
Bug Summarization, Severity Classification and

Assignment for Automated Bug Resolution Process

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

ASHIMA

Department of Computer Science Engineering and Information Technology

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

Waknaghat, Solan-173234, Himachal Pradesh, INDIA

December, 2019

TABLE OF CONTENTS

CONTENT Page No.

SUPERVISOR’S CERTIFICATE i

DECLARATION BY SCHOLAR ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv-v

LIST OF FIGURES vi-vii

LIST OF TABLES viii

LIST OF ACRONYMS ix-xi

CHAPTER 1 INTRODUCTION 1-7

1.1 Introduction 1-5

1.2 Motivation 5-6

1.4 Objectives 6

1.5 Structure of Thesis 6-7

CHAPTER 2 REVIEW OF LITERATURE 8-42

2.1 Introduction 8

2.2 Bug Report Summarization 8-15

2.3 Bug Severity Classification 15-30

 2.4 Bug Assignment Approaches 30-42

CHAPTER 3 PSO- ACO BASED BUG REPORT SUMMARIZATION MODEL

43-62

3.1 Introduction 43-44

 3.2 Formulation of Bug Report Summarization as Optimization Problem

44-45

3.3 Proposed PSO- ACO Based Summarization Model 45-51

 3.3.1 Preprocessing Phase 45

 3.3.2 Sentence Scoring Phase

45-48

 3.3.3 Summary Subset Selection Phase 48-51

3.3.4 Performance Evaluation Phase 51

3.4 Experimental Results and Discussion 51-62

 3.4.1 Results 52-62

 3.4.1.1 Summary Set 1 52

 3.4.1.2 Summary Set 2 53-55

 3.4.1.3 Summary Set 3 55-59

 3.4.1.4 Statistical Test 59-61

 3.5 Summary 62

CHAPTER 4 RFB METHOD FOR BUG SEVERITY CLASSIFICATION MODEL

63-81

4.1 Introduction 63-64

4.2 Proposed BSCM 64-70

 4.2.1 Preprocessing 64-66

4.2.2 N-gram Extraction 66-67

4.2.3 Feature Extraction with Deep Learning 66-69

4.4.4 Classification Layer 69-70

 4.3. Experimental Results and Discussion

70-80

 4.3.1 Performance Measure

71-72

 4.3.2 Dataset 72

 4.3.3 Parameter Settings 72

 4.3.4 Results 72-80

 4.3.4.1 Binary Classification Results 73-76

 4.4.4.2 Multi-class Classification Results 76-79

 4.4. Summary 80-81

CHAPTER 5 DEVELOPER RECOMMENDATION SYSTEM FOR BUG ASSIGNMENT

82-100

5.1 Introduction 82

 5.2 Proposed Developer Recommendation (DevRE) System

82-91

5.2.1 Preprocessing Phase 83

5.2.2 Feature Extraction Phase 84-85

5.2.3 Feature Selection Phase 85-88

5.2.4 Developer Assignment Phase 89-91

 5.2.4.1 Proposed Developer Metrics 89-90

 5.2.4.2 Similarity Process 90

 5.2.4.3 Recommendation Process 91

 5.3 Results and Discussion

91-100

 5.3.1 Experiment 1: Results and Discussion 91-96

 5.3.2 Experiment 2: Results and Discussion 96-100

 5.4 Summary 100

CHAPTER 6 CONCLUSION AND FUTURE SCOPE OF WORK 101-102

6.1 Future Scope 101-102

REFERENCES 103-112

PUBLICATIONS FROM THESIS 113

i

SUPERVISOR’S CERTIFICATE

This is to certify that the work in the thesis entitled “Bug Summarization, Severity

Classification and Assignment for Automated Bug Resolution Process”

submitted by Ashima is a record of an original research work carried out by her under our

supervision and guidance in partial fulfillment of the requirements for the award of the degree

of Doctor of Philosophy in Computer Science and Engineering in the Department of Computer

Science and Engineering, Jaypee University of Information Technology,

Waknghat, INDIA. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Date:

Dr. Yugal Kumar

Assistant Professor (Senior Grade)

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,

Waknghat -173234, INDIA,

Dr. Rajni Mohana

Associate Professor

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,

Waknghat -173234, INDIA,

ii

DECLARATION OF SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled “Bug Summarization,

Severity Classification and Assignment for Automated Bug Resolution

Process” submitted at Jaypee University of Information Technology, Waknghat,

INDIA. is an authentic record of my work carried out under the supervision of Dr. Yugal

Kumar and Dr. Rajni Mohana. I have not submitted this work elsewhere for any other

degree or diploma. I am fully responsible for the contents of my Ph.D Theses.

Ashima

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,

Waknghat -173234, INDIA,

Date:

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my deep sense of respect and gratitude towards my guide Dr.

Yugal Kumar and co-guide Dr. Rajni Mohana in the Department of Computer Science and

Engineering and Information Technology, for their support throughout this research work. I

want to thank them for introducing me to the field of Software Engineering and giving me the

opportunity to work under them. Without their invaluable advice and assistance, it would not

have been possible for me to complete this thesis. I am greatly indebted to them for their constant

encouragement and invaluable advice in every aspect of my academic life. I consider it my good

fortune to have got an opportunity to work with such wonderful persons.

I would like to express my gratitude to our Honorable Vice Chancellor Prof. (Dr.) Vinod Kumar

and Director & Academic Head Prof. (Dr.) Samir Dev Gupta to promote the research and

facilitate resources in the institution. I would also like to thank Prof. Dr. Satya Prakash Ghrera,

Head Department of CSE/IT for constant guidance, research facilities and resources to carry out

my research work. I would also like to thank my doctoral committee members Dr. Pradeep

Kumar Gupta, Dr. Kapil Sharma and Prof. Dr. Sunil Kumar Khah for their valuable feedback

and critical reviews during presentations and time to time help.

I am also grateful for the support received from the JUIT, Waknaghat. In particular, I thank,

Ravi Raina, Sanjeev Kumar and all staff at the Department of Computer Science and

Engineering and Information Technology, JUIT, Waknaghat who has been extremely helpful at

numerous occasions. I thank my fellow PhD friends for their consistent help and valuable

discussion. I also thank my PG mates, for all the fun we have had in the last three years. Last

but not the least, I would like to thank my family my parents and brother, for giving birth to me

at the first place and supporting me spiritually throughout my life.

 Ashima

iv

ABSTRACT

Bug resolution process is an important aspect of the software development life cycle(SDLC).

The aim of bug resolution process (BRP) is to determine the bugs in software and fix it. These

software bugs are introduced in software’s during the different phases of SDLC process. The

different strategies and mechanisms are considered during the evolution of software to

overcome the propagation of bugs. A significant amount of time, cost and effort is put on the

identification of bugs. It is observed that some bugs are not identified during the software

evolution. These bugs can lead to failure of software’s and unexpected behavior. So, prior to

delivery of software’s, every company ensure that the software is bug free and meets it

expectation. Hence, to address and manage the bugs, bug tracking or reporting system are

designed such as Mozilla, Eclipse etc. These bug tracking systems store the information related

to bugs, called bug repositories. The valuable information regarding for fixing the bugs are

described in repositories. This information can be used to automate the BRP and also help

developers in terms of reduced time and effort. The BRP is described in terms of report

summarization, severity classification and assignment. This thesis addresses the issues

associated with bug report summarization, bug severity classification and bug assignment. Bug

report summarization is the process of generating the short description of lengthy bugs. To

resolve the bug, initially developer analyses and understands the content of bug report and make

a summary set. This process is time consuming and tedious as large number of bugs are

deposited in repositories per day. In turn, bug fixing time can be increased. Therefore, to

automate and improve the accuracy rate of summarization task, a new summary subset selection

technique is proposed to determine optimal summary subsets. This proposed technique is based

particle swarm optimization (PSO) and ant colony optimization (ACO). The aim of proposed

technique is to address data redundancy and sparsity issues of bug reports. Further, the semantic

relationship between sentences is also measured using informativeness and phareseness scores.

This thesis also provides a solution for severity of bugs. It is noticed that all bugs are not equally

important. Some, bugs require immediate attention of developer, whereas others are not. In this

thesis, a new classifier is proposed to determine the severity of bugs. Prior to severity prediction,

a deep learning based feature selection technique is also adopted to determine relevant features.

Further, random forest with boosting method is applied for predicting the severity of bugs. The

v

performance of proposed classifier is tested over well bugs dataset. In this thesis, a developer

recommendation (DevRE) system is also proposed to allocate the bugs with appropriate

developers. The proposed system integrates the ACO based feature weighting technique to

determine relevant feature from bug reports. Further, three metrics i.e. capability ranking,

severity level and average bug fixing time are developed to rank the developers. The NB and

SVM techniques are used to measure the severity levels of bugs. The results of proposed DevRE

system is compared with existing recommendation systems. It is observed that proposed DevRE

system provides more accurate results.

vi

LIST OF FIGURES

Figure 1.1: Bug Resolution Process 2

Figure 1.2: Eclipse Bug Report Example 3

Figure 1.3: Bug Life Cycle Process 4

Figure 3.1: Proposed PSO-ACO based Bug Report Summarization Model 46

Figure 3.2: Feature Weighting Module 47

Figure 3.3: Flowchart of PSO-ACO based Summary Subset Selection Algorithm 50

Figure 3.4: Simulation results of PROPOSED PSO-ACO, PSO, BRC, EC, ECM

and EGA techniques on Summary Set 1

55

Figure 3.5: Simulation results of PROPOSED PSO-ACO, PSO, BRC, EC, ECM

and EGA techniques on Summary Set 2

57

Figure 3.6: Simulation results of PROPOSED PSO-ACO, PSO, BRC, EC, ECM

and EGA techniques on Summary Set 3

59

Figure 4.1: Example of bug reports 63

Figure 4.2: Proposed BSCM based on Deep Learning and RFB techniques 65

Figure 4.3: Proposed Deep Learning Based Feature Extraction 68

Figure 4.4: Flowchart of proposed random forest with boosting classifier 70

Figure 4.5: Comparison of proposed model and Zhou et al. model using F-measure

parameter

74

Figure 4.6: Comparison of proposed model and Zhou et al. model using precision

parameter

75

Figure 4.7: Comparison of proposed model and Zhou et al. model using recall

parameter

75

Figure 4.8: Illustrates the results of proposed BSCM using accuracy parameter of

all datasets

78

Figure 4.9: Illustrates the results of proposed BSCM using precision parameter of

all datasets

78

Figure 4.10: Illustrates the results of proposed BSCM using recall parameter of all

datasets

78

Figure 4.11: Illustrates the results of proposed BSCM using f-measure parameter of

all datasets

79

Figure 5.1: Proposed Developer Recommendation System 83

Figure 5.2: ACO based feature weighting process 86

vii

Figure 5.3: Flowchart of proposed ACO based feature weighting technique 88

Figure 5.4: Bug severity level prediction using ACO-NB, NB, ACO-SVM and

SVM approaches using Eclipse dataset

93

Figure 5.5: Bug severity level prediction using ACO-NB, NB, ACO-SVM and

SVM approaches using Firefox dataset

94

Figure 5.6: Bug severity level prediction using ACO-NB, NB, ACO-SVM and

SVM approaches using OpenFOAM dataset

94

Figure 5.7:
Bug severity level prediction using ACO-NB, NB, ACO-SVM and

SVM approaches using Jboss dataset

95

Figure 5.8:
Bug severity level prediction using ACO-NB, NB, ACO-SVM and

SVM approaches using Mozilla dataset

95

viii

LIST OF TABLES

Table 2.1: Demonstrates the works reported on bug summarization problems 13-15

Table 2.2: Depicts the works presented on bug severity classification 25-30

Table 2.3: Illustrate the works reported on bug assignment and developer

identification approaches

37-42

Table 3.1: PSO-ACO parameters setting 53

Table 3.2: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EGA

techniques using ROUGE score parameter for Summary Set 1

54

Table 3.3: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC

techniques using ROUGE score parameter for Summary Set 2
56

Table 3.4: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC

techniques using ROUGE score parameter for Summary Set 3
58

Table 3.5: Average Rough score of proposed PSO-ACO, PSO, BRC, EC, EMC

and EC techniques
59

Table 3.6: Average ranking of techniques using Friedman tests 60

Table 3.7: Results of Friedman test based on avg. ROUGH score parameter 60

Table 3.8: P−values of Wilcoxon rank sum test (pairwise method) 61

Table 4.1: Characteristics of bug report datasets used for experiments 72

Table 4.2: Parameters setting of proposed BSCM 73

Table 4.3: Experimental results of proposed model and Zhou et al. model using

five datasets

74

Table 4.4: Experimental results of proposed model for severity classification

using five datasets

77

Table 5.1: Details of bug reports considered for experiment 91

Table 5.2: Comparison of proposed bug assignment model, NB and SVM

Classifiers for all five datasets

92

Table 5.3: Simulation results of proposed DevRE system using different bug

datasets

97

Table 5.4: Simulation results of proposed DevRE system and other existing

recommendation systems using Eclipse and Firefox.

97

Table 5.5: Simulation results of proposed DevRE system and other existing

recommendation systems using Eclipse and Firefox.

98

ix

Table 5.6: Simulation results of proposed DevRE system and other existing

recommendation systems using Eclipse and Firefox.

98

Table 5.7: Simulation results of proposed DevRE system and other existing

recommendation systems using Eclipse and Firefox.

99

Table 5.8: Simulation results of proposed DevRE system and other existing

machine learning based recommendation systems using accuracy

parameter

100

ix

LIST OF ACRONYMS

ACO Ant Colony Optimization

AP Activity Profile

ADtree Alternating Decision Tree

BTS Bug Tracking System

BRP Bug Resolution Process

BRC Bug Report Classifier

BRS Bug Report Summarization

BC Binary Classification

BN Bayesian Net

BFS Bug Feature Selection

BRA Bug Report Analysis

BSCM Bug Severity Classification Model

CP Concept Profile

CNN Condensed Nearest Neighbor

CSTF Categorical Summary and Long Description Features

CSF Categorical Summary Features

CF Categorical Features

CFS Candidate Feature Selection

CH Change History

DT Decision Tree

DREX Developer Recommendation and Expertise Ranking

DRETOM Developer Recommendation based on Topic Models

DBA Developer Based Analysis

DRS Developer Recommendation System

DevRE Developer Recommendation

EC Email Classifier

x

EMC Email Meeting Classifier

EM Expectation Maximization

EB Expertise

FFS Final Feature Selection

FL Fault Localization

IBRS Intention based Report Summarization

ICF Iterative Case Filter

KNN K-nearest Neighbor

KLD Kullback- Leibler Divergence

KLI Kullback–Leibler Divergence Informativeness

KLP Kullback–Leibler Divergence Phraseness

KSAP K-Nearest-Neighbor Search Algorithm and Heterogeneous Proximity

LRCA Logistic Regression with Crowdsourced Attributes

LDA Linear Discriminant Analysis

LR Logic Regression

LSI Latent Semantic Indexing

MC Multi-class Classification

MMLR Multi-Nominal Multivariate Logistic Regression

MLP Multi-Layer Perception

MI Mutual Information

MLR Multinomial Logistic Regression

ML Machine Learning

MTG Multi-Feature Tossing Graph

NB Naive Bayes

NBM Naive Bayes Multinomial

NFN Nearest False Negatives

NFP Nearest False Positives

NE N-gram Extraction

xi

PRST PageRank based Summarization Technique

PSO Particle Swarm Optimization

PO Pareto Optimality

RIPPER Repeated incremental pruning to produce error reduction

RFE Request for Enchantment

RF Random Forest

ROC Receiver Operating Characteristics

RNG Relative Neighbor Graph

RC Refined Classification

RE Root Extraction

RFB Random Forest with Boosting

SDLC Software Development Life Cycle

SBLC Software Bug Life Cycle

SVM Support Vector Machine

SBR Security Related Bug Reports

SN Social Network

STNT Stanford Topic Modeling Toolbox

SWR Stop Word Removal

TF-IDF Term Frequency –Inverse Document Frequency

TDM Term Document Matrix

TG Tossing Graph

1

CHAPTER 1

INTRODUCTION

1 Introduction

Software maintenance phase is an important aspect of SDLC. The purpose of software

maintenance phase is to fix the software bugs and improves the quality of software. A

software bug can be described as fault, mistake, and error. Basically, it is human error that

can feed unintentionally during the execution of the software especially either in source code

or design. If, these bugs are not detected in earlier phase of SDLC, then it can lead to failure

of software’s and sometime unexpected behavior of software [1]. In turn, development cost

of software’s is increased and further also affected the delivery of software’s. It is noticed

that more than 90% of software development cost is spent on software evolution and

maintenance activities [2]. In past few years, software maintenance can get wide attention

from the research community. The main reasons are security risk, user inconvenience,

inappropriate functionality, and large number of bugs. To handle aforementioned issues, bug

tracking or reporting system are designed such as Mozilla, Eclipse, OpenFoam, JIRA, Trac,

BugZilla, Redmine, OTRS, Mantis, FogBugz, BugNet etc. These systems detect the bugs in

earlier phase of SDLC, prioritize the bugs and also ensure the timely delivery of softwares.

The core component of bug tracking system (BTS) is bug repository. It contains various

artifacts related to software’s such as change history of status, source code and bug reports

etc. The artifacts are used in software maintenance phase to resolve the bugs and also the

key points for developers [3]. To remove the bugs from software is known as bug resolution

process (BRP) and it is shown in Figure 1.1. This process is handled through triager or

developer. In BRP, bug reports have significant impact. It contains diverse information like

freeform text, attachment and predefined fields as shown in Figure 1.2. Freeform text

contains the description, summary and comments. Attachments consist of non-textual

information such as test cases, patches, etc. The predefined fields contain the various

metadata, like status, product, importance, component, and assignee. Metadata is used to

determine relevant features from bug report [4]. Further, the status in the predefined fields

indicates the software bug life cycle (SBLC) [5]. The different status of SBLC are

demonstrated in Figure 1.3.

 UNSOLVED: Initially, status of all bug reports is UNSOLVED.

2

 NEW: When, triager searches the appropriate developer for assigning the bugs, then

status of bugs is changed, called NEW.

Figure 1.1: Bug Resolution Process

 ASSIGNED: Once, bugs are assigned to a relevant developer, its status is

 ASSIGNED.

 RESOLVED: When, bugs are resolved from the source code, its status is

 RESOLVED.

 REOPEN: If, the tester is not satisfied with the bug solution, then status of bug is

 REOPEN.

 VERIFIED: It corresponds to the approval of bug solution.

 CLOSED: It indicates the removal of bug.

Reporter 1 Reporter 2 Reporter 3

BUG TRACKING SYSTEM

Analysis

Bug Report

Understanding
Bug Triaging Bug Fixing

Bug

Repository

Triager/ Test Engineer / Developer

Bug Report
Performs

3

Figure 1.2: Eclipse Bug Report Example [6]

4

Figure 1.3: Bug Life Cycle Process

BRP is iterative process and consists of three phases. These phases are bug report

understanding, bug triage and bug fixing.

 Bug Report Understanding Phase: In this phase, the status of bug report is changed

from NEW to ASSIGNED. Triagers explore the contents of given bug reports for

summarization, filteration of the duplicate bugs and features prediction (e.g., priority,

severity and reopened/blocking). Large number of bug reports is generated every

day and to summarize these bug reports manually is one of challenging task [7,8].

This issue attracts various researcher to work in this direction i.e. developed

automated tool for bug report understanding.

Reporter
UNSOLVED

NEW

ASSIGNED

REOPEN
If bug is resolved

If solution worked

CLOSED

N

No occurrence of the bug is reported

Reassigned the

bug

Y

RESOLVED

Y

VERIFIED

N

5

 Bug Triaging Phase: This phase responsible to identify the appropriate developer to

assign bugs [10-12]. This can be done with the help of triagers. Without prior

information on bug report, triagers cannot determine relevant developer to fix the

bug. Hence, bug assignment is also an important task to improve the bug fixing rate.

To address the bug assignment issue, several bug triage approaches have been

developed.

 Bug Fixing Phase: In this phase, bugs are fixed with the help of developers. For a

given bug, developer analyzes the source code files, identifies the source of bugs and

also updates the patch code as a bug-fixing process. But, manual bug localization and

patch generation can make the bug fixing process difficult. Several researchers have

also developed automatic tools to address bug fixing issues [13-15].

Each phase of bug life cycle associates with different challenges. The BTS contains the large

amount of bug reports and it is the responsibility of triager to handle the bug reports. During

the execution of Eclipse open source project, thirty new bug reports are stored in BTS daily

from October 2001 to December 2010 and overall 333,371 bug reports are submitted to

Eclipse bug repository [5]. The manual inspection of large scale bug reports is a tedious, and

time consuming. Further, this process also puts heavy burden on triager and in turn low

success rate for bug fixing. Many researches are worked in this direction, but the optimal

solution is not obtained [25-33, 59-67, 92-97].

1.2 Motivation

Over the past few years, it is noted that bug resolution problem is popular research filed

among researchers [13]. Research community can provide both theoretical and experimental

solution for bug resolution problem. BRP is divided into bug report summarization, severity

classification and assignment. The report summarization can be described as bug report

understanding. While, Bug severity classification and assignment is the part of bug triaging.

The bug resolution techniques are adopted to determine optimal solution for BRP. These

techniques are based on textual content of description and summary fields. It is observed

that lot of work is reported on automation of BRP in literature [3,13,11]; still, the reliability

and accuracy are active area of research. It is noticed that several shortcomings are associated

with bug resolution techniques. These are highlighted below:

1. Scope of improving the methods to handle bug report summarization, bug fixing etc.

2. Scope of improving the accuracy rate of bug severity classification.

6

3. Identification of appropriate developer for bug resolution.

4. Handle manual patch generation and bug localization as number of bugs are

increased.

1.3 Objectives

The aim of this work is to address the summarization issues of bug reports such as data

dimensionality, sparse representation and estimation issues of data and also improve the

solution quality. Hence, the objective of this work based on the motivation section are given

as

 To implement domain specific Bug Report Summarization technique

 To improve the accuracy of bug severity classification model

 To develop a developer recommendation system for bug assignment.

1.4 Structure of the Thesis

The entire work is organized in the following chapters.

Chapter 1: This chapter contains the information on bug resolution process, motivation

and objective of the work.

Chapter 2: In this chapter, state of the art approaches for bug resolution process are

presented. The literature review is divided into three sections i.e. Bug Report

Summarization, Bug Severity Classification and Bug assignment.

Chapter 3: This chapter address the first objective of our work. In this chapter, a new bug

report summarization model is proposed for summarization task. Further this model

consists of PSO-ACO based summary subset selection algorithm. The proposed

technique is the combination of PSO and ACO techniques. It is stated that proposed

model provides state of art results for summarization problems.

Chapter 4: This chapter address the second objective of our work. In this chapter, a new

bug severity classification model is proposed, called BSCM. The proposed model is

based on deep learning and random forest with boosting method. The aim of proposed

model is to improve the accuracy rate of severity classification task. It is stated that

proposed model achieves higher accuracy rate than Zhou et. al.

Chapter 5: This chapter addresses the third objective of the work. In this chapter, a new

developer recommendation (DevRE) system is proposed to assign the bugs for relevant

7

developers. The proposed model consists of ACO based feature weighting method for

feature selection. Further, the developer is recommended on the basis of three metrics.

The results of the proposed recommendation system are compared with existing

recommendation system. It is observed that proposed recommendation system provided

better results.

Chapter 6: This chapter concludes the entire work. Future research direction is also

discussed.

8

CHAPTER 2

REVIEW OF LIERATURE

2.1 Introduction

This chapter presents the systematic literature review on bug resolution process. It is divided

into three sections. These sections are

 Bug Report Summarization

 Bug Severity Classification

 BugAssignment

2.2 Bug Report Summarization

Bug report summarization is the process of generating the short description of lengthy bug report

[16]. To know the root cause of the bug, large amount of conversation happens between the

developer and reporter through the bug reports. This recorded conversation contains multiple

comments from multiple peoples. The comments can be described either in terms of lines or

passages and contains useful information for developer to resolve the bugs [17]. These resolved

bugs are used as future reference [18,19]. After the submission of new bug report, developer

first check the historical bug reports to see whether the similar bug was resolved previously.

The similar bug helps the developer in two ways. The first one is understanding the current

problem in better way. The second one is reusing the recorded solution of previous bug for new

bug [20]. However, triager or developer reads the entire bug report to find the solution of

previous bug report or to know the problem of new bug report. This activity consumes a lot of

time, manual effort and frustrating due to the dozens of comments in bug reports [21]. Automatic

bug report summarization is the only way to help the developers by reducing the size of bug

reports. The basic approach of generating the bug report summary is to select the subset of

existing sentences. The main issue of this process is the selection of summary subset [22,23]. In

literature, large number of supervised and unsupervised approaches are adopted to determine

the appropriate summaries [24-36]. Table 1 demonstrates the works reported on bug

summarization problems.

To address the difficulties of manual bug report summarization, Rastkar et al. [24] tried to

automate the bug report summarization. The aim of this work is to reduce the lengthy bug reports

9

into smaller ones. It should be beneficial for developer by two reasons. First, the developer

consults with small bug reports. Second, it also reduces the time of developer. Hence, in this

work, three supervised classifiers are used to automate the bug report summarization process.

These classifiers are email classifier (EC), bug report classifier (BRC), email meeting classifier

(EMC). The main work of these classifiers is to extract the top ranked sentences from the bug

reports. The email thread dataset is used to train the EMC and EC. Whereas, BRC is trained

using bug report dataset. All these classifiers are tested on 36 bug reports. These bug reports are

taken from KDE, eclipse, gnome and Mozilla open source projects. The performance of these

classifiers are evaluated using precision and F-value parameters. The results showed that BRC

outperforms than EC and EMC. It is noticed that BRC achieves 63% precision rate and 40% F-

value rate.

In continuation of their work, Rastkar et al. [25] explored the automated bug report

summaries to determine duplicate bug report. The author used same classifiers to generate the

summaries. These classifiers are trained on the set of 24 features. Further, the feature value of

sentences is utilized to compute the probability of sentences. The sentences with higher

probability are considered as a part of summary. Further, these 24 features are divided into four

groups such as lexical, participant, structural and length features. The task-based validation was

performed on 36 bug reports. The results showed that the generated summaries reduce the

developer time to detect the duplicates bugs without affect the accuracy.

