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ABSTRACT 

Bug resolution process is an important aspect of the software development life cycle(SDLC). 

The aim of bug resolution process (BRP) is to determine the bugs in software and fix it. These 

software bugs are introduced in software’s during the different phases of SDLC process. The 

different strategies and mechanisms are considered during the evolution of software to 

overcome the propagation of bugs. A significant amount of time, cost and effort is put on the 

identification of bugs. It is observed that some bugs are not identified during the software 

evolution. These bugs can lead to failure of software’s and unexpected behavior. So, prior to 

delivery of software’s, every company ensure that the software is bug free and meets it 

expectation. Hence, to address and manage the bugs, bug tracking or reporting system are 

designed such as Mozilla, Eclipse etc.  These bug tracking systems store the information related 

to bugs, called bug repositories. The valuable information regarding for fixing the bugs are 

described in repositories. This information can be used to automate the BRP and also help 

developers in terms of reduced time and effort. The BRP is described in terms of report 

summarization, severity classification and assignment. This thesis addresses the issues 

associated with bug report summarization, bug severity classification and bug assignment. Bug 

report summarization is the process of generating the short description of lengthy bugs. To 

resolve the bug, initially developer analyses and understands the content of bug report and make 

a summary set. This process is time consuming and tedious as large number of bugs are 

deposited in repositories per day. In turn, bug fixing time can be increased.  Therefore, to 

automate and improve the accuracy rate of summarization task, a new summary subset selection 

technique is proposed to determine optimal summary subsets. This proposed technique is based 

particle swarm optimization (PSO) and ant colony optimization (ACO). The aim of proposed 

technique is to address data redundancy and sparsity issues of bug reports. Further, the semantic 

relationship between sentences is also measured using informativeness and phareseness scores.  

This thesis also provides a solution for severity of bugs. It is noticed that all bugs are not equally 

important. Some, bugs require immediate attention of developer, whereas others are not.  In this 

thesis, a new classifier is proposed to determine the severity of bugs. Prior to severity prediction, 

a deep learning based feature selection technique is also adopted to determine relevant features. 

Further, random forest with boosting method is applied for predicting the severity of bugs. The 
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performance of proposed classifier is tested over well bugs dataset. In this thesis, a developer 

recommendation (DevRE) system is also proposed to allocate the bugs with appropriate 

developers. The proposed system integrates the ACO based feature weighting technique to 

determine relevant feature from bug reports. Further, three metrics i.e. capability ranking, 

severity level and average bug fixing time are developed to rank the developers. The NB and 

SVM techniques are used to measure the severity levels of bugs. The results of proposed DevRE 

system is compared with existing recommendation systems. It is observed that proposed DevRE 

system provides more accurate results.     
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CHAPTER 1 

INTRODUCTION 

1 Introduction 

Software maintenance phase is an important aspect of SDLC. The purpose of software 

maintenance phase is to fix the software bugs and improves the quality of software. A 

software bug can be described as fault, mistake, and error. Basically, it is human error that 

can feed unintentionally during the execution of the software especially either in source code 

or design. If, these bugs are not detected in earlier phase of SDLC, then it can lead to failure 

of software’s and sometime unexpected behavior of software [1]. In turn, development cost 

of software’s is increased and further also affected the delivery of software’s.  It is noticed 

that more than 90% of software development cost is spent on software evolution and 

maintenance activities [2]. In past few years, software maintenance can get wide attention 

from the research community. The main reasons are security risk, user inconvenience, 

inappropriate functionality, and large number of bugs. To handle aforementioned issues, bug 

tracking or reporting system are designed such as Mozilla, Eclipse, OpenFoam, JIRA, Trac, 

BugZilla, Redmine, OTRS, Mantis, FogBugz, BugNet etc. These systems detect the bugs in 

earlier phase of SDLC, prioritize the bugs and also ensure the timely delivery of softwares.  

The core component of bug tracking system (BTS) is bug repository. It contains various 

artifacts related to software’s such as change history of status, source code and bug reports 

etc. The artifacts are used in software maintenance phase to resolve the bugs and also the 

key points for developers [3].  To remove the bugs from software is known as bug resolution 

process (BRP) and it is shown in Figure 1.1. This process is handled through triager or 

developer. In BRP, bug reports have significant impact. It contains diverse information like 

freeform text, attachment and predefined fields as shown in Figure 1.2. Freeform text 

contains the description, summary and comments. Attachments consist of non-textual 

information such as test cases, patches, etc.  The predefined fields contain the various 

metadata, like status, product, importance, component, and assignee.    Metadata is used to 

determine relevant features from bug report [4]. Further, the status in the predefined fields 

indicates the software bug life cycle (SBLC) [5]. The different status of SBLC are 

demonstrated in Figure 1.3.  

 UNSOLVED: Initially, status of all bug reports is UNSOLVED. 
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 NEW: When, triager searches the appropriate developer for assigning the bugs, then 

status of bugs is changed, called NEW.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Bug Resolution Process 

 ASSIGNED: Once, bugs are assigned to a relevant developer, its status is  

                        ASSIGNED.  

 RESOLVED: When, bugs are resolved from the source code, its status is  

                         RESOLVED.   

 REOPEN: If, the tester is not satisfied with the bug solution, then status of bug is  

                  REOPEN.  

 VERIFIED: It corresponds to the approval of bug solution.  

 CLOSED: It indicates the removal of bug.  
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Figure 1.2:  Eclipse Bug Report Example [6] 
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Figure 1.3:  Bug Life Cycle Process 

BRP is iterative process and consists of three phases.  These phases are bug report 

understanding, bug triage and bug fixing.  

 Bug Report Understanding Phase: In this phase, the status of bug report is changed 

from NEW to ASSIGNED.  Triagers explore the contents of given bug reports for 

summarization, filteration of the duplicate bugs and features prediction (e.g., priority, 

severity and reopened/blocking).  Large number of bug reports is generated every 

day and to summarize these bug reports manually is one of challenging task [7,8]. 

This issue attracts various researcher to work in this direction i.e. developed 

automated tool for bug report understanding. 

Reporter 
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If bug is resolved 
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 Bug Triaging Phase: This phase responsible to identify the appropriate developer to 

assign bugs [10-12]. This can be done with the help of triagers. Without prior 

information on bug report, triagers cannot determine relevant developer to fix the 

bug.  Hence, bug assignment is also an important task to improve the bug fixing rate. 

To address the bug assignment issue, several bug triage approaches have been 

developed. 

 Bug Fixing Phase: In this phase, bugs are fixed with the help of developers.  For a 

given bug, developer analyzes the source code files, identifies the source of bugs and 

also updates the patch code as a bug-fixing process. But, manual bug localization and 

patch generation can make the bug fixing process difficult. Several researchers have 

also developed automatic tools to address bug fixing issues [13-15]. 

Each phase of bug life cycle associates with different challenges. The BTS contains the large 

amount of bug reports and it is the responsibility of triager to handle the bug reports. During 

the execution of Eclipse open source project, thirty new bug reports are stored in BTS daily 

from October 2001 to December 2010 and overall 333,371 bug reports are submitted to 

Eclipse bug repository [5]. The manual inspection of large scale bug reports is a tedious, and 

time consuming. Further, this process also puts heavy burden on triager and in turn low 

success rate for bug fixing. Many researches are worked in this direction, but the optimal 

solution is not obtained [25-33, 59-67, 92-97]. 

1.2 Motivation  

Over the past few years, it is noted that bug resolution problem is popular research filed 

among researchers [13]. Research community can provide both theoretical and experimental 

solution for bug resolution problem. BRP is divided into bug report summarization, severity 

classification and assignment. The report summarization can be described as bug report 

understanding. While, Bug severity classification and assignment is the part of bug triaging. 

