in 

visible spectrum (VS), (d) Image acquired in near-infrared spectrum, (e) Image acquired in thermal spectrum 

(TS), (f) Depiction of the 50% region-sampled area, and (g) Depiction of the 25% region-sampled area used to 

evaluate focus measure functions 
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Table 4.1 Focus measure functions (FMFs) and their category used to form hybrid-FMF for 

identifying the best-focused images. 

S. No. Category Focus Measure Function (FMF) Reference 

1. 

Gradient-based 

Gaussian derivative (GDR) [91] 

2. Tenengrad (TGR) [103]  

3. Tenengrad variance(VGR) [99]  

4. 
Statistics-based 

Normalized gray-level variance (GNV) [92] 

5. Vollath‟s autocorrelation (VCR) [103, 159]  

6. 

Other 

Hemli and Scherer‟s mean (HELM) [167] 

7. Steerable filters-based (SFB) [168] 

8. Spatial frequency measure (SFM) [96] 

 

4.2.3 Hybridization 

The above eight FMFs used in this study were hybridized in the pair of two, and a total of 28 

combinations were obtained. Hybridization of FMFs means two FMFs are implemented 

simultaneously on a single stack to calculate the hybrid focus measure using following 

formula. 

 
𝐻𝑦𝑏𝑟𝑖𝑑 𝐹𝑀𝐹 (𝐻𝐹𝑀𝐹) =  

𝐹𝑀𝐹1 + 𝐹𝑀𝐹2

2
 

( 1 ) 

Where, FMF1 and FMF2 are two focus measure functions which were used simultaneously. 

Hybrid focus measure is the average of two FMFs.  

4.2.4 Region-sampling 

Region-sampling was performed to implement FMFs on 25%, 50% and 75% parts of whole 

image. For 25% region-sampling, a total of 25% pixels from the central part of original image 

were retained. For example, with a 100x100 size (10000 pixels) image, 25 pixels from each 

end of rows and columns were removed to get the image of 50x50 dimensions (2500 pixels). 

The resultant image was sampled to 25% as the total numbers of pixels were reduced to the 

1/4th of original image (Fig. 4.1g). Similarly, region-sampling of 50% (Fig. 1f) and 75% was 

performed. Region-sampling was performed to achieve better accuracy as well as to reduce 

computation time [93, 158]. 
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4.2.5 Image Preprocessing 

Poisson noise was added to check the robustness of HFMFs to noise. A MATLAB function 

„imnoise’ is used to add Poisson noise generated from the image itself. Scaling factor 1e -10 

is used for the significant effect of noise on image. In general, FMFs are more sensitive to the 

higher level of noise [98]. 

Saturation level of an image also alters the performance of FMFs . To check the efficacy 

of HFMFs with respect to increase in saturation level, ZN and FM images were converted to 

HSV (Hue, saturation and value) color space. Furthermore, saturation of HSV images was 

increased by 25% using MATLAB. 

Reduced contrast level leads to smoothening of edges in images which reduces 

differentiation of the best focus image from defocused one. Contrast was reduced in 

preprocessing step to check the effectiveness of HFMF at low contrast level. Generally, better 

focused methods are not perturbed by low contrast which was reduced for every stack by 

mapping the image pixel values to a narrow range [100]. 

Uneven illumination was incorporated in images using a luminance gradient to test the 

effectiveness of HFMFs in low signal-to-noise ratio (SNR) condition due to poor 

illumination. Gray-scale image is used to represent luminance gradient using quadratic 

polynomial function, and it is multiplied to the original images to get resultant images.  

4.2.6 Evaluation of focus measures 

The following three criteria were used to evaluate the performance of FMFs and HFMFs 

[105]. 

Accuracy criterion: The accuracy value was assigned a score of 1, 0.5 or 0 if a stack was 

correctly classified; if the second best focus was classified as the best focus when the 

difference between the best and second best image differ marginally; or if the stack was 

misclassified respectively. Finally, the accuracy rate in percent was calculated using the 

following formula [28]:  

 Sum of all score

Total number of stacks 
× 100 

( 2 ) 

Higher score represents more accurate FMF/HFMF.  
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Focus error: It determines the difference between manually obtained and predicted best-

focused image [98]. 

Number of false maxima: This criterion was used to calculate the number of false 

maximum produced by a HFMF or FMF. Number of maxima present in a sharpness curve of 

the FMF or HFMF excluding global maximum was determined [98]. 

4.2.7 Convergence rate of FMFs 

Finally, sharpness of focus curve is used to identify the FMF and HFMFs with better 

convergence rate. It is used to calculate the narrowness of the peak. Narrower peak of FMF 

represents rapid convergence to the best focus point; hence, FMF would be implementable in 

the real system [173].  

4.3 Results and Discussion 

The ZN, FM and MS (VS, IS and TS) datasets are diverse in terms of image contents, and 

performances of FMFs were not consistent in these modalities [29, 173]. Therefore, this study 

proposed an autofocus system using hybrid focus measure function (HFMF) and assumed 

that some  HFMFs could be  robust across diverse image modalities as well as different 

imaging conditions (noise, saturation, etc.). The eight most commonly used FMFs that 

performed better in highly noisy ZN and FM images were hybridized and implemented.  

4.3.1 Region-sampling and Hybridization of FMFs 

Different parameters and configuration were checked prior to evaluate the performance of 

HFMFs. Images regions were sampled to 25%, 50% and 75% to check the accuracy of FMFs 

on different region-sampling rate in comparison to original images. Overall accuracy of most 

of the FMFs was reduced by 1-11% at 25% region-sampling, while it is increased by 1-4% at 

50% and 75% region-sampled images (Fig. 4.2 and Table 4.2). HFMFs analyses were 

performed only on 50% region-sampled images as the result was optimal and mean 

computation time was minimal at this level. Improved performance of FMFs on 50% and 

75% region-sampling might be due to better focusing on central part of the image than 

boundaries. Hybridization of two and three FMFs implemented on separate locations of the 

same view-field was evaluated, but performance of most of these FMFs was inconsistent and 

poor due to the different imaging contents. Therefore, the FMFs were superimposed on the 

same location of view field image to calculate the unbiased focus measure. Combination of 

three FMFs yields the poor accuracy in most of the  
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Fig. 4.2 Accuracy of focus measure functions (FMFs) in percent with different region-sampling data i.e. 25%, 