To determine the more relevant sentences for summarization task, Jiang et al. [26] conducted

a survey to explore the existing techniques for attribute construction. In this work, a new model

is developed, called Crowd–Attribute to determine the new effective attributes from crowd data.

Further, eleven new attributes are constructed with Crowd – Attribute for developing a

supervised summarization classifier called logistic regression with crowdsourced attributes

(LRCA). The LRCA classifier is tested on 105,177 bug reports and SDS dataset. The

effectiveness of proposed classifier is evaluated using precision, recall and F-score parameters.

It is seen that LRCA classifier provides better results than the BRC technique [24]. It is noticed

that LRCA improves the simulation results for Precision, Recall and F-score by 1.33%, 10.11%,

and 8.94% respectively.

10

To find the multiple intentions of sentence in bug report, Huai et al. [27] implemented a

supervised intention- based summarization model (IBRS). The IBRS model is divided into three

steps such as feature extraction, intention classifier and summarization model. In first step, the

features are extracted to generate the taxonomy for intentions in bug report. In second step,

intention classifier is applied to get intentions from the sentences. In third step, intention

taxonomy is leveraged to enhance the results for summarization task. The performance of IBRS

is tested on 36 bug reports and evaluated using F-score, precision and recall parameters. The

experimental results showed that IBRS outperforms than BRC [24].

To address the multidimensional and heterogeneous nature of bug reports, Ponzanelli et al.

[28] developed an extension of LexRank approach [29]. LexRank approach basically consists

of PageRank algorithm. In this work, PageRank algorithm is combined with custom similarity

function for heterogeneous entities like configuration files and code samples. The proposed

approach is tested on the stack overflow dataset. The simulation results are evaluated using

precision parameter and compared with the text based approach i.e. classical LexRank. It is

observed that proposed approach provides better summarization results than existing approach.

To reduce the developer time and effort, Yeasmin et al. [30] designed a prototype to visualize

the extractive summary of bug reports. The working of proposed prototype is divided into two

parts. Firstly, features are extracted using LDA modeling. While, in second part, bug report

summaries are computed based on the cosine (lexical) similarity of each sentence with respect

to other sentences. Moreover, API4 technique is adopted to determine the sentiment of each

sentence and the relationship score of each sentence is also computed. Finally, the sentences are

combined on the basis of relationship score and ranked. The sentences with higher score are

selected to generate the summaries. Further, in this work, different colors and its combinations

are used to visualize the summaries of bug reports. Bugzilla dataset is considered to assess the

performance the proposed prototype. Precision, f-measure and recall are taken as performance

parameters to evaluate the simulation results of proposed prototype. The simulation results of

proposed prototype are compared with time sensitive keyword based extraction approach.

Authors claimed that proposed prototype performs better than existing approach and archives

higher f-measure, recall and precision rates.

11

Mani et al. [31] applied unsupervised approaches to automate the bug summarization

process. The aim of this work is to explore the capabilities of unsupervised approaches in the

field of automated bug summarization approaches. The various raking algorithms like centroid,

grasshopper, diverse rank, and maximum-marginal relevance are applied to determine the

relevant sentences for summarization task. The performances of aforementioned approaches are

tested on 55 bug reports from SDS and DB2 repository. F-score parameter is used to evaluate

the results of unsupervised approaches consider in this study. F-score of the centroid,

grasshopper, diverse rank, and maximum-marginal relevance approaches are 43%, 50%, 46%

and 48% respectively. Simulation results of unsupervised approaches are also compared with

some supervised approaches. It is noticed that grasshopper and diverse rank approaches are

performed better than supervised approaches [24]. It is also observed that unsupervised

approaches significantly reduce the noise effect and also avoids human annotated summaries.

Lotufo et al. [32] presented an unsupervised method to automate the bug report

summarization. Prior to generate the effective summaries, authors are designed three hypotheses

to make a sentence relevant using Markov chain. These hypotheses are frequently discussed

topics, evaluation and assessment of sentences and bug reports title and description. Further, the

PageRank algorithm is implemented to determine the relevant summaries for bug report. The

performance of PageRank approach is measured using debian, launchpad, mozilla and chrome

datasets. Authors claimed that the proposed hypotheses are valid, and improves the simulation

results up to 12% as compared to existing approach [24]. Moreover, the system-generated

summaries are passed to developers to assess the quality and usefulness. Developers stated that

system generated summaries are more useful, efficient and effective. But, it is observed that

hypotheses can increases the cost of both approaches. Because, additional time is required to

test the hypotheses.

To reduce developer time and effort for bug report summarization, Nithya et al. [33]

developed an unsupervised extractive summarization approach. The proposed approach works

in two modules. In first module corresponds to the noise reduction. In this module, bug report

sentences are classified as code fragment, questions, investigative etc. The aim of this module

is to remove unwanted sentences form bug reports. Further, centroid computation summarizer

method is applied to compute the value of features in each sentence. In second module, an

extractive summarization algorithm is to choose the optimum subset of sentences. This

12

algorithm determines the sentences with higher feature score and puts into summary subset. The

similarity between the bug reports summaries are also determined to identify the duplicate bug

reports. It is observed that the proposed unsupervised approach increases the accuracy of

summarization and also capable to detect the duplicate bug reports.

To investigate the pitfalls of duplicate bug reports in summarization task, Jiang et al. [34]

developed a page rank based summarization technique, called PRST. The aim of proposed

technique is to summarize the textual content of bug reports and detect the duplicate bug reports.

In PRST, three metrics are utilized with PageRank algorithm to measure the textual similarities

between sentences These metrics are WordNet, vector space model and Jaccard. Further, a

regression model is used to predict the probability of sentences. Moreover, it is observed that

sentences are ranked on the basis of PageRank and regression model scores. Top ranked

sentences are selected to generate the summary. The performance of PRST technique is

assessed over two corpora i.e. MBRC and OSCAR. Simulation results stated that proposed

PRST technique outperforms than BRC in term of F-score, recall and precision. It is also

observed that combination of WordNet metric and PRST provides better computational results

than PRST+VSM and PRST+Jaccard.

Ferreira et al. [35] applied cosine similarity, PageRank, Euclidean distance and Louvain

community techniques to determine relevant sentences for summarization. All these techniques

are implemented in unsupervised manner. The performance of these algorithms is tested on fifty

bug report taken from the bootstrap, jquery and angular datasets. The simulation results of these

techniques are evaluated using average precision score. The precision score of Cosine

Similarity, PageRank, Euclidean Distance and Louvain techniques are 44.6%, 29.3%, 47.3%

and 38% respectively. Further, two statistical tests i.e. Spearman’s rank correlation coefficient

and oracle ranking is adopted to determine the correlation between the rankings of each

technique. It is noticed that Cosine Similarity and PageRank techniques are capable to produce

average summary of bug reports than Euclidean Distance and Louvain techniques. The effort

put on the analysis of bug reports is also reduced using Cosine Similarity and PageRank

techniques.

Li et al. [36] explored the capability of deep learning network for bug report summarization.

In this work, unsupervised deep sum approach is used to select relevant sentences for

13

summarization task. Further, stepped auto-encoder network with evaluation enhancement and

predefined fields are utilized to integrate the bug report characteristics into a deep neural

network. It is revealed that the proposed deep sum approach considerably reduces the eff ort put

on the labeling huge training sets. The performance of proposed deep sum approach is evaluated

using F-score and Rouge–n measures. It is seen that proposed approach state of art results than

other compared approaches [24, 31,35]and it is one of viable and effective method for

summarization problems.

Table 2.1: Demonstrates the works reported on bug summarization problems

Authors
Approach/

Method

Adoption

Criteria
Dataset

Performance

parameter
Advantage Disadvantage

Rastkar

et al.

[24]

Email

Classifier, Bug

Report

classifier, Email

Meeting

classifier

To extract the

top ranked

sentences from

the bug reports

KDE

Eclipse

Gnome

Mozilla

F-measure

Precision

Rouge score

BRC

outperforms

than EC and

EMC

Generated

summary is

sensitive to the

training

dataset.

Rastkar

et al.,

[25]

Email

Classifier, Bug

Report

classifier, Email

Meeting

classifier

To determine

duplicate bug

reports using bug

report summary

KDE

Eclipse

Gnome

Mozilla

F-measure

Precision

Rouge score

Reduce the

developer

time to detect

the duplicates

bugs without

affect the

accuracy

Need of

human

annotated

summaries

Jiang et

al.

[26]

Logistic

regression with

crowdsourced

attributes

(LRCA)

classifier

To determine the

relevant

sentences for

summarization

SDS

Precision

Recall

F-score

LRCA

classifier

provides

better results

than the Bug

Report

classifier

Need to

generate the

manual

summaries for

training the

classifier

Huai et

al. [27]

Intention- based

summarization

model (IBRS)

To find the

multiple

intentions of

sentence in bug

report

KDE

Eclipse

Gnome

Mozilla

Precision

Recall

F-score

IBRS

outperforms

than Bug

Report

classifier.

Less

summarization

accuracy

14

Ponzanel

li et al.

[28]

PageRank and

custom

similarity

function

To address the

multidimensional

and

heterogeneous

nature of bug

reports

Stack

Overflow

Precision

Proposed

approach

enhance the

precision of

summarization

than classical

LexRank

Raised the

problem of

convergence

Yeasmin

et al. [30]

Prototype based

on LDA

modeling,

Cosine

similarity

function and

API4 technique

To extract the

interactively

visualizing

insightful

information

Bugzilla

Precision

F-measure

Recall

Proposed

prototype

performs

better than

time sensitive

keyword

based

extraction

approach

Need to

include more

interesting and

useful

visualization

features

Mani et

al.,

[31]

Centroid,

Grasshopper,

Diverse Rank,

and Maximal

Marginal

Relevance

To increase the

accuracy of

supervised

summarization

approaches

SDS

DB2

Precision

F-measure

Recall

Grasshopper

and Diverse

rank provides

better results

than

supervised

approaches

Ignore

semantic

relation

between the

sentences

Lotufo et

al., [32]

Three

hypotheses

using Markov

chain method

To explore the

capabilities of

unsupervised

approaches in the

field of

automated bug

summarization

approaches.

Debian

Launchpad

Mozilla

Chrome

Precision

F-measure

Recall

Proposed

approach

provides

better results

than Bug

Report

classifier

Require

additional cost

to test the

hypotheses that

decided the

rank of each

candidate

sentence

Nithya et

al. [33]

Centroid

similarity

function

To choose the

optimum subset

of sentences

Mozilla
Precision

Proposed

summaries are

capable to

detect the

duplicate bug

reports

Less accuracy

of

summarization

15

Jiang et

al. [34]

Page rank based

summarization

technique,

called PRST

To investigate

the pitfalls of

duplicate bug

reports in

summarization

task

MBRC

OSCAR

Precision

F-measure

Recall

Proposed

approach

provides

better results

than Bug

Report

classifier

Dependent

bugs consider

for

summarizing

the bug reports

Ferreira

et al.,

[35]

Cosine

Similarity,

PageRank,

Euclidean

Distance, and

Louvain

community

detection

To determine

relevant

sentences for

summarization

Bootstrap,

Jquery and

Angular

Precision

Cosine

Similarity and

PageRank

produce

better

summary of

bug reports

than

Euclidean

Distance and

Louvain

techniques

Sparsity issues.

Li et al.,

[36]

Developed deep

sum approach

To enhance the

accuracy of

summarization

approaches

SDS

F-measure,

Precision

and

Rouge score

Improved

results than

other

approaches

Take more

training time

2.3 Bug Severity Classification

Bug severity classification is a process of classifying the bug under appropriate severity

similarly as the text classification [37]. The severity is based on the criticality and complexity

of the bugs. It would also provide the complete detail of the impact of a bug within software

operation [38]. Further, it also provides the advantage to industry for determining the

earnestness of bug resolving in respect of resources [39-41]. Different bugs have different

impact upon the quality, based on the functionality of software. The bug reports assigned with

wrong severity goes through the reassignment process [42, 43]. The reassignment severity bugs

take longer resolving time and influence the efficiency of developers [44]. There are various

parameters set by the developer (Quality Assurance Engineer) according to different

organizations [45]. It is essential for the developer to assign the correct severity due to the three

16

main reasons. The first one is to keep way from the confusion with the development group. The

second one is to ensure the reliability in large- scale software and avoid the reassignment

process. The third one is to resolve the critical bugs earlier than normal bugs because the critical

bugs can trigger some security issues [46-48]. The manual severity classification is an error

prone, tedious and time-consuming task due to large number of bug reports. Moreover, the

precision of the classification depends on the developer’s experience and knowledge who

investigated the bugs. Therefore, there is a need to automate the bug severity classification

process. In literature, large number of techniques has been presented for severity classification

[49-71]. These techniques classified the bugs into binary (BC) and multiple severity classes

(MC). Table 2 presents the works reported in literature on bug severity classification.

To predict the severity of bug reports, Lamkanfi et al. [49] developed a binary severity

classification approach based on the textual description of bug reports. The severity of bug

reports is divided into two classes i.e. server or non-server. The proposed approach contains five

steps for bug severity prediction. These steps are described as extract and organize bug reports,

preprocessing, training and evaluation set, train the classifier and apply the classifier on the

evaluation set. The first step is to select the bug report from bug repository. The next step is the

preprocessing step. In this step, feature vectors are extracted from the text of bug reports.

Further, Naive Bayes classifier is applied to predict the severity of bug reports. The GNOME,

Eclipse and Mozilla datasets are considered to evaluate the performance of NB classifier.

Further, precision, recall and F-measure parameters are applied to validate the performance of

classifier. The results demonstrated that NB classifier achieves higher precision, recall and f-

measure rates as compared to other algorithms.

In the continuation of their work, Lamkanfi et al. [50] explored the efficiency of four

machine learning classifiers to classify the bug into server or non-server classes. In this work,

authors apply term frequency –inverse document frequency (TF-IDF) method to determine the

probability of each feature. Further, four machine learning algorithms such as Naive Bayes

(NB), Naive Bayes Multinomial (NBM), K-nearest neighbor (KNN) and Support vector

machine (SVM) are applied to predict the server and non-server classes. The performance of

these is tested on Mozilla, Eclipse and GNOME datasets. Accuracy parameter is used to evaluate

the experimental results. It is revealed that NBM classifier obtains better results than other

17

algorithms. It is also stated that the average accuracy of all four machine learning algorithms

are in between 73% to 85.7% using all three datasets.

To differentiate security bugs from normal bugs and also address the delay to identify and

fix the security bugs, Gegick et al. [51] presented an automatic severity classification approach.

This approach classifies the bugs into two classes i.e. security related bug reports (SBR) or non-

SBR. In this work, text mining techniques are also implemented on the textual description of

bugs to determine the feature vectors. Several feature selection algorithms like chi-square,

correlation coefficient and info gain are applied to determine relevant set of features. Further,

NBM classifier is applied on the reduced feature set to classify the bugs into SBR and Non-SBR

classes. The performance of proposed NBM is assessed over Cisco, Mozilla and GNOME

datasets. The experimental results indicate that feature selection algorithms improve the

performance of NBM classifier significantly. It is observed that 77% of security bugs are

classified as Non-SBR through reports, but the proposed NBM classifier corrects the same and

classifies the security bugs as SBR.

Chaturvedi et al. [52] applied several machine learning techniques for bug severity prediction

and described the severity classes on the scale of 1 to 5. In this work, info gain method is used

to determine the appropriate terms from the text of bug reports. A total one twenty-five relevant

terms are determined for severity prediction. Further, NB, NBM, SVM, KNN, C4.5, and

RIPPER techniques are considered to predict the severity classes. The NASA dataset is selected

to assess the performance of above mentioned machine learning technique. Further, the

simulation results are validated using 5-fold cross validation method. It is also seen that bug

severity can be described through different levels i.e. level 1 to level 5. In this work, using The

results demonstrated that machine algorithms are suitable to determine different bug severity

levels. Moreover, it is also noticed that severity level 2, 3 and 4 achieve higher F-measure rate

than rest of levels using most of techniques.

Thung et al. [53] designed a new bug severity classification model based on the text and

source code features of bug reports. In this study, JIRA dataset is considered for experimental

work. Initially, relevant features are extracted using linear discriminant analysis (LDA)

technique for classification task. Further, the extracted features are used to construct the new

dataset with reduced number of features. The reduced dataset contains different severity classes

18

such as control, dataflow, structure, non-functional. Finally, the bug severity classification

model is fed with the newly constructed dataset. The working of this model is divided into two

phases- training and deployment phases. The various machine learning classifiers are integrated

in proposed model. These are SVM, Decision Tree (DT) and NB. The performance of proposed

model is evaluated using accuracy parameter. The experimental results showed that the

proposed model achieves average accuracy rate of 77.8% using SVM classifier.

To determine the relevant features for automatic bug severity classification, Yang et al. [54]

presented three feature selection methods. These feature selection methods are Information

Gain, Chi-Square and Correlation Coefficient. The aforementioned methods are used to

determine relevant severe and non-severe features for severity classification. Further, NBM

classifier is applied to classify the data into different severity classes. The simulation results are

evaluated using precision, recall and F-measure parameters. The Mozilla, Eclipse and GNOME

datasets are considered for experimental work. It is observed that the combination of feature

selection methods with MNB classifier improves the results of MNB classifier. Moreover, it is

stated that combination of Information Gain and MNB classifier gives better results than others.

To handle the uneven categorization of the component of bug reports, Murphy et al. [55]

presented three different variants SVM classifier based on TF-IDF, LDA, Kullback–Leibler

divergence (KLD). These variants are SVM-TF-IDF, SVM-LDA and LDA-KLD. In SVM-

TF-IDF variant, TF-IDF approach is used for extracting the features and SVM classifier is

utilized to predict the severity of bugs. In SVM-LDA variant, LDA feature extraction approach

is combined with SVM classifier. In LDA-KLD model, LDA is used to extract important

features and KLD is utilized as classifier. The performance of these variants are tested over

Bugzilla dataset and predicted the bug severity into high, medium, low and very low classes.

The simulation results are evaluated using recall parameter. The experimental results showed

that the proposed approach achieved the accuracy up to 75%. Further, it is observed that SVM-

LDA obtains higher recall rate as compared to SVM-LDA and LDA-KLD. It is also observed

that LDA- KLD provides more consistent than SVM-LDA and SVM-TF-IDF variants.

To understand the software system evolution and identify defected bugs, Bhattacharya et

al. [56] developed graph based approach. The proposed approach also addresses the effort

prioritization and bug severity estimation. In this work, authors design a set of metric based on

19

the graph theory concept. These metrics are based on the different properties of graph and can

be described as modularity ratio, edit distance, assortativity, graph diameter, noderank,

clustering coefficient and average degree metrics. The work of modularity Ratio metric is to

predict modules with high maintenance effort. NodeRank metric measures the critical modules

and functions with high severity indication. Edit distance metric analysis the developer

collaboration graph with failure prone bugs. Eclipse and Mozilla datasets are considered to

evaluate the performance of proposed graph based approach. It is stated that proposed approach

obtains higher accuracy rate in comparison to other existing approaches. It is also observed that

proposed approach efficiently works on functional and module levels.

Pingclasai et al. [57] presented a new model to automate the bug severity classification. The

proposed model divides the bugs into binary severity classes i.e. bug or non-bug. This model

consists of two phases. These phases are topic modeling and classification phase. The work of

the topic modeling phase is to extract the appropriate features for classification phase. The

relevant features are extracted using Latent Dirichlet allocation (LDA) algorithm. The aim of

the classification phase is to predict the class labels. So, in classification phase, logic regression

(LR), NB, ADTree techniques are considered. In this work, HTTP Client, jackrabbit and lucene

datasets are taken into consideration. The simulation results are evaluated using accuracy

parameter. The experimental results showed that F-measure rate of LR, NB and ADTree

techniques varies in between 66% to 76% for HTTP Client dataset, 65% to 77% for Jackrabbit

dataset and 71% to 82% for Lucene dataset. Authors claimed that NB classifier based model

provides good results than LR and ADTree based models.

To improve the accuracy rate of bug severity classification model, Nagwani et al. [58]

applied simple random sampling and LDA algorithm based classification model for severity

prediction. to select the taxonomic terms for classification. The working of the proposed model

is divided into six steps. These steps are retrieve software bugs, text pre-processing, clusters

using textual similarity, classification phase using random sampling and LDA, topics

identification and filtration of topics. The performance of the proposed approach is assessed

over Mozilla, MySQL, JBoss-seam and Android datasets. The experimental results revealed that

proposed approach improves the accuracy rate considerably. It is noticed that the proposed

approach more than seventy percent accuracy rate for all datasets.

20

Kanti et al. [59] developed a new approach to maintain the semantic relationship between

the text of bug reports. In this work, several feature extraction methods are also considered to

determine the relevant features from the bug reports. These techniques are Chi-square, Unigram

and Bi-grams. The aim of these techniques is to compute the frequency of each feature. Features

with higher frequency are selected for severity classification. The NB classifier is applied to

predict the severity of bugs. The well-known Mozilla and Eclipse datasets are used in this work

for severity prediction. Authors claimed that combination of unigram and bigram improves the

accuracy rate of the NB classifiers. The accuracy rate achieved for Mozilla dataset is 73.5% to

85.5%, whereas accuracy rate of Eclipse dataset is 71.1% to 76.4%.

To explore the capabilities of unsupervised learning for severity prediction, Limsettho et al.

[60] applied various clustering methods to classify the bugs into different classes. The classes

of bugs are given as bug request for enchantment (RFE), improvement, task and test. In this

work, two clustering algorithms i.e. Expectation Maximization (EM), and X-means are utilized

for bug severity prediction. These methods group the similar bug reports on the basis of textual

similarity. The NLP chucking is also used for labelling the clusters. The performance of the

unsupervised methods is tested on three well known datasets and evaluated using accuracy

parameter. From simulation results, it is noticed that both of EM and X-means clustering

algorithms obtain similar results for Lucene and JCR datasets. But, EM algorithm obtains better

accuracy rate than X-means for HTTPClient dataset. Moreover, the simulation results of

unsupervised methods are also compared with supervised methods i.e. logistic regression and

J48 classifiers. It is observed that the performance of supervised methods is better than

unsupervised methods, especially logistic regression classifier provides optimum results than

other methods.

Chawla et al. [61] developed a new automatic severity classification model to classify the

bugs into two classes i.e. bug and other request. Authors adopt term frequency (TF-IDF) and

latent semantic indexing (LSI) algorithms for selecting relevant features. Further, fuzzy logic

based classifier is used for classification task. Three well known datasets are considered to

validate the performance of fuzzy classifier. The simulation results are assessed using accuracy

performance metric. The simulation results of fuzzy classifier are compared with LR, NB and

ADTree classifiers. The experimental results indicated that fuzzy classifier obtains higher

21

accuracy rate than LR, NB and ADTree classifiers and average accuracy ranges in between 82-

84% for all three datasets.

Zhang et al. [62] developed a concept profile based bug severity classification model. The

proposed concept profile method is based on the analysis of previous bug reports. The working

of proposed model is divided into three steps. In first step, bug reports are collected from various

bug repositories and text of the bug reports are pre-processed to reduce the noise effect. In

second step, concept profile method is introduced. The aim of this method is determine the term

with higher frequency, called concept profile. In third step, the similarity between CP and query

is calculated and further KLD technique is applied to classify the severity of bugs. The bugs are

classified into blocker, trivial, critical, minor and major severity classes. The performance of

proposed model is tested on Eclipse, Mozilla datasets and simulation results are compared with

KNN, NB and NBM classifiers. It is stated that proposed model performs better than existing

classifiers and produces quality of results. The f-value rate of proposed model varies in between

70%-96% for Eclipse dataset, and 78.57%-93.74% for Mozilla.

To enhance the performance of bug severity classification approach, Gujral et al. [63]

developed a classification model based on the text mining technique and NBM classifier. The

working of proposed model is divided into three steps. In first step, the text of Eclipse bug

reports is pre-processed to identify the critical terms and these critical terms are stored in a

dictionary. The task of critical terms is to decide the severity of bugs. The second step computes

the occurrence of each feature to design a dataset. In this step, TF-IDF is applied to compute the

frequency of features. The third step consists of the NBM classifier. The work of NBM classifier

is to classify the bugs into server or non-server classes. The simulation results are evaluated

using precision and accuracy parameters. It is seen that the proposed model achieves higher

precision and accuracy rate. The precision rate of proposed model is 69% whereas, the accuracy

rate is 72%.

In the continuation of their work, Gujral et al. [64] applied two feature selection methods

to measure the different level of severities. These methods are Info gain and Chi square and aim

of these methods is to determine critical terms for severity classification. All the critical terms

are stored in the form of dictionary. Further, two machine-learning algorithms i.e. NBM and

KNN is adopted to predict the severity of bugs. In this work, four models are developed for

22

severity prediction on the basis of feature selection methods and machine learning algorithms.

These models are Info gain + NBM, Info gain + KNN, Chi- square + KNN and Chi- square +

NBM. The performance of aforementioned models is evaluated using precision and accuracy

parameters. The experimental results revealed that all models achieve higher accuracy rate using

UI component. Moreover, it is also noticed that Chi- square + KNN model provides better

severity prediction as compared to rest of models.

Zhou et al. [65] developed a multi-stage approach for improving the prediction rate of

severity classification. The proposed approach is the combination of the data mining and text

mining techniques. The proposed approach consists of three stages. In first stage, data mining

approaches are applied to extract the relevant features from the summary of bug reports. Further,

NBM classifier is trained on the extracted features and predicted the severity classes. The second

stage consists of a set of structural features that are determined in stage 1. Further this set of

features is used to train the Bayesian Net (BN) classifier for predicting the severity classes i.e.

bug and non-bug. The third stage consists of data drafting approach and the work of this

approach is to make the bridge between previous stages. This approach combines the output of

the first stage with the selected features of the same bug reports. The proposed multi stage

approach is tested on OpenFOAM, Jboss, Mozilla, Eclipse and Firefox datasets. The

performance of proposed approach is compared with existing techniques using precision, recall

and F-measure parameters. It is observed that f-measure rate is significantly improved using

the proposed approach. The f-measure rates for OpenFOAM, JBoss, Mozilla, Eclipse and

Firefox datasets are 85.9%, 93.7%, 81.7%, 80.2% and 79.5%.