The bug resolution techniques are adopted to determine optimal solution for BRP. These 

techniques are based on textual content of description and summary fields. It is observed 

that lot of work is reported on automation of BRP in literature [3,13,11]; still, the reliability 

and accuracy are active area of research. It is noticed that several shortcomings are associated 

with bug resolution techniques. These are highlighted below: 

1. Scope of improving the methods to handle bug report summarization, bug fixing etc. 

2. Scope of improving the accuracy rate of bug severity classification. 
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3. Identification of appropriate developer for bug resolution.  

4. Handle manual patch generation and bug localization as number of bugs are 

increased.  

1.3 Objectives 

The aim of this work is to address the summarization issues of bug reports such as data 

dimensionality, sparse representation and estimation issues of data and also improve the 

solution quality. Hence, the objective of this work based on the motivation section are given 

as 

 To implement domain specific Bug Report Summarization technique  

 To improve the accuracy of bug severity classification model 

 To develop a developer recommendation system for bug assignment. 

1.4  Structure of the Thesis 

The entire work is organized in the following chapters. 

Chapter 1: This chapter contains the information on bug resolution process, motivation 

and objective of the work. 

Chapter 2: In this chapter, state of the art approaches for bug resolution process are 

presented. The literature review is divided into three sections i.e. Bug Report 

Summarization, Bug Severity Classification and Bug assignment. 

Chapter 3: This chapter address the first objective of our work. In this chapter, a new bug 

report summarization model is proposed for summarization task. Further this model 

consists of PSO-ACO based summary subset selection algorithm. The proposed 

technique is the combination of PSO and ACO techniques. It is stated that proposed 

model provides state of art results for summarization problems. 

Chapter 4: This chapter address the second objective of our work. In this chapter, a new 

bug severity classification model is proposed, called BSCM. The proposed model is 

based on deep learning and random forest with boosting method. The aim of proposed 

model is to improve the accuracy rate of severity classification task. It is stated that 

proposed model achieves higher accuracy rate than Zhou et. al.   

Chapter 5: This chapter addresses the third objective of the work. In this chapter, a new 

developer recommendation (DevRE) system is proposed to assign the bugs for relevant 
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developers. The proposed model consists of ACO based feature weighting method for 

feature selection. Further, the developer is recommended on the basis of three metrics. 

The results of the proposed recommendation system are compared with existing 

recommendation system. It is observed that proposed recommendation system provided 

better results.   

Chapter 6: This chapter concludes the entire work. Future research direction is also 

discussed.  
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CHAPTER 2 

REVIEW OF LIERATURE 

2.1 Introduction 

This chapter presents the systematic literature review on bug resolution process. It is divided 

into three sections. These sections are  

 Bug Report Summarization 

 Bug Severity Classification  

 BugAssignment 

2.2 Bug Report Summarization  

Bug report summarization is the process of generating the short description of lengthy bug report 

[16]. To know the root cause of the bug, large amount of conversation happens between the 

developer and reporter through the bug reports. This recorded conversation contains multiple 

comments from multiple peoples. The comments can be described either in terms of lines or 

passages and contains useful information for developer to resolve the bugs [17]. These resolved 

bugs are used as future reference [18,19]. After the submission of new bug report, developer 

first check the historical bug reports to see whether the similar bug was resolved previously. 

The similar bug helps the developer in two ways. The first one is understanding the current 

problem in better way. The second one is reusing the recorded solution of previous bug for new 

bug [20]. However, triager or developer reads the entire bug report to find the solution of 

previous bug report or to know the problem of new bug report. This activity consumes a lot of 

time, manual effort and frustrating due to the dozens of comments in bug reports [21]. Automatic 

bug report summarization is the only way to help the developers by reducing the size of bug 

reports. The basic approach of generating the bug report summary is to select the subset of 

existing sentences. The main issue of this process is the selection of summary subset [22,23]. In 

literature, large number of supervised and unsupervised approaches are adopted to determine 

the appropriate summaries [24-36]. Table 1 demonstrates the works reported on bug 

summarization problems.   

To address the difficulties of manual bug report summarization, Rastkar et al. [24] tried to 

automate the bug report summarization. The aim of this work is to reduce the lengthy bug reports 
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into smaller ones. It should be beneficial for developer by two reasons. First, the developer 

consults with small bug reports. Second, it also reduces the time of developer. Hence, in this 

work, three supervised classifiers are used to automate the bug report summarization process. 

These classifiers are email classifier (EC), bug report classifier (BRC), email meeting classifier 

(EMC). The main work of these classifiers is to extract the top ranked sentences from the bug 

reports. The email thread dataset is used to train the EMC and EC. Whereas, BRC is trained 

using bug report dataset. All these classifiers are tested on 36 bug reports. These bug reports are 

taken from KDE, eclipse, gnome and Mozilla open source projects.  The performance of these 

classifiers are evaluated using precision and F-value parameters. The results showed that BRC 

outperforms than EC and EMC. It is noticed that BRC achieves 63% precision rate and 40% F-

value rate.  

In continuation of their work, Rastkar et al. [25] explored the automated bug report 

summaries to determine duplicate bug report. The author used same classifiers to generate the 

summaries. These classifiers are trained on the set of 24 features. Further, the feature value of 

sentences is utilized to compute the probability of sentences. The sentences with higher 

probability are considered as a part of summary. Further, these 24 features are divided into four 

groups such as lexical, participant, structural and length features.  The task-based validation was 

performed on 36 bug reports. The results showed that the generated summaries reduce the 

developer time to detect the duplicates bugs without affect the accuracy.  

To determine the more relevant sentences for summarization task, Jiang et al. [26] conducted 

a survey to explore the existing techniques for attribute construction. In this work, a new model 

is developed, called Crowd–Attribute to determine the new effective attributes from crowd data.  

Further, eleven new attributes are constructed with Crowd – Attribute for developing a 

supervised summarization classifier called logistic regression with crowdsourced attributes 

(LRCA). The LRCA classifier is tested on 105,177 bug reports and SDS dataset. The 

effectiveness of proposed classifier is evaluated using precision, recall and F-score parameters. 

It is seen that LRCA classifier provides better results than the BRC technique [24].  It is noticed 

that LRCA improves the simulation results for Precision, Recall and F-score by 1.33%, 10.11%, 

and 8.94% respectively.  



10 
 

To find the multiple intentions of sentence in bug report, Huai et al. [27] implemented a 

supervised intention- based summarization model (IBRS). The IBRS model is divided into three 

steps such as feature extraction, intention classifier and summarization model. In first step, the 

features are extracted to generate the taxonomy for intentions in bug report. In second step, 

intention classifier is applied to get intentions from the sentences. In third step, intention 

taxonomy is leveraged to enhance the results for summarization task. The performance of IBRS 

is tested on 36 bug reports and evaluated using F-score, precision and recall parameters. The 

experimental results showed that IBRS outperforms than BRC [24].   

To address the multidimensional and heterogeneous nature of bug reports, Ponzanelli et al. 

[28] developed an extension of LexRank approach [29]. LexRank approach basically consists 

of PageRank algorithm. In this work, PageRank algorithm is combined with custom similarity 

function for heterogeneous entities like configuration files and code samples. The proposed 

approach is tested on the stack overflow dataset. The simulation results are evaluated using 

precision parameter and compared with the text based approach i.e. classical LexRank. It is 

observed that proposed approach provides better summarization results than existing approach.      