50%, 75% and original imag 

Table 4.2 Overall accuracy of focus measure function in percent with different sub-sampling data such as 25%, 

50%, 75% and original image 

Method
a 

Accuracy 25
b 

Accuracy 50
b 

Accuracy 75
b 

Accuracy 100
b 

GDR 90.1 94.8 92.4 92.4 

GNV 46.5 46.5 46.5 47.1 

HELM 80.2 82.6 79.1 79.1 

SFB 54.7 60.5 56.4 58.1 

SFM 86.6 88.4 89.0 88.4 

TGR 90.7 95.3 93.6 95.9 

VCR 76.2 82.6 84.9 87.2 

VGR 84.9 87.8 89.5 85.5 

GDRnTGR 91.3 94.8 94.2 94.8 

HELMnGDR 90.1 94.8 92.4 92.4 

HELMnTGR 90.7 95.9 93.6 95.3 

SFBnGDR 86.6 91.3 90.1 90.1 

SFBnTGR 90.1 91.3 91.3 91.3 

SFMnGDR 90.1 94.8 94.2 94.2 

SFMnHELM 87.2 91.3 89.0 88.4 

SFMnTGR 91.3 95.3 95.3 95.9 

SFMnVCR 75.0 91.3 88.4 88.4 

VCRnGDR 82.6 94.2 91.9 90.1 

VCRnSFB 83.1 90.1 89.0 89.0 

VCRnTGR 83.7 94.2 93.0 90.7 

VGRnGDR 87.8 95.3 90.7 87.8 

VGRnHELM 84.9 95.9 89.5 84.9 

VGRnSFB 88.4 95.3 91.9 87.2 

VGRnSFM 86.0 93.0 91.9 86.6 

VGRnTGR 87.8 94.8 93.0 89.0 

VCRnHELM 73.8 91.3 84.9 87.2 

VGRnGNV 86.0 90.1 90.7 85.5 

GNVnGDR 81.4 88.4 86.6 88.4 

GNVnTGR 81.4 87.8 89.5 90.1 

VGRnVCR 82.0 86.6 91.9 88.4 

GNVnVCR 74.4 80.2 84.9 83.7 

SFMnSFB 72.1 73.3 71.5 72.1 

SFMnGNV 64.0 65.7 62.2 62.8 

SFBnHELM 59.9 63.4 59.9 58.1 

GNVnSFB 59.3 61.6 57.6 55.8 

GNVnHELM 50.6 51.7 48.3 48.3 
b
25, 50, 75 and 100 are image sub-sampling rates in percent. 
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HFMFs, while combinations of two FMFs have provided a better accuracy rate. Therefore, 

only two FMFs were superimposed and used as final configuration. Performances of HFMFs 

were evaluated on overall datasets as well as separately on three types of datasets (ZN, FM & 

MS) to determine the effect of different imaging modalities on HFMFs. ZN datasets also 

contain microscopic images captured from Smartphone camera to evaluate the performance 

of HFMFs. All the FMFs used in this study were implemented on MATLAB and evaluated 

on unbiased approach. Mean computational time taken by each autofocus function was 

determined on Intel® Core™ i3-3220 CPU at 3.30 GHz with eight GB RAM (Table 4.3). 

The performance of HFMFs before and after preprocessing is provided in the following 

sections. 

Table 4.3 Mean computation time (in second) per stack of eight focus measure functions at 50% region-

sampling. Original Images were of 1600x1200 dimensions. 

FMFs
a
 Mean Time (Sec.) 

GDR 0.76 

GNV 0.17 

HELM 0.97 

SFB 3.37 

SFM 0.49 

TGR 0.41 

VCR 0.4 

VGR 0.58 

 

4.3.2 Without image preprocessing  

Average performances of thirty-six (eight individual and twenty-eight HFMFs) FMFs were 

computed separately on each datasets at different region-sampling rate (Fig. 4.2). More than 

90% overall accuracy at 50% region-sampling was obtained using nineteen HFMFs which 

indicated that HFMFs were consistent w.r.t different imaging modalities (Fig. 4.3a, Table 

4.4). Focus error and false maximum rate of these twenty-seven FMFs (eight individual and 

nineteen HFMFs) were also computed to validate the analysis. Most of these HFMFs 

performed accurately, and had less focus errors (Fig. 4.3b, Table 4.4) and false maximums 

(Fig. 4.3c, Table 4.4) whereas most of the individual FMFs provided the accuracy < 90%, 

with higher focus error and false maximum (except GDR & TGR). HELMnTGR, SFMnTGR, 

VGRnGDR, VGRnHELM and VGRnSFB hybrid FMFs obtained more than 95% accuracy 

and outperformed most of the individual FMFs. 
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Fig. 4.3 Performances of FMFs and HFMFs without image preprocessing in 50% region-sampling data. (a) 

Accuracy in percent, (b) Focus error, and (c) False maximum 
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Table 4.4 Accuracy in percent, focus error and false maximums of focus measure function without 