To improve the classification rate, Jin et al. [66] presented a new method based on NBM

classifier for automatic bug severity classification. The proposed method considers the product,

component, reporter and severity as input along with the description and summary of bug

reports. Further, the preprocessing phase is used to process the attributes of bug reports and

output this phase is relevant attributes for classification task. These attributes are passed to the

NBM classifier for classification purpose. The work of NBM classifier is to predict the label of

bugs either severe or non-sever. The Eclipse and Mozilla datasets are considered for the

experimental work and performance of proposed method is evaluated using F-measure

parameter. The simulation results of proposed method are compared with Lamkanfi method

23

[49]. The simulation results demonstrated that proposed method is capable to separate the bugs

into severe and non-severe label. It is also observed that proposed method obtains 80% and 83%

F-measure rate for Eclipse and Mozilla datasets.

Pandey et al. [67] investigated the performance of different machine learning algorithms for

bug severity classification. In this work, SVM with different kernel functions, NB, LDA, KNN,

DT and random forest (RF) are considered for severity classification. The task of these

algorithms is to predict the class labels of bugs i.e. server or non-server. Apart from these, Bag-

Of-Words technique is applied to determine the relevant features for classification task. In this

work, HTTP Client, Lucene and jackrabbit bug reports are taken for experimental work. The

performance of above mentioned algorithms are evaluated in terms of average F-measure and

accuracy parameters. The experimental results showed that RF gives better performance among

all machine learning algorithms. It is also seen that SVM with sigmoid kernel function obtains

higher F-measure and accuracy rates than rest of kernel functions.

Jindal et al. [68] presented a bug severity model to classify the bugs into high, medium, low

and very low severity classes. In this work, the four variants of PITS datasets are used to validate

the proposed model. These variants are PITS-A, PITS-C, PITS-D and PITS-E. The proposed

model also considers the text mining methodology for extracting the relevant features from bug

reports. The text mining methodology consists of three steps – preprocessing, feature selection

and weighting. In first step, irrelevant words form the PITS dataset are removed. In second step,

relevant attributes are identified using Info gain method. These features are the input of third

step. In third step, the weights are given to each relevant feature using TF-IDF method. The

output of this step is features with respective weight scores and higher weight score features are

selected for classification task. In this study, three classifiers are used for predicting the severity

classes. These classifiers are Multi-Nominal Multivariate Logistic Regression (MMLR), DT and

Multi-Layer Perception (MLP). The performance of these classifiers are evaluated using

receiver operating characteristics (ROC) parameter. It is stated that DT classifier provides better

classification rate than MLP and MMLR classifiers.

To automate the bug severity classification process, Mishra et al. [69] developed a bug

severity approach using cross datasets. The basic aim to consider the cross datasets is to identify

the best training set using bug report summary of different datasets. Further, Bagging and Vote

24

techniques are used to reduce the imbalance issue of bug reports and also to extract the relevant

features. In this study, K-NN, SVM and NB classifiers are applied to predict the bugs classes

i.e. blocker, critical, major, minor and trivial. The performance of theses classifiers is evaluated

using recall, precision and F-measure parameters. The experimental results showed the

performance of K-NN classifier is better than SVM and NB classifiers. While, NB classifier

exhibits worst performance among all classifiers. It is stated due to the cross training set,

performance of K-NN classifier is enhanced especially with Eclipse dataset. Authors claimed

that Eclipse dataset can be used to develop the classification model for Mozilla dataset and vice

versa using K-NN and SVM classifiers and provide good results for cross datasets.

Sharmin et al. [70] designed a bug feature selection (BFS) method to identify the relevant

features for severity classification. The working of BFS method is divided into four steps. In

first step, the text of bug reports is preprocessed and Term Document Matrix (TDM) of each

feature is built using TF-IDF method. In second step, mutual information (MI) technique is used

to select the relevant features. The second step is further divided into two sub steps- candidate

feature selection (CFS) and final feature selection (FFS). In CFS sub step, MI and chi-square

methods are used to measure the statistical dependency between features and classes. The

features with higher MI values are selected for next step. In third step, Pareto Optimality (PO)

method is applied features to obtain complementary information regarding the classes and only

those features can be selected for next steps that provide the complementary information. In

fourth step, two classifiers are trained using selected features and classified the bugs into

different severity classes i.e. blocker, trivial, critical, minor, major. These classifiers are DT and

SVM. The performance of proposed method is compared with already existing approach using

F-measure parameter [65]. Three public datasets are used to validate the existence of the

proposed method. These public datasets are Eclipse, GCC and Mozilla. The experimental

results revealed that proposed method provides higher F-measure value than other existing

methods using all datasets.

To increase of bug severity classification rate, Kumari et al. [71] developed entropy based

approach for severity prediction. The working of proposed approach is divided into two phases.

In first phase, features are extracted using Info Gain method. In second step, extracted features

are used to train the different classifiers to predict the bugs into different classes like blocker,

trivial, critical, minor, and major. In this study, NB, KNN, J48, RF, Relative Neighbor Graph

25

(RNG), Condensed Nearest Neighbor (CNN) and Multinomial Logistic Regression (MLR)

classifiers are used for severity prediction. Further, the Shannon entropy is calculated for

severity classification to address uncertainty and irregular fluctuations in the BTS. The

performance of these classifiers are evaluated using precision, recall, F-measure and accuracy

parameters. Eclipse, PITS and Mozilla datasets are considered for experimental work. The

results demonstrated that entropy function enhances the accuracies of all afore mentioned

classifiers. Further, the simulation results of entropy based approach is also compared with

Menzies et al. [72] and Zhang et al. works [62]. It is observed that proposed approach improves

the F-measure rate in comparison to Menzies et al. and Zhang et al. approaches.

Table 2.2: Depicts the works presented on bug severity classification

Authors
Approach/

Method

Adoption

Criteria
Dataset

Performance

parameter
Advantage Disadvantage

Lamkanfi

et al., [49]

Naive Bayes

classifier

To increase the

accuracy of

severity

classification

GNOME

Eclipse

Mozilla

Precision

F-measure

Recall

Proposed

approach

achieves higher

results as

compared to

other algorithms

Only trusted on

the presence of

a spontaneous

relationship

between the

text and class

Lamkanfi

et al., [50]

Naive Bayes,

Naive Bayes

Multinomial,

K-nearest

neighbor and

Support

vector

machine

To explore the

efficiency of

machine

learning

classifiers to

classify the

severity of bug

Mozilla

Eclipse

GNOME

Precision

F-measure

Recall

Naive Bayes

Multinomial

classifier obtains

better results

than other

classifiers

Need to extract

more features

from other

attributes of

bug report

Gegicket

al.,

[51]

Chi-square,

Correlation

Coefficient

and In-foGain

with Naive

Bayes

Multinomial

classifier.

To overcome

the delay

process of

security bugs

identification

Cisco

Mozilla

Eclipse

Precision

F-measure

Recall

Feature selection

algorithms

improve the

performance of

Naive Bayes

Multinomial

classifier

significantly

Only

considered the

security related

bugs

26

Chaturvedi

et al., [52]

NB, MNB,

SVM, k-NN,

J48, RIPPER

classifiers

To explore the

performance of

different

classifiers on

bug severity

classification

NASA

Precision

F-measure

Recall

K-NN performed

better than other

classifiers

Required to

perform on

more

projects/compo

nents of

software

projects to

validate the

applicability of

machine

learning

techniques.

Thung et

al.,

[53]

LDA with

SVM, DT and

NB classifier

To enhance the

accuracy of

bug report

classifier

JIRA
F-measure

Accuracy

LDA+SVM

performed better

than others.

Required to

evaluate the

performance of

approach on

more datasets

Yang et

al.,

[54]

Information

Gain, Chi-

Square and

Correlation

Coefficient

with NBM

classifier

To determine

the relevant

features for

automatic bug

severity

classification

Mozilla

Eclipse

GNOME

Precision

F-measure

Recall

Information

Gain + NBM

classifier gives

better results

than others

Ignore semantic

features

Murphy et

al., [55]

TF-IDF and

LDA with

Kullback–

Leibler

divergence

and SVM

To increase the

performance of

SVM classifier

Bugzilla Recall

SVM-LDA

obtains higher

recall rate as

compared to

SVM-LDA and

LDA-KLD

Require more

dataset and

components

Bhattachar

ya et al.

[56]

Graph-based

analysis

To understand

the software

system

evolution and

Eclipse

Mozilla
Accuracy

Proposed

approach obtains

higher accuracy

rate in

Required

additional cost

for generating

the graphs

27

identify

defected bugs

comparison to

other existing

approaches

Pingclasai

et al., [57]

Topic-based

model, LDA

with Logic

Regression ,

NB , ADTree

classifiers

To automate

the bug

severity

classification

HTTPCli

ent

Jackrabbi

t and

Lucene

Accuracy

Topic based

model +NB

achieves higher

accuracy

Ignore the issue

of

chronological

change of bug

occurrence

Nagwani

et al., [58]

Simple

Random

Sampling and

LDA

To improve

the accuracy

rate of bug

severity

classification

model

Mozilla,

Mysql,

JBoss-

Seam

and

Android

Accuracy

Generation of

taxonomic terms

increase the

accuracy of

severity

classification

Need to extract

the more

features

Kanti et

al.,

[59]

Chi-square

and Bi-grams

methods with

Naive Bayes

classifier

To maintain

the semantic

relationship

between the

text of bug

reports

Mozilla

Eclipse
Accuracy

Bi-gram slightly

enhance the

performance of

the classifier.

Ignored the

information

dropping issues

Limsettho

et al., [60]

Top

modeling-

Heuristic

Dirichlet

Allocation

(HDA),

Expectation

Maximization

(EM) and X-

means

algorithms

To explore the

capabilities of

unsupervised

learning for

severity

prediction

Lucene Accuracy

Performance of

unsupervised

algorithms was

nearby

supervised

classifier

Require to

improve the

classification

Model

increasing its

performance

Chawla et

al., [61]

Term

frequency

Latent

semantic

To explore the

performance of

different

classifiers on

Google

Chrome
Accuracy

Fuzzy classifier

obtains higher

accuracy rate

than LR, NB and

Need to extract

other attributes

like description,

comments

28

indexing with

Fuzzy logic

bug severity

classification

ADTree

classifiers

Zhang et

al.,[62]

Concept

profile

approach

based on KL-

divergence

To increase the

accuracy of

severity

classification

Eclipse

Mozilla

Precision

F-measure

Recall

Proposed model

performs better

than existing

classifiers

Required a

large amount of

historical data

Gujral et

al.,

[63]

TF-IDF

with NBM

To enhance the

performance of

bug severity

classification

approach

Eclipse
Precision

Accuracy

Proposed model

achieves higher

precision and

accuracy rate

Required to

increase the

accuracy rate of

classification

Gujral et

al.,

[64]

In-foGain and

Chi-square

with K-NN

and NBM

classifier.

To increase the

accuracy rate

of

classification

Eclipse
Precision

Accuracy

Chi- square +

KNN model

provides better

severity

prediction as

compared to Info

gain + NBM,

Info gain +

KNN, and Chi-

square + NBM

Ignore semantic

relations of text

Zhou et al.,

[65]

BN and NB

classifier

To improve

the prediction

rate of severity

classification

OpenFO

AM,

Jboss

Mozilla

Eclipse

Firefox

Precision

F-measure

Recall

Proposed

approach

achieves higher

F-measure rate

than existing

approaches

Only

considered

misclassified

bug reports.

Jin et al.,

[66]

NBM

classifier

To improve

the

classification

rate

Eclipse

Mozilla
F-measure

Meta -fields of

the normal bug

severity report

are helpful in

increasing the

accuracy of

classification

Ignore the

semantic

features in

meta-fields of

bug report

29

Pandey et

al., [67]

Bag-Of-

Words with

NB, LDA,

KNN, DT and

random forest

(RF) classifier

To investigate

the

performance of

different

machine

learning

algorithms for

bug severity

classification

HttpClie

nt

Lucene

Jackrabbi

t

F-measure

Accuracy

RF gives better

performance

among all

classifiers

Considered the

sentences as the

stack of words

Jindal et

al. [68]

Info-Gain and

TF-IDF with

Multi-nominal

Multivariate

Logical

Regression

(MMLR),

Multilayer

Perception

(MLP) , (DT)

classifiers

To increase the

accuracy of

bug severity

prediction

PITS A-

E
ROC

DT classifier

provides better

classification

rate than MLP

and MMLR

classifiers

Constrained

generalization

capability

Mishra et

al., [69]

Bagging, Vote

technique, In-

fogain, TF-

IDF with NB ,

SVM and K-

NN classifier

To investigate

the influence

of cross

projects on

classifiers for

bug severity

classifier

Eclipse

Precision

F-measure

Recall

Performance of

K-NN classifier

is better than

SVM and NB

classifiers due

to the cross

training set

Unordered

sequence of

words.

Sharmin et

al., [70]

TF-IDF,

Mutual

information

(MI) and

Pareto

optimality

To identify the

relevant

features for

severity

classification.

Eclipse

GCC

Mozilla

F-measure

Selects fewer

number of terms

and requires

less

computation

than the existing

approaches

Proposed

approach might

require further

improvement to

get satisfactory

result

Kumari et

al., [71]

TF-IDF and

Info-Gain

To increase of

bug severity

Eclipse

PITS

Precision

Recall,

Entropy

function

Ignore the

problem of

30

with NB,

KNN, J48,

RF, Relative

Neighbor

Graph (RNG),

Condensed

Nearest

Neighbor

(CNN) and

Multinomial

Logistic

Regression

(MLR)

classifiers

classification

rate

Mozilla F-measure

Accuracy

enhances the

accuracies of all

classifiers

imbalance

dataset

2.4 Bug Assignment Approaches

Bug assignment is the process of assigning the relevant developer based on the severity for

resolving the bug [73]. Traditionally, the new bug reports are manually assigned by a human

expert called triager. The manual bug assignment process is very time consuming, tedious and

prone to error. The main reason is lack of information about the developer who has experienced

of resolving similar types of bugs [74-76]. Further it also increases the probability of reassigning

the bug. This bug reassignment procedure increases the general bug fixing time [77]. Therefore,

there is need to automate the bug assignment process. The aim of bug assignment is to reduce

the probability of reassigning the bugs [78]. It also reduces the triages time and effort to assign

relevant bug fixer or developer based on the severity [79,80]. However, to determine relevant

developer and rank is one of challenging task. In literature, previous researches implemented

machine learning (ML), expertise (EB), social network (SN) and tossing graph (TG) based

models to determine the relevant developer for resolving the bug [81-98]. Table 3 illustrates the

works reported on bug assignment and developer identification approaches in literature.

Xuan et al. [81] developed semi-supervised classifier to address the deficiency associated

with labeled bug reports in existing supervised approaches. The working of proposed classifier

is divided into two phases. In first phase, NB classifier is trained with labelled bug reports. In

second phase, the expectation maximization (EM) algorithm is applied on the combination of

31

labeled and unlabeled bug reports. The expectation part associates the appropriate label to

unlabeled bug reports. While, maximization part rebuilds a new classifier with the help of

labeled bug reports. Further, a weighted recommendation function is integrated with EM

algorithm for assigning the weights to relevant developers during the training process. The

performance of proposed semi-supervised classifier is evaluated using accuracy parameter.

Eclipse dataset is considered for experimental work. The simulation results of proposed semi

supervised classifier are compared with NB and NB with EM classifiers. It is observed that the

accuracy rate of proposed semi-supervised classifier is higher than NB and NB with EM

classifiers. It is revealed that semi supervised classifier improves the classification accuracy up

to 6% in comparison to supervised classifiers.

Bhattacharya et al. [82] presented a new algorithm based on ML and TG to improve the

accuracy rate of bug assignment task and reduce the length of tossing path. In this work,

accuracy issue is addressed through refined classification (RC) approach based on additional

features and intra-fold updates during training phase. Whereas, a ranking function is developed

to recommend potential tosses in TG and multi-feature TG. The working of proposed algorithm

is divided into four stages. In first stage, NB and BN classifiers are applied for training purpose

and built the TG. In second stage, the potential developer is predicted using the TG and

classifiers i.e. NB and BN. The third stage corresponds to the performance evaluation of training

set. In this stage, accuracy of classifiers is evaluated for bug assignment. In fourth stage,

developer class of test set is predicted using NB, BN and TG. TG is also updated in this stage.

The proposed algorithm is validated using Mozilla and Eclipse datasets and also compared with

ML based algorithm. The experimental results demonstrated that proposed algorithm reduces

the tossing path length and also obtains higher accuracy rate. The accuracy rate of proposed

algorithm for Mozilla and Eclipse datasets is 84% and 82.59% respectively.

To help the traiger and determine the relevant developer, Anvik et al. [83] examined the

capabilities of different machine learning techniques such as NB, SVM, EM and C4.5. Three

different developer recommendation system is developed using the aforementioned techniques.

The first model is developer recommender system and aim of this model is to identify the

developer for fixing the bugs. The second model is component recommender system and it can

determine the product component of bug reports. The third model is interest recommender

32

system that can determine the interest of a developer for a particular project. The performance

of these recommendation system is tested on Bugzilla, GCC, Eclipse, Mylyn and Firefox

datasets. The results demonstrated that SVM technique based recommendation system performs

better than others techniques based recommendation systems. It is also observed that component

based recommendation system improves the precision rate considerably. The precision rate

achieved for Eclipse, Bugzilla, Mylyn and Firefox datasets is 76%, 96%, 98% and 73%

respectively. A field study with four tragers is also reported in this study. The traigers stated

that proposed recommended systems reduce the bug fixing time of developers.

A ML based training set reduction approach is presented by Zou et al. [84]. The proposed

approach integrates the feature selection algorithm with instance algorithm. The aim of this

integration is to reduce the redundant and noisy information from datasets as well to improve

the accuracy of bug assignment. The proposed approach is the combination Chi square and

instance selection algorithm. Chi-square method is used to find the dependency between features

and developers. Whereas, instance selection algorithm especially iterative case filter (ICF) is

used to filter the noise and instance reduction. It is also seen that different variants are developed

on the basis of Chi- square and ICF. These combinations are Chi-square, ICF, Chi-square+ ICF

and ICF +chi-square. Further, KNN method is utilized to predict the class label of instances. In

this study, Eclipse dataset is considered for experimental work. The performance of proposed

variants is evaluated using precision, recall, F-measure and accuracy parameters. The

experimental result demonstrated that Chi-square+ ICF and ICF +chi-square variants

significantly reduce size of the training data and also obtains improved simulation results than

traditional Chi-square and ICF.

To reduce the bug fixing time and identify relevant developer for bug fixing, Tamrawi et al.

[85] developed EB model, called Bugzie. The proposed model consists of fuzzy set based

approach to determine the correlation between the multiple technical terms and identify the

experience developer. The correlation information is used to recommend the relevant developer.

Further the Bugzie model also computes the membership scores of each developer and it is used

to describe correlation between the fixers and terms. The performance of proposed model is

tested on Firefox, Eclipse, Apache, NetBeans, FreeDesktop, Gcc and Jazz datasets and

compared with SVM and NB models using accuracy parameter. The results showed that Bugzie

33

model gives better accuracy rate than others models. The highest accuracy rate of proposed

Bugzie model is 72% and it is also noticed that developers take less time for bug fixing.

Wu et al. [86] developed a SN based recommendation model for recommending the

developer for bug fixing and called developer recommendation with KNN and expertise ranking

(DREX). The proposed model consists of two components. The first component contains the

KNN method and it is used to compute the similarity between historical and new bug report. In

second component, simple-frequency method and six social network metrics such as PageRank,

in-degree, betweenness, closeness and outdegree centrality are used to select relevant developer

for bug fixing. The performance of proposed model is evaluated using precision, recall and F-

score parameters. The experimental result showed that Outdegree and simple frequency metrics

performs better than other metrics and attains more than 0.6 recall rate for Mozilla and Firefox

datasets

Servant et al. [87] presented an EB based developer recommender system to determine the

relevant developer for fixing the bugs. This system consists of three components. These

components are fault localization (FL), change history (CH) and expertise mapping (EM). The

aim of FL component is to extract the information about failure locations. Whereas, CH

component is used to collect the information regarding code editing task performed by

developer. The work of EM component is to search the compatible developer. The proposed

system is implemented using WHOSEFAULT tool and simulation results are evaluated using

accuracy parameter using AspectJ dataset. It is revealed that that proposed system recommend

the same developers upto 81% and improves the results of baseline technique. Moreover, it is

also seen that simulation results of expertize technique is compared with existing expertise

assessment techniques. It is found that proposed expertize technique achieves greater accuracy

rate.

To address the developer assignment and assignee task, Xuan et al. [88] presented SN based

approach for improving the performance of bug assignment. In the proposed SN based approach,

social network analysis is carried out to rank the developers who participate in the commenting

process of bug fixing task. Further, NB and SVM algorithms are used to determine the

appropriate developer. It is observed that authors also consider the developer assignment to

handle three issues – ranking of developers, evolution and tolerance. The performance of

proposed approach is investigated on Mozilla and Eclipse datasets using accuracy parameter.

34

The results indicate that the social network analysis improves the average accuracy of NB and

SVM by 2% and 10%, respectively. It is also seen that developer assignment can have

significant impact on bug resolution tasks.

To assign the relevant developer for bug fixing, Xie et al. [89] developed TG based model,

called developer recommendation based on topic models (DRETOM). The working of

DRETOM is divided into three steps. In first step, Stanford Topic Modeling Toolbox (STNT)

is used for grouping the bug reports according to topics. In second step, associations between

developer and topic is described through probability function. This function formulates the

relation between developer expertise and interest on bug fixing. Third step ranks the developers

on the probability function. The performance of DRETOM is evaluated using Eclipse JDT and

Mozilla datasets. The simulation results of DRETOM is compared with Bugzie [85] and DREX

[86] model using recall parameter. Experimental results showed that DRETOM outperforms

than Bugzie and DREX model and achieves 82 % recall rate or Eclipse JDT and 50% for

Mozilla.

In continuation of their work, Bhattacharya et al. [90] adopted ML and TG based approach

for bug assignment or fixing. In this work, authors consider product and component of the bugs

to determine the relevant features for bug dataset. These features are used to train the various

ML based classifiers like NB, SVM, C4.5 and BN along with bug tossing graph. The aim of bug

tossing graph is to reduce the tossing length. The performance of these classifiers are tested on

Mozilla and Eclipse datasets and evaluated using accuracy parameter. It is seen that NB and BN

classifiers performs better than SVM and C4.5 classifiers. Further, the NB classifier also

outperforms than BN classifier by reducing the tossing path length for Mozilla and Eclipse up

to 86% and 83% respectively. The NB classifier obtains 77.87% (for Mozilla) and 77.43% (for

Eclipse) accuracy rate. The author also implements the ablative analysis to measure the

importance of software attributes for improving the accuracy rate. It is revealed that

aforementioned techniques improve the accuracy rate with reduced training and prediction time.

Xia et al. [91] presented EB based approach to designed a developer recommender system,

called DevRec. The primary task of this system is to perform bug report analysis (BRA) and

developer based analysis (DBA) for determining the relevant developer. In BRA, the similarity

information between new bug reports and historical bug reports is computed. This information

can be used to find the list of developers that have some experience for solving similar bug in

35

past. In DBA, the affinity of each developer is calculated based on the characteristics of bug

report. This information is used to find the set of relevant developers. The performance of

DevRec model is evaluated using Mozilla, NetBeans and Eclipse datasets. The simulation

results of DevRec model is compared with DREX [86] and Bugzie [85] using recall parameter.

The simulation results showed that DREX model improves the recall rate than DREX and

Bugzie models. It is also observed that DREX model exhibits the worst performance among all

three models.

Naguib et al. [92] developed EB based approach based on the developer activities for bug

assignment. The working of proposed approach is divided into two steps. In first step, LDA

algorithm is adopted for clustering the bug reports into different clusters. In second step, activity

profile (AP) of each developer is generated using topic model and history log. AP indicates the

developer role, involvement and expertise for resolving the bugs. All these activities are helped

to identify and rank the relevant developers. Hit score parameter is used to evaluate the

performance of proposed approach. Further, ATLAS reconstruction, UNICASE, Eclipse and

BIRT datasets are considered in this study. The simulation results of proposed approach are

compared with LDA-SVM based model. The experimental results revealed that proposed

approach performs better than LDA-SVM based model and achieves more than 88% hit ratio

for all datasets.

To improve the accuracy of bug assignment, Zhang et al. [93] developed TG based approach

based on the topic model and relations of developers. The aim of proposed approach is to rank

the developers on the basis of developer experience and interest for resolving the bugs. The

proposed approach implements LDA for topic extraction from the previous bug reports. Further,

the relationship of developers and topics are analyzed using social network. The performance

of proposed approach is validated using Eclipse, Mozilla Firefox, and Netbeans datasets. The

simulation results are evaluated using recall, precision and F-measure parameters. It is observed

that proposed approach provides higher F-measure rate than DRETOM [89] and AP [92].

Yang et al. [94] developed TG based recommendation system for bug fixing and

identification of relevant developer. The proposed system consists of different methods such as

topic model method, core NLP and Kullback-Leiber. Topic model and core NLP methods are

used for pre-processing, while Kullback-Leiber method is used to extract features of developers

36

such as same topic, priority, product, component and severity of bug reports. Moreover, the

social network technique is utilized to capture the commenting activities of developer. The

proposed system is tested on Eclipse, Mozilla and NetBeans datasets. The experimental results

showed that proposed system obtains better recommendation results than Out-Degree [86], AP-

based recommender [92] and DRETOM [89], using all datasets.

 In the continuation of their previous work, Zhang et al. [95] integrated the K-nearest-

neighbor search algorithm and heterogeneous proximity (KSAP) to improve the accuracy of bug

assignment. The proposed KSAP works with heterogeneous network and historical bug reports

and consists of two phases. In the first phase, KNN is implemented to determine the similarity

between historical bug reports and new bug reports. In the second phase, the developers are

ranked on the basis of its capabilities to resolve similar kind of bugs using heterogeneous

proximity. The efficiency of proposed KSAP is investigated over Eclipse, Mozilla, Apache and

Tomcat datasets and simulation results are evaluated using recall, precision and F-measure

parameters. The simulation results of KSAP approach is compared with existing ML-KNN,

DREX, DRETOM, Bugzie, DevRec and DP models. It is seen that KSAP provides improved

results in comparison to existing models.