To reduce the developer time and effort, Yeasmin et al. [30] designed a prototype to visualize 

the extractive summary of bug reports. The working of proposed prototype is divided into two 

parts. Firstly, features are extracted using LDA modeling. While, in second part, bug report 

summaries are computed based on the cosine (lexical) similarity of each sentence with respect 

to other sentences. Moreover, API4 technique is adopted to determine the sentiment of each 

sentence and the relationship score of each sentence is also computed. Finally, the sentences are 

combined on the basis of relationship score and ranked. The sentences with higher score are 

selected to generate the summaries. Further, in this work, different colors and its combinations 

are used to visualize the summaries of bug reports.  Bugzilla dataset is considered to assess the 

performance the proposed prototype. Precision, f-measure and recall are taken as performance 

parameters to evaluate the simulation results of proposed prototype. The simulation results of 

proposed prototype are compared with time sensitive keyword based extraction approach. 

Authors claimed that proposed prototype performs better than existing approach and archives 

higher f-measure, recall and precision rates.   
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Mani et al. [31] applied unsupervised approaches to automate the bug summarization 

process. The aim of this work is to explore the capabilities of unsupervised approaches in the 

field of automated bug summarization approaches.  The various raking algorithms like centroid, 

grasshopper, diverse rank, and maximum-marginal relevance are applied to determine the 

relevant sentences for summarization task. The performances of aforementioned approaches are 

tested on 55 bug reports from SDS and DB2 repository. F-score parameter is used to evaluate 

the results of unsupervised approaches consider in this study. F-score of the centroid, 

grasshopper, diverse rank, and maximum-marginal relevance approaches are 43%, 50%, 46% 

and 48% respectively. Simulation results of unsupervised approaches are also compared with 

some supervised approaches. It is noticed that grasshopper and diverse rank approaches are 

performed better than supervised approaches [24]. It is also observed that unsupervised 

approaches significantly reduce the noise effect and also avoids human annotated summaries.  

Lotufo et al. [32] presented an unsupervised method to automate the bug report 

summarization. Prior to generate the effective summaries, authors are designed three hypotheses 

to make a sentence relevant using Markov chain. These hypotheses are frequently discussed 

topics, evaluation and assessment of sentences and bug reports title and description. Further, the 

PageRank algorithm is implemented to determine the relevant summaries for bug report. The 

performance of PageRank approach is measured using debian, launchpad, mozilla and chrome 

datasets. Authors claimed that the proposed hypotheses are valid, and improves the simulation 

results up to 12% as compared to existing approach [24]. Moreover, the system-generated 

summaries are passed to developers to assess the quality and usefulness. Developers stated that 

system generated summaries are more useful, efficient and effective. But, it is observed that 

hypotheses can increases the cost of both approaches. Because, additional time is required to 

test the hypotheses.  

To reduce developer time and effort for bug report summarization, Nithya et al. [33] 

developed an unsupervised extractive summarization approach. The proposed approach works 

in two modules. In first module corresponds to the noise reduction. In this module, bug report 

sentences are classified as code fragment, questions, investigative etc. The aim of this module 

is to remove unwanted sentences form bug reports. Further, centroid computation summarizer 

method is applied to compute the value of features in each sentence. In second module, an 

extractive summarization algorithm is to choose the optimum subset of sentences. This 
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algorithm determines the sentences with higher feature score and puts into summary subset. The 

similarity between the bug reports summaries are also determined to identify the duplicate bug 

reports. It is observed that the proposed unsupervised approach increases the accuracy of 

summarization and also capable to detect the duplicate bug reports.     

To investigate the pitfalls of duplicate bug reports in summarization task, Jiang et al. [34] 

developed a page rank based summarization technique, called PRST. The aim of proposed 

technique is to summarize the textual content of bug reports and detect the duplicate bug reports.  

In PRST, three metrics are utilized with PageRank algorithm to measure the textual similarities 

between sentences These metrics are WordNet, vector space model and Jaccard. Further, a 

regression model is used to predict the probability of sentences. Moreover, it is observed that 

sentences are ranked on the basis of PageRank and regression model scores.  Top ranked 

sentences are selected to generate the summary.  The performance of PRST technique is 

assessed over two corpora i.e. MBRC and OSCAR.  Simulation results stated that proposed 

PRST technique outperforms than BRC in term of F-score, recall and precision. It is also 

observed that combination of WordNet metric and PRST provides better computational results 

than PRST+VSM and PRST+Jaccard. 

Ferreira et al. [35] applied cosine similarity, PageRank, Euclidean distance and Louvain 

community techniques to determine relevant sentences for summarization. All these techniques 

are implemented in unsupervised manner. The performance of these algorithms is tested on fifty 

bug report taken from the bootstrap, jquery and angular datasets. The simulation results of these 

techniques are evaluated using average precision score. The precision score of Cosine 

Similarity, PageRank, Euclidean Distance and Louvain techniques are 44.6%, 29.3%, 47.3% 

and 38% respectively. Further, two statistical tests i.e. Spearman’s rank correlation coefficient 

and oracle ranking is adopted to determine the correlation between the rankings of each 

technique. It is noticed that Cosine Similarity and PageRank techniques are capable to produce 

average summary of bug reports than Euclidean Distance and Louvain techniques. The effort 

put on the analysis of bug reports is also reduced using Cosine Similarity and PageRank 

techniques.   

Li et al. [36] explored the capability of deep learning network for bug report summarization. 

In this work, unsupervised deep sum approach is used to select relevant sentences for 
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summarization task. Further, stepped auto-encoder network with evaluation enhancement and 

predefined fields are utilized to integrate the bug report characteristics into a deep neural 

network. It is revealed that the proposed deep sum approach considerably reduces the eff ort put 

on the labeling huge training sets. The performance of proposed deep sum approach is evaluated 

using F-score and Rouge–n measures. It is seen that proposed approach state of art results than 

other compared approaches [24, 31,35]and it is one of viable and effective method for 

summarization problems. 

Table 2.1: Demonstrates the works reported on bug summarization problems 

Authors 
Approach/ 

Method 

Adoption 

Criteria 
Dataset 

Performance 

parameter 
Advantage Disadvantage 

Rastkar 

et al. 

[24] 

 

Email 

Classifier, Bug 

Report 

classifier, Email 

Meeting 

classifier 

To extract the 

top ranked 

sentences from 

the bug reports 

KDE 

Eclipse 

Gnome 

Mozilla 

F-measure 

Precision 

Rouge score 

BRC 

outperforms 

than EC and 

EMC 

Generated 

summary is 

sensitive to the 

training 

dataset. 

 

Rastkar 

et al., 

[25] 

 

Email 

Classifier, Bug 

Report 

classifier, Email 

Meeting 

classifier 

To determine 

duplicate bug 

reports using bug 

report summary 

KDE 

Eclipse 

Gnome 

Mozilla 

F-measure 

Precision 

Rouge score 

Reduce the 

developer 

time to detect 

the duplicates 

bugs without 

affect the 

accuracy 

Need of  

human 

annotated 

summaries 

Jiang et 

al. 

[26] 

 

Logistic 

regression with 

crowdsourced 

attributes 

(LRCA) 

classifier 

To determine the 

relevant 

sentences for 

summarization 

SDS 

Precision 

Recall 

F-score 

LRCA 

classifier 

provides 

better results 

than the Bug 

Report 

classifier 

Need to 

generate the 

manual 

summaries for 

training the 

classifier 

Huai et 

al. [27] 

 

Intention- based 

summarization 

model (IBRS) 

To find the 

multiple 

intentions of 

sentence in bug 

report 

KDE 

Eclipse 

Gnome 

Mozilla 

Precision 

Recall 

F-score 

IBRS 

outperforms 

than Bug 

Report 

classifier. 