preprocessing at 50% sub-sampling 

Methoda Accuracy Focus Error False Maximum 

 ZNb FMb MSb Combined ZN FM MS Combined ZN FM MS Combined 

GDR 91.9 94.3 100.0 94.8 0.08 0.06 0.00 0.05 0.13 0.11 0.00 0.09 

GNV 80.6 8.6 60.0 46.5 0.48 3.36 2.35 2.09 0.23 1.00 0.45 0.59 

HELM 96.8 65.7 90.0 82.6 0.03 0.77 0.10 0.35 0.06 0.43 0.15 0.23 

SFB 93.5 25.7 70.0 60.5 0.03 1.60 0.80 0.86 0.10 0.94 0.30 0.49 

SFM 88.7 87.1 90.0 88.4 0.53 0.27 1.65 0.69 0.13 0.20 0.10 0.15 

TGR 95.2 92.9 100.0 95.3 0.05 0.07 0.00 0.05 0.10 0.14 0.00 0.09 

VCR 74.2 92.9 77.5 82.6 1.35 0.07 1.53 0.87 0.29 0.14 0.25 0.22 

VGR 71.0 97.1 97.5 87.8 0.39 0.03 0.03 0.16 0.39 0.06 0.05 0.17 

GDRnTGR 91.9 94.3 100.0 94.8 0.08 0.06 0.00 0.05 0.13 0.11 0.00 0.09 

HELMnGDR 91.9 94.3 100.0 94.8 0.08 0.06 0.00 0.05 0.13 0.11 0.00 0.09 

HELMnTGR 96.8 92.9 100.0 95.9 0.03 0.07 0.00 0.04 0.06 0.14 0.00 0.08 

SFBnGDR 91.9 85.7 100.0 91.3 0.11 0.20 0.00 0.12 0.13 0.23 0.00 0.14 

SFBnTGR 93.5 84.3 100.0 91.3 0.16 0.24 0.00 0.16 0.10 0.23 0.00 0.13 

SFMnGDR 91.9 94.3 100.0 94.8 0.08 0.06 0.00 0.05 0.13 0.11 0.00 0.09 

SFMnHELM 96.8 87.1 90.0 91.3 0.03 0.27 1.65 0.51 0.06 0.20 0.10 0.13 

SFMnTGR 95.2 92.9 100.0 95.3 0.05 0.07 0.00 0.05 0.10 0.14 0.00 0.09 

SFMnVCR 91.9 91.4 90.0 91.3 0.08 0.23 1.65 0.51 0.10 0.14 0.10 0.12 

VCRnGDR 91.9 92.9 100.0 94.2 0.08 0.21 0.00 0.12 0.13 0.11 0.00 0.09 

VCRnSFB 93.5 88.6 87.5 90.1 0.16 0.26 0.23 0.22 0.10 0.20 0.15 0.15 

VCRnTGR 95.2 91.4 97.5 94.2 0.05 0.23 0.03 0.12 0.10 0.14 0.05 0.10 

VGRnGDR 91.9 95.7 100.0 95.3 0.08 0.04 0.00 0.05 0.13 0.09 0.00 0.08 

VGRnHELM 93.5 97.1 97.5 95.9 0.06 0.03 0.03 0.04 0.10 0.06 0.05 0.07 

VGRnSFB 93.5 95.7 97.5 95.3 0.16 0.04 0.03 0.08 0.10 0.09 0.05 0.08 

VGRnSFM 88.7 97.1 92.5 93.0 0.24 0.03 0.08 0.12 0.13 0.06 0.10 0.09 

VGRnTGR 91.9 95.7 97.5 94.8 0.08 0.04 0.03 0.05 0.13 0.09 0.05 0.09 

VCRnHELM 96.8 91.4 82.5 91.3 0.03 0.23 1.38 0.42 0.06 0.14 0.20 0.13 

VGRnGNV 79.0 95.7 97.5 90.1 0.50 0.04 0.03 0.20 0.26 0.09 0.05 0.14 

b
ZN (Ziehl-Neelsen sputum smear conventional microscope), FM (fluorescent microscope) and MS 

(multispectral datasets). 25, 50, 75 and 100 are image sub-sampling rates in percent. 

4.3.3 Image preprocessing 

Effectiveness of HFMFs to different imaging conditions is very important because the 

occurrence of noise, poor contrast, illumination, etc. may affect its performance. Poisson 

noise addition, saturation level increment, contrast reduction and uneven illumination were 

incorporated to find out the effect of image distortion on FMFs and HFMFs performance.  

In the first step, Poisson noise was added to all the images. Generally, higher level of 

noise in an image significantly affects the performance [98, 100]. Most of the HFMFs were 

more robust than individual FMFs after noise addition (Fig. 4.4, Table 4.5). GDR and TGR 
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FMFs produced higher accuracies in focused image identification but failed drastically after 

noise addition (Fig. 4.4a). GDR FMF accuracies were dropped to 25.8, 67.1 and 65 percent 

for ZN, FM and MS datasets, respectively. Similarly, the TGR accuracies were dropped to 

90, 30 and 80 percent for the above datasets after noise addition. Focus error (Fig. 4.4b) and 

false maximums (Fig. 4.4c) rate were also increased in above two individual FMFs. 

VGRnSFB HFMF was least affected by noise addition and outperformed all the individual 

FMFs in terms of accuracy, focus error and false maxima, whereas VGRnGNV HFMF was 

ranked 2
nd

 after noise addition (Fig. 4.4a).  

 

Fig. 4.4 Performances of FMFs and HFMFs after noise addition in 50% region-sampling data. (a) Accuracy in 

percent, (b) Focus error and (c) False maximum 
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Table 4.5 Accuracy in percent, focus error and false maximums of focus measure function after noise addition 