Lui et al. [96] develop a developer recommendation system based on multiple sources to

avoid cold start problem in bug assignment, called DRS. In this work, authors consider two

optimizing objectives i.e. time spent for bug fixing (time cost) and accuracy to determine the

appropriate bug fixer. Further, modern portfolio theory is used to maintain the balance between

time cost and accuracy. In DRS, LDA is used to search similar topics. Further, it computes the

multiple scores for each developer based on time, cost and modern portfolio theory. The score

is used to rank the developers. The effectiveness of the proposed DRS is validated using Bugzilla

dataset and its performance is evaluated using average time to fix the bugs. It is observed that

DRS can reduce the cold start problem of bug assignment considerably through assign the

relevant developers.

Yadav et al. [97] adopted EB based approach to determine the appropriate developer for bug

fixing. The proposed approach works on the developer expertise scores. The developers scores

are computed using Jaccard and cosine–similarity methods. These methods measure the

similarity between fixing time, priority and versatility of bug reports. Further, the developers

37

are ranked on the basis of developers score. The proposed approach is tested on FreeDesktop,

Eclipse, Firefox, Mozilla and NetBeans datasets. The simulation results of proposed approach

are also compared with existing ML approaches such as NB, SVM and C4.5 in term of precision,

recall and F-measure parameters. The results demonstrated the proposed approach provides

significant results than existing ML approaches and also reduced the tossing length.

To handles the bugs in effective manner, Kanwal et al. [98] designed a machine learning based

bug assignment model. The proposed model is classified into four phases. In first phase, the text

of bug reports is pre-processed to reduce the noise effect in text. In second phase, the text and

five categorical features are extracted. These features are categorical, summary and long

description (CSTF), summary (SF), summary and long description (TF), categorical and

summary (CSF) and categorical (CF). In third phase, NB and SVM classifiers are trained with

different combinations of features for classifying the bugs into different priority classes. In

fourth phase, a set of developer is assigned according to predicted priority. The performance of

NB and SVM classifiers are evaluated using accuracy, precision, recall, nearest false negatives

(NFN) and nearest false positives (NFP) parameters. The aim of NFN and NFP parameter is to

determine optimum combination of features for measuring the priority of bugs. It is observed

that SVM classifier performs better than NB classifier for text features. While, NB classifier

obtains better results than SVM classifier for categorical features. It is also observed that SVM

achieves higher accuracy with the combination of text and categorical features.

Table 2.3: Illustrate the works reported on bug assignment and developer identification approaches

Paper Approach/Method
Adoption

Criteria
Dataset

Performance

parameter
Advantage Disadvantage

Xuan et

al., [81]

Expectation

maximization

(EM) with Naive

Bayes classifier.

To address

the

deficiency

associated

with

labeled

bug reports

in existing

supervised

approaches

Eclipse Accuracy

Accuracy rate

of proposed

semi-

supervised

classifier is

higher than

NB classifier

Required

additional cost

for

probabilistically

labeling the

unlabeled bug

reports.

38

Bhattac

harya

et al.,

[82]

Refined

classification,

ranking function

and multi-feature

tossing graph

(MTG)

To

improve

the

accuracy

rate of bug

assignment

task and

reduce the

length of

tossing

path

Mozilla

Eclipse
Accuracy

Proposed

algorithm

reduces the

tossing path

length and

also obtains

higher

accuracy rate

Required more

features to

generate the

multi-feature

tossing graph

Anvik

et al.

,[83]

Component-based

technique with

Naive Bayes,

SVM, EM and

C4.5, classifier.

To

examine

the

capabilities

of different

machine

learning

techniques

Bugzilla

GCC

Eclipse

Mylyn

Firefox

Precision

SVM

classifier

based

recommendati

on system

performs

better than

others

techniques

based

recommendati

on systems

Needs to extract

the various

feature

‘component’

Zou et

al., [84]

Chi square and

instance selection

with KNN

classifier

To reduce

the training

dataset

Eclipse

Precision

Recall,

F-measure

Accuracy

Chi-square+

instance

selection

variants

significantly

reduce size of

the training

data and also

obtains

improved

simulation

results than

traditional

Chi-square

Requires more

features

39

and instance

selection

Tamra

wi et

al., [85]

Bugzie based on

fuzzy set

To reduce

the bug

fixing time

and

identify

relevant

developer

for bug

fixing

Firefox,

Eclipse,

Apache,

NetBeans,

FreeDesktop

, Gcc

Jazz

Accuracy

Bugzie model

gives better

accuracy rate

than others

models

Required

additional cost

to generate the

technical terms

list that are

extracted from

the software

systems.

Wu et

al.,

[86]

Developer

recommendation

with KNN and

expertise ranking

(DREX)

To

enhance

the

accuracy

of bug

assignment

model

Mozilla

Firefox

Precision

Recall,

F-measure

Outdegree and

simple

frequency

metrics

performs

better than

other metrics

Need extra cost

to adjust the

parameters of

the algorithm.

Servant

et al.,

[87]

Location

information (LI),

Change history

(CH) and

Expertise

mapping.

To

improve

the

accuracy

of bug

assignment

AspectJ Accuracy

Proposed

expertize

technique

achieves

greater

accuracy rate

Additional cost

to locate the

given bugs

Xuan et

al. [88]

NB , SVM and

social network

analysis

To address

the

developer

assignment

and

assignee

task

Mozilla

Eclipse
Accuracy

Social

network

analysis

improves the

average

accuracy of

NB and SVM

Needs extra cost

for analyzing

the developer

relationships

Xie et

al., [89]

DRETOM based

on topic model

To

improve

the results

of existing

assignment

models

Eclipse JDT

Mozilla

Firefox

Recall

DRETOM

outperforms

than Bugzie

and DREX

model

Required to set

the parameters

of topic based

model.

40

Bhattac

harya

et al.,

[90]

NB, SVM, C4.5

and BN classifiers

To reduce

the tossing

length

Mozilla

Eclipse
Accuracy

NB classifier

outperformed

the other

classifiers

Needs to extract

the various

feature

‘component’

and ‘Product”

Xia et

al., [91]

DevRec based on

bug report-based

analysis (BRA)

and develop-

based analysis

(DBA)

To

determine

the

relevant

developers

Mozilla,

NetBeans

Eclipse

Recall

DREX model

improves the

recall rate than

DREX and

Bugzie models

Required more

features for bug

report

characterization

Naguib

et al.,

[92]

LDA, topic model

algorithms

To assign

the

appropriate

developers

ATLAS

Reconstructi

on

UNICASE

Eclipse

BIRT

Hit score

Proposed

approach

performs

better than

LDA-SVM

based model

Need extra cost

to adjust the

parameters of

the LDA

algorithm.

Zhang

et al.,

[93]

LDA, social

network.

To

improve

the

accuracy

of bug

assignment

Eclipse

Precision

Recall,

F-measure

Proposed

approach

provides

higher F-

measure rate

than

DRETOM and

AP

Additional cost

is required for

adjusting the

parameters and

analyzing the

social network

Yang et

al.,

[94]

Used topic model

approach, core

NLP for

preprocessing and

Kullback-Leiber

for finding the

similar bug

To identify

the

relevant

developer

Eclipse

Mozilla

NetBeans

Precision

Recall,

F-measure

Proposed

system obtains

better

recommendati

on results than

Out-Degree ,

AP-based

In the case of

incorrect word

frequency

matching, this

approach was

unsuccessful in

finding the

41

reports, after that

used multi-factors

and social

network

techniques for

finding the

relevant

developer.

recommender

and DRETOM

similar bug

topics.

Zhang

et al.,

[95]

KSAP based on

heterogeneous

bug repository

network and K-

NN search

To

improve

the

accuracy

of bug

assignment

Eclipse

Mozilla

Apache

Tomcat6

Precision

Recall,

F-measure

KSAP

approach is

compared with

existing ML-

KNN, DREX,

DRETOM,

Bugzie,

DevRec and

DP models

Needs to extract

the various

feature

‘component’

‘severity’ and

‘Product”

Lui et

al., [96]

DRS based on

modern portfolio

and LDA

To avoid

cold start

problem in

bug

assignment

Bugzilla
Average fix

time

DRS can

reduce the

cold start

problem of

bug

assignment

considerably

through assign

the relevant

developers

Only calculate

the average time

to fix the bugs.

Yadav

et al.,

[97]

Worked on

developer

expertise scores.

Used Jaccard,

cosine –similarity

to measure the

similarity between

fixing time,

priority and

versatility, based

To

determine

the

appropriate

developer

for bug

fixing

Freedesktop

Eclipse

Firefox

Mozilla

Netbeans

Precision

Recall,

F-measure

Proposed

approach

provides

significant

results than

existing

machine

learning

approaches

Ignore the

severity of bug

reports

42

on extracted

features the

developers are

ranked

Kanwal

et al.

[98]

NB and SVM

classifiers

To resolve

the

important

bugs

Eclipse

Nearest False

Negatives,

Precision

Recall ,

Accuracy and

Nearest False

Positives

SVM achieved

the highest

accuracy with

both text and

categorical

features as

compared to

NB classifier

Ignore semantic

relations of text

43

CHAPTER 3

PSO- ACO BASED BUG REPORT SUMMARIZATION MODEL

3.1 INTRODUCTION

This chapter addresses the summarization issue of bug reports. The aim of bug report

summarization is to generate short summary of lengthy bug reports [21]. In literature, both of

supervised and unsupervised approaches have been presented for summarizing the bug reports

[24,25,31,32]. In supervised approaches, manual summaries of bug reports are prepared and

relevant sentences are extracted from these summaries. Further, a model is designed to predict the

relevant sentences using extracted sentences. Whenever, a new bug report is reported, the relevant

sentences are extracted using trained model. The shortcomings associated with supervised learning

approaches is to require large amount of training data and partial towards the specific bug reports

[29]. Furthermore, manual summaries generation is time consuming, costly and require a lot of

human efforts. Whereas, unsupervised approaches determine the optimal sentences from summary

based on diversity and centrality measures. These approaches are more suitable for different types

of bug reports without any complex changes [32]. It is also noticed that, these approaches are not

required manual summaries for summarization task. In turn, cost and human effort is reduced. For

summarization task, summaries are divided into two categories- extractive and abstractive [99].

The extractive summary refers to the identification of relevant sentences from the bug report to

produce the final summary. While, in abstractive summary, the appropriate sentences are selected

and rephrased to generate a new short sentences. These sentences contain critical information from

the original sentences. It is observed that the unsupervised approaches provide better results than

supervised approaches for bug report summarization [31,32,35,36]. It is also noticed that most of

automatic summarization techniques are extractive in nature. It is observed that main issue with

bug report summarization is volume of data associated with bug reports. The data is presented in

the form of comments and large search space. In turn, it is difficult to determine the relevant

sentences and compute the sentence score [32]. Several other problems are also associated with

bug reports such as sparsity issue in high dimensional matrix, time cost, accuracy and overfitting

issue [35,36]. Hence, the main objective of this chapter is to address the following issues.

 To develop a generalized bug report summarization technique for summarization task

44

 To determine relevant summary subset of bug reports

 To address the data sparsity of sentences.

This chapter presents an unsupervised approach based on particle swarm optimization (PSO) and

ant colony optimization (ACO) approaches to select the optimal summary subset [100-104].

Initially, PSO is applied to determine the relevant summary subset. Further, ACO algorithm is

applied to refine the output of PSO algorithm. The semantic relationship of sentences is also

computed to handle data sparsity issue. Moreover, two research questions are also designed to show

the effectiveness of the proposed PSO-ACO model.

RQ1: Does the performance of the proposed PSO-ACO model is better than PSO model?

RQ2: Are the unsupervised techniques more feasible than supervised techniques for bug report

summarization?

3.2 Formulation of Bug Report Summarization as Optimization Problem

The optimization of summarization process is a difficult task due to low order value optimization.

It influences the speed and accuracy of summarization process, but large search space is explored

for better summarization [101,105-107]. Bug reports consist of large number of comments and

descriptions. These comments and descriptions contains valuable information for summarization

task. To extract the relevant sentences for short summaries, a PSO-ACO based summarization

technique is proposed. Further, the semantic relationship is also determined for extractive bug

report summarization (BRS). When, bug reports are processed, a weight function is assigned to

each normalized text. The subset of normalized texts is generated according the user preferences.

A user preference summarization model contains a large number of subsets. Suppose, the number

of lines present in a Bug report is x. The number of possible subsets with the combination of 1, 2

and n sentences of a bug report is r. So, the number of summary subsets with different number of

sentences is computed using equation 3.1.

 A = ∑ Cr
xn

r=1 (3.1)

Assume, summary percentage mentioned by user is z%. Hence, the number of sentences in subset

based on user percentage is computed through equation 3.2.

45

 N = x ×
z

100
 (3.2)

 A ∩ N = B (3.3)

 In equation 3.3, A represents the number of subset with different number of sentences, N denotes

number of sentences in subset based on user percentage and B contains the common summary

subsets presented in both of A and N. The optimization process is implemented on the summary

subsets presented in set B and the aim is to choose minimum summary subsets that can cover

entire summary. Hence, the bug report summarization problem is formulated as subset selection

problem.

3.3 Proposed PSO-ACO Based Summarization Model

This section presents a PSO-ACO based summarization model to determine the optimal subset of

summaries. The working of proposed model is demonstrated using Figure 3.1. The proposed model

consists of four phases. These phases are preprocessing, sentence scoring, summary subset

selection and performance evaluation.

3.3.1 Preprocessing Phase

This phase consists of bug report descriptions, titles and summary percentage in the form of text.

The text of bug reports (D) is divided into set of passages Pi, D = (P1, P2…PN). These passages are

further divided into many sentences, Pi = Si. and sentences are further segmented into words Wi,

Si= (W1, W2……WN) and this process is known as tokenization. The outcome of tokenization is

isolated words, called token. Moreover, stop word removal (SWR) and rooting extraction (RE)

techniques are also applied on the output of tokenization process. SWR technique removes the

unwanted and insignificant words. Whereas, RE technique is applied for linguistic normalization.

It can be described as change of inflectional and derived words into familiar base words [108-110].

The output of this phase is normalized text and can be acted as the input of second phase.

3.3.2 Sentence Scoring Phase

The output of preprocessing phase is tokens i.e. words and features. The score of each words are

computed using extended frequency criteria. These criteria are illustrated in Figure 3.2.

46

Figure 3.1: Proposed PSO-ACO based Bug Report Summarization Model

 Informativeness: This criterion determines the specificity of system. It can be described as

amount of data reflected in a given document (D) using term (t).

Bug Report as

Input text

Pre-

processing

Phase

Sentence

Scoring

Phase

Input as summary

Percentage

Make a subset of

text feature

Summary Subset

Selection using

PSO-ACO

Extract n-

gram from

best subset

Find ROUGE

score

Extract n-gram

from manual

summary

Bug Report

Summary as

output

Phase 1 Phase 3

Phase 2

Phase 4

47

 Phraseness: This criterion correspondence to extract the multiple words. The phraseness

score describes the rigidity of words in multi-word arrangement. This criterion computes the

significance of a term based on relative frequencies of terms and their segments i.e. unigrams

or frequencies.

Furthermore, previous study demonstrates that Kullback–Leibler divergence (KLdiv) method

provides better results using both of criterias [111]. The basic aim of KLdiv method is to compute

the divergence between two probability distributions [112]. It also reduces the sparsity of text

through semantic information of bug report summary. Further, KLdiv method is divided into

Kullback–Leibler divergence Informativeness (KLI) and Kullback–Leibler divergence Phraseness

(KLP). The probability of each unigram, bigram and trigram features are computed using equations

3.4 -3.6 and stored in a matrix.

Figure 3.2: Feature Weighting Module

 KLIP(w) = KLI(w) + KLP(w) (3.4)

KLI(w) = p(w|S)log
p(w|S)

p(w|C)
 // For unigram (3.5)

 KLP(w) = p(mw|S)log
p(mw|S)

∏ p(μr|S)m
r=1

 // For bigram and trigram (3.6)

In equations 3.4-3.6, p(w|S) is the probability of word ‘w’ in sentence ‘S’, p(w|C) is the collection

of language , p(mw|S) is the probability of multiword in S and p(μr|S) is the probability of rth

unigram inside n-gram (mw).

Informativenes

s

Phraseness

Features

Extract uni-gram

features

Extract bi-gram

features

Extract tri-gram

features

48

The score of all words are combined to obtain the sentence scores (SS). Further, the subsets of

these sentences are evaluated using user provided summary percentage. The subset score (SuS) is

computed for every subset. Here, the PSO-ACO technique is applied to determine the optimal

subsets from the given summary subsets based on subset score. Each subset is represented using

vector in a search space and described as Sl(l = 1,2,3 … . m). The steps of the preprocessing and

sentences scoring phases are mentioned in Algorithm 3.1.

Algorithm 3.1

Input: Bug reports as text input, D

Output: Summary subsets (SuS) with the respective score, SuSl = {S1, S2, … … . . Sm}, m = B by using

equations 3.1-3.2.

1. PRE-PROCESSING PHASE

1.1. Initially, pre-processing of a bug report is executed.

1.2. Tokenization(Di)

1.3. Stop word removal(Di)

1.4. Rooting(Di)

2. SENTENCE SCORING PHASE

2.1. Extract informative features (unigram, KLI) by using equation 3.5

2.2. Extract phraseness features (bigram and trigram, KLP) by using equation 3.6

2.3. Combination of two scores KLI and KLP using equation 3.4.

2.4. KLIP score of all words are added to get the sentence scores (SS).

2.5. Generate the subset according to user summary percentage.

2.6. Calculate the summary subset score (SuS) for every subset.

The output of the second phase is sentences scores. These scores are given as input to third phase.

3.3.3 Summary Subset Selection Phase

In this phase, PSO-ACO technique is used to determine the optimal summary subsets. The steps of

PSO-ACO technique is described in Algorithm 3.2. Figure 3.3 illustrates the flow chart of the

proposed PSO-ACO technique. The algorithm starts with initialization of the population of PSO

algorithm in terms of sentence score and other user defined parameters like, maximum number of

iteration, βp1, βp2, and α(t) .

49

Algorithm 3.2: Proposed PSO-ACO Based Subset Selection Algorithm

Input: Summary subset (m) with respective score

Output: Summary subset (n) with best optimized score, whereas n<m

Step 1: Initialize the particles and user define parameters viz population, iteration etc

Step 2: For, each subset or particle, d= 1,2…N

Compute fitness function and Particles initial position= subset score

Step 3: Subset best known position = initial position: pbestd ← Posd
(t)

Step 4: Assume, initial velocity is zero

Step 5: While (condition is not met), do following:

Step 6: Update the Particle’s velocity using equation 3.7

Veld
(t+1)

= α(t)Veld
t + βp1randp1(t)(pbestd − Posd(t)) +

βp2randp2(t)(gbestd − Posd(t)) (3.7)

Step 7: Update the Particle’s position using equation 2

Posd
(t+1)

= Posd
(t)

+ Veld
(t+1)

 (d = 1,2 … . . N) (3.8)

Step 8: If f(Posd
(t)

) <f (Posd
(t+1)

)

 Posd
(t+1)

← Posd(t)

Step 9: If f (Posd
(t+1)

)<f(pbestd)

 pbestjd ← Posd
(t+1)

Step 10: If f (pbestd)<f(gbestd)

 gbestd ← pbestd

End while

End for

Step 11: Sort the particles according the gbest and Calculate ROUGE score

Step 12: Initialize the ants and other user defined parameters of ACO algorithms

Step 13: Initialize the pheromones using equation 3.9

 pA(T) =
(τA(T))

α
.ηA

β

∑ (τA(T))
α

.ηA
β

A

 (3.9)

Step 14: Update the pheromones using equation 3.10

 𝜏𝐴(𝑇 + 1) = 𝜌𝜏𝐴(𝑇) + ∆𝜏𝐴(𝑇) (3.10)

Step 15: If (value of subset is not changed)

Add the subset in subset list and calculate the transition probability

Select the subset with higher probability and calculate ROUGE score

Step 16: Else, update the pheromones of all subsets and go to step 13

Step 17: Obtain the final summary subset with best optimized score

*Velid
t is the old velocity, Veld

(t+1)
 is the new velocity, Posd

(t)
 represent as current position , Posd

(t+1)
is

updated particle position , gbestd is the global best position , pbestd is the personal best position, βp1, βp2

are the learning factors as positive constant , randp1(t), randp2(t) are random numbers between [0,1] and

α(t) is the inertia weight . ηβ describe the background information of features to improve the results, τA(T)

is pheromone amount for the Ath feature in time T, α and β are the control parameters that provides the

pheromone and background information, and pA(T) is the Transition probability , ρ is defined as

evaporation rate of pheromone trail and lies between [0, 1], ∆τA(T) is the pheromone trail amount added

to Ath feature between time ∆ and ∆T

50

Figure 3.3: Flowchart of PSO-ACO based Summary Subset Selection Algorithm

Initialize particle initial position = subset score

Initialize velocity, g-best values

Select the p-best for ith particle

Evaluate the positions

If BPg = BPi?

And one subset is left

then

Initialize the ants within the solution

space given by particles

Update the pheromone by calculating fitness

value

Select next subset by

calculating the Transition

Probability

Required summary subset

if (fitness value

of subsets =

minimized) then

Yes

The subset is

required summary

subset

No

Yes

No
Add the subset in subset

list

 if (iteration=MNT*,

fitness value of

subset = converge*)

then
Yes

No

MNT* = Maximum Number of Iteration

Converge* = Not able to get different results in fixed number of iteration.

51

The particles are described in terms of subset score assume initial velocity of particles is zero. Next

step is to, calculate the cosine similarity of subsets as fitness function. Until the termination

condition is not met, update the velocity and position of particles using equations 3.7 and 3.8. At

the end of every iteration, compare the particle’s current position with its personal best. If personal

best position is better than update the current position. The personal best position of all particles is

compared with global best position. If personal best position of any particle is better than global

best position than update its global best position. This process continues on until the personal best

position is equal to global best position of particle. After that, sort the subsets according to its global

best position. The output of PSO algorithm is given as input to ACO algorithm. Initialize the user

define parameters of ACO algorithm. Initialize the pheromones and update its value using

equations 3.9 and 3.10. If the value of the subset does not change after the few iterations, then

calculate its transition probability otherwise update the pheromones of all subsets. The output of

algorithm is optimal summary subset.

3.3.4 Performance Evaluation Phase

This phase evaluates the performance of proposed model. The performance of model is evaluated

using ROUGE score parameter [113]. The system generated summary is compared with the manual

summary to determine the efficiency of PSO-ACO technique. Therefore, all possible n-grams

words (w) are extracted from system generated and manual summaries subsets using equations

3.11-3.13.

 P (wi|w0 … … wi − 1) = P (wi) (3.11)

 P (𝑤𝑖|𝑤0 … … 𝑤𝑖 − 1) = P (𝑤𝑖|𝑤𝑖−1) (3.12)

 P (wi|w0 … … wi − 1) = P (wi|wi−1wi−2) (3.13)

The n- gram represents the combination of n continuous words into a single word. In this

experiment unigram, bigram and trigram are considered. Moreover, common occurrence of n-

grams is computed between system generated and manual summaries.

3.4 Experimental Results and Discussion

This section describes the experimental results of proposed PSO-ACO model. The proposed model

is implemented using Java platform. The system is equipped with an Intel Core i5 (7th generation),

52

8GB of DDR4 memory and NVIDIA GEFORCE GPU, and Windows 10 operating system with

64- bit and CPU @ 2.70GHz. The performance of proposed model is evaluated using Rastkar

dataset [24,25]. This dataset contains thirty-six bug reports from four different projects. These

projects are KDE, Eclipse Platform, Gnome and Mozilla. These thirty six bug reports are divided

into three summary sets. The ROUGH score parameter is described using equation 3.14.

ROUGE =
∑ ∑ Countmatch(gramn)gramn∈CC=RSS

∑ ∑ Count(gramn)gramn∈CC=RSS
 (3.14)

In equation 3.14, RSS is the reference summary set, Countmatch(gramn) is the maximum no. of

common n-grams between system generated and reference summaries. Count (gramn) is the

number of n-grams in the reference summary. The user defined parameters setting of proposed

PSO-ACO model is presented in Table 3.1.

3.4.1 RESULTS

This subsection presents the experimental results of proposed PSO-ACO model. The system-

generated summaries are compared with three manual summaries of each bug report. These

summaries are denoted as Summary Set 1, Summary Set 2 and Summary Set 3. In this work, thirty

percent of summary is considered to conduct the experiments. The performance of PSO-ACO

model is compared with well-known supervised and unsupervised models such as particle swarm

optimization (PSO), grasshopper approach (EGA), bug report classifier (BRC), email classifier

(EC) and email meeting classifier (EMC) [24,25]. The PSO and grasshopper models are

unsupervised in nature, whereas rest of are supervised in nature [114, 31]. The basic aim of this

work is to explore the problem space efficiently and analyze the trigram and bigram more

effectively. The ROUGE score parameter is used to evaluate the experimental results. It is also

mentioned that both of PSO-ACO and PSO based summarization models are developed in this

work.

3.4.1.1 Summary Set 1

The summary set 1 consists of the summaries generated through software company expert for

thirty-six bug reports. These summaries are compared with system generated summaries using

ROUGE score parameter. The system generated summaries are computed using proposed PSO-

ACO model. The performance of the proposed PSO-ACO model is compared with several other

53

models such as PSO, EGA, BRC, EC and EMC [25,31]. The experimental results of proposed

PSO-ACO model and other models are presented in Table 3.2. It is seen that proposed PSO-ACO

model provides higher ROUGE score rate as compared to other models. It is also noticed that EGA

exhibits worst performance among all models. The average ROUGE score obtained through

proposed PSO-ACO model is 92.60. It is also revealed that PSO based summarization model gives

better results than BRC, EC, EMC and EGA models. But, the integration of PSO-ACO techniques

improves the results of PSO technique. Figure 3.4 demonstrates the graphical representation of

simulation results of the proposed PSO-ACO model and other models being compared using

Summary Set 1. It is stated that proposed PSO-ACO model achieves better quality results than

other models.