Less 

summarization 

accuracy 
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Ponzanel

li et al. 

[28] 

 

PageRank and 

custom 

similarity 

function 

To address the 

multidimensional 

and 

heterogeneous 

nature of bug 

reports 

Stack 

Overflow 

Precision 

 

Proposed 

approach 

enhance the 

precision of 

summarization 

than classical 

LexRank 

Raised the 

problem of 

convergence 

 

Yeasmin 

et al. [30] 

 

Prototype based 

on LDA 

modeling, 

Cosine 

similarity 

function and 

API4 technique 

To extract the 

interactively 

visualizing 

insightful 

information 

Bugzilla 

Precision 

F-measure 

Recall 

Proposed 

prototype 

performs 

better than 

time sensitive 

keyword 

based 

extraction 

approach 

Need to 

include more 

interesting and 

useful 

visualization 

features 

Mani et 

al., 

[31] 

 

Centroid, 

Grasshopper, 

Diverse Rank, 

and Maximal 

Marginal 

Relevance 

To increase the 

accuracy of 

supervised 

summarization 

approaches 

SDS 

DB2 

Precision 

F-measure 

Recall 

Grasshopper 

and Diverse 

rank provides  

better results 

than 

supervised 

approaches 

Ignore 

semantic 

relation 

between the 

sentences 

Lotufo et 

al., [32] 

 

Three 

hypotheses 

using Markov 

chain method 

To explore the 

capabilities of 

unsupervised 

approaches in the 

field of 

automated bug 

summarization 

approaches. 

Debian 

Launchpad 

Mozilla 

Chrome 

Precision 

F-measure 

Recall 

Proposed 

approach 

provides 

better results 

than Bug 

Report 

classifier 

Require 

additional cost 

to test the 

hypotheses that 

decided the 

rank of each 

candidate 

sentence 

Nithya et 

al. [33] 

 

Centroid 

similarity 

function 

To choose the 

optimum subset 

of sentences 

Mozilla 
Precision 

 

Proposed 

summaries are 

capable to 

detect the 

duplicate bug 

reports 

Less accuracy 

of 

summarization 
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Jiang et 

al. [34] 

 

Page rank based 

summarization 

technique, 

called PRST 

To investigate 

the pitfalls of 

duplicate bug 

reports in 

summarization 

task 

MBRC 

OSCAR 

Precision 

F-measure 

Recall 

Proposed 

approach 

provides 

better results 

than Bug 

Report 

classifier 

Dependent 

bugs consider 

for 

summarizing 

the bug reports 

Ferreira 

et al., 

[35] 

Cosine 

Similarity, 

PageRank, 

Euclidean 

Distance, and 

Louvain 

community 

detection 

To determine 

relevant 

sentences for 

summarization 

Bootstrap, 

Jquery and 

Angular 

Precision 

 

Cosine 

Similarity and 

PageRank 

produce  

better 

summary of 

bug reports 

than 

Euclidean 

Distance and 

Louvain 

techniques 

Sparsity issues. 

Li et al., 

[36] 

 

Developed deep 

sum approach 

To enhance the 

accuracy of 

summarization 

approaches 

SDS 

F-measure, 

Precision 

and 

Rouge score 

Improved 

results than 

other 

approaches 

Take more 

training time 

2.3 Bug Severity Classification 

Bug severity classification is a process of classifying the bug under appropriate severity 

similarly as the text classification [37]. The severity is based on the criticality and complexity 

of the bugs. It would also provide the complete detail of the impact of a bug within software 

operation [38]. Further, it also provides the advantage to industry for determining the 

earnestness of bug resolving in respect of resources [39-41].  Different bugs have different 

impact upon the quality, based on the functionality of software. The bug reports assigned with 

wrong severity goes through the reassignment process [42, 43]. The reassignment severity bugs 

take longer resolving time and influence the efficiency of developers [44]. There are various 

parameters set by the developer (Quality Assurance Engineer) according to different 

organizations [45]. It is essential for the developer to assign the correct severity due to the three 
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main reasons. The first one is to keep way from the confusion with the development group.  The 

second one is to ensure the reliability in large- scale software and avoid the reassignment 

process. The third one is to resolve the critical bugs earlier than normal bugs because the critical 

bugs can trigger some security issues [46-48]. The manual severity classification is an error 

prone, tedious and time-consuming task due to large number of bug reports. Moreover, the 

precision of the classification depends on the developer’s experience and knowledge who 

investigated the bugs. Therefore, there is a need to automate the bug severity classification 

process. In literature, large number of techniques has been presented for severity classification 

[49-71]. These techniques classified the bugs into binary (BC) and multiple severity classes 

(MC). Table 2 presents the works reported in literature on bug severity classification.   

To predict the severity of bug reports, Lamkanfi et al. [49] developed a binary severity 

classification approach based on the textual description of bug reports. The severity of bug 

reports is divided into two classes i.e. server or non-server. The proposed approach contains five 

steps for bug severity prediction. These steps are described as extract and organize bug reports, 

preprocessing, training and evaluation set, train the classifier and apply the classifier on the 

evaluation set. The first step is to select the bug report from bug repository. The next step is the 

preprocessing step. In this step, feature vectors are extracted from the text of bug reports.   

Further, Naive Bayes classifier is applied to predict the severity of bug reports. The GNOME, 

Eclipse and Mozilla datasets are considered to evaluate the performance of NB classifier. 

Further, precision, recall and F-measure parameters are applied to validate the performance of 

classifier. The results demonstrated that NB classifier achieves higher precision, recall and f-

measure rates as compared to other algorithms.  

In the continuation of their work, Lamkanfi et al. [50] explored the efficiency of four 

machine learning classifiers to classify the bug into server or non-server classes. In this work, 

authors apply term frequency –inverse document frequency (TF-IDF) method to determine the 

probability of each feature.  Further, four machine learning algorithms such as Naive Bayes 

(NB), Naive Bayes Multinomial (NBM), K-nearest neighbor (KNN) and Support vector 

machine (SVM) are applied to predict the server and non-server classes. The performance of 

these is tested on Mozilla, Eclipse and GNOME datasets. Accuracy parameter is used to evaluate 

the experimental results. It is revealed that NBM classifier obtains better results than other 
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algorithms. It is also stated that the average accuracy of all four machine learning algorithms 

are in between 73% to 85.7% using all three datasets.  

To differentiate security bugs from normal bugs and also address the delay to identify and 

fix the security bugs, Gegick et al.  [51] presented an automatic severity classification approach. 

This approach classifies the bugs into two classes i.e. security related bug reports (SBR) or non-

SBR. In this work, text mining techniques are also implemented on the textual description of 

bugs to determine the feature vectors. Several feature selection algorithms like chi-square, 

correlation coefficient and info gain are applied to determine relevant set of features. Further, 

NBM classifier is applied on the reduced feature set to classify the bugs into SBR and Non-SBR 

classes. The performance of proposed NBM is assessed over Cisco, Mozilla and GNOME 

datasets. The experimental results indicate that feature selection algorithms improve the 

performance of NBM classifier significantly.  It is observed that 77% of security bugs are 

classified as Non-SBR through reports, but the proposed NBM classifier corrects the same and 

classifies the security bugs as SBR.  