in 50% sub-sampling image data 

Methoda Accuracy Focus Error False Maximum 

 ZNb FMb MSb Combined ZN FM MS Combined ZN FM MS Combined 

GDR 25.8 67.1 65.0 51.7 5.65 2.21 5.10 4.12 0.13 0.11 0.35 0.17 

GNV 38.7 85.7 70.0 46.5 0.53 3.36 2.40 2.12 0.19 1.00 0.50 0.59 

HELM 71.0 82.9 82.5 52.3 1.23 2.74 0.80 1.74 0.10 0.54 0.35 0.34 

SFB 87.1 20.0 82.5 57.6 0.10 1.66 0.84 0.90 0.13 0.94 0.30 0.50 

SFM 61.3 90.0 80.0 19.2 7.15 6.46 7.20 6.88 0.13 0.14 0.50 0.22 

TGR 90.3 30.0 80.0 72.7 2.92 0.66 4.10 2.27 0.10 0.11 0.25 0.14 

VCR 38.7 85.7 65.0 75.6 1.11 0.46 1.38 0.91 0.16 0.14 0.30 0.19 

VGR 62.9 82.9 82.5 81.4 1.79 0.11 1.98 1.15 0.32 0.06 0.20 0.19 

GDRnTGR 79.0 10.0 60.0 65.1 4.16 0.83 5.05 3.01 0.13 0.11 0.30 0.16 

HELMnGDR 83.9 42.9 70.0 63.4 5.45 0.50 5.00 3.33 0.13 0.11 0.30 0.16 

HELMnTGR 79.0 11.4 60.0 77.3 2.39 0.10 2.85 1.56 0.10 0.11 0.20 0.13 

SFBnGDR 83.9 61.4 75.0 75.6 0.10 0.74 1.15 0.60 0.13 0.29 0.15 0.20 

SFBnTGR 29.0 90.0 70.0 80.2 0.13 0.11 1.15 0.38 0.06 0.26 0.15 0.16 

SFMnGDR 90.3 57.1 85.0 43.6 6.58 3.27 6.15 5.13 0.13 0.11 0.35 0.17 

SFMnHELM 19.4 55.7 60.0 38.4 6.45 3.67 5.88 5.19 0.10 0.23 0.35 0.21 

SFMnTGR 83.9 14.3 70.0 64.0 4.74 0.83 5.10 3.23 0.10 0.11 0.35 0.16 

SFMnVCR 16.1 44.3 62.5 75.0 1.44 0.56 2.28 1.27 0.16 0.11 0.25 0.16 

VCRnGDR 62.9 81.4 82.5 75.6 1.50 0.57 2.28 1.30 0.23 0.11 0.15 0.16 

VCRnSFB 62.9 81.4 82.5 79.1 0.98 0.49 1.63 0.93 0.13 0.23 0.25 0.20 

VCRnTGR 75.8 82.9 77.5 75.6 1.44 0.57 2.28 1.28 0.19 0.11 0.20 0.16 

VGRnGDR 59.7 94.3 77.5 77.9 2.31 0.11 2.93 1.56 0.23 0.06 0.25 0.16 

VGRnHELM 66.1 94.3 82.5 81.4 1.79 0.11 2.03 1.16 0.32 0.06 0.20 0.19 

VGRnSFB 93.5 92.9 87.5 91.9 0.06 0.13 1.03 0.31 0.19 0.06 0.10 0.12 

VGRnSFM 61.3 94.3 77.5 78.5 2.10 0.11 2.93 1.48 0.32 0.06 0.25 0.20 

VGRnTGR 66.1 97.1 77.5 81.4 1.79 0.03 2.93 1.34 0.19 0.06 0.25 0.15 

VCRnHELM 62.9 82.9 82.5 75.0 1.44 0.61 1.88 1.20 0.19 0.14 0.25 0.19 

VGRnGNV 83.9 90.0 87.5 87.2 0.39 0.21 1.88 0.66 0.32 0.09 0.20 0.20 

b
ZN (Ziehl-Neelsen sputum smear conventional microscope), FM (fluorescent microscope) and MS 

(multispectral datasets). 

In the second step, the saturation was increased by 25% in all images. Generally, 

performance of all FMFs decreases as the saturation level increases [100]. On MS datasets, 

GDR and TGR have shown the poor accuracy rate of 65% and 75%, respectively. The 

performances of most of the HFMFs were better than individual FMFs after increased 

saturation level.  The performance of VGRnSFB HFMF was altered slightly and shown 

highest accuracy rate with less focus error and false maxima (Fig. 4.5, Table 4.6). 
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Fig. 4.5 Performances of FMFs and HFMFs after 25% saturation increment in 50% region-sampling data. (a) 

Accuracy in percent, (b) Focus error and (c) False maximum 
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Table 4.6 Accuracy in percent, focus error and false maximums of focus measure function after increased 

saturation in 50% sub-sampling data. 

Methoda Accuracy Focus Error False Maximum 

 ZNb FMb MSb Combined ZN FM MS Combined ZN FM MS Combined 

GDR 91.9 94.3 65.0 86.6 0.08 0.06 5.15 1.25 0.13 0.11 0.35 0.17 

GNV 83.9 7.1 55.0 45.9 0.45 3.41 2.40 2.11 0.19 1.00 0.50 0.59 

HELM 93.5 57.1 70.0 73.3 0.10 1.17 0.85 0.71 0.10 0.54 0.35 0.34 

SFB 88.7 22.9 70.0 57.6 0.40 1.69 0.70 0.99 0.13 0.94 0.30 0.50 

SFM 88.7 90.0 50.0 80.2 0.53 0.24 7.25 1.98 0.13 0.14 0.50 0.22 

TGR 95.2 94.3 75.0 90.1 0.05 0.06 4.15 1.01 0.10 0.11 0.25 0.14 

VCR 83.9 92.9 72.5 84.9 0.97 0.07 1.98 0.84 0.16 0.14 0.30 0.19 

VGR 75.8 97.1 82.5 86.0 0.29 0.03 2.08 0.60 0.32 0.06 0.20 0.19 

GDRnTGR 91.9 94.3 70.0 87.8 0.08 0.06 5.10 1.24 0.13 0.11 0.30 0.16 

HELMnGDR 91.9 94.3 70.0 87.8 0.11 0.06 5.10 1.25 0.13 0.11 0.30 0.16 

HELMnTGR 95.2 94.3 80.0 91.3 0.05 0.06 2.90 0.72 0.10 0.11 0.20 0.13 

SFBnGDR 90.3 82.9 85.0 86.0 0.23 0.23 1.15 0.44 0.13 0.29 0.15 0.20 

SFBnTGR 95.2 84.3 85.0 88.4 0.18 0.21 1.15 0.42 0.06 0.26 0.15 0.16 

SFMnGDR 90.3 94.3 65.0 86.0 0.23 0.06 5.40 1.36 0.13 0.11 0.35 0.17 

SFMnHELM 91.9 85.7 67.5 83.7 0.21 0.29 5.13 1.38 0.10 0.23 0.35 0.21 

SFMnTGR 95.2 94.3 65.0 87.8 0.05 0.06 5.15 1.24 0.10 0.11 0.35 0.16 

SFMnVCR 83.9 92.9 77.5 86.0 0.81 0.21 1.88 0.81 0.16 0.11 0.25 0.16 

VCRnGDR 82.3 92.9 85.0 87.2 0.66 0.21 1.95 0.78 0.23 0.11 0.15 0.16 

VCRnSFB 87.1 84.3 77.5 83.7 0.08 0.39 1.08 0.44 0.13 0.23 0.25 0.20 

VCRnTGR 83.9 92.9 82.5 87.2 0.65 0.21 1.83 0.74 0.19 0.11 0.20 0.16 

VGRnGDR 83.9 97.1 77.5 87.8 0.16 0.03 2.93 0.75 0.23 0.06 0.25 0.16 

VGRnHELM 75.8 97.1 82.5 86.0 0.31 0.03 2.08 0.60 0.32 0.06 0.20 0.19 

VGRnSFB 87.1 97.1 92.5 92.4 0.13 0.03 0.23 0.11 0.19 0.06 0.10 0.12 

VGRnSFM 75.8 97.1 77.5 84.9 0.31 0.03 2.93 0.80 0.32 0.06 0.25 0.20 

VGRnTGR 87.1 97.1 77.5 89.0 0.13 0.03 2.93 0.74 0.19 0.06 0.25 0.15 

VCRnHELM 80.6 91.4 77.5 84.3 0.13 0.23 1.43 0.47 0.19 0.14 0.25 0.19 

VGRnGNV 77.4 95.7 82.5 86.0 0.26 0.04 2.08 0.59 0.32 0.09 0.20 0.20 

b
ZN (Ziehl-Neelsen sputum smear conventional microscope), FM (fluorescent microscope) and MS 

(multispectral datasets). 