Table 3.1: PSO-ACO parameters setting

3.4.1.2 Summary Set

The summary set 2 contains the summaries generated by technical expert. Summary set 2 is

considerably different from summary set 1. The system generated summaries are compared with

summaries generated through technical expert. Table 3.3 illustrates the simulation results of

proposed PSO-ACO model and other models using Summary Set 2. ROUGE score parameter is

used as performance measure to validate the results of PSO-ACO based summarization model

Parameters of PSO-ACO Values

Particles 100

Iterations of Particles 500

C1 1.9

W 0.4-0.9

C2 1.9

VMAX 0.1

ANTS 100

ρ 0.5

Iterations of Ants 500

𝛼 0.7-1

𝛽 2-5

Initial Value of

Pheromone

AVG(GLOBAL

BEST)

Pheromone Intensity AVG(LOCAL BEST)

54

Table 3.2: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EGA

 techniques using ROUGE score parameter for Summary Set 1

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA

1 79.03 77.9 92 79.9 85 74.6

2 88.54 87.4 88.4 86.5 87.6 77.2

3 93.33 92.8 84.6 90.9 89.1 78.1

4 92.16 91 74.5 86.5 86 77.7

5 88.85 88.2 75.3 84.8 90.3 78

6 86.23 85 70.6 87.5 89.4 79.1

7 96.77 96 86.3 91.6 90.5 80.2

8 96.6 93.5 91.9 89.2 93.9 79.8

9 90.33 90.2 92.3 89.5 90.7 79.1

10 96.08 93.4 90.9 91.8 92.6 79.8

11 96.49 95.6 87.3 91.7 91.6 79.8

12 93.61 92.6 91.4 91.1 87.1 79.4

13 94.44 93 93.8 88.1 91.9 79.7

14 91.41 88.9 92.1 83.4 86.5 79.5

15 96.55 95.2 90.4 92.9 93.4 80.1

16 93.98 93 92.7 92.3 92.8 80

17 94.12 93.4 91.5 92 91.1 80.1

18 95.57 94.7 90.5 90.9 91.4 80.7

19 92.29 91.5 82.6 90.4 91.9 80.1

20 91.97 92.9 89.3 92.7 90.9 79.5

21 95.89 94.4 91.5 90.7 94 79.6

22 94.33 93.7 89.5 91.9 89.8 79.1

23 98.49 98 81.8 94.5 91.7 78.7

24 91.53 90.4 91.7 88.2 68.4 78

25 90.55 87.2 90 84.6 87.5 77.7

26 94.03 93.2 89.9 61.5 69.1 78.4

27 93.88 91.4 80.6 67.5 90.4 78.2

28 91.47 90.6 89.3 91 88 78.2

29 94.16 93.3 86.4 66.9 89.5 78.8

30 90.05 88.5 81.4 85.5 87.4 78

31 93.26 91.9 83 89.1 89.9 77.3

32 92.33 91.8 82.8 89.8 91.6 64.1

33 93.66 91.3 88.1 89.5 88 51

34 96.12 95.1 87.6 60.9 64.1 38

35 88.86 87.7 82 64.6 43.3 35.7

36 86.53 83.1 76.4 49.3 43.3 35.8

Average 92.6 91.3 86.7 84.7 85.5 74.2

55

Figure 3.4: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques

on Summary Set 1

It is revealed that the proposed PSO-ACO based summarization model achieves higher ROUGE

score in comparison to other models being compared. The ROUGE score rate of proposed PSO-

ACO model is 87.92. It is also observed that EC model exhibits worst performance among all other

models. But, it is seen that there is no significant difference between the performance of PSO- ACO

and PSO based summarization models. But, the performance of the PSO algorithm is slightly

improved using integration of PSO-ACO. Figure 3.5 demonstrate the experimental results of

proposed PSO-ACO model and other model using Summary Set 2. ROUGE score parameter is

used to illustrate the simulation results of different models. It is revealed that there is significant

difference between the performances of proposed PSO-ACO model and other models like BRC,

EC, EMC, EGA. But, it is observed that the performance of PSO and PSO-ACO based

summarization models is almost similar.

3.4.1.3 Summary Set

The summary set 3 contains the summaries described through an English exper

56

Table 3.3: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques using ROUGE score

parameter for Summary Set 2

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA

1 75.68 74.58 70.76 52.07 64.27 71.75

2 82.81 81.62 85.25 57.65 63.48 74.28

3 92.12 91.33 81.65 59.83 64.88 75.1

4 89.4 88.16 68.12 57.38 63.95 74.64

5 85.05 83.98 73.23 55.53 66.06 74.81

6 83.81 82.6 60.78 58.28 66.83 75.74

7 93.06 92.25 83.26 59.88 66.6 76.85

8 92.23 87.39 88.32 58.51 68.34 76.07

9 88.72 88.15 90.14 59.15 66.96 73.75

10 91.81 89.3 86.65 59.94 68.16 74.26

11 91.4 90.52 80.59 60.29 65.7 74.51

12 91.26 90.34 88.44 59.04 58.42 74.46

13 87.83 86.79 91.25 52.67 68.2 74.35

14 73.73 71.21 89.07 54.3 64.33 74.56

15 93.1 91.68 85.69 60.91 68.26 77.53

16 92.08 91.06 72.32 60.4 67.25 77.29

17 91.02 90.14 88.98 59.92 66.98 76.62

18 90.22 89.62 86.98 59.3 67.93 77.44

19 89.11 88.27 92.95 60.08 66.48 77.18

20 91.2 91.97 84.84 60.66 65.62 75.53

21 91.49 90.02 89.81 58.8 70.79 62.4

22 86.87 86.38 84.39 60.75 65.93 61.63

23 96.27 95.87 90.85 61.21 64.14 62.13

24 88.86 87.75 86.76 54.84 22.22 61.12

25 82.5 76.78 88.36 25.59 63.43 59.87

26 85.67 84.78 83.49 28.22 45.2 61.6

27 87.76 84.66 83.65 58.18 64.51 74.35

28 90.76 89.87 88 59.55 62.18 74.76

29 89.92 88.79 83.03 55.93 66.28 74.76

30 80.39 78.99 63.33 55.98 64.26 74.3

31 90.29 88.94 81 59.39 65.33 72.57

32 89.81 89.24 81.82 58.92 45.19 59.87

33 87.78 87.5 73.93 59.13 64.57 47.12

34 90.96 89.89 79.92 58.48 58.91 34.62

35 86.39 85.56 74 50.82 21.6 32.59

36 73.63 66.91 72.7 22.3 43.23 32.2

Average 87.92 86.47 82.06 55.39 61.29 68.13

57

Figure 3.5: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques

on Summary Set 2

The simulation results of the system generated summaries are also compared with summary set 3.

Table 3.4 depicts the simulation results of proposed PSO-ACO model and other models such as

BRC, EC, EMC, EGA, PSO models. From simulation results, it is seen that proposed PSO-ACO

model achieves better quality results than PSO, BRC, EC, EMC, EGA models. The proposed PSO-

ACO model obtains 84.51 ROUGE score rate. It is revealed that EMC models provides worst

results among all other classifiers for summary set 3. It is also stated that the significant difference

is occurred between the performance of proposed PSO-ACO and PSO based summarization

models. Figure 3.6 depicts the graphical representation of simulation results of proposed PSO-ACO

model and PSO, BRC, EC, EMC, EGA models using Summary Set 3. It is seen that the average

ROUGH score of the proposed PSO-ACO model is better than other compared models. Hence, it

is stated that PSO-ACO based summarization model is capable to generate the short summaries

without affecting the structure of bug report

58

Table 3.4: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques using ROUGE score

parameter for Summary Set 3

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA

1 75.47 74.37 43.89 51.2 41.19 69.29

2 80.42 79.23 54.38 55.98 40.54 70.85

3 89.29 88.7 50.24 56.29 42.91 71.52

4 81.72 80.16 62.96 53.78 41.08 70.98

5 82.33 81.17 66.63 54.19 42.11 71.87

6 82.6 81.4 57.67 55.57 43.47 72.68

7 86.12 85.32 63.64 56.41 42.68 73.59

8 91.26 83.91 54.88 56.28 45.15 73.18

9 84.61 84.94 65.47 57.17 43.08 70.64

10 89.32 86.41 74.77 57.75 44.72 71.43

11 87.71 86.84 60.8 58.19 42.83 72

12 89.57 87.72 75.25 56.73 39.56 72.15

13 83.59 82.47 67.37 49.54 43.87 71.99

14 68.68 66.16 75.37 52.19 40.04 72.63

15 91.87 90.42 72.9 60.29 45.193 76.13

16 91.49 90.45 67.55 59.44 44.55 75.2

17 88.9 87.88 64.75 58.16 44.17 74.27

18 86.71 86.6 75.08 57.84 44.25 75.28

19 87.77 86.93 62.95 59.21 43.28 75.32

20 90.27 90.69 54.59 58.19 43.67 73.4

21 85.33 83.87 74.57 55.94 45.18 60.45

22 84.39 83.96 62.92 59.64 43.09 59.98

23 95.38 94.97 76.65 60.61 43.29 60.72

24 87.97 86.85 66.69 53.45 21.99 58.44

25 77.77 73.51 74.83 24.5 40.31 56.91

26 78.9 76.83 70.29 26.86 22.51 58.35

27 83.47 80.57 65.51 56.57 40.96 70.67

28 90.05 89.16 60 56.05 41.9 70.91

29 80.37 78.99 67.61 51.73 41.32 58.17

30 77.55 76.19 77.86 53.25 41.1 58.74

31 84.9 83.55 71.27 56.61 42.04 57.1

32 86.84 86.27 77.58 56.16 21.71 45.17

33 83.25 82.21 75.05 27.4 41.84 32.84

34 81.22 80.45 71.11 27.67 17.77 21.1

35 84.12 83.01 74.66 49.24 21.03 31.88

36 71.06 64.7 69.5 21.57 20.54 31.51

Average 84.51 82.97 66.86 51.71 39.03 63.54

59

Figure 3.6: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques

on Summary Set 3

The average results of three summary sets using all techniques are reported in Table 3.5. It is

observed that proposed PSO-ACO technique provides better results than other techniques.

Whereas, EC techniques exhibits worst performance among all techniques. Hence, it is said that

proposed PSO-ACO is one of the efficient and effective model for bug report summarization.

Furthermore, two fundamental research questions are also designed to differentiate the

performance of proposed PSO-ACO model and other existing models.

Table 3.5: Average Rough score of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques

Dataset

Techniques

Proposed

PSO-ACO
PSO BRC EC EMC EGA

Summary Set 1 92.6 91.3 86.7 84.7 85.5 74.2

Summary Set 2 87.92 86.47 82.06 55.39 61.29 68.13

Summary Set 3 84.51 82.97 66.86 51.71 39.03 63.54

3.4.1.4 Statistical Test

This subsection deals with the statistical analysis of the simulation studies. The objective of the

statistical analysis is to find the significant differences between the performance of proposed

60

technique and other techniques being compared. To validate the existence of the proposed

technique and prove its significance, some statistical tests are applied on the experiment results.

These tests have been widely applied in the machine learning domain [133]. A statistical test is

applied to check the substantial differences between the performances of techniques. In this study,

Friedman and Wilcoxon tests are employed for demonstrating the statistical analysis [134-135].

The value of α (level of confidence) is set to 0.1. The results of Friedman test are illustrated in

Tables 3.6-3.7. Table 3.6 summarizes the average ranking of each technique computed through

Friedman test using average ROUGH score parameter. The critical value of Friedman test at the

confidence levels 0.1 is 11.070504. The corresponding p value and statistics result are reported in

Table 3.7. It is clearly seen that null hypothesis is rejected at the confidence level 0.1 and significant

differences are occurred between the performances of all techniques. From the literature, it is noted

that Friedman test cannot distinguish the datasets which are used for comparison as it assigns equal

importance to each dataset [134]. In this experiment, the p−values of Wilcoxon’s rank sum test are

also conducted. Wilcoxon’s rank sum test is a nonparametric statistical test. It is more sensitive

than Friedman test as it assumes proportionality of differences between two pairs samples.

Moreover, it is safer than Friedman test as it does not assume the normal distributions and the

outliers affecting lesson. The aim of this test is to indicate the proposed PSO-ACO technique

provides notable improvement as compared with other bug report summarization techniques. The

result of this test is illustrated in Table 3.8. The p-values of proposed PSO-ACO in comparison to

other techniques are reported in Table 3.8. It is observed that all p-values are less than 0.1. Hence,

it is stated that proposed PSO-ACO technique is statistical better than other compared techniques.

Table 3.6: Average ranking of techniques using Friedman tests

Techniques
Proposed

PSO-ACO
PSO BRC EC EMC EGA

Ranking 1.00 2.00 3.33 5.33 5.00 4.33

Table 3.7: Results of Friedman test based on avg. ROUGH score parameter

Method Statistical value p value Critical Value Hypothesis

Friedman 13.47619 0.019302 11.070504 Rejected

61

Table 3.8: P−values of Wilcoxon rank sum test (pairwise method)

Technique 1 Technique 2 P −value

Proposed PSO-ACO

PSO 0.09246

BRC 0.05628

EC 0.01317

EMC 0.007819

EGA 0.002691

RQ1: Does the performance of proposed PSO-ACO model is better than PSO model?

Ans. RQ1): To address the summarization issues of bug reports, two models are developed in this

work. These models are PSO based subset selection model and PSO-ACO based sub selection

model for summarization task. The results of these models are presented in Tables 3.2-3.4 and

Figures 3.4-3.6. It can be seen that Average ROUGE score of proposed PSO-ACO based subset

selection approach is in between 92% to 85 %. While, the Average ROUGE score of PSO approach

is between 91% to 83%. On the analysis of ROUGE score parameter, it is concluded that PSO-

ACO based model gives better results than PSO model. The bug report summary subset evaluated

using PSO-ACO are more effective and produced a less redundant summary. Moreover, problem

space is fully explored using PSO-ACO based model and effectively analyzed bigram and trigram

in the sentences. It is noted that PSO based summarization model sometimes stuck in local optima

and converged. So, the feasible solution is not obtained every time through PSO model. To

overcome the local optima problem of PSO model, it is integrated with ACO technique. The ACO

technique optimizes the summary subsets produced by PSO model. The simulation results of PSO-

ACO model also favor the above statement and it is concluded that incorporation of ACO technique

with PSO model enhances the simulation results of PSO model considerably.

RQ2: Are the unsupervised techniques more feasible than supervised techniques for bug report

summarization?

Ans. RQ2): In this work, two types of models i.e. supervised and unsupervised are considered to

address the summarization issues.The PSO-ACO, PSO and EGA models are based on the

62

unsupervised techniques. Whereas, BRC, BC and EMC models consist of the supervised

techniques. The simulation results of both models are illustrated in Tables 3.2-3.5. It can be said

that the unsupervised techniques give better quality results than supervised techniques. The

unsupervised techniques can be an effective tool for bug report summarization task and not required

training data. On the other hand, supervised techniques require training data that can enhance time

and cost factors. Hence, it can be stated that unsupervised techniques can be a feasible option for

bug report summarization process and also reduce time and cost.

3.5 Summary

Bug report summarization is the part of the bug tracking system. In this chapter, PSO-ACO based

bug summarization model is proposed for bug report summarization. The proposed model takes

the advantage of KLIP approach. The aim of proposed model is to determine the optimum subset

of summary. The efficiency of the proposed model is tested over Rastkar dataset and simulation

results are compared with existing supervised and unsupervised models. The results showed that

proposed PSO-ACO model provides better efficiency than PSO, Existing Grasshopper, Bug Report

Classifier, Email Classifier and Email Meeting Classifier models. It is also observed that

combination of PSO and ACO enhances the simulation results of PSO model in efficient manner.

63

CHAPTER 4

RFB METHOD FOR BUG SEVERITY CLASSIFICATION

4.1 Introduction

The primary task of bug severity classification model (BSCM) is to classify the data in different

severity classes [52]. The BSCM consists of different machine learning techniques to predict

severity classes of bugs. The severity classification can be formulated as a classification problem

and bug dataset is developed using the content of bug reports [65]. To design the bug dataset,

semantic and syntactical relationship between content of bug report is identified. Further, this

relationship is used to determine the relevant features for severity classification. But, several

issues are associated with feature extraction techniques especially in case of bug severity

prediction [62-71]. These issues are highlighted as

 Sentences are considered as stack of words with unordered sequence of words

 Ignore the semantic relationship between words

 Interpretation of the slightly variant sentences

These issues affect the prediction rate of classification techniques and in turn, poor classification

results can be obtained through classifiers. Furthermore, several researchers have been used bag

of word and term frequency methods to determine the appropriate features for classification task

[65-69].

Figure 4.1: Example of bug reports [6]

Figure 4.1 depicts the two bug reports with IDs 63456 and 63457. The bug ID 63456 describes

the sentences as “Drupal website functionality is not good". Whereas, in bug ID 63457, it can

be read as “Drupal website functionality is not very good”. It is observed that both of sentences

consist of same bag of words and classify these sentences in same class. But, bug ID 63456 is

more critical than bug ID 63457. Because, images are not uploaded on the website and entire

Bug Report ID #: 63456

Title: Not able to upload an image on the Drupal

website.

Description: Drupal website functionality is not useful. I

am not able to upload the image.

Bug Report ID #: 63457

Title: Multiple users can’t access in Drupal website.

Description: Drupal website functionality is not very good.

The image uploading is too slow when concurrent users

access the system.

64

image functionality is affected. In previous studies, n-gram method is also reported to determine

the word order. This method also provides the same word order, but it can enhance the

dimension and sparsity factors in data [59]. In turn, the computational cost of classification

model is tremendously increased. It is also noticed that, feature extraction techniques cannot

capture all latent features due to linear equation and fixed length of polynomial terms [59]. So,

to address the above mentioned issues of feature selection techniques, a deep learning based

framework is used in this chapter to determine the relevant features for prediction task [115].

Deep learning framework also improves the generality of model by considering different kernels

with filter. Moreover, random forest with boosting method (RFB) is implemented to predict

severity of bugs. The proposed RFB model is self-capable to learn feature representation without

manual intervention of feature engineering. This model also explores the semantic and non-

linear features mapping of bug reports. The simulation results of proposed RFB model is

compared with existing model [65]. Further, two research question is also designed to validate

the capability of proposed RFB model. These research questions are listed as

RQ 1: Can deep learning approach extract relevant features for automated BSCM?

RQ 2: Is integration of random forest and boosting method improve the performance of BSCM

 than traditional machine learning technique?

4.2 Proposed BSCM

The objective of the proposed BSCM is to predict different severity classes of bugs. The

proposed model is based on the deep learning framework and RFB techniques. The deep

learning framework is considered to identify more appropriate features for the prediction of

severity classes. Whereas, RFB severs as classifier and predicts labels of severity classes.

Figure 4.2 illustrates the working of proposed BSCM. It consists of five steps and these steps

are Preprocessing, N-gram Extraction (NE), Feature Extraction with Deep Learning and

Classification using RFB.

4.2.1 Preprocessing

The task of preprocessing step is to determine unwanted words from the bug reports and remove

it. These words can degrade the learning performance of classification system. The

preprocessing step reduces the feature space of bug reports. In turn, the effort cost of triage is

65

minimized [109]. The preprocessing step consists of three tasks. These tasks are summarized

as

Figure 4.2: Proposed BSCM based on Deep Learning and RFB techniques

 Tokenization: In tokenization, stream of text is divided into several words, numbers,

punctuations. The aim of tokenization process is to determine the unique tokens in each

Pre-processing

Tokenization Stop Word Removal Stemming

Normalized Text

Bug Report

Text

N-gram Extraction

Uni-gram Bi-gram Tri-gram

Deep Learning Based Feature Extraction

Feature Set

Classification Layer

Random Forest with Boosting

Reduced Feature Set

Severity Classes

Severity Classification

Title, Description and Summary

66

bug reports. It is also noted that punctuations can be replaced with blank spaces, non-

printable escape characters are removed, and capital words are converted into lowercase.

 Stop-word removal: It is referred to determine the stop words in given big reports. The

stop words can be described as verbs, nouns, articles, pronouns, adverbs, prepositions

etc.

 Stemming: It is the process to identify the common stem of words. These common stem

of words act as features and can be stored in feature set. Suppose different occurrence of

a word in bug report is give as “move”, “moves”, “moved”, and “moving”. All these

occurrences can be replaced with word “move” and it is known as feature.

Mathematically, it can be represented using equations 4.1-4.2.

BR = {S1, S2 … … . Sj} (4.1)

Sj = {f1, f2 … . fk} (4.2)

4.4.2 N-gram Extraction (NE)

N-gram method explores the semantic relationship between the content of bug reports. This

method also computes the frequency of features and describes the feature vectors in more

meaningful manner [116]. The N-gram model can be described through features and these

features are identified using unigram, bigram and trigram.

p(fi|f1, … … … . fi−1) = p(fi|fi−k+1, … … , fi−1) (4.3)

In the equation 4.3, fi represents the ith feature and p denotes a probability function. In unigram,

it is assumed that next features are independent to each other and mutual information cannot be

considered among features. Hence, the conditional probability for unigram method is computed

using equation 4.4.

p(f1
k|ω1) = ∏ p(fi|ω1) (4.4)

Here, ω1 denotes the independent features, fi represents the ith feature and p denotes a

probability function.

In case of bigram method, it is stated that continuous features share language information. So,

the conditional probability of bigram method is measured using equation 4.5.

 p(f1
k|ω2) = ∏ p(fi+1|fi, ω2) (4.5)

In equation 4.5, ω2 denotes the dependency of two adjacent features, fi and fi+1 represent the

two adjacent features and p denotes the probability function.

67

Trigram method is similar to bigram method. It trigram method, three consecutive features are

considered to compute the conditional probability. It is computed using equation 4.6.

p(f1
k|ω3) = ∏ p(fi+1|fi, fi−1, ω3) (4.6)

In equation 4.6, ω3 describes the relationship between three consecutive features i.e. , fi−1, fi

and fi+1. It is observed that different N-gram methods are taken into consideration to determine

the frequency of features. These methods can be applied to analyze the sentence individually

and sometime all these methods are applied to determine the all possible features for the given

bug reports. The relationship between N-gram features can be described using equation 4.7.

p(f1
k, fk+1) = ∑ p(f1

k)p(fk+1|fk … fk−m, ωi)p(ωi) (4.7)

In equation 4.7, f1
k denotes the mean of feature string with “n” number of features, fk+1 denotes

the (K+1)th feature, ωi denotes the probability of ith feature string and p(ωi) describes the

probability of assumption i.

4.4.3 Feature Extraction with Deep Learning

This subsection presents the deep learning technique for feature extraction. The deep learning

technique is employed to determine the reduced set of features from given set of features. The

aim of deep learning technique is to determine more relevant features from the feature set. The

feature extraction process with deep learning consists of five layers. These layers are described

as Input, Convolutional, Activation, Dropout, Max pooling and Fully connected layer. The

schematic diagram of feature extraction with deep leaning is demonstrated using Figure 4.3.

Convolutional Layer: The work of convolutional layer is to scan the input data through various

kernels. These kernels correspond to different features. This layer also reduces the dimension

of dataset using non-linear features and computed 2D convolutional. Initially, all features are

computed using N-gram techniques and given to convolutional layer to generate new features.

Suppose, tj ∈ ℝi and it can be interpreted as ith dimension of jth feature in a given ℝ feature

space and all other features can be represented using equation 4.8.

t1:n = t1⨁t2 … … ⨁tn (4.8)

In equation, ⨁ denotes concatenation operator that executes filter operation ∈ ℝi and t denotes

the features.

fi = l(w ∙ tj:j+g−1 + b) (4.9)

68

In equation 4.9, w is a weight matrix, 𝐭𝐣:𝐣+𝐠−𝟏 denotes the window size, 𝐛 is bias term related to

feature space (ℝ) and 𝐥 denotes a non-linear sigmoid function. The equation 4.9 is used to extract

the new feature map and it is illustrated using equation 4.10.

f = [f1, f2, … . , fn−h+1] (4.10)

Figure 4.3: Proposed Deep Learning Based Feature Extraction

Max Pooling Layer: This layer reduces the size of feature map and it can be computed using

max value. The main work of this layer is to pass valid information to the next layer using

consecutive operation on complex features and also address the overfitting issue

Dropout Layer: The dropout layer addresses the co-adaption issue of features. This layer

invokes a dropout rate function to disconnect the neurons from the connected layers. The

dropout is set to 0.2 and training data is also efficiently generalized at this point.

Activation Function: The role of activation function is to activate the neurons. The neurons are

activated on the basis of information. If, the information is appropriate, the corresponding

neuron is activated, otherwise, it is deactivated. Further, the activation function also computes

a neuron value for each neuron. In this work, sigmoid and Tanh activation functions are used.

Feature Set

Convolutional Layer (CL)

Activation, Dropout

Max Pooling Layer (PL)

Fully Connected Layer (FL)

New Feature Maps

New Feature Vectors

Reduce Feature Set

69

Fully Connected Layer: In this layer, all extracted features are combined to generate feature

set.

4.4.4 Classification Layer

The classification layer of proposed BSCM implements ensemble RFB technique as classifier.

RFB technique is the integration of random forest (RF) [117] and boosting method [118]. In

RFB technique, RF is used to determine different tree structures from the given dataset with

different threshold. But, it is not capable to take intelligent decision regarding the combination

of different trees. Hence in RFB technique, RF method is used to construct all possible tress

using features space with respect severity classes. Whereas, boosting method is applied to

compute the threshold values for model selection in testing phase. The algorithmic steps of RFB

technique is presented in Algorithm 4.1 and Figure 4.4.

Algorithm 4.1 : Random Forest with Boosting (RFB)

Input: Training samples with CN features and labels

Output: Trained RFB

Step 1: Randomly select “k” features from total “m” features, Where k << m

Step 2: Among the “k” features, calculate the node “d” using the best split

point.