Chaturvedi et al. [52] applied several machine learning techniques for bug severity prediction 

and described the severity classes on the scale of 1 to 5.  In this work, info gain method is used 

to determine the appropriate terms from the text of bug reports. A total one twenty-five relevant 

terms are determined for severity prediction. Further, NB, NBM, SVM, KNN, C4.5, and 

RIPPER techniques are considered to predict the severity classes. The NASA dataset is selected 

to assess the performance of above mentioned machine learning technique. Further, the 

simulation results are validated using 5-fold cross validation method. It is also seen that bug 

severity can be described through different levels i.e. level 1 to level 5. In this work, using   The 

results demonstrated that machine algorithms are suitable to determine different bug severity 

levels.  Moreover, it is also noticed that severity level 2, 3 and 4 achieve higher F-measure rate 

than rest of levels using most of techniques.     

Thung et al. [53] designed a new bug severity classification model based on the text and 

source code features of bug reports. In this study, JIRA dataset is considered for experimental 

work. Initially, relevant features are extracted using linear discriminant analysis (LDA) 

technique for classification task. Further, the extracted features are used to construct the new 

dataset with reduced number of features. The reduced dataset contains different severity classes 
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such as control, dataflow, structure, non-functional. Finally, the bug severity classification 

model is fed with the newly constructed dataset. The working of this model is divided into two 

phases- training and deployment phases. The various machine learning classifiers are integrated 

in proposed model. These are SVM, Decision Tree (DT) and NB.  The performance of proposed 

model is evaluated using accuracy parameter.  The experimental results showed that the 

proposed model achieves average accuracy rate of 77.8% using SVM classifier.  

To determine the relevant features for automatic bug severity classification, Yang et al. [54] 

presented three feature selection methods. These feature selection methods are Information 

Gain, Chi-Square and Correlation Coefficient. The aforementioned methods are used to 

determine relevant severe and non-severe features for severity classification.  Further, NBM 

classifier is applied to classify the data into different severity classes. The simulation results are 

evaluated using precision, recall and F-measure parameters. The Mozilla, Eclipse and GNOME 

datasets are considered for experimental work. It is observed that the combination of feature 

selection methods with MNB classifier improves the results of MNB classifier. Moreover, it is 

stated that combination of Information Gain and MNB classifier gives better results than others.     

To handle the uneven categorization of the component of bug reports, Murphy et al. [55] 

presented three different variants SVM classifier based on TF-IDF, LDA, Kullback–Leibler 

divergence (KLD). These variants are SVM-TF-IDF, SVM-LDA and LDA-KLD.   In SVM-

TF-IDF variant, TF-IDF approach is used for extracting the features and SVM classifier is 

utilized to predict the severity of bugs. In SVM-LDA variant, LDA feature extraction approach 

is combined with SVM classifier. In LDA-KLD model, LDA is used to extract important 

features and KLD is utilized as classifier.  The performance of these variants are tested over 

Bugzilla dataset and predicted the bug severity into high, medium, low and very low classes. 

The simulation results are evaluated using recall parameter. The experimental results showed 

that the proposed approach achieved the accuracy up to 75%. Further, it is observed that SVM-

LDA obtains higher recall rate as compared to SVM-LDA and LDA-KLD. It is also observed 

that LDA- KLD provides more consistent than SVM-LDA and SVM-TF-IDF variants.  

To understand the software system evolution and identify defected bugs, Bhattacharya et 

al. [56] developed graph based approach. The proposed approach also addresses the effort 

prioritization and bug severity estimation. In this work, authors design a set of metric based on 
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the graph theory concept. These metrics are based on the different properties of graph and can 

be described as modularity ratio, edit distance, assortativity, graph diameter, noderank, 

clustering coefficient and average degree metrics. The work of modularity Ratio metric is to 

predict modules with high maintenance effort. NodeRank metric measures the critical modules 

and functions with high severity indication. Edit distance metric analysis the developer 

collaboration graph with failure prone bugs. Eclipse and Mozilla datasets are considered to 

evaluate the performance of proposed graph based approach. It is stated that proposed approach 

obtains higher accuracy rate in comparison to other existing approaches. It is also observed that 

proposed approach efficiently works on functional and module levels.  

Pingclasai et al. [57] presented a new model to automate the bug severity classification. The 

proposed model divides the bugs into binary severity classes i.e. bug or non-bug. This model 

consists of two phases. These phases are topic modeling and classification phase.  The work of 

the topic modeling phase is to extract the appropriate features for classification phase. The 

relevant features are extracted using Latent Dirichlet allocation (LDA) algorithm. The aim of 

the classification phase is to predict the class labels. So, in classification phase, logic regression 

(LR), NB, ADTree techniques are considered. In this work, HTTP Client, jackrabbit and lucene 

datasets are taken into consideration. The simulation results are evaluated using accuracy 

parameter. The experimental results showed that F-measure rate of LR, NB and ADTree 

techniques varies in between 66% to 76% for HTTP Client dataset, 65% to 77% for Jackrabbit 

dataset and 71% to 82% for Lucene dataset. Authors claimed that NB classifier based model 

provides good results than LR and ADTree based models. 

To improve the accuracy rate of bug severity classification model, Nagwani et al. [58] 

applied simple random sampling and LDA algorithm based classification model for severity 

prediction. to select the taxonomic terms for classification. The working of the proposed model 

is divided into six steps. These steps are retrieve software bugs, text pre-processing, clusters 

using textual similarity, classification phase using random sampling and LDA, topics 

identification and filtration of topics. The performance of the proposed approach is assessed 

over Mozilla, MySQL, JBoss-seam and Android datasets. The experimental results revealed that 

proposed approach improves the accuracy rate considerably. It is noticed that the proposed 

approach more than seventy percent accuracy rate for all datasets.  
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Kanti et al. [59] developed a new approach to maintain the semantic relationship between 

the text of bug reports. In this work, several feature extraction methods are also considered to 

determine the relevant features from the bug reports. These techniques are Chi-square, Unigram 

and Bi-grams. The aim of these techniques is to compute the frequency of each feature. Features 

with higher frequency are selected for severity classification. The NB classifier is applied to 

predict the severity of bugs. The well-known Mozilla and Eclipse datasets are used in this work 

for severity prediction.  Authors claimed that combination of unigram and bigram improves the 

accuracy rate of the NB classifiers.  The accuracy rate achieved for Mozilla dataset is 73.5% to 

85.5%, whereas accuracy rate of Eclipse dataset is 71.1% to 76.4%.  

To explore the capabilities of unsupervised learning for severity prediction, Limsettho et al.  

[60] applied various clustering methods to classify the bugs into different classes. The classes 

of bugs are given as bug request for enchantment (RFE), improvement, task and test. In this 

work, two clustering algorithms i.e. Expectation Maximization (EM), and X-means are utilized 

for bug severity prediction. These methods group the similar bug reports on the basis of textual 

similarity. The NLP chucking is also used for labelling the clusters. The performance of the 

unsupervised methods is tested on three well known datasets and evaluated using accuracy 

parameter.  From simulation results, it is noticed that both of EM and X-means clustering 

algorithms obtain similar results for Lucene and JCR datasets. But, EM algorithm obtains better 

accuracy rate than X-means for HTTPClient dataset. Moreover, the simulation results of 

unsupervised methods are also compared with supervised methods i.e. logistic regression and 

J48 classifiers.   It is observed that the performance of supervised methods is better than 

unsupervised methods, especially logistic regression classifier provides optimum results than 

other methods.   