In third step, the contrasts of all images were reduced using “imadjust” function of 

MATLAB. Generally, marginal reduction of contrast has no effects on FMFs performance 

[91, 100]. Performance of all the HFMFs were affected marginally and accuracies were 

slightly dropped by contrast reduction (Fig. 4.6, Table 4.7). GDRnTGR, HELMnGDR, 

HELMnTGR, SFMnGDR and SFMnTGR methods achieved >94% overall accuracy. 

VGRnSFB remained consistent to reduced contrast level and obtained an overall accuracy of 

91.3%. 
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Fig. 4.6 Accuracy of FMFs and HFMFs in percent after contrast reduction in 50% region-sampling data. 

Table 4.7 Accuracy in percent of focus measure function after contrast reduction in 50% sub-sampling 

Method
a 

ZN
b 

FM
b 

MS
b 

Combined 

GDR 91.9 94.3 100.0 94.8 

GNV 80.6 8.6 60.0 46.5 

HELM 96.8 65.7 90.0 82.6 

SFB 93.5 25.7 70.0 60.5 

SFM 88.7 87.1 90.0 88.4 

TGR 95.2 92.9 100.0 95.3 

VCR 74.2 92.9 77.5 82.6 

VGR 71.0 97.1 97.5 87.8 

GDRnTGR 91.9 94.3 100.0 94.8 

HELMnGDR 91.9 94.3 100.0 94.8 

HELMnTGR 95.2 92.9 100.0 95.3 

SFBnGDR 90.3 85.7 100.0 90.7 

SFBnTGR 96.8 84.3 100.0 92.4 

SFMnGDR 91.9 94.3 100.0 94.8 

SFMnHELM 91.9 87.1 90.0 89.5 

SFMnTGR 96.8 92.9 100.0 95.9 

SFMnVCR 71.0 91.4 90.0 83.7 

VCRnGDR 82.3 92.9 100.0 90.7 

VCRnSFB 83.9 88.6 87.5 86.6 

VCRnTGR 83.9 91.4 97.5 90.1 

VGRnGDR 80.6 95.7 100.0 91.3 

VGRnHELM 71.0 97.1 97.5 87.8 

VGRnSFB 82.3 95.7 97.5 91.3 

VGRnSFM 74.2 97.1 92.5 87.8 

VGRnTGR 83.9 95.7 97.5 91.9 

VCRnHELM 71.0 91.4 82.5 82.0 

VGRnGNV 75.8 95.7 97.5 89.0 

b
ZN (Ziehl-Neelsen sputum smear conventional microscope), FM (fluorescent microscope) and MS 

(multispectral datasets). 
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Uneven illumination has very little effect on performance of FMFs in FM images, while 

in some cases performance has been improved [98]. Uneven illumination was incorporated in 

all the images. Most of the HFMFs have shown relatively consistent performance and have 

marginal changes in accuracy (Fig. 4.7, Table 4.8). 

 

Fig. 4.7 Accuracy of FMFs and HFMFs in percent after uneven illumination in 50% region-sampling data. 

    Evaluation of FMFs and HFMFS in various imaging conditions (such as without 

preprocessing, noise addition, saturation increment, etc.) shows that VGRnSFB HFMF was 

the most robust and accurate focus function with overall accuracy >90%, less focus error and 

false maxima.  
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Table 4.8 Accuracy in percent of focus measure function after uneven illumination at 50% sub-sampling data.  

Method
a 

ZN
b 

FM
b 

MS
b 

Combined 

GDR 90.3 94.3 100.0 94.2 

GNV 77.4 10.0 60.0 45.9 

HELM 69.4 90.0 82.5 80.8 

SFB 93.5 24.3 70.0 59.9 

SFM 91.9 68.6 90.0 82.0 

TGR 93.5 92.9 100.0 94.8 

VCR 80.6 92.9 77.5 84.9 

VGR 75.8 94.3 97.5 88.4 

GDRnTGR 90.3 94.3 100.0 94.2 

HELMnGDR 90.3 94.3 100.0 94.2 

HELMnTGR 93.5 92.9 100.0 94.8 

SFBnGDR 91.9 82.9 100.0 90.1 

SFBnTGR 96.8 85.7 100.0 93.0 

SFMnGDR 90.3 94.3 100.0 94.2 

SFMnHELM 91.9 91.4 97.5 93.0 

SFMnTGR 95.2 91.4 100.0 94.8 

SFMnVCR 77.4 91.4 87.5 85.5 

VCRnGDR 82.3 92.9 100.0 90.7 

VCRnSFB 82.3 88.6 87.5 86.0 

VCRnTGR 82.3 91.4 97.5 89.5 

VGRnGDR 80.6 97.1 100.0 91.9 

VGRnHELM 75.8 94.3 97.5 88.4 

VGRnSFB 82.3 95.7 97.5 91.3 

VGRnSFM 80.6 94.3 97.5 90.1 

VGRnTGR 80.6 95.7 97.5 90.7 

VCRnHELM 77.4 91.4 90.0 86.0 

VGRnGNV 75.8 92.9 97.5 87.8 
b
ZN (Ziehl-Neelsen sputum smear conventional microscope), FM (fluorescent microscope) and MS 

(multispectral datasets). 

4.3.4 Discussion 

Main objective of this study was to propose the most accurate robust hybrid focus measure 

function (HFMF) applicable to all the imaging modalities. Eight FMFs were earlier 

implemented in different applications such as shape-from-focus on images of commercial 

cameras and synthetic image sequences with clear edges and patters [100]. Pertuz et al. found 

that Laplacian based operators were outperformed when preprocessing was not applied [100]. 