Step 3: Split the node into daughter nodes using the best split

Step 4: Repeat 1 to 3 steps until “l” number of nodes will not be reached

Step 5: Build forest by repeating steps 1 to 4 for “n” number times to

create “n” number of decision trees

Step 6: Determine class label of training data

Step 7: Compute weighted error rate of decision tree

Step 8: Calculate the weight of decision tree’s (w) using equation 4.11

 w = 1
2⁄ log

(M−1)(1−e)

e
 (4.11)

Step 9: If (w >0)

Update weight of training samples

Step

10:

Else reject the tree, repeat steps 7-10

* M is the number of classes, *e is the error rate of incorrect classified samples

70

Figure 4.4: Flowchart of proposed random forest with boosting classifier

4.3 Experimental Results and Discussion

This section presents the simulation results of proposed BSCM. The effectiveness of the

proposed model is tested over five bug report datasets. These datasets are Mozilla, Eclipse,

JBoss, OpenFOAM and Firefox. The performance of proposed BSCM is evaluated using F-

measure, Precision, Accuracy and Recall parameters [119]. The proposed model is implemented

Training samples with CN features and

labels

Randomly select “k” features from total

“m” features, Where k << m

Split the node into daughter nodes using

the best split.

Build forest for “n” number times to

create “n” number of decision trees

Calculate the weight of decision tree’s

(w)

Compute weighted error rate of decision

tree

If “l” number of

nodes reached

If (w >0)

Update weight of training

samples

Else reject the tree

Randomly select “k” features from total

“m” features, Where k << m

Stop

N

N

Y

Y

71

using window 10 based system having Intel Core i5 (7th generation) processor, 8GB RAM and

NVIDIA GEFORCE GPU and CPU @ 2.70GHz. Deep learning based feature selection

technique is implemented using Keras and TensorFlow.

4.3.1 Performance Measure

This subsection describes the various performance measures that are considered to evaluate the

performance of proposed BSCM model. These performance measures are listed below.

 Accuracy: This measure evaluates the performance of proposed model in terms of correctly

classified data instance. It is computed using equation 4.12.

Accuracy =
TP + TN

TP + TN + FP + FN
 (4.12)

In equation 4.12, TP denotes true positive instances, TN represents true negative instances, FP

denotes false positive instance and FN denotes false negative instances.

 Precision: It indicates positive instances that can be predicted as actually positive. It is also

known as Type-1 error. This parameter is computed using equation 4.13.

Precision =
TP

TP + FP
 (4.13)

In equation 4.13, TP denotes the true positive instances that are positive, whereas FP denotes

the false positive instances i.e. false instances that are predicted as positive instances.

 Recall: This parameter indicates actual positive instances among all positive instances. It is

also known as Type-2 error and computed using equation 4.14.

Recall =
TP

TP + FN
 (4.14)

In equation 4.14, TP denotes the true positive instances that are actual positive, whereas FN

denotes the false negative instances i.e. positive instances that are predicted as false instances.

 F-measure: It is described in terms of precision and recall. It is different than accuracy

parameter. The accuracy parameter considers the positive as well as negative data instances.

But, F-measure only considers the positive data instances either identified as positive or

negative. F-measure parameter is computed using equation 4.15.

F − measure =
2TP

2TP + FP + FN
 (4.15)

In equation 4.15, TP defines number of reports correctly labeled to a class, TN denotes number

of reports correctly rejected from a class, FP denotes number of reports predicted correct, but

72

actual labelled as incorrect and FN denotes reports predicted incorrect, but actually labelled as

correct.

4.3.2 Dataset

In this work, the five open source datasets are used [65]. These datasets are Mozilla, Eclipse,

JBoss, OpenFOAM and Firefox. Table 4.1 presents the characteristics of these datasets.

Table 4.1 : Characteristics of bug report datasets used for experiments

Datasets
Total

Instances
Features Classes Severity Classes

Mozilla 539 90 7
Blocker, Critical, Enhancement, Major,

Normal, Minor, Trivial

Eclipse 693 68 5 Blocker, Critical, Enhancement, Major, Normal

JBoss 573 75 5 High, Low, Medium, Unspecified, Urgent

OpenFOAM 795 100 8
Blocker, Crash, Feature, Major, Minor, Text,

Trivial, Tweak

Firefox 620 85 7
Blocker, Critical, Enhancement, Major,

Normal, Minor, Trivial

4.3.3 Parameter Settings

This subsection illustrates the user defined parameters setting of proposed BSCM. The

parameter settings of proposed model are presented in Table 4.2. Moreover, cross entropy is

considered as loss function for the optimization process.

4.3.4 Results

This subsection describes the simulation results of proposed BSCM. The performance of BSCM

is tested over five different datasets and evaluated using different performance measures

presented in subsection 4.3.1. Further, the simulation results of proposed model are taken in

terms of binary classification and multi class classification. The simulation results of binary

classification are compared with existing Zhou et al. model [26].

73

Table 4.2: Parameters setting of proposed BSCM

Parameter Value

Input 1000*200

Dropout Rate 0.2

Activation Function sigmoid, Tanh

Filter Size 20

Stride 1

Depth 128

Pooling Max Value

Fully connected layer Random forest

4.3.4.1 Binary Classification Results

This subsection presents the simulation results of proposed BSCM using binary classification.

For binary classification, bug datasets are divided into two classes i.e. bug and non-bug. The

simulation results of proposed model are compared with Zhou et al. model [65]. The precision,

recall and f-measure parameters are considered to evaluate the performance of proposed model.

Table 4.3 illustrates the simulation results of proposed model and Zhou et al. model. It is

observed that proposed model obtains better quality results than Zhou et al. model. It is seen

that proposed model obtains the f-measure rate in the range of 91- 99%, while the f-measure

rate of Zhou et al. model ranges in between 79-93%. On the analysis of precision parameter, it

is stated that precision rate of proposed model is in between 92-99%. Whereas, Zhou et al. model

achieves the precision rate in the range of 80-93%. Moreover, it is also revealed that proposed

model obtains higher recall rate using all datasets i.e. 92-99%. Whereas, the recall rate of Zhou

et al. model is ranging in between 80-93%. Hence, it is concluded that proposed model improves

the severity classification rate significantly than Zhou et al. model. From simulation results, it

is noticed that the proposed deep learning based feature extraction technique determine the

relevant features for prediction task. It is stated that proposed feature extraction technique

enhances the results of proposed BSCM.

74

Table 4.3: Experimental results of proposed model and Zhou et al. model using five datasets

Datasets

Zhou et al. Proposed model

Precision

(%)

Recall

(%)

F-measure

(%)

Precision

(%)

Recall

(%)

F-measure

(%)

Mozilla 82.60 82.40 81.70 98.48 98.52 98.12

Eclipse 81.80 82.10 81.60 99.38 99.48 99.12

JBoss 93.70 93.70 93.70 98.88 98.95 98.42

OpenFOAM 85.30 85.30 84.70 95.25 95.35 94.55

Firefox 80.30 80.50 79.50 92.75 92.95 91.95

Figure 4.5: Comparison of proposed model and Zhou et al. model using F-measure parameter

Figure 4.5 demonstrates the simulation results of proposed model and Zhou et al. model for all

datasets using f-measure parameter. It is seen that proposed model obtains higher f-measure rate

than Zhou et al. model using all dataset. It is also noticed that proposed model obtains higher f-

measure rate for Eclipse dataset i.e. 99.12 % than Mozilla, JBoss, OpenFOAM and Firefox

datasets.

75

Figure 4.6: Comparison of proposed model and Zhou et al. model using precision parameter

Figure 4.7: Comparison of proposed model and Zhou et al. model using recall parameter

76

The precision parameter results of proposed model and Zhou et al. model using all datasets is

presented in Figure 4.6. It is stated that proposed model provides higher precision rate than Zhou

et al. model. Further, it is also observed that proposed model obtain better precision rate for

Eclipse dataset. Figure 4.7 shows the simulation results of proposed model and Zhou et al. model

using recall parameter. Again, it is seen that proposed model obtains better recall rate as

compared to Zhou et al. model. It is also noted that proposed model obtains higher recall rate

for Eclipse dataset in comparison to other datasets being taken.

4.3.4.2 Multi- Class Classification Results

This section presents the simulation results of proposed BSCM using multi class severity

prediction. The multi class severity prediction is more difficult than binary severity prediction.

Hence, efficiency of the proposed model is also investigated using multi class severity

prediction. It is also mentioned that previous works is not reported on multi class severity

prediction in literature. The same datasets are used for multi class severity prediction. The details

of these datasets along with the severity classes is presented in Table 4.1. The simulation results

are evaluated using f-measure, recall, precision and accuracy parameters. The simulation results

of proposed model using all datasets are illustrated in Table 4.4. It is also observed that proposed

model effectively computes the f-measure, recall, precision and accuracy rates for each severity

class of every dataset. The average precision rate of proposed model for Mozilla, Eclipse, JBoss,

OpenFOAM and Firefox datasets is 94.47%, 96.19%, 94.55%, 98.67% and 97.33%

respectively. Whereas, average recall rate obtained by the proposed model for Mozilla, Eclipse,

JBoss, OpenFOAM and Firefox datasets is 91.46%, 93.57%, 91.76%, 95.96% and 94.76%

respectively. The average F-measure rate of Mozilla, Eclipse, JBoss, OpenFOAM and Firefox

datasets is 93.27%, 94.86%, 93.88%, 97.23% and 95.96% respectively. The average accuracy

rate of proposed model is 94.92%, 95.76%, 94.91%, 98.89% and 97.22% for Mozilla, Eclipse,

JBoss, OpenFOAM and Firefox datasets respectively. It is also noticed that JBoss dataset

achieves higher average accuracy, precision, recall and f-measure rate than others datasets.

Figures 4.8-4.11 demonstrates the simulation results of proposed model using accuracy,

precision, recall and f-measure parameters for all datasets in graphical manner. It is stated that

average results of all classes of each dataset is used to plot these figures. Hence, it is concluded

that the proposed model is also capable and efficient for multi class severity prediction.

77

Table 4.4: Experimental results of proposed model for severity classification using five datasets

Datasets Classes Precision (%) Recall (%) F-measure (%) Accuracy (%)

Mozilla

Blocker 82.9 80.23 81.54 85.45

Critical 96.43 95.34 94.34 96.33

Enhancement 95.33 80.22 95.45 97.43

Major 98.45 97.45 92.34 96.3

Normal 97.44 95.34 96.45 95.24

Minor 94.35 96.34 97.44 96.34

Trivial 96.35 95.34 95.33 97.33

Firefox

Blocker 86.16 83.35 84.73 83

Critical 97.97 92.23 95.27 97.92

Enhancement 98.3 92.23 95.98 97.55

Major 97.98 97.61 96.64 97.19

Normal 97.28 96.9 97.64 97.53

Minor 97.23 97.04 97.24 98.33

Trivial 98.43 95.68 96.52 98.85

Eclipse

Blocker 80.34 81.23 83.45 83.45

Critical 97.33 89.23 96.35 98.33

Enhancement 98.34 90.29 95.35 98.32

Major 99.4 97.85 95.85 97.22

Normal 97.35 97.29 98.4 97.24

Jboss

High 96.8 97.29 97.84 98.29

Low 98.27 97 96.75 98.93

Medium 99.08 95.45 96.72 99.22

Unspecified 99.59 93.68 97.08 99.19

Urgent 99.59 96.37 97.76 98.82

OpenFOAM

Blocker 83.45 82.34 83.45 83.4

Crash 98.7 98.42 98.89 99.38

Feature 99.28 97.81 98.33 98.56

Major 99.61 98.51 97.11 99.54

Minor 99.06 95.29 97.02 99.28

Text 99.29 91.21 97.3 99.77

Trivial 99.45 95.52 97.05 99.22

Tweak 99.82 99.02 98.57 98.68

78

Figure 4.8: Illustrates the results of proposed BSCM using accuracy parameter of all datasets

Figure 4.9: Illustrates the results of proposed BSCM using precision parameter of all datasets

Figure 4.10: Illustrates the results of proposed BSCM using recall parameter of all datasets

79

Figure 4.11: Illustrates the results of proposed BSCM using f-measure parameter of all datasets

RQ1: Can deep learning approach extract relevant features for automated BSCM?

Ans. RQ1): In the proposed BSCM, two techniques are employed i.e. deep learning and RFB.

The deep learning techniques is employed to extract relevant features and RFB is applied for

classification and prediction task. RFB is the combination of random forest and boosting

methods and applied to predict the severity classes. In proposed model, initially N-gram

techniques are applied to extract the features from bug reports. The extracted features are stored

in a feature set. But, it is noted that all features are not equally important and some of are

irrelevant. In turn, the performance of bug severity model can be degraded. To improve the

performance of bug severity model, various researchers have adopted feature extraction

technique to refine the feature set. In this work, deep learning based feature extraction technique

is applied to determine the relevant features form feature set. It is stated that N-gram technique

extracts 90, 68, 75, 100, 85 features for Mozilla, Eclipse, JBoss, OpenFOAM and Firefox

datasets respectively. Further, deep learning based feature extraction method is applied on above

mentioned feature set to identifies relevant features for design the final dataset. It is stated that

deep learning technique significantly reduces features in feature set for all datasets. The relevant

features determined through deep learning technique for Mozilla, Eclipse, JBoss, OpenFOAM

and Firefox datasets are 7, 5, 5, 8 and 7 respectively. These features are used to design the final

datasets and these datasets are used to test the efficiency of proposed BSCM. The simulation

results of proposed model are reported in Table 4.3 and 4.4 for binary and multi class severity

80

prediction respectively. It is stated that proposed model obtains state of art results for severity

prediction as compared Zhou et al. model. The significant improvement can be seen in

simulation results of proposed model. It is only possible due to extraction of relevant features

using deep learning based feature extraction technique. Hence, it is stated that deep learning

technique extracts relevant features for automated BSCM and also improve the severity

prediction results.

RQ2. Is integration of random forest and boosting method improve the performance of

BSCM than traditional machine learning technique?

Ans. RQ2): In BSCM, RFB classifier is proposed for prediction the severity classes. The RFB

classifier is the combination of random forest and boosting methods. In RFB, random forest

method constructs all possible tree structure using the features of datasets. Whereas, boosting

method computes threshold values of each node of the tree. The simulation results of proposed

BSCM model is compared with Zhou et al. model. This model consists of Multinomial Naive

Bayes (MNB) classifier for severity prediction. The simulation results of both models are

reported in Table 4.3. It is observed that proposed model provides more significant results than

Zhou et al. model. It is noticed that average f-measure of proposed model ranges in between

91% to 99 %, whereas f-measure rate of Zhou et al. model is in between 79-93%. Similar types

of results are obtained for recall and precision parameters using proposed model and Zhou et al.

model. Hence, it can be said that proposed model outperforms than Zhou et al. model. In

proposed model, RFB classifier is implemented for severity prediction. So, it can be stated that

integration of random forest and boosting method improves the performance of BSCM and also

provides better results than traditional machine learning technique.

4.4 Summary

In this chapter, a bug severity model based on deep learning and RFB method is proposed for

severity classification, called BSCM. In the proposed model, deep learning based feature

extraction technique is applied to determine the relevant features for the prediction of severity

classes. Further, RFB classifier is developed to classify the data in different severity classes.

The RFB technique is the combination of random forest and boosting methods. The performance

of the proposed model is tested over five different datasets. The simulation results are evaluated

using f-measure, precision, recall and accuracy parameters. Moreover, the results are also

81

interpreted using binary severity prediction and multi class severity prediction. The performance

of proposed model is compared with Zhou et al. model for binary bug severity prediction. It is

observed that proposed model provides better results than Zhou et al. model. It is also stated that

proposed model also obtains good results for multi class severity prediction. Hence, it can be

said that proposed model is one of efficient, effective and capable model for bug severity

prediction.

82

CHAPTER 5

DEVELOPER RECOMMENDATION SYSTEM FOR BUG

ASSIGNMENT

5.1 Introduction

A bug repository consists of large number of bug reports. These bugs can be characterized as

valid, invalid, important, unique, critical, duplicate, blocker, unimportant and so on [82]. All

these bugs are analyzed through triager. The task of triager is to identify the real and important

bugs that can require immediate attention of the developer to resolve it. Hence, to identify the

appropriate developer for resolving the bugs is one of difficult task [83]. On the other side, large

number of bugs are deposited in bug repository per day and size of bug repository increases

tremendously. It becomes challenging for a triager to handle the bugs manually and also

determine the important bugs that need to be addresses quickly [84-86]. So, to determine the

appropriate developer to address the important bugs efficiently and quickly is challenging task

for bug assignment model [95-97]. This chapter addresses the appropriate developer issue of

bug assignment model. This issue is handled through severity prediction of bugs and further,

the developers are assigned to resolve the bugs on the basis of three metrics. Hence, in this

chapter, a new bug assignment model is developed to determine the appropriate developer. The

proposed model is based on swarm intelligence [120] and machine learning (ML) approaches

[121]. The swarm intelligence technique is applied to extract the important attributes of bug

reports. Whereas, ML techniques are employed to identify the bugs severity.

5.2 Proposed Developer Recommendation (DevRE) System

This section presents the developer recommendation system for bug assignment based on swarm

intelligence and ML approaches. The aim of proposed model is to predict the bugs severity and

choose the appropriate developer for resolving the bugs according bugs severity. Further, in this

work, ant colony optimization (ACO) based feature weighting technique is applied to determine

the important attributes from the feature set. The NB and SVM approaches are used to measure

the severity of bugs [122-123]. Further, a list of developer is available as per bugs severity that

can solve the bugs efficiently and quickly in past. The schematic working of proposed model is

83

illustrated in Figure 5.1 and consists of four phases. These phases are preprocessing, feature

extraction, ACO based feature weighting, and developer assignment.

Figure 5.1: Proposed Developer Recommendation System

5.2.1 Preprocessing Phase

The first phase of proposed bug assignment model is preprocessing phase. In this phase, various

preprocessing methods are employed on the content of bug reports. The bug reports are

described in any natural language especially English and consist of paragraphs. The objective

of preprocessing phase is to determine the tokens from paragraph and this process is known as

tokenization. Further, stop words and unwanted words are removed from the list of tokens [110].

Bug Reports with

Title, Description,

comments, developer

and Summary

Preprocessing Feature Extraction

ACO Based Feature

Selection

Normalized

Text Feature Set

Phase 1 Phase 2

Phase 3

Reduced Feature

Set

Phase 4

Developer Recommendation

Average Bug Fixing Time Capability Ranking

Historical Capability

Score

Severity Classification

NB and SVM Classifiers

Score

Bug Fixing Time

Score

Final Recommendation

Developer Ranking

Expertise Scores

84

5.2.2 Feature Extraction Phase

In this phase, TF-IDF and N-gram methods are applied to extract the features and also described

the textual features as vector-space model [116,124]. This model describes the bug reports in

terms of weighted features and this process is illustrated using equation 5.1.

BRx = (w1f1, w2f2, … … . wnfn) (5.1)

Where, n denotes the total number of features and wifi is the weight of ith feature.

Further, it is stated that TF-IDF is a statistical method for extracting the informative features.

This method considers the frequency of words to identify the features in bug reports and

importance of features is measured through its occurrence. Words (feature) that are frequently

occurred in bug reports, having more significance and weight than other words or feature.

Sometimes, it is not necessary that frequency of words can be considered as significant

parameter to measure the importance of features. Assume, tf(x, y) is the term frequency of yth

feature in the bug report BRx , df(y) is the document frequency of yth feature and N represents

the total number of bug reports in the corpus. TF-IDF is computed using equation 5.2.

TF − IDF(x, y) = tf(x, y) × log (
N

df(y)
) (5.2)

TF-IDF represents each feature in vector space and corresponding bug report vector is

described using equation 4.3.

VBRx
= (tf(BRx, y1), tf(BRx, y2) … … . tf(BRx, yx)) (5.3)

A feature in vocabulary expresses the dimension of bug report vector. Suppose, tf(BR2, y1) is

the term frequency with feature y1 in bug report BR2. If a query feature is not present in bug

report, then zero value is put in the matrix for corresponding feature. If, this value is multiplied

with other features, the values of these features will be zero. Hence, the corresponding bug

report is not retrieved, and it is known as data sparsity. The data sparsity issue is handled through

N-gram method. Because, it follows word pairs paradigm i.e. bigrams and trigrams and also

preserve the semantic relationship of texts. It is based on the feature segment and weight of N-

gram is calculated using equation 5.4.

F(fn|fn−N+1
n−1) =

C(fn−N+1
n−1 fn) + 1

C(fn−N+1
n−1) + v

 (5.4)

Where, fn is the next feature, fn−N+1
n−1 represents the sequence of features, v is the total number

of possible (N-1) gram and C is the probability.

85

5.2.3 Feature Selection Phase

The aim of this phase is to select the relevant features for measuring bugs severity. In feature

extraction phase, lot of features are extracted based on statistical and semantic information of

bug reports. But, it is observed that all features are not equally important. Sometimes, large

number of features can result in low prediction rate and also responsible for non-linearity

problem in data. In turn, the performance of classifiers can be degraded. Hence, feature selection

is an important technique that can improve the performance of classifiers. In this technique,

relevant features are selected from the feature set. In this work, ACO based feature selection

technique is applied to select the optimum features for bug severity. This algorithm is developed

by Dorigo et al. for solving the constrained and unconstrained optimization problems [125].

This algorithm has been applied to solve variety of optimization problems such as function

optimization, clustering, wireless sensor network, image processing, routing etc. [126-129], and

obtains optimal results for these problems. In feature selection phase, an ACO based feature

weighting technique is implemented to identify the relevant features for bug severity prediction.

The aim of this technique is to compute the weight of each features presented in the feature set.

The weight of features is used to determine the significance of features and further, the features

with higher weight are selected for bugs severity prediction. The working of ACO based feature

weighting technique is described as follows. To determine the relevant features, the entire

dataset divides into k number of clusters. Initially, k number of cluster centers are randomly

chosen from the dataset. Further, the cluster centers are optimized using the ACO based

clustering algorithm. The next step is to arrange the different data instances into k clusters using

distance function. Generally, Euclidean distance is used for data arrangement in respective

Algorithm 5.1: Preprocessing and Feature weighting

Input: BRh = (BR1,BR2, … … . . BRh) a textual bug reports with seven classes,

 h=7.

Output: BRh = (BR1
′ , BR2

′ … … … BRh
′) feature set of bug reports.

Step 1: Read each bug report, bug reports of class, from the bug report dataset.

Step 2: Tokenized the text and removed the stop words from the text.

Step 3: Calculate the occurrence weight for every unigram feature of the BR, by TF-

IDF approach.

Step 4: Calculate the occurrence weight for every bi-gram and tri-gram in bug report

BR, by N- gram approach.

86

clusters [130]. Now, a weight function is used to compute the weight of each feature of feature

set and on the basis of weight function, features are selected for severity prediction. The working

procedure of ACO based feature weighting is illustrated in figure 5.2. Consider, a bug report

with n number of features, m number of data.

Figure 5.2: ACO based feature weighting process

instances, and k number of clusters. The features of bug report are described

using D1, D2, D3, … . , Dn. Step 1 illustrates the features of bug dataset and corresponding values

of these features. Step 2 corresponds to bug severity levels identified through ACO based

clustering algorithm and the predicted severity levels can be associated with each bug report

such as SL1, SL2, SL3, … . , SLn. A weight function (Wg) is also computed for each severity level.

This weight function is multiplied with features values to obtain the final weight of features. In

step 3, weight of each feature bug dataset is computed through a weight function. The weight

function (wg) is described using equation 5.5 and it is computed for each attribute of sample

dataset. The weight coefficient is computed using following equations.

wg =
∑ Fg

D
g=1

∑ Cg
D
g=1

 i. e. Fg =
∑ ∑ xi,k

𝑛
𝑖=1

SL
k=1

i
 (5.5)

 In equation 5.5, wg represents the weight coefficient of gth feature, Fg denotes the average

weight of gth feature, Cg denotes the cluster center of gth feature computed through ACO

D1

𝑏1 × 𝑤2𝑝2

𝑏2 × 𝑤1𝑝1

𝑏3 × 𝑤1𝑝1

….

….

𝑏𝑛 × 𝑤3𝑝3

ACO based clustering

D1 D2 …. Dm

b1 c1 …. e1

b2 c2 …. e2

b3 c3 …. e3

…. …. …. ….

…. …. …. ….

bn cn …. en

D1 D2 …. Dm severity

b1 c1 …. e1 p2

b2 c2 …. e2 P2

b3 c3 …. e3 p1

…. …. …. …. ….

…. …. …. …. ….

bn cn …. en P3

ACO based Feature Weighting

Step 1: Sample Dataset

Step 2: Data labelling

Step 3: Attribute weighting

87

algorithm, i denotes number of bug reports with same severity level within in the features, SL

denotes the severity level of bug reports. The steps of proposed ACO based feature weighting

technique is given in Figure 5.3 and Algorithm 5.2

Algorithm 5.2 : Proposed ACO Based Feature Weighting Technique

Input: Bug report dataset

Output: Reduced feature set

Step 1: Load the dataset and specify the numbers of initial clusters centers

Step 2: Initialize the population of ants, set the intensity of pheromone trial and maximum

iteration.

Step 3: Randomly identified initial cluster centers for every ant

Step 4: Evaluate the value objective function using sum of squared distances and assign

the items to the clusters with minimum objective function

Step 5: While (condition is not met)

Step 6: Calculate the transition probability using equation 5.6

 𝑝𝐴(𝑇) =
(𝜏𝐴(𝑇))

𝛼
.𝜂𝐴

𝛽

∑ (𝜏𝐴(𝑇))
𝛼

.𝜂𝐴
𝛽

𝐴

 (5.6)

Step 7: Update the pheromones using equation 5.7.

 𝜏𝐴(𝑇 + 1) = 𝜌𝜏𝐴(𝑇) + ∆𝜏𝐴(𝑇) (5.7)

Step 8: Determine the new positions of ants

Step 9: Recalculate the value of objective function

Step 10: End while

Step 11: Obtained the optimal clusters centers

Step 12: Determine the final weights of each features (fi) by using equation 5.8

𝑓𝑖 = (∑ ∑ ∑
𝑋𝑖ℎ

𝐶𝑖𝑘

𝑘

𝑘=1

ℎ

𝑗=1

𝑑

𝑖=1

) ×
1

𝑑
 (5.8)

Step 13: Select the features with maximum weight.

* ηβ describe the background information of features to improve the results, τA(T) is pheromone

amount for the Ath feature in time T, α and β are the control parameters that provides the pheromone

and background information, and pA(T) is the Transition probability , ρ is defined as evaporation rate

of pheromone trail and lies between [0, 1], ∆τA(𝑇) is the pheromone trail amount added to Ath feature

between time ∆ and ∆𝑇 , d is the total number of features, h is the number of data instance, k is the

number of clusters, 𝑋𝑖ℎ is the ith feature of hth data instance, 𝐶𝑖𝑘 is the ith feature of kth cluster

The output of feature selection phase is reduced set of features. Further, these features are used

to train the machine learning classifier and predict the bugs severity.