Chawla et al. [61] developed a new automatic severity classification model to classify the 

bugs into two classes i.e. bug and other request. Authors adopt term frequency (TF-IDF) and 

latent semantic indexing (LSI) algorithms for selecting relevant features. Further, fuzzy logic 

based classifier is used for classification task. Three well known datasets are considered to 

validate the performance of fuzzy classifier. The simulation results are assessed using accuracy 

performance metric. The simulation results of fuzzy classifier are compared with LR, NB and 

ADTree classifiers. The experimental results indicated that fuzzy classifier obtains higher 
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accuracy rate than LR, NB and ADTree classifiers and average accuracy ranges in between 82-

84% for all three datasets.   

Zhang et al. [62] developed a concept profile based bug severity classification model.  The 

proposed concept profile method is based on the analysis of previous bug reports.  The working 

of proposed model is divided into three steps. In first step, bug reports are collected from various 

bug repositories and text of the bug reports are pre-processed to reduce the noise effect. In 

second step, concept profile method is introduced. The aim of this method is determine the term 

with higher frequency, called concept profile.  In third step, the similarity between CP and query 

is calculated and further KLD technique is applied to classify the severity of bugs. The bugs are 

classified into blocker, trivial, critical, minor and major severity classes. The performance of 

proposed model is tested on Eclipse, Mozilla datasets and simulation results are compared with 

KNN, NB and NBM classifiers.  It is stated that proposed model performs better than existing 

classifiers and produces quality of results. The f-value rate of proposed model varies in between 

70%-96% for Eclipse dataset, and 78.57%-93.74% for Mozilla.   

To enhance the performance of bug severity classification approach, Gujral et al.  [63] 

developed a classification model based on the text mining technique and NBM classifier.  The 

working of proposed model is divided into three steps. In first step, the text of Eclipse bug 

reports is pre-processed to identify the critical terms and these critical terms are stored in a 

dictionary. The task of critical terms is to decide the severity of bugs. The second step computes 

the occurrence of each feature to design a dataset. In this step, TF-IDF is applied to compute the 

frequency of features.  The third step consists of the NBM classifier. The work of NBM classifier 

is to classify the bugs into server or non-server classes. The simulation results are evaluated 

using precision and accuracy parameters.  It is seen that the proposed model achieves higher 

precision and accuracy rate. The precision rate of proposed model is 69% whereas, the accuracy 

rate is 72%.  

In the continuation of their work, Gujral et al.  [64] applied two feature selection methods 

to measure the different level of severities. These methods are Info gain and Chi square and aim 

of these methods is to determine critical terms for severity classification. All the critical terms 

are stored in the form of dictionary. Further, two machine-learning algorithms i.e. NBM and 

KNN is adopted to predict the severity of bugs. In this work, four models are developed for 
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severity prediction on the basis of feature selection methods and machine learning algorithms. 

These models are Info gain + NBM, Info gain + KNN, Chi- square + KNN and Chi- square + 

NBM. The performance of aforementioned models is evaluated using precision and accuracy 

parameters. The experimental results revealed that all models achieve higher accuracy rate using 

UI component. Moreover, it is also noticed that Chi- square + KNN model provides better 

severity prediction as compared to rest of models.   

Zhou et al. [65] developed a multi-stage approach for improving the prediction rate of 

severity classification. The proposed approach is the combination of the data mining and text 

mining techniques. The proposed approach consists of three stages. In first stage, data mining 

approaches are applied to extract the relevant features from the summary of bug reports. Further, 

NBM classifier is trained on the extracted features and predicted the severity classes. The second 

stage consists of a set of structural features that are determined in stage 1. Further this set of 

features is used to train the Bayesian Net (BN) classifier for predicting the severity classes i.e. 

bug and non-bug. The third stage consists of data drafting approach and the work of this 

approach is to make the bridge between previous stages. This approach combines the output of 

the first stage with the selected features of the same bug reports. The proposed multi stage 

approach is tested on OpenFOAM, Jboss, Mozilla, Eclipse and Firefox datasets. The 

performance of proposed approach is compared with existing techniques using precision, recall 

and F-measure parameters.   It is observed that f-measure rate is significantly improved using 

the proposed approach. The f-measure rates for OpenFOAM, JBoss, Mozilla, Eclipse and 

Firefox datasets are 85.9%, 93.7%, 81.7%, 80.2% and 79.5%.   

To improve the classification rate, Jin et al.  [66] presented a new method based on NBM 

classifier for automatic bug severity classification.   The proposed method considers the product, 

component, reporter and severity as input along with the description and summary of bug 

reports. Further, the preprocessing phase is used to process the attributes of bug reports and 

output this phase is relevant attributes for classification task. These attributes are passed to the 

NBM classifier for classification purpose. The work of NBM classifier is to predict the label of 

bugs either severe or non-sever. The Eclipse and Mozilla datasets are considered for the 

experimental work and performance of proposed method is evaluated using F-measure 

parameter. The simulation results of proposed method are compared with Lamkanfi method 
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[49].  The simulation results demonstrated that proposed method is capable to separate the bugs 

into severe and non-severe label. It is also observed that proposed method obtains 80% and 83% 

F-measure rate for Eclipse and Mozilla datasets.   

Pandey et al. [67] investigated the performance of different machine learning algorithms for 

bug severity classification. In this work, SVM with different kernel functions, NB, LDA, KNN, 

DT and random forest (RF) are considered for severity classification. The task of these 

algorithms is to predict the class labels of bugs i.e. server or non-server. Apart from these, Bag-

Of-Words technique is applied to determine the relevant features for classification task. In this 

work, HTTP Client, Lucene and jackrabbit bug reports are taken for experimental work. The 

performance of above mentioned algorithms are evaluated in terms of average F-measure and 

accuracy parameters.  The experimental results showed that RF gives better performance among 

all machine learning algorithms. It is also seen that SVM with sigmoid kernel function obtains 

higher F-measure and accuracy rates than rest of kernel functions.  

Jindal et al. [68] presented a bug severity model to classify the bugs into high, medium, low 

and very low severity classes. In this work, the four variants of PITS datasets are used to validate 

the proposed model. These variants are PITS-A, PITS-C, PITS-D and PITS-E. The proposed 

model also considers the text mining methodology for extracting the relevant features from bug 

reports. The text mining methodology consists of three steps – preprocessing, feature selection 

and weighting.  In first step, irrelevant words form the PITS dataset are removed. In second step, 

relevant attributes are identified using Info gain method. These features are the input of third 

step. In third step, the weights are given to each relevant feature using TF-IDF method. The 

output of this step is features with respective weight scores and higher weight score features are 

selected for classification task. In this study, three classifiers are used for predicting the severity 

classes. These classifiers are Multi-Nominal Multivariate Logistic Regression (MMLR), DT and 

Multi-Layer Perception (MLP). The performance of these classifiers are evaluated using 

receiver operating characteristics (ROC) parameter. It is stated that DT classifier provides better 

classification rate than MLP and MMLR classifiers.  

To automate the bug severity classification process, Mishra et al. [69] developed a bug 

severity approach using cross datasets. The basic aim to consider the cross datasets is to identify 

the best training set using bug report summary of different datasets. Further, Bagging and Vote 
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techniques are used to reduce the imbalance issue of bug reports and also to extract the relevant 

features. In this study, K-NN, SVM and NB classifiers are applied to predict the bugs classes 

i.e. blocker, critical, major, minor and trivial. The performance of theses classifiers is evaluated 

using recall, precision and F-measure parameters. The experimental results showed the 

performance of K-NN classifier is better than SVM and NB classifiers. While, NB classifier 

exhibits worst performance among all classifiers. It is stated due to the cross training set, 

performance of K-NN classifier is enhanced especially with Eclipse dataset. Authors claimed 

that Eclipse dataset can be used to develop the classification model for Mozilla dataset and vice 

versa using K-NN and SVM classifiers and provide good results for cross datasets.    