Mateos-Pérez et al. established that mid-frequency discrete cosine transform (96.67%), VCR 

(89%) and TGR (89%) FMFs were performed better in FM images [98]. VCR, BGR and ELP 

were reported as the best FMFs in CM [28]. None of the previously reported FMFs were 

consistent to diverse imaging modalities such as ZN, FM and MS images. These 
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inconsistencies of results have emphasized the importance of robust HFMFs that may capture 

focused images automatically irrespective of imaging system.  

The performances of thirty-six (twenty-eight hybrid and eight individual) HFMFs were 

evaluated on the datasets covering almost all diverse image contents with high, medium and 

low density backgrounds and lack of sharp edges in images. Initially, nineteen HFMFs have 

provided overall accuracy rate ≥90%. VGRnSFB HFMF has been identified as the most 

robust and consistent after evaluating performance in different imaging conditions such as 

noise addition, contrast reduction, saturation increment and uneven illumination. An efficient 

HFMF has lots of application potential as it is easier to implement when intervention of 

preprocessing and other requirements are minimal. Better performance of VGRnSFB is 

significant as there was no HFMF reported earlier robust to ZN, FM and MS images 

simultaneously.  

Finally, the sharpness of focus curve was evaluated for eight individual FMFs (GDR, 

GNV, HELM, SFB, SFM, TGR, VCR and VGR) and a HFMF (VGRnSFB). In this study, 

VGRnSFB, VGR and SFB were rapidly converged to the best focus position (Fig. 4.8). 

Though sharpness curve of VGR was better, VGRnSFB HFMF curve was comparable to it 

and found to be suitable for implementation in real systems. This HFMF has also produced 

comparable sharpness curve in MS images (Fig. 4.9). 

 

Fig. 4.8 Sharpness curve of nine focus measure functions including hybrid FMF (VGRnSFB). Narrow peak 

represents rapid convergence of focus measure function. (a) VGRnSFB (HFMF), VGR and SFB were rapidly 

converged to the best focus position in ZN (CM) images, and (b) VGRnSFB and VGR were rapidly converged 

to the best focus position in FM images. 
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Fig. 4.9 Sharpness curve of nine focus measure functions including VGRnSFB HFMF on MS datasets. Narrow 

peak represents rapid convergence of focus measure function. (a) Sharpness curve on headphones images of 

visible spectrum, (b) Sharpness curve on headphones building images of near-infrared spectrum, and (c) 

Sharpness curve on breaker images of thermal spectrum. 
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4.4 Conclusion 

Exact autofocusing using focus measure functions (FMFs) is very crucial step of any imaging 

system. Studies have reported that the performance of FMFs is sensitive to image contents 

[100]. Therefore, efficient and robust FMFs are significant in any imaging system for the 

development of automated instrument. A comprehensive analysis of twenty-eight hybrid 

FMFs on diverse datasets, spanning almost all image categories, provided nineteen hybrid 

methods with accuracy >90%. Effectiveness of these HFMFs was tested under different 

imaging conditions such as noise addition, saturation increment, contrast reduction and 

uneven illumination. VGRnSFB was found to be the most robust and accurate HFMF as it 

showed the best overall accuracy and robustness as the performances were independent to 

different image distortions. This HFMF may be implemented in any imaging system which 

can capture the best focused image automatically.  
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CHAPTER 5 

AUTOMATIC DETECTION AND CLASSIFICATION OF 

MYCOBACTERIUM TUBERCULOSIS BACILLI FROM ZN-STAINED 

SPUTUM SMEAR IMAGES USING WATERSHED SEGMENTATION 

 

Summary 

Manual identification and counting of bacilli using sputum smear microscopy (CM) is very 

time consuming, labor intensive and tedious work. As a result, the sensitivity of TB detection 

varies and relies on experience of microbiologists which leads to misdiagnosis 33–50% of 

active cases. These issues can be addressed using automated method which reported to 

increase the sensitivity and specificity of TB detection. In this Chapter, an automated method 

for detection and classification of bacilli using watershed segmentation is presented. The 

efficacy of this algorithm to detect distinct bacilli from overlapping/occluded ones was also 

evaluated. Several preprocessing techniques were implemented prior to watershed 

segmentation for removal of artifacts and objects larger or smaller than bacilli. Performance 

of this segmentation on different infection levels were tested and discussed in this chapter. 

This method has achieved the better sensitivity and specificity on higher infection level for 

classifying an image as TB positive or negative. The proposed method is very significant in 

detecting bacilli even for challenging images with unclear and overlapped bacilli.  
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5.1 Introduction 

According to world health organization (WHO), tuberculosis (TB) is one of the primary 

causes of death worldwide by an infectious agent [27]. Conventional sputum smear 

microscopy (CM) method (Figure 5.1) is the most widely used test for TB screening 

especially in lower and middle income countries due to its low cost and minimal bio-safety 

standards [27]. However, manual identification and counting of bacilli using CM is very time 

consuming, labor intensive and tedious work. According to the WHO guidelines, examination 

of 300 view fields should be performed within 24 hours of collection of specimen for 

accurate diagnosis [141]. It takes 40 minutes to 3 hours to analyze 40-100 view-field images 

from a single slide [116]. As a result, the sensitivity of TB detection varies and relies on 

experience of microbiologists [97]. It has been reported that the manual screening may 

misdiagnose 33–50% of active cases [97]. All these issues can be addressed using automated 

methods which increase the sensitivity and specificity of TB screening [29]. 

Several methods have previously been proposed for bacilli detection in fluorescence 

[89, 177-179] and conventional [136, 180, 181] microscopic images. Detection of bacilli 

from CM is more challenging than fluorescence microscopy due to artifacts, over-staining 

and lack of clear separation of bacilli from background. CostaFilho et al., have developed a 

neural network based approach [180] which initially determine the density of background 

using the Hue component in image. Set of color features were used for bacilli segmentation. 

Color ratio was used as an additional parameter to overcome the misclassification due to high 

density background. Zhai et al. [181] converted RGB images into HSV and Lab color space 

to perform coarse and fine segmentation of bacilli the CM images. In 2011, Osman et al. 