88

Figure 5.3: Flow chart of proposed ACO Based Feature Weighting Technique

Load the dataset

Specify the numbers of initial clusters centers

Initialize the population of ants, set the intensity of

pheromone trial and maximum iteration

Randomly identified initial cluster centers for every

ant

Evaluate the value objective function and assign the

items to the clusters with minimum objective

function

Calculate the transition probability

Is max iteration

reached

Update the pheromones

Determine the new positions of ants

Recalculate the value of objective function

Obtained the optimal clusters centers

Determine the final weights of each features

Select the features with maximum weight.

Stop

N
Y

89

5.2.4 Developer Recommendation Phase

This subsection presents the idea of developer recommendation system. This phase provides a

list of relevant developer to solve the bug reports. The appropriate developers are identified

using metrics, similarity and recommendation processes. These processes are described below.

5.2.4.1 Proposed Metrics: To determine the relevant developer, three matrices are proposed in

this work. These metrics are capability ranking, bug severity level and average bug fixing time.

The final ranking of developer is devised on the basis of these metrics. These metrics are

described as follows.

 Capability Ranking(𝐂𝐝𝐞𝐯): This ranking is based on the developer’s skills for solving the bug

reports. It is noticed that each bug report requires some specific skill to solve it. It is stated that

a developer can handle the bug reports efficiently, if similar type of bug is solved in near past.

Hence, capabilities of developer’s can be explored for solving bug reports. Further, it is also

observed that capabilities of developer’s can be tested through machine learning approaches

with respect to historical data. If, a new bug is reported in bug repository, its severity is

measured. A relevant developer is identified using machine learning approaches for solving it.

The capability ranking is based on the skills of developers to fix the bugs. It can be computed

using the past experience of developers for fixing the bugs. So, in this work, capability ranking

is used to rank the developers instead of machine learning classifiers.

 Bug Severity Level: In this work, bug severity is also considered as possible metric for rank

the developers. It is fact that all bugs are not equally important and not required immediate

attention. Some bugs are classified as more severe than other and these bugs require immediate

attention of developer. Otherwise, unusual things will be reported. So, the severity of bug reports

is important aspect and can be classified into different severity levels. It can be easily done

through NB and SVM classifiers. It is stated that bug report datasets are available in literature

and machine learning classifiers can be trained on these datasets and predicted the severity

levels. If, new bugs are added into repository, severity level of these bugs can be predicted

through machine learning classifiers. Further, the appropriate developer is allocated to fix the

bugs. It is also assumed that list of developers is prepared according severity levels. But, a

developer can fix the bugs with more than one severity levels. So, a weighted severity list is

described for each developer that maintains the sequence of severity levels handled through

developer. It can be defined as ratio of different severity level of bugs handled through a

90

developer and number of bugs fixed. The weighted severity list is computed using equation 5.9

for a developer.

SLlist = ∑ β ×
Bugi

Total Bug

SL

i=1

 (5.9)

In equation 5.9, Bugi denotes ith level of bug severity, SL denotes the number of severity levels,

β represents the criticality of bugs to be resolved and SLlist denotes the severity list associated

with developers.

 Average Bug Fixing Time (𝐓𝐚𝐯𝐠): This metric is described in terms of average time taken by

a developer for fixing the bugs. Bug fixing time consists of various factors such as problem

formulation through developers, solution construction, review and assess the code. It is also an

important parameter to identify the relevant developer due to criticality of bugs. The average

bug fixing time can be defined as ratio of total time taken by a developer to solve bugs and

number of bugs solved.

On the analysis of bug reports, it is noticed that bug reports consist of different fields such as

component, product, timestamp, severity level, expertise etc. Hence, the afore mentioned

metrics are multiplied to obtain the final ranking of developers and it is computed using equation

5.10.

Drank = γ1Cdev + γ2SLlist + γ3Tavg (5.10)

In equation 5.10, Drank denote the final rank of developers, Cdev describes the capability

learning of developer, SLlist denotes severity level of bugs and Tavg denotes the average bug

fixing time. γ1, γ2 and γ3 are three control parameters such that γ3 < γ1 < γ2 and value of

these parameter is in the range of 0 and 1.

5.2.4.2 Similarity Process

Whenever, a new bug is reported in the bug repository system. The features are extracted from

bug reports. Further, similarity process in invoked to measure the severity of bug reports and

also to determine the appropriate developer. In this work, cosine similarity is adopted for

measuring the similarity between bug reports and appropriate developer. Through the similarity

process, a list of potential developers is prepared to fix similar type of bugs.

91

5.2.4.3 Recommendation Process

The final step of developer recommendation phase is to determine the rank of developers.

Developers are ranked according their capability to handle and fix the bugs. Basically, developer

metrics i.e. capability ranking, bug severity level and average bug fixing time are used to rank

each developers and final ranking of developer is computed using equation 5.10. Moreover, a

similarity measure is applied to determine capable developer based on final ranking. This

process fetches the appropriate developer from existing system to fix the bugs and allocated to

top ranked developer for its solution. If top ranked developer is not free, then it will be allocated

to next one in the list. This process is continued until bugs are not fixed.

5.3 Results and Discussion

This section describes the simulation results of proposed bug assignment model. The proposed

model is implemented using JAVA programming language. The performance of the proposed

model is tested using four datasets. These datasets are Eclipse, Firefox, JBoss, OPENFoam and

Mozilla. The details of these datasets are presented in Table 5.1. Further, the recall, precision,

F-measure and accuracy parameters are considered to determine the severity levels of bugs

[119]. Whereas, recall@5 and recall@10 parameters are used to measure the performance of

proposed bug assignment model [131]. Hence, in this work, two experiment are conducted and

these experiments are listed as

 Experiment 1: Bugs Severity Level Prediction

 Experiment 2: Identification of Relevant Developer for Fixing Bugs

Table 5.1: Details of bug reports considered for experiment [65].

Dataset No. of Bugs BTS Severity Level

Mozilla 539 Bugzilla 7

Eclipse 693 Bugzilla 5

JBoss 573 Redhat Bugzilla 5

OpenFOAM 795 Manits 8

Firefox 620 Bugzilla 7

5.3.1 Experiment 1: Results and Discussion

This subsection presents the simulation results of bugs severity level prediction. To predict the

bug severity levels, ACO-NB and ACO-SVM approaches are used. Initially, relevant features

92

of bugs reports are identified through ACO based feature weighting technique and further, SVM

and NB machine learning classifiers are used to predict the bug severity level. Simulation results

of these approaches are evaluated using accuracy, F-measure, recall and precision parameters

and compared with SVM and NB approaches. Table 5.2 presents the simulation results of bug

severity level prediction using five well known datasets. These datasets are Eclipse, Mozilla,

JBoss, OpenFOAM and Firefox. It is observed that ACO-NB approach provides better results

than ACO-SVM, SVM and NB approaches using all datasets. It is also noticed that SVM

approach exhibits worst results for most of datasets. On other side, it is stated that ACO-SVM

provides more accurate bug severity prediction in comparison to SVM and NB approaches.

Hence, it is concluded that ACO based feature selection technique improves the simulation

results of SVM and NB considerably.

Table 5.2: Comparison of proposed bug assignment model, NB and SVM Classifiers for all five datasets

Approaches Datasets
Performance Parameters

Precision (%) Recall (%) F-measure (%) Accuracy (%)

ACO-NB

Mozilla 78.75 77.51 78.61 80

Eclipse 81.05 77.43 79.69 79.6

JBoss 80.85 79.23 80.52 79.6

OpenFOAM 77.59 76.85 77.71 78.25

Firefox 77.04 77.22 77.62 79

ACO-SVM

Mozilla 75.71 77.09 76 76.21

Eclipse 73.33 72.08 72.53 74.72

JBoss 73.65 72.56 72.62 75.24

OpenFOAM 76.46 73.33 74.52 74.52

Firefox 71.78 68.01 68.78 71.78

NB

Mozilla 74.32 71.79 73.52 75.85

Eclipse 72.85 71.22 72.52 73.4

JBoss 74.05 70.42 72.69 74.8

OpenFOAM 73.71 72.24 73.45 74.5

Firefox 73.03 72.08 73.05 75.57

SVM

Mozilla 72.62 75.51 73.57 73.67

Eclipse 73.56 68.73 70.89 71.67

JBoss 73.95 69.12 70.91 71.67

OpenFOAM 74.46 72.65 73.14 71.87

Firefox 69.22 67.22 67.38 65.34

Figure 5.4 shows the simulation results of ACO-NB, ACO-SVM, NB and SVM using precision,

recall, F-measure and accuracy parameters for Eclipse dataset. It is stated that ACO-NB

93

approach provides more significant results than other approaches being compared. It is also

observed that SVM exhibits worst performance among all approaches. The simulation results

of bug severity level prediction using Firefox dataset are presented in Figure 5.5. It is seen that

ACO-NB approach obtains better result for severity levels prediction as compared to ACO-

SVM, NB and SVM approaches. It is also revealed that NB approach gives more accurate results

than ACO-SVM and SVM approaches due to linearity of data. It is noticed that if data is linear

separable, then the performance of SVM classifier is not up to mark.

Figure 5.4: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Eclipse

dataset

Figures 5.6 presents the simulation results of ACO-NB, NB, ACO-SVM and SVM approaches

using OpenFOAM dataset. It is noticed that ACO-NB outperforms than other approaches being

compared. It is also observed that SVM approach achieves better recall and precision rates as

compared to NB approach. While, NB approach provides better result using F-measure and

accuracy parameters for OpenFOAM datasets. The simulation results of all approaches for

severity levels prediction using JBoss dataset are reported in Figure 5.7. It is stated that ACO-

NB provides better results for severity levels prediction as compared to ACO-SVM, NB and

SVM approaches. Further, SVM approach exhibits worse results for JBoss dataset using recall,

94

F-measure and accuracy parameters. It is also observed that precision rate of ACO-SVM, NB

and SVM approaches is almost similar.

Figure 5.5: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Firefox

dataset

Figure 5.6: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using

OpenFOAM dataset

95

Figure 5.7: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Jboss

dataset

Figure 5.8: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Mozilla

dataset

Figure 5.8 illustrates the results of bug severity level of ACO-NB, ACO-SVM, NB and SVM

approaches using Mozilla dataset. It is noted that ACO-NB approach predicts the bugs severity

96

more accurately in comparison to other approaches. It is observed that SVM exhibits poor

performance for Mozilla dataset in terms of precision and accuracy parameters. Whereas, the

recall rate of NB approach is worse among all approaches. It is also observed that accuracy rate

of ACO-SVM and NB approaches is almost similar. Hence, it can be revealed that ACO-NB

approach provides more promising results for bugs severity level prediction.

5.3.2 Experiment 2: Results and Discussion

Experiment 2 corresponds to the identification of appropriate developers for fixing the bugs. To

determine the appropriate developer, three metrics are deigned to rank each developer. It is also

stated that weightage of severity level metric is higher than other two metrics. The efficacy of

proposed DevRE system is tested using five bug datasets. Further, recall@5, recall@10,

precision@5 and precision@10 parameters are used to evaluate the performance of proposed

system. Table 5.3 presents the simulation results of proposed developer recommendation

system. It is observed that proposed recommendation system works efficiently with recall@10

parameter than recall@5. It is also seen that proposed recommendation system achieves higher

recall@10 rate i.e. 67.83 for Eclipse dataset, whereas, low recall@10 rate i.e. 51.07 is obtained

for Firefox dataset. On the analysis of recall@5, it is noted that proposed recommendation

system provides higher recall@5 rate i.e. 52.37 with Mozilla dataset and less recall@5 rate i.e.

37.56 for Firefox dataset. Further, it is noticed that proposed recommendation system gives

better precision results using precision@10 than precision@5. It is observed that optimum

precision@5 result are obtained for Firefox dataset, whereas Mozilla datasets exhibits worst

precision results among all datasets. It is also seen that proposed system provides similar

precision@10 rate i.e. 13.69 and 13.83 for Eclipse and Mozilla datasets respectively. The higher

recall@10 rate obtains for Firefox dataset i.e. 18.45 among all datasets. The results of proposed

developer identification system are also compared with other existing recommendation systems

using Eclipse and Firefox datasets. These systems are ReComm, Drex-Frequency, Drex-

Outdegree, Bugzie and Dretom [132,86,85,89]. Drex recommendation system is based on k-

nearest-neighbor search and expertise ranking [86]. Bugzie recommender system is based on

fuzzy set theory and cache method. It is developed for bug triage [85]. Dretom recommendation

system is based on topic models and designed for bug resolutions [89]. The results are compared

using recall and improvement parameters.

97

Table 5.3: Simulation results of proposed DevRE system using different bug datasets

Dataset
Parameter

Recall@5 Recall@10 Precision@5 Precision@10

Eclipse 49.68 67.83 19.34 13.69

Firefox 37.56 51.07 24.73 18.45

JBoss 41.24 54.67 18.27 15.53

OPENFoam 47.56 58.98 21.78 17.69

Mozilla 52.37 61.14 17.06 13.83

Table 5.4 illustrates the results of proposed recommendation system and other existing systems

using recall@5 and improvement (imp) parameters. It is stated that proposed recommendation

system obtains better results than other existing systems. The recall@5 rate of Eclipse and

Firefox datasets are 49.68 and 37.36 respectively. It is also revealed that Dretom system exhibits

poor performance among all recommendation systems. Further, it is also noticed that proposed

DevRE recommendation system improves the simulation results significantly.

Table 5.4: Simulation results of proposed DevRE system and other existing recommendation

 systems using Eclipse and Firefox.

Dataset Parameter Eclipse Firefox

Proposed DevRe recall@5 49.68 37.56

ReComm
recall@5 41.95 26.99

imp(%) 18.43 39.16

Drex-Frequency
recall@5 37.36 22.95

imp(%) 32.98 63.66

Drex-Outdegree
recall@5 36.24 22.03

imp(%) 37.09 70.49

Bugzie
recall@5 17.08 14.87

imp(%) 190.87 152.59

Dretom
recall@5 14.7 14.89

imp(%) 237.96 152.25

The simulation results of proposed DevRE system and other existing recommendation systems

using recall@10 and improvement (imp) are reported in Table 5.5. The proposed DevRE system

achieves higher recall@10 rate i.e. 67.83 and 51.07 for Eclipse and Firefox datasets as compared

to rest of recommendation systems. It is also stated that Dretom system obtains poor results

mailto:Recall@5
mailto:Recall@10
mailto:Precision@5
mailto:Precision@10
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5

98

among all compared recommendation systems. It is concluded that proposed DevRE system

significantly improves the bug assignment recommendation rate.

Table 5.5: Simulation results of proposed DevRE system and other existing recommendation

 systems using Eclipse and Firefox.

Dataset Parameter Eclipse Firefox

Proposed DevRe recall@10 67.83 51.07

ReComm
recall@10 56.41 40.63

imp(%) 20.24 25.7

Drex-Frequency
recall@10 47.98 35.56

imp(%) 41.37 43.62

Drex-Outdegree
recall@10 47.75 35.95

imp(%) 42.05 42.06

Bugzie
recall@10 30.39 25.02

imp(%) 123.2 104.12

Dretom
recall@10 24.45 24.99

imp(%) 177.42 104.36

Table 5.6 illustrates the simulation results of proposed DevRE system and other

recommendation systems using precision@5 and improvement (imp) parameters. It is observed

that proposed system gives better precision results than other existing recommendation systems

using both of datasets.

Table 5.6: Simulation results of proposed DevRE system and other existing recommendation

 systems using Eclipse and Firefox.

Dataset Parameter Eclipse Firefox

Proposed DevRe precision@5 19.34 24.73

ReComm
precision@5 16.91 21.17

imp(%) 14.37 16.82

Drex-Frequency
precision@5 16.79 20.87

imp(%) 15.19 18.5

Drex-Outdegree
precision@5 15.27 20.21

imp(%) 26.65 22.37

Bugzie
precision@5 9.8 14.44

imp(%) 97.35 71.26

Dretom
precision@5 7.97 14.18

imp(%) 142.66 74.4

mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5

99

But, the proposed system obtains better precision@5 results i.e. 24.73 for Firefox dataset rather

than Eclipse dataset i.e. 19.34. The worse precision@5 results are reported by Dretom and

Bugzie systems i.e. 14.18 and 14.44. Significant improvement is reported in precision@5 rate

using proposed system.

The simulation results of proposed system and other recommendation systems are reported in

Table 5.7. There is the significant difference between the performance of proposed DevRE

system and other recommendation systems using precision@5 and precision@10 parameters. It

is stated that proposed system provides better quality results than other existing system.

Whereas, Dretom system exhibits worse performance among all datasets.

Table 5.7: Simulation results of proposed DevRE system and other existing recommendation

 systems using Eclipse and Firefox.

Dataset Parameter Eclipse Firefox

Proposed DevRe precision@10 13.69 18.45

ReComm
precision@10 11.82 16.34

imp(%) 15.82 12.91

Drex-Frequency
precision@10 10.23 15.16

imp(%) 33.82 21.7

Drex-Outdegree
precision@10 10.17 15

imp(%) 34.61 23

Bugzie
precision@10 8.69 12.24

imp(%) 57.54 50.74

Dretom
precision@10 6.68 11.97

imp(%) 104.94 54.14

The performance of proposed DevRE recommendation system is also compared with some

machine learning based recommendation systems. The accuracy parameter is considered to

evaluate the performance of these systems. The performance of these recommendation systems

is tested on Eclipse, Firefox, OPENFoam and Mozilla datasets. Table 5.8 presents the simulation

results of proposed DevRE system, NB, SVM, and C4.5 based recommendation systems [97].

It is observed that proposed system obtains better quality results than other recommendation

systems. The proposed DevRE system obtains higher accuracy rate i.e. 80.16 for Eclipse dataset

mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10

100

and low accuracy rate i.e. 76.43 for Mozilla dataset. It is also seen that NB based recommender

system obtains worse results for Eclipse and Mozilla dataset, whereas, C4.5 provides worst

results for Firefox and OPENFoam datasets. Hence, it is concluded that proposed DevRE system

provides more effective and efficient results for bug recommendation as compared to existing

ones.

Table 5.8: Simulation results of proposed DevRE system and other existing machine learning

 based recommendation system using accuracy parameter

Dataset NB SVM C4.5 Proposed DevRe

Eclipse 65.22 77.21 73.55 80.16

Firefox 70.93 76.4 65.33 78.04

OPENFoam 67.95 77.44 66.62 79.74

Mozilla 61.41 72.9 69.31 76.43

5.4 Summary

In this chapter, a Developer Recommendation (DevRE) System is proposed for assigning the

bugs to relevant developers. The proposed DevRE system consists of four phases. In the

proposed model, ACO based feature weighting technique is implemented to determine the

relevant features for severity prediction. Moreover, three metrics i.e. capability ranking, bug

severity level and average bug fixing time are designed to determine appropriate developer for

bug fixing. Further, NB and SVM classifiers are applied to measure the bugs severity level. Two

experiments are considered to evaluate the performance of proposed bug assignment model. In

first experiment, bugs severity levels are predicted through ACO-NB and ACO-SVM

techniques. It is noticed that ACO-NB techniques provides more effective results for prediction

of bugs severity levels. In second experiment, several existing recommendation systems are

considered to compare the performance of proposed DevRE system for bug assignment. It is

observed that proposed DevRe system provides more accurate results than other

recommendation systems.

101

CHAPTER 6

CONCLUSION AND FUTURE SCOPE OF WORK

In this thesis, the bug resolution techniques are studied and categorized. The aim of this work

is to overcome the data dimensionality, sparsity and estimation issues of bug reports and also

improve the solution quality of bug resolution process. Thus, the primary objectives of the

thesis are to implement domain specific bug report summarization technique, improve the

accuracy of bug severity classification model and develop a model for bug assignment. To

address the above mentioned issues, three different models are developed for bug report

summarization, bug severity classification and bug assignment. The entire work is categorized

into three chapters.

In chapter three, a PSO-ACO based bug report summarization technique is developed to handle

bug summarization issue. The aim of proposed technique is to determine the optimum subset

of summary. In this chapter, a PSO-ACO based summary subset selection algorithm is

proposed. The simulations results showed that PSO-ACO based algorithm provides better

results for summarization task. It is also observed that combination PSO and ACO enhances

the simulation results of PSO technique in efficient manner.

The chapter four of thesis addresses the accuracy issue of bug severity classification models.

A bug severity model based on deep learning is proposed for severity classification, called

BCR. In BCR model, CN method is also integrated to determine relevant set of features for

severity classification. The performance of BCR model is compared with Zhou et al. model for

binary bug severity classification. It was showed that BCR model provides better results.

Chapter five deals with bug fixing issue of bug BRP. In this chapter, a developer

recommendation (DevRE) system is proposed to identify the relevant set of developers for bug

fixing. The appropriate developer for fixing the bugs is identified through three metrics. The

proposed DevRE system also integrates the ACO based feature weighting technique. The aim

of ACO technique is to determine optimal features for severity prediction. Whereas, NB and

SVM techniques are applied for classification of severity data. Further, severity classes are

used to determine relevant developers for bug fixing.

6.1 Future Scope

This thesis addresses the three issues of BRP process i.e. bug report summarization, severity

classification and bug assignment. To determine the optimal set of features, ACO and PSO

102

techniques is applied on bug report dataset. In future, some other meta-heuristic algorithms like

ABC, Cuckoo search, Bat algorithm will be explored to determine optimal features. Further,

NB, SVM and RFB classifiers are used to predict the severity classes and bug fixing. In future,

some ensemble classifiers and meta-heuristic techniques will be considered for severity

prediction and bug fixing. Furthermore, in future, bug duplicate detection, bug localization and

patch generation issues will be taken into consideration and proposed new models to address

these issues.

103

REFERENCES

[1] Charette, R.N., Why software fails [software failure]. IEEE spectrum, 42(9), pp.42-

49, 2005.

[2] Erlikh, L., Leveraging legacy system dollars for e-business. IT professional, 2(3),

pp.17-23, 2000.

[3] Zhang, T., Jiang, H., Luo, X., & Chan, A. T. A literature review of research in bug

resolution: Tasks, challenges and future directions. The Computer Journal, 59(5),

741-773, 2016.

[4] Aljedaani, W., &Javed, Y. Bug Reports Evolution in Open Source Systems. In 5th

International Symposium on Data Mining Applications (pp. 63-73). Springer, Cham,

2018.

[5] Angel, T. S., Kumar, G. S., Sehgal, V. M., & Nayak, G. Effective Bug Processing

and Tracking System. Journal of Computational and Theoretical Nanoscience, 15(8),

2604-2606, 2018.

[6] Eclipse. http://eclipse.org/.

[7] Nazar, N., Hu, Y., & Jiang, H. Summarizing software artifacts: A literature

review. Journal of Computer Science and Technology, 31(5), 883-909, 2016.

[8] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., &Guéhéneuc, Y. G. Is it a bug or

an enhancement?: a text-based approach to classify change requests. In CASCON

(Vol. 8, pp. 304-318), 2008

[9] Thomas, S. W., Nagappan, M., Blostein, D., & Hassan, A. E. The impact of classifier

configuration and classifier combination on bug localization. IEEE Transactions on

Software Engineering, 39(10), 1427-1443, 2013.

[10] Uddin, J., Ghazali, R., Deris, M. M., Naseem, R., & Shah, H. (2017). A survey on

bug prioritization. Artificial Intelligence Review, 47(2), 145-180.

[11] Jadhav, A., Jadhav, K., Bhalerao, A., & Kharade, A. A Survey on Software Data

Reduction Techniques for Effective Bug Triage. IJCSIT on Computer Science and

Information Technologies, 6(5), 4611-4612, 2015.

[12] Akila, V., Zayaraz, G., & Govindasamy, V. Bug triage in open source systems: a

review. International Journal of Collaborative Enterprise, 4(4), 299-319, 2014.

[13] Strate, J. D., & Laplante, P. A. A literature review of research in software defect

reporting. IEEE Transactions on Reliability, 62(2), 444-454, 2013.

[14] Anvik, J., Hiew, L. and Murphy, G.C., Who should fix this bug?. In Proceedings of

the 28th international conference on Software engineering (pp. 361-370). ACM,

May. 2006.

[15] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A. and Weiss, C.,

What makes a good bug report?. IEEE Transactions on Software Engineering, 36(5),

pp.618-643, 2010.

104

[16] Bettenburg, N., Premraj, R., Zimmermann, T. and Kim, S., Extracting structural

information from bug reports. In Proceedings of the 2008 international working

conference on Mining software repositories (pp. 27-30). ACM, May.2008.

[17] Breu, S., Premraj, R., Sillito, J. and Zimmermann, T., Information needs in bug

reports: improving cooperation between developers and users. In Proceedings of the

2010 ACM conference on Computer supported cooperative work (pp. 301-310).

ACM, February.2010.

[18] Dit, B. and Marcus, A., Improving the readability of defect reports. In Proceedings

of the 2008 international workshop on Recommendation systems for software

engineering (pp. 47-49). ACM, November. 2008.

[19] Gasser, L. and Ripoche, G., Distributed collective practices and free/open-source

software problem management: perspectives and methods. In 2003 Conference on

Cooperation, Innovation & Technologie (CITE'03)(Université de Technologie de,

2003.

[20] Haiduc, S., Aponte, J., Moreno, L. and Marcus, A., On the use of automated text

summarization techniques for summarizing source code. In 2010 17th Working

Conference on Reverse Engineering (pp. 35-44). IEEE, October. 2010.

[21] Hamou-Lhadj, A. and Lethbridge, T., Summarizing the content of large traces to

facilitate the understanding of the behaviour of a software system. In 14th IEEE

International Conference on Program Comprehension (ICPC'06) (pp. 181-190).

IEEE, June. 2006.

[22] Murray, G. and Carenini, G., Summarizing spoken and written conversations.

In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (pp. 773-782). Association for Computational Linguistics, October. 2008.

[23] Nenkova, A. and Louis, A., Can you summarize this? Identifying correlates of input

difficulty for generic multi-document summarization, 2008.