Sharmin et al. [70] designed a bug feature selection (BFS) method to identify the relevant 

features for severity classification. The working of BFS method is divided into four steps. In 

first step, the text of bug reports is preprocessed and Term Document Matrix (TDM) of each 

feature is built using TF-IDF method. In second step, mutual information (MI) technique is used 

to select the relevant features. The second step is further divided into two sub steps- candidate 

feature selection (CFS) and final feature selection (FFS). In CFS sub step, MI and chi-square 

methods are used to measure the statistical dependency between features and classes. The 

features with higher MI values are selected for next step.  In third step, Pareto Optimality (PO) 

method is applied features to obtain complementary information regarding the classes and only 

those features can be selected for next steps that provide the complementary information.  In 

fourth step, two classifiers are trained using selected features and classified the bugs into 

different severity classes i.e. blocker, trivial, critical, minor, major. These classifiers are DT and 

SVM. The performance of proposed method is compared with already existing approach using 

F-measure parameter [65]. Three public datasets are used to validate the existence of the 

proposed method. These public datasets are Eclipse, GCC and Mozilla.  The experimental 

results revealed that proposed method provides higher F-measure value than other existing 

methods using all datasets. 

To increase of bug severity classification rate, Kumari et al. [71] developed entropy based 

approach for severity prediction. The working of proposed approach is divided into two phases. 

In first phase, features are extracted using Info Gain method. In second step, extracted features 

are used to train the different classifiers to predict the bugs into different classes like blocker, 

trivial, critical, minor, and major. In this study, NB, KNN, J48, RF, Relative Neighbor Graph 
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(RNG), Condensed Nearest Neighbor (CNN) and Multinomial Logistic Regression (MLR) 

classifiers are used for severity prediction.  Further, the Shannon entropy is calculated for 

severity classification to address uncertainty and irregular fluctuations in the BTS. The 

performance of these classifiers are evaluated using precision, recall, F-measure and accuracy 

parameters. Eclipse, PITS and Mozilla datasets are considered for experimental work. The 

results demonstrated that entropy function enhances the accuracies of all afore mentioned 

classifiers.  Further, the simulation results of entropy based approach is also compared with 

Menzies et al. [72] and Zhang et al. works [62]. It is observed that proposed approach improves 

the F-measure rate in comparison to Menzies et al. and Zhang et al. approaches.   

Table 2.2: Depicts the works presented on bug severity classification 

Authors 
Approach/ 

Method 

Adoption 

Criteria 
Dataset 

Performance 

parameter 
Advantage Disadvantage 

Lamkanfi 

et al., [49] 

 

Naive Bayes 

classifier 

To increase the 

accuracy of 

severity 

classification 

GNOME 

Eclipse 

Mozilla 

Precision 

F-measure 

Recall 

Proposed 

approach 

achieves higher 

results as 

compared to 

other algorithms 

Only trusted on 

the presence of 

a spontaneous 

relationship 

between the 

text and class 

Lamkanfi 

et al., [50] 

Naive Bayes, 

Naive Bayes 

Multinomial, 

K-nearest 

neighbor  and 

Support 

vector 

machine 

To explore the 

efficiency of 

machine 

learning 

classifiers to 

classify the 

severity of bug 

Mozilla 

Eclipse 

GNOME 

Precision 

F-measure 

Recall 

Naive Bayes 

Multinomial 

classifier obtains 

better results 

than other 

classifiers 

Need to extract 

more features 

from other 

attributes of 

bug report 

Gegicket 

al., 

[51] 

Chi-square, 

Correlation 

Coefficient 

and In-foGain 

with Naive 

Bayes 

Multinomial 

classifier. 

To overcome 

the delay 

process of 

security bugs 

identification 

Cisco  

Mozilla 

Eclipse 

Precision 

F-measure 

Recall 

Feature selection 

algorithms 

improve the 

performance of 

Naive Bayes 

Multinomial 

classifier 

significantly 

Only 

considered the 

security related 

bugs 
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Chaturvedi 

et al., [52] 

NB, MNB, 

SVM, k-NN, 

J48, RIPPER 

classifiers 

To explore the 

performance of 

different 

classifiers on 

bug severity 

classification 

NASA 

Precision 

F-measure 

Recall 

K-NN performed 

better than other 

classifiers 

 

Required to 

perform on 

more 

projects/compo

nents of 

software 

projects to 

validate the 

applicability of 

machine 

learning 

techniques. 

 

Thung et 

al., 

[53] 

LDA with 

SVM, DT and 

NB classifier 

To enhance the 

accuracy of 

bug report 

classifier 

JIRA 
F-measure 

Accuracy 

LDA+SVM 

performed better 

than others. 

Required to 

evaluate the 

performance of 

approach on 

more datasets 

Yang et 

al., 

[54] 

Information 

Gain, Chi-

Square and 

Correlation 

Coefficient  

with NBM 

classifier 

To determine 

the relevant 

features for 

automatic bug 

severity 

classification 

Mozilla 

Eclipse 

GNOME 

Precision 

F-measure 

Recall 

Information 

Gain + NBM 

classifier gives 

better results 

than others 

Ignore semantic 

features 

Murphy et 

al., [55] 

TF-IDF and 

LDA with 

Kullback–

Leibler 

divergence 

and SVM 

 

To increase the 

performance of 

SVM classifier 

Bugzilla Recall 

SVM-LDA 

obtains higher 

recall rate as 

compared to 

SVM-LDA and 

LDA-KLD 

Require more 

dataset and 

components 

Bhattachar

ya et al. 

[56] 

Graph-based 

analysis 

To understand 

the software 

system 

evolution and 

Eclipse 

Mozilla 
Accuracy 

Proposed 

approach obtains 

higher accuracy 

rate in 

Required 

additional cost 

for generating 

the graphs 
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identify 

defected bugs 

comparison to 

other existing 

approaches 

Pingclasai 

et al.,  [57] 

Topic-based 

model, LDA 

with Logic 

Regression , 

NB , ADTree 

classifiers 

To automate 

the bug 

severity 

classification 

HTTPCli

ent 

Jackrabbi

t and 

Lucene 

Accuracy 

Topic based 

model +NB 

achieves higher 

accuracy 

Ignore the issue 

of 

chronological 

change of bug 

occurrence 

Nagwani 

et al., [58] 

Simple 

Random 

Sampling and 

LDA 

To improve 

the accuracy 

rate of bug 

severity 

classification 

model 

Mozilla, 

Mysql, 

JBoss-

Seam 

and 

Android 

Accuracy 

Generation of 

taxonomic terms 

increase the 

accuracy of 

severity 

classification 

Need to extract 

the more 

features 

Kanti et 

al., 

[59] 

 

Chi-square  

and  Bi-grams 

methods with 

Naive Bayes 

classifier 

To maintain 

the semantic 

relationship 

between the 

text of bug 

reports 

Mozilla 

Eclipse 
Accuracy 

Bi-gram slightly 

enhance the 

performance of 

the classifier. 