[136] used a single-layer feed-forward neural network technique for tuberculosis bacilli 

detection. Most of the reported methods have not segmented overlapped bacilli and ignored 

them during performance evaluation. 

In this Chapter, watershed segmentation, a gray level segmentation method, along 

with several preprocessing techniques was used to segment the bacilli from ZN-staining 

images. This segmentation method is a simple, fast and accurate technique which can also 

segment the overlapping bacilli. These images were grouped into different categories to 

check the robustness of this segmentation method on different infection level, image contents 

and microscope configurations.  
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Figure 5.1 A sample ZN stained sputum smear microscopy image. The rod-shaped object is the M. tuberculosis 

bacilli. 

5.2 Material and Methods 

5.2.1 Datasets 

Performance of watershed segmentation was evaluated on following datasets: 

i. In total, 40 images were randomly extracted from Ziehl-Neelsen Sputum smear 

Microscopy image Database (ZNSM-iDB) [175]. These images were acquired using three 

different conventional microscopes (CM) including Smartphone enabled microscope. 

These images were grouped into medium and higher density background images.  

ii. In total, 30 images were randomly extracted from Smartphone enabled microscope 

(Microscope -3 (MS-3)) of ZNSM-iDB. These images were acquired using Smartphone 

enabled conventional microscope. In (i) & (ii) datasets, sensitivity and specificity of the 

watershed algorithm were calculated. 

iii. Images were extracted from ZNSM-iDB and grouped into four categories based on the 

infection level (Table 5.1) [148]. Sensitivity and specificity of watershed segmentation 

method for classifying an image as TB positive or negative were determined for each 

category. Sensitivity and precision rate of this segmentation method for identifying true 

bacilli were also determined for each category. Furthermore, discordance rate was 

calculated for watershed segmentation method to evaluate the percent of pairs where the 
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observation with TB-positive has a lower predicted probability than TB-negative [149, 

150]. Predicted probability was calculated in binary logistic regression model [150]. 

Table 5.1 View-field Images‟ grading on the basis of infection level 

# of Bacilli # of View-Fields to be 

Examined 

Grading 

1-9 in 100 view-fields 100 Scanty
a 

10-99 in 100 view-fields 100 1+ 

1-10 in each view-field 50 2+ 

>10 in each view-field 20 3+ 
a
Report exact number of bacilli present in the view-fields. Based on “National Tuberculosis 

Control Programme, India [148]” 

5.2.2 Watershed Transform 

The watershed transform is a popular segmentation method of mathematical morphology 

field. Beucher and Lantue ´joul had introduced it first time in image analysis [182]. The basic 

concept of watershed is based on visualizing a gray level image into its topographic 

representation (Figure 5.2), where the height of every pixel is directly related to its gray level, 

and considers rain gradually falling on the terrain or land relief (the vertical and horizontal 

dimension of land surface). Then the watersheds lines separate the catchment basins (area of 

land where all surface water from rain converges to a single point at a lower elevation). In 

order to locate catchment basin boundaries at high gradient points, the gradient of image is 

generally used to compute the watershed transform [183]. 

 

Figure 5.2 Topographical representation of a gray level image using Watershed method. 
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5.2.3 Methods 

Bacilli detection and classification were performed in six different steps which are presented 

as flowchart in Figure 5.3. In the first step, the collected images were converted to grayscale 

for further processing and implementation of watershed segmentation. Grayscale conversion 

was performed by eliminating the Hue and saturation information while retaining the 

luminance in original image. Second step is used to enhance the contrast of grayscale image 

for better and clear visibility of bacilli. Contrast was enhanced by saturating 1% of data at 

low and high intensities of grayscale image. Binary conversion of image through thresholding 

was performed in third step to separate bacilli from the background. The thresholding was 

unable to produce better results thus image contains artifacts other than true bacilli. To 

overcome this problem, Step four was opted where foreground objects were labeled using 

connected component. After labelling of objects, only bacilli were filtered out by removing 

objects which were smaller or larger than bacilli and not in rod shaped objects. Pixels of 

connected components (objects) were used for calculating the size of object while the 

perimeter of objects was used in Eq. 5.1 for calculating the circularity of objects. In final step, 

the watershed algorithm was implemented for segmentation and separation of overlapping 

(touching) bacilli. 

 

Figure 5.3 Flowchart of proposed method 
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Circularity = 

4*π*area

Perimeter
2
 ( 5.2 ) 

5.3 Results and Discussion 

Presented method has been evaluated on three different categories of data mentioned in 

“Material and Method” section.  

In the first category, 40 images were used in which 15 and 25 images were TB 

positive and TB negative, respectively. Figure 5.4 (a-f) shows that the proposed segmentation 

technique is able to extract most of the bacilli and eliminate unwanted objects from ZN 

stained images. In most of the negative images, all objects were eliminated which showed the 

better specificity of proposed technique. The accuracy of method is presented in the form of 

sensitivity and specificity. The former is the probability to detect image as TB positive (when 

it belongs to TB positive category) while the specificity is complement of sensitivity that is 

the probability to detect image as TB negative when the image did not contain any bacilli. 

Achieved sensitivity and specificity of watershed segmentation were 100% and 93% 

respectively (Table 5.2). When density of image background is very high, the specificity was 

reduced to 72% due to presence of excessive artifacts and staining (Table 5.2). Apart from 

sensitivity and specificity for the classification of image as TB positive or negative, 

sensitivity and precision rate for bacilli detection for all TB positive images were also 

calculated. In this case, sensitivity is a true positive rate of detecting bacillus when in fact it is 

a bacillus while precision or positive predictive value (PPV) is defined as the ratio of 

correctly classified bacilli and number of objects classified as bacilli. These values were 

calculated to check the efficacy of our approach in classifying/detecting the bacilli over 

artifacts. Achieved average sensitivity and average precision for bacilli detection are 90.3% 

and 77% respectively (Table 5.3). 

In the second category, 30 set of camera-enabled Smartphone microscopic images 

were used in which 15 images were TB positive while other 15 were TB negative. The 

proposed segmentation technique is able to extract most of the bacilli and eliminate unwanted 

objects from ZN stained images. Watershed segmentation has achieved the overall sensitivity 

and specificity of 93.3% and 87%, respectively for classifying the images as TB positive or 

negative. 