[24] Rastkar, S., Murphy, G.C. and Murray, G., Summarizing software artifacts: a case

study of bug reports. In 2010 ACM/IEEE 32nd International Conference on Software

Engineering (Vol. 1, pp. 505-514). IEEE, May. 2010.

[25] Rastkar, S., Murphy, G.C. and Murray, G., Automatic summarization of bug

reports. IEEE Transactions on Software Engineering, 40(4), pp.366-380, 2014.

[26] Jiang, H., Li, X., Ren, Z., Xuan, J. and Jin, Z., Toward Better Summarizing Bug

Reports with Crowdsourcing Elicited Attributes. IEEE Transactions on

Reliability, 68(1), pp.2-22, 2018.

[27] Huai, B., Li, W., Wu, Q. and Wang, M., Mining Intentions to Improve Bug Report

Summarization. In SEKE (pp. 320-319), 2018.

[28] Ponzanelli, L., Mocci, A. and Lanza, M., Summarizing complex development

artifacts by mining heterogeneous data. In Proceedings of the 12th Working

Conference on Mining Software Repositories (pp. 401-405). IEEE Press, May. 2015.

[29] Erkan, G. and Radev, D.R., Lexrank: Graph-based lexical centrality as salience in

text summarization. Journal of artificial intelligence research, 22, pp.457-479, 2004.

105

[30] Yeasmin, S., Roy, C.K. and Schneider, K.A., Interactive visualization of bug reports

using topic evolution and extractive summaries. In 2014 IEEE International

Conference on Software Maintenance and Evolution (pp. 421-425). IEEE,

September. 2014.

[31] Mani, S., Catherine, R., Sinha, V.S. and Dubey, A., November. Ausum: approach for

unsupervised bug report summarization. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering (p. 11). ACM,

2012.

[32] Lotufo, R., Malik, Z. and Czarnecki, K., Modelling the ‘hurried’bug report reading

process to summarize bug reports. Empirical Software Engineering, 20(2), pp.516-

548, 2015.

[33] Nithya, R. and Arunkumar, A., SUMMARIZATION OF BUG REPORTS USING

FEATURE EXTRACTION, 2016

[34] Jiang, H., Nazar, N., Zhang, J., Zhang, T. and Ren, Z., Prst: A pagerank-based

summarization technique for summarizing bug reports with duplicates. International

Journal of Software Engineering and Knowledge Engineering, 27(06), pp.869-896,

2017.

[35] Ferreira, I., Cirilo, E., Vieira, V. and Mourao, F., September. Bug report

summarization: an evaluation of ranking techniques. In 2016 X Brazilian Symposium

on Software Components, Architectures and Reuse (SBCARS) (pp. 101-110). IEEE,

2016.

[36] Li, X., Jiang, H., Liu, D., Ren, Z. and Li, G., Unsupervised deep bug report

summarization. In Proceedings of the 26th Conference on Program

Comprehension (pp. 144-155). ACM, May. 2018.

[37] Bhattacharya, P. and Neamtiu, I., Bug-fix time prediction models: can we do better?.

In Proceedings of the 8th Working Conference on Mining Software Repositories (pp.

207-210). ACM, May. 2011.

[38] Giger, E., Pinzger, M. and Gall, H., Predicting the fix time of bugs. In Proceedings

of the 2nd International Workshop on Recommendation Systems for Software

Engineering (pp. 52-56). ACM, May. 2010.

[39] Kim, S., Zimmermann, T., Whitehead Jr, E.J. and Zeller, A., Predicting faults from

cached history. In Proceedings of the 29th international conference on Software

Engineering (pp. 489-498). IEEE Computer Society, May. 2007.

[40] Knab, P., Pinzger, M. and Bernstein, A., Predicting defect densities in source code

files with decision tree learners. In Proceedings of the 2006 international workshop

on Mining software repositories (pp. 119-125). ACM, May. 2006.

[41] Kochhar, P.S., Thung, F. and Lo, D., Automatic fine-grained issue report

reclassification. In 2014 19th International Conference on Engineering of Complex

Computer Systems (pp. 126-135). IEEE, August. 2014.

106

[42] Ostrand, T.J., Weyuker, E.J. and Bell, R.M., Predicting the location and number of

faults in large software systems. IEEE Transactions on Software Engineering, 31(4),

pp.340-355, 2005.

[43] D'Ambros, M., Lanza, M. and Robbes, R., An extensive comparison of bug prediction

approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR 2010) (pp. 31-41). IEEE, May. 2010.

[44] D’Ambros, M., Gall, H., Lanza, M. and Pinzger, M., Analysing software repositories

to understand software evolution. In Software evolution (pp. 37-67). Springer, Berlin,

Heidelberg, 2008.

[45] Herzig, K., Just, S. and Zeller, A., It's not a bug, it's a feature: how misclassification

impacts bug prediction. In Proceedings of the 2013 international conference on

software engineering (pp. 392-401). IEEE Press, May. 2013.

[46] Kim, S., Zhang, H., Wu, R. and Gong, L., Dealing with noise in defect prediction.

In 2011 33rd International Conference on Software Engineering (ICSE) (pp. 481-

490). IEEE, May. 2011.

[47] Zeller, A., Can We Trust Software Repositories?. In Perspectives on the Future of

Software Engineering (pp. 209-215). Springer, Berlin, Heidelberg, 2013.

[48] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V. and Devanbu,

P., Fair and balanced?: bias in bug-fix datasets. In Proceedings of the the 7th joint

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering (pp. 121-130). ACM, August.

2009.

[49] Lamkanfi, A., Demeyer, S., Giger, E. and Goethals, B., Predicting the severity of a

reported bug. In 2010 7th IEEE Working Conference on Mining Software

Repositories (MSR 2010) (pp. 1-10). IEEE, May. 2010.

[50] Lamkanfi, A., Demeyer, S., Soetens, Q. D., &Verdonck, T., Comparing mining

algorithms for predicting the severity of a reported bug. In 2011 15th European

Conference on Software Maintenance and Reengineering (pp. 249-258). IEEE, 2011.

[51] Gegick, M., Rotella, P., &Xie, T., Identifying security bug reports via text mining:

An industrial case study. In 2010 7th IEEE Working Conference on Mining Software

Repositories (MSR 2010) (pp. 11-20). IEEE, 2010

[52] Chaturvedi, K. K., & Singh, V. B., Determining bug severity using machine learning

techniques. In 2012 CSI Sixth International Conference on Software Engineering

(CONSEG) (pp. 1-6). IEEE, September. 2012.

[53] Thung, F., Lo, D., & Jiang, L. Automatic defect categorization. In 2012 19th Working

Conference on Reverse Engineering (pp. 205-214). IEEE, October.2012.

[54] Yang, C. Z., Hou, C. C., Kao, W. C., & Chen, X., An empirical study on improving

severity prediction of defect reports using feature selection. In 2012 19th Asia-Pacific

Software Engineering Conference (Vol. 1, pp. 240-249). IEEE, 2012.

107

[55] Somasundaram, K., & Murphy, G. C., Automatic categorization of bug reports using

latent dirichlet allocation. In Proceedings of the 5th India software engineering

conference (pp. 125-130). ACM, Februray.2012.

[56] Bhattacharya, P., Iliofotou, M., Neamtiu, I., &Faloutsos, M. Graph-based analysis

and prediction for software evolution. In 2012 34th International Conference on

Software Engineering (ICSE) (pp. 419-429). IEEE, 2012.

[57] Pingclasai, N., Hata, H., & Matsumoto, K. I., Classifying bug reports to bugs and

other requests using topic modeling. In 2013 20th Asia-Pacific Software Engineering

Conference (APSEC) (Vol. 2, pp. 13-18). IEEE, 2013.

[58] Nagwani, N. K., Verma, S., & Mehta, K. K., Generating taxonomic terms for software

bug classification by utilizing topic models based on Latent Dirichlet Allocation.

In 2013 Eleventh International Conference on ICT and Knowledge Engineering (pp.

1-5). IEEE, 2013.

[59] Roy, N. K. S., & Rossi, B., Towards an improvement of bug severity classification.

In 2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications (pp. 269-276). IEEE, 2014.

[60] Limsettho, N., Hata, H., Monden, A., & Matsumoto, K., Automatic unsupervised bug

report categorization. In 2014 6th International Workshop on Empirical Software

Engineering in Practice (pp. 7-12). IEEE, November. 2014.

[61] Chawla, I., & Singh, S. K., An automated approach for bug categorization using fuzzy

logic. In Proceedings of the 8th India Software Engineering Conference (pp. 90-99).

ACM, 2015.

[62] Zhang, T., Yang, G., Lee, B., & Chan, A. T., Predicting severity of bug report by

mining bug repository with concept profile. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing (pp. 1553-1558). ACM, April.2015.

[63] Sharma, G., Sharma, S., &Gujral, S., A novel way of assessing software bug severity

using dictionary of critical terms. Procedia Computer Science, 70, 632-639,2015.

[64] Gujral, S., Sharma, G., & Sharma, S., Classifying bug severity using dictionary based

approach. In 2015 International Conference on Futuristic Trends on Computational

Analysis and Knowledge Management (ABLAZE) (pp. 599-602). IEEE, February.

2015

[65] Zhou, Y., Tong, Y., Gu, R., & Gall, H., Combining text mining and data mining for

bug report classification. Journal of Software: Evolution and Process, 28(3), 150-

176, 2016

[66] Jin, K., Dashbalbar, A., Yang, G., Lee, J. W., & Lee, B., Bug severity prediction by

classifying normal bugs with text and meta-field information. Advanced Science and

Technology Letters, 129, 19-24, 2016.

[67] Pandey, N., Sanyal, D. K., Hudait, A., & Sen, A., Automated classification of

software issue reports using machine learning techniques: an empirical

study. Innovations in Systems and Software Engineering, 13(4), 279-297, 2017.

108

[68] Jindal, R., Malhotra, R., & Jain, A., Prediction of defect severity by mining software

project reports. International Journal of System Assurance Engineering and

Management, 8(2), 334-351, 2017.

[69] Singh, V. B., Misra, S., & Sharma, M., Bug severity assessment in cross project

context and identifying training candidates. Journal of Information & Knowledge

Management, 16(01), 1750005, 2017.

[70] Sharmin, S., Aktar, F., Ali, A. A., Khan, M. A. H., &Shoyaib, M., Bfsp: A feature

selection method for bug severity classification. In 2017 IEEE Region 10

Humanitarian Technology Conference (R10-HTC), pp. 750-754, IEEE, 2017.

[71] Kumari, M., Sharma, M., & Singh, V. B., Severity assessment of a reported bug by

considering its uncertainty and irregular state. International Journal of Open Source

Software and Processes (IJOSSP), 9(4), 20-46, 2018.

[72] Menzies, T., &Marcus, A., Automated severity assessment of software bug reports.

 In IEEE International Conference on Software Maintenance ICSM 2008, pp.346-

355, IEEE, September. 2008.

[73] Nguyen T.T., Nguyen A.T. and Nguyen T.N., Topic- based, Time-aware Bug

Assignment. ACM SIGSOFT Software Engineering Notes, 39(1): 1-4, 2014.

[74] Hassan, A.E. and Xie, T., Software intelligence: the future of mining software

engineering data. In Proceedings of the FSE/SDP workshop on Future of software

engineering research (pp. 161-166). ACM, November.2010.

[75] Xie, T., Zimmermann, T. and Van Deursen, A., Introduction to the Special Issue on

Mining Software Repositories in 2010. Empirical Software Engineering, 17(4): 500-

502, 2010.

[76] Bettenburg, N., Nagappan, M. and Hassan, A.E., Towards improving statistical

modeling of software engineering data: think locally, act globally!. Empirical

Software Engineering, 20(2), pp.294-335, 2015.

[77] Guo P.J., Zimmermann T., Nagappan N. and Murphy B., not my Bug! and Other

Reasons for Software Bug Report Reassignments. Preceding of the ACM 2011

conference on Computer supports cooperative work, 395-404, 2011.

[78] Jeong, G., Kim, S. and Zimmermann, T., Improving bug triage with bug tossing

graphs. In Proceedings of the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, pp. 111-120, ACM, August. 2009.

[79] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes and P. Baldi, "Mining Eclipse

Developer Contributions via Author-Topic Models," Proc of International Workshop

on Mining Software Repositories, 2007.

[80] David M. Blei, Andrew Y. Ng and Michael I. Jordan, "Latent Dirichlet Allocation,"

Journal of Machine Learning Research, Vol. 3, pp. 993-1022, 2003.

[81] Xuan, J., Jiang, H., Ren, Z., Yan, J. and Luo, Z., Automatic bug triage using semi-

supervised text classification. arXiv preprint arXiv:1704.04769, 2017.

109

[82] Bhattacharya, P. and Neamtiu, I., Fine-grained incremental learning and multi-feature

tossing graphs to improve bug triaging. In 2010 IEEE International Conference on

Software Maintenance (pp. 1-10). IEEE, September. 2010.

[83] Anvik, J., & Murphy, G. C., Reducing the effort of bug report triage: Recommenders

for development-oriented decisions. ACM Transactions on Software Engineering and

Methodology (TOSEM), 20(3), 10, 2011.

[84] Zou, W., Hu, Y., Xuan, J., & Jiang, H., Towards training set reduction for bug triage.

In 2011 IEEE 35th Annual Computer Software and Applications Conference (pp.

576-581). IEEE, July. 2011.

[85] Tamrawi, A., Nguyen, T. T., Al-Kofahi, J. M., & Nguyen, T. N., Fuzzy set and cache-

based approach for bug triaging. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software

engineering (pp. 365-375). ACM, September. 2011.

[86] Wu, W., Zhang, W., Yang, Y., & Wang, Q., Drex: Developer recommendation with

k-nearest-neighbor search and expertise ranking. In 2011 18th Asia-Pacific Software

Engineering Conference (pp. 389-396). IEEE, December.2011.

[87] Servant, F., & Jones, J. A., WhoseFault: automatic developer-to-fault assignment

through fault localization. In 2012 34th International conference on software

engineering (ICSE), pp. 36-46, IEEE, June. 2012.

[88] Xuan, J., Jiang, H., Ren, Z., & Zou, W., Developer prioritization in bug repositories.

In 2012 34th International Conference on Software Engineering (ICSE), pp. 25-35,

IEEE, June.2012.

[89] Xie, X., Zhang, W., Yang, Y., & Wang, Q, Dretom: Developer recommendation

based on topic models for bug resolution. In Proceedings of the 8th international

conference on predictive models in software engineering, pp. 19-28, ACM,

September. 2012.

[90] Bhattacharya, P., Iliofotou, M., Neamtiu, I., &Faloutsos, M., Graph-based analysis

and prediction for software evolution. In 2012 34th International Conference on

Software Engineering (ICSE), pp. 419-429, IEEE, June. 2012.

[91] Xia, X., Lo, D., Wang, X., & Zhou, B., Accurate developer recommendation for bug

resolution. In 2013 20th Working Conference on Reverse Engineering (WCRE), pp.

72-81, IEEE, 2013.

[92] Naguib, H., Narayan, N., Brügge, B., &Helal, D., Bug report assignee

recommendation using activity profiles. In Proceedings of the 10th Working

Conference on Mining Software Repositories, pp. 22-30, IEEE Press, May.2013.

[93] Zhang, T., Yang, G., Lee, B., & Lua, E. K., A novel developer ranking algorithm for

automatic bug triage using topic model and developer relations. In 2014 21st Asia-

Pacific Software Engineering Conference, Vol. 1, pp. 223-230, IEEE, 2014.

[94] Yang, G., Zhang, T., & Lee, B. (2014, July). Towards semi-automatic bug triage and

severity prediction based on topic model and multi-feature of bug reports. In 2014

110

IEEE 38th Annual Computer Software and Applications Conference, pp. 97-106,

IEEE, July.2014.

[95] Zhang, W., Wang, S., & Wang, Q., KSAP: An approach to bug report assignment

using KNN search and heterogeneous proximity. Information and Software

Technology, 70, 68-84, 2016.

[96] Liu, J., Tian, Y., Yu, X., Yang, Z., Jia, X., Ma, C., & Xu, Z., A multi-source approach

for bug triage. International Journal of Software Engineering and Knowledge

Engineering, 26(09n10), 1593-1604, 2016.

[97] Yadav, A., Singh, S. K., & Suri, J. S., Ranking of software developers based on

expertise score for bug triaging. Information and Software Technology, 112, 1-17,

2019.

[98] Kanwal, J., & Maqbool, O., Bug prioritization to facilitate bug report triage.

Journal of Computer Science and Technology, 27(2), 397-412, 2012.

[99] Changnon, S. (Ed.)., METROMEX: A review and summary, Vol. 18, Springer, 2016.

[100] Mosa, M. A., Hamouda, A., & Marei, M., Graph coloring and ACO based

summarization for social networks. Expert Systems with Applications, 74, 115-126,

2016.

[101] Mosa, M. A., Anwar, A. S., & Hamouda, A., A survey of multiple types of text

summarization with their satellite contents based on swarm intelligence optimization

algorithms. Knowledge-Based Systems, 163, 518-532, 2019.

[102] Mosa, M. A., Hamouda, A., & Marei, M., Ant colony heuristic for user-contributed

comments summarization. Knowledge-Based Systems, 118, 105-114, 2017.

[103] Al-Abdallah, R. Z., & Al-Taani, A. T., Arabic single-document text summarization

using particle swarm optimization algorithm. Procedia Computer Science, 117, 30-

37, 2017.

[104] Mandal, S., Singh, G. K., & Pal, A., PSO-Based Text Summarization Approach Using

Sentiment Analysis. In Computing, Communication and Signal Processing, pp. 845-

854, Springer, Singapore, 2019.

[105] Meena, Y. K., & Gopalani, D. Evolutionary algorithms for extractive automatic text

summarization. Procedia Computer Science, 48, 244-249, 2015.

[106] Shelokar, P. S., Siarry, P., Jayaraman, V. K., & Kulkarni, B. D., Particle swarm and

ant colony algorithms hybridized for improved continuous optimization. Applied

mathematics and computation, 188(1), 129-142, 2007.

[107] Kıran, M. S., Özceylan, E., Gündüz, M., &Paksoy, T., A novel hybrid approach based

on particle swarm optimization and ant colony algorithm to forecast energy demand

of Turkey. Energy conversion and management, 53(1), 75-83, 2012.

[108] Liang, J., Koperski, K., Dhillon, N. S., Tusk, C., & Bhatti, S., U.S. Patent No.

8,594,996. Washington, DC: U.S. Patent and Trademark Office, 2013.

[109] Denny, M. J., & Spirling, A., Text preprocessing for unsupervised learning: Why it

matters, when it misleads, and what to do about it. Political Analysis, 26(2), 168-189,

2018.

111

[110] Vijayarani, S., Ilamathi, M. J., & Nithya, M., Preprocessing techniques for text

mining-an overview. International Journal of Computer Science & Communication

Networks, 5(1), 7-16, 2015.

[111] Verberne, S., Sappelli, M., Hiemstra, D., &Kraaij, W., Evaluation and analysis of

term scoring methods for term extraction. Information Retrieval Journal, 19(5), 510-

545, 2016.

[112] Van Erven, T., &Harremos, P., Rényi divergence and Kullback-Leibler

divergence. IEEE Transactions on Information Theory, 60(7), 3797-3820, 2014.

[113] Lin, C. Y., Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out, pp. 74-81, 2004.

[114] Rautray, R., Balabantaray, R. C., & Bhardwaj, A., Document summarization using

sentence features. International Journal of Information Retrieval Research

(IJIRR), 5(1), 36-47, 2015.

[115] Wei, Y., Zhao, Y., Lu, C., Wei, S., Liu, L., Zhu, Z., & Yan, S., Cross-modal retrieval

with CNN visual features: A new baseline. IEEE transactions on cybernetics, 47(2),

449-460, 2016.

[116] Wang, R., Zhao, H., Lu, B. L., Utiyama, M., &Sumita, E., Bilingual continuous-space

language model growing for statistical machine translation. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 23(7), 1209-1220, 2015.

[117] Xia, X., Togneri, R., Sohel, F. and Huang, D., Random forest classification based

acoustic event detection utilizing contextual-information and bottleneck

features. Pattern Recognition, 81,pp.1-13, 2018.

[118] Gupta, B., Awasthi, S., Gupta, R., Ram, L., Kumar, P., Prasad, B.R. and Agarwal, S.,

Taxi travel time prediction using ensemble-based random forest and gradient boosting

model. In Advances in Big Data and Cloud Computing , . Springer, Singapore , pp.

63-78, 2018.

[119] Huang, Y.J., Powers, R. and Montelione, G.T., Protein NMR recall, precision, and F-

measure scores (RPF scores): structure quality assessment measures based on

information retrieval statistics. Journal of the American Chemical Society,127(6),

pp.1665-1674, 2005.

[120] Aghdam, M. H., Ghasem-Aghaee, N., & Basiri, M. E., Text feature selection using

ant colony optimization. Expert systems with applications, 36(3), 6843-6853, 2009.

[121] Khan, A., Baharudin, B., Lee, L. H., & Khan, K., A review of machine learning

algorithms for text-documents classification. Journal of advances in information

technology, 1(1), 4-20, 2010.

[122] Jiang, L., Li, C., Wang, S., & Zhang, L., Deep feature weighting for naive Bayes and

its application to text classification. Engineering Applications of Artificial

Intelligence, 52, 26-39, 2016.

[123] Mohammad, A. H., Alwada'n, T., & Al-Momani, O., Arabic text categorization using

support vector machine, Naïve Bayes and neural network. GSTF Journal on

Computing (JoC), 5(1), 108, 2016.

112

[124] Onan, A., Korukoğlu, S., & Bulut, H., Ensemble of keyword extraction methods and

classifiers in text classification. Expert Systems with Applications, 57, 232-247, 2016.

[125] Dorigo, M., & Blum, C., Ant colony optimization theory: A survey. Theoretical

computer science, 344(2-3), 243-278, 2005.

[126] Gao, S., Wang, Y., Cheng, J., Inazumi, Y., & Tang, Z., Ant colony optimization with

clustering for solving the dynamic location routing problem. Applied Mathematics

and Computation, 285, 149-173, 2016.

[127] Sun, Y., Dong, W., & Chen, Y., An improved routing algorithm based on ant colony

optimization in wireless sensor networks. IEEE communications Letters, 21(6),

1317-1320, 2017.

[128] Sama, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., & Pacciarelli, D., Ant colony

optimization for the real-time train routing selection problem. Transportation

Research Part B: Methodological, 85, 89-108, 2016.

[129] Rashno, A., Sadri, S., & SadeghianNejad, H., An efficient content-based image

retrieval with ant colony optimization feature selection schema based on wavelet and

color features. In 2015 The International Symposium on Artificial Intelligence and

Signal Processing (AISP), pp. 59-64, IEEE, March. 2015.

[130] Su, M. C., & Chou, C. H., A modified version of the K-means algorithm with a

distance based on cluster symmetry. IEEE Transactions on Pattern Analysis &

Machine Intelligence, (6), 674-680, 2001.

[131] Che, G., & Yu, D., Performance Evaluation for Tape Storage Data Recall with

T10KD Drive. In 2018 New York Scientific Data Summit (NYSDS), pp. 1-6, IEEE,

August. 2018.

[132] Xuan, J., Jiang, H., Zhang, H., & Ren, Z. Developer recommendation on bug

commenting: a ranking approach for the developer crowd. Science China Information

Sciences, 60(7), 072105, 2017.

[133] Kumar, Y., & Sahoo, G. Hybridization of magnetic charge system search and particle

swarm optimization for efficient data clustering using neighborhood search

strategy. Soft Computing, 19(12), 3621-3645,2015.

[134] Sayed, G. I., Darwish, A., & Hassanien, A. E. Binary Whale Optimization Algorithm

and Binary Moth Flame Optimization with Clustering Algorithms for Clinical Breast

Cancer Diagnoses. Journal of Classification, 1-31, 2019.

[135] Sahoo, G. A two-step artificial bee colony algorithm for clustering. Neural

Computing and Applications, 28(3), 537-551,2017.

113

PUBLICATIONS FROM THESIS

Journals

Accepted

1. Kukkar, A. and Mohana, R., 2018. Feature Weighting with for Swarm Intelligence

Optimization as a Tool for Bug Report Summarization. Journal of Advanced Research

in Dynamical and Control Systems, pp. 2122-2133. (Published, Scopus)

2. Kukkar, A. and Mohana, R. Bug Report Summarization by using Swarm Intelligence

Approaches. Recent Patents on Computer Science. (Accepted, Scopus) DOI

No:10.2174/2213275912666 181205154129.

3. Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B. G., & Chilamkurti, N. (2019). A

Novel Deep-Learning-Based Bug Severity Classification Technique Using

Convolutional Neural Networks and Random Forest with Boosting. Sensors, 19(13),

2964. (SCI, Scopus, Published)

Communicated

1. Kukkar, A. Mohana, R and Kumar, Y. An Ant Colony Optimization based Developer

Recommendation System for Bug Assignment, Applied Intelligence, Springer (SCI,

Communicated)

2. Kukkar, A. Mohana, R and Kumar, Y. An Ant Colony Optimization Based Feature

Weighting Technique for Bug Severity Classification. International Journal of System

Assurance Engineering and Management, Springer (Scopus, Communicated)

 Conferences

1. Kukkar, A. and Mohana, R., 2018. A Supervised Bug Report Classification with

Incorporate and Textual Field Knowledge. Procedia Computer Science, Elsevier 132,

pp.352-361. (Published, Scopus)

2. Kukkar, A. and Mohana, R., 2019. An Optimization Technique for Unsupervised

Automatic Extractive Bug Report Summarization. In International Conference on

Innovative Computing and Communications (pp. 1-11). Springer, Singapore.

(Published, Scopus)

3. Kukkar,A. Mohana, R and Kumar, Y., Does bug report summarization help in enhancing

the accuracy of bug severity classification?. Procedia Computer Science, Elsevier (Accepted,

Scopus)

	1 TITLE
	2 table of content
	3 supervisor certificate
	4 declaration of scholar
	5 acknowledgement
	6 abstract
	7 list of figures
	8 list of tables
	9 LIST OF ACRONYMS
	10 chapter 1
	11 chapter 2
	12 chapter 3 updated
	13 chapter 4
	14 chapter 5
	15 chapter 6
	16 references
	17 list of publication