Ignored the 

information 

dropping issues 

Limsettho 

et al., [60] 

Top 

modeling- 

Heuristic 

Dirichlet 

Allocation 

(HDA), 

Expectation 

Maximization 

(EM) and X-

means 

algorithms 

To explore the 

capabilities of 

unsupervised 

learning for 

severity 

prediction 

Lucene Accuracy 

Performance of 

unsupervised 

algorithms was 

nearby 

supervised 

classifier 

Require to 

improve the 

classification 

Model 

increasing its 

performance 

Chawla et 

al., [61] 

 

Term 

frequency 

Latent 

semantic 

To explore the 

performance of 

different 

classifiers on 

Google 

Chrome 
Accuracy 

Fuzzy classifier 

obtains higher 

accuracy rate 

than LR, NB and 

Need to extract 

other attributes 

like description, 

comments 
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indexing with 

Fuzzy logic 

bug severity 

classification 

ADTree 

classifiers 

Zhang et 

al.,[62] 

Concept 

profile 

approach 

based on KL-

divergence 

To increase the 

accuracy of 

severity 

classification 

Eclipse 

Mozilla 

Precision 

F-measure 

Recall 

Proposed model 

performs better 

than existing 

classifiers 

Required a 

large amount of  

historical data 

Gujral et 

al., 

[63] 

TF-IDF 

with NBM 

 

To enhance the 

performance of 

bug severity 

classification 

approach 

Eclipse 
Precision 

Accuracy 

Proposed model 

achieves higher 

precision and 

accuracy rate 

Required to 

increase the 

accuracy rate of 

classification 

Gujral et 

al., 

[64] 

In-foGain and 

Chi-square 

with K-NN 

and NBM 

classifier. 

To increase the 

accuracy rate 

of 

classification 

Eclipse 
Precision 

Accuracy 

Chi- square + 

KNN model 

provides better 

severity 

prediction as 

compared to Info 

gain + NBM, 

Info gain + 

KNN, and Chi- 

square + NBM 

Ignore semantic 

relations of text 

Zhou et al., 

[65] 

BN and NB 

classifier 

To improve 

the prediction 

rate of severity 

classification 

OpenFO

AM, 

Jboss 

Mozilla 

Eclipse 

Firefox 

Precision 

F-measure 

Recall 

Proposed 

approach 

achieves higher 

F-measure rate 

than existing 

approaches 

Only 

considered 

misclassified 

bug reports. 

 

Jin et al., 

[66] 

NBM 

classifier 

To improve 

the 

classification 

rate 

Eclipse 

Mozilla 
F-measure 

Meta -fields of 

the normal bug 

severity report 

are helpful in 

increasing the 

accuracy of 

classification 

 

Ignore the  

semantic 

features in 

meta-fields of 

bug report 
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Pandey et 

al., [67] 

Bag-Of-

Words with 

NB, LDA, 

KNN, DT and 

random forest 

(RF) classifier 

To investigate 

the 

performance of 

different 

machine 

learning 

algorithms for 

bug severity 

classification 

HttpClie

nt 

Lucene 

Jackrabbi

t 

F-measure 

Accuracy 

RF gives better 

performance 

among all 

classifiers 

Considered the 

sentences as the 

stack of words 

Jindal et 

al. [68] 

Info-Gain and 

TF-IDF with 

Multi-nominal 

Multivariate 

Logical  

Regression 

(MMLR), 

Multilayer 

Perception  

(MLP) , (DT) 

classifiers 

To increase the 

accuracy of 

bug severity 

prediction 

PITS A-

E 
ROC 

DT classifier 

provides better 

classification 

rate than MLP 

and MMLR 

classifiers 

Constrained 

generalization 

capability 

Mishra et 

al., [69] 

Bagging, Vote 

technique, In-

fogain, TF-

IDF with NB , 

SVM  and  K-

NN classifier 

To investigate 

the influence 

of cross 

projects on 

classifiers for 

bug severity 

classifier 

Eclipse 

Precision 

F-measure 

Recall 

Performance of 

K-NN classifier 

is better than 

SVM and NB 

classifiers due 

to the cross 

training set 

Unordered 

sequence of 

words. 

 

Sharmin et 

al., [70] 

 

TF-IDF, 

Mutual 

information 

(MI) and  

Pareto 

optimality 

To identify the 

relevant 

features for 

severity 

classification. 

Eclipse 

GCC 

Mozilla 

F-measure 

Selects fewer 

number of terms 

and requires 

less 

computation 

than the existing 

approaches 

 

Proposed 

approach might 

require further 

improvement to 

get satisfactory 

result 

Kumari et 

al., [71] 

TF-IDF and 

Info-Gain 

To increase of 

bug severity 

Eclipse 

PITS 

Precision 

Recall, 

Entropy 

function 

Ignore the 

problem of 
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with NB, 

KNN, J48, 

RF, Relative 

Neighbor 

Graph (RNG), 

Condensed 

Nearest 

Neighbor 

(CNN) and 

Multinomial 

Logistic 

Regression 

(MLR) 

classifiers 

classification 

rate 

Mozilla F-measure 

Accuracy 

enhances the 

accuracies of all 

classifiers 

imbalance 

dataset 

 

2.4 Bug Assignment Approaches 

Bug assignment is the process of assigning the relevant developer based on the severity for 

resolving the bug [73]. Traditionally, the new bug reports are manually assigned by a human 

expert called triager.  The manual bug assignment process is very time consuming, tedious and 

prone to error. The main reason is lack of information about the developer who has experienced 

of resolving similar types of bugs [74-76]. Further it also increases the probability of reassigning 

the bug.  This bug reassignment procedure increases the general bug fixing time [77]. Therefore, 

there is need to automate the bug assignment process. The aim of bug assignment is to reduce 

the probability of reassigning the bugs [78].  It also reduces the triages time and effort to assign 

relevant bug fixer or developer based on the severity [79,80]. However, to determine relevant 

developer and rank is one of challenging task.  In literature, previous researches implemented 

machine learning (ML), expertise (EB), social network (SN) and tossing graph (TG) based 

models to determine the relevant developer for resolving the bug [81-98]. Table 3 illustrates the 

works reported on bug assignment and developer identification approaches in literature. 

Xuan et al. [81] developed semi-supervised classifier to address the deficiency associated 

with labeled bug reports in existing supervised approaches. The working of proposed classifier 

is divided into two phases. In first phase, NB classifier is trained with labelled bug reports.  In 

second phase, the expectation maximization (EM) algorithm is applied on the combination of 
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labeled and unlabeled bug reports. The expectation part associates the appropriate label to 

unlabeled bug reports. While, maximization part rebuilds a new classifier with the help of 

labeled bug reports. Further, a weighted recommendation function is integrated with EM 

algorithm for assigning the weights to relevant developers during the training process. The 

performance of proposed semi-supervised classifier is evaluated using accuracy parameter. 

Eclipse dataset is considered for experimental work. The simulation results of proposed semi 

supervised classifier are compared with NB and NB with EM classifiers. It is observed that the 

accuracy rate of proposed semi-supervised classifier is higher than NB and NB with EM 

classifiers. It is revealed that semi supervised classifier improves the classification accuracy up 

to 6% in comparison to supervised classifiers.     

Bhattacharya et al. [82] presented a new algorithm based on ML and TG to improve the 

accuracy rate of bug assignment task and reduce the length of tossing path. In this work, 

accuracy issue is addressed through refined classification (RC) approach based on additional 

features and intra-fold updates during training phase. Whereas, a ranking function is developed 

to recommend potential tosses in TG and multi-feature TG. The working of proposed algorithm 

is divided into four stages. In first stage, NB and BN classifiers are applied for training purpose 

and built the TG. In second stage, the potential developer is predicted using the TG and 

classifiers i.e. NB and BN.  The third stage corresponds to the performance evaluation of training 

set. In this stage, accuracy of classifiers is evaluated for bug assignment. In fourth stage, 

developer class of test set is predicted using NB, BN and TG. TG is also updated in this stage.  

The proposed algorithm is validated