 



 

99 
 

 

(a)  

 

(b)  

 

(c)  

 

(d)    

 

(e)  

 

(f) 

Figure 5.4 Stepwise presentation of Watershed segmentation method for detection and classification 

of bacilli in ZN stained sputum smear image. (a) Original image, (b) RGB to grayscale conversion, (c) 

contrast enhancement, (d) binarized image, (e) artefacts removal and Watershed segmentation,  and 

(f) Labelled Image 
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Table 5.2 Performance of the watershed method in image classification as TB positive or negative. 

Image content Sensitivity (%) Specificity (%) 

Low density 100 93 

High density 100 72 
 

Table 5.3 Performance of the watershed method in true bacilli detection. 

Sensitivity (%) Precision (%) 

90.3 77 

Camera-enabled Smartphone microscopes can significantly contribute to the 

healthcare technology, especially in the remote areas of TB-endemic developing countries 

where skilled medical staff and better clinical laboratory are not available. It can also enable 

the accessibility of these tests to the high-quality healthcare as an EHR for better microscopic 

evaluation of sputum smear and other samples. Camera-enabled Smartphone microscopy 

used in this Chapter for bacilli detection can be used to monitor the TB patients. This system 

would support the WHO‟s DOTS program, which was established to abolition of TB 

worldwide [177]. 

In third category, images were grouped on the basis of different infection level 

(Scanty, 1+, 2+ and 3+, Table 5.1). Sensitivity, specificity and Precision rate of watershed 

segmentation method on different infection level are depicted in Table 5.3. The performance 

of this segmentation method is related to the level of infection. Performance is better when 

infection level is higher. Furthermore, this segmentation provided a discordant rate of 3.73% 

with respect to tuberculosis positive and negative cases. 

Table 5.3 Performance of watershed segmentation method on different infection level 

 

Grade 

TB Positive or Negative (%) True Bacilli (%) 

Sensitivity
a 

Specificity
a 

Sensitivity
b 

Precision
b 

Scanty 42.86 74.73 55.56 26.19 

1+ 81.25 75.29 55.56 52.4 

2+ 92.86 NA
* 

61.73 72 

3+ 100 NA
*
 90.23 79.09 

b
Sensitivity and precision rate of watershed segmentation method for identifying true bacilli in the 

view-field images. 
*
Datasets does not contain tuberculosis negative view-field images. 
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5.4 Conclusion 

A method is presented to detect and classify the bacilli from ZN stained sputum smear 

microscopy images. Image pre-processing techniques were implemented for contrast 

enhancement and removal of unwanted regions from the images. Circularity and size of 

objects were used to extract the bacilli. For final segmentation and separation, watershed 

segmentation was used which provided better results for all four types of images. 

Performance of the current method was evaluated on different infection level to evaluate the 

robustness w.r.t infection levels. This method has shown better performance on higher 

infection level images. This method is very significant in detecting bacilli even for 

challenging images with high density and overlapped bacilli.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion  

In the proposed thesis, work in support of automated microscopy development using image 

analysis techniques has been performed. Current work advances the knowledge of automated 

microscopy development. In this thesis, a web resource of ZN stained sputum smear images 

(ZNSM-iDB), identification of robust autofocusing method, establishment of robust hybrid 

focus measure functions, and implementation of bacilli segmentation methods have been 

performed to support the automated microscopy development.  

In Chapter 2, a newly developed web resource called “ZNSM-iDB” is presented. The ZNSM-

iDB is a unified and well versed database in terms of imaging contents and acquisition 

technology. This resource may serve as the standard platform to validate existing methods as 

well as to develop new ones for automated microscopy (i.e. autofocusing, autostitching and 

automated grading). Smartphone-based inexpensive automated disease diagnosis system may 

be developed and validated using MS-3 datasets of ZNSM-iDB. This system can be used in 

the remote areas of TB-endemic countries where laboratory resources are limited but 

Smartphones are widely used. Furthermore, Smartphone camera is also a portable computer 

which can be used simultaneously for automatic bacilli segmentation and grading using 

image processing techniques and maintaining electronic health record. The ZNSM-iDB is 

expected to serve as a referral resource for the research groups working in the domains of 

automated microscopy algorithms development. 

In Chapter 3, robust autofocusing functions were identified using comprehensive analysis. 

Autofocusing using focus measure functions (FMFs) assists segmentation methods in 

segmenting bacilli more effectively. Therefore, the identification of robust and accurate 

FMFs for a particular imaging system assumes lots of significance for the development of 

auto-focusing instrument. A comprehensive analyses of 24 FMFs on diverse bright-field CM 

images provided GDR, TGR, SFB and HSM as the most robust and accurate FMFs. These 

FMFs can be used for the development of new automated conventional microscopy system 

which can capture an image directly from ZN stained sputum smear slide. 
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In Chapter 4, a robust hybrid focus measure function was identified. A comprehensive 

analysis of twenty-eight hybrid FMFs on diverse datasets, spanning almost all image 

categories, provided nineteen hybrid methods with accuracy >90%. VGRnSFB is found to be 

the most robust and accurate HFMF as it showed the best overall accuracy and robustness in 

different image conditions. This HFMF may be implemented in any imaging system which 

can capture the best focused image automatically. 

In Chapter 5,  a bacilli segmented method was presented. Performance of the watershed 

segmentation method was evaluated on different infection level to evaluate the robustness 

w.r.t infection levels. This method has shown better performance on higher infection level 

images. This method is very significant in detecting bacilli even for challenging images with 

high density and overlapped bacilli.    

Automated microscope developed through these methods may provide the mass screening of 

cases in TB-endemic countries. Automation will deliver faster results to assist early diagnosis 

of tuberculosis. It will also increase the sensitivity and specificity of tuberculosis diagnosis 

using ZN sputum smear test.  

6.2 Future Prospect 

In the future, sensitivity and specificity of watershed segmentation method may be optimized 

for better disease diagnosis. Following improvements can be incorporated in existing 

approach: 

• Use of color feature in bacilli segmentation to remove overstrained blue artifacts and 

retain bacilli with reddish color. 

• Incorporation of machine learning for supervised classification of TB positive and 

negative images. 

• Comparative analysis of watershed algorithm with previously reported techniques. 
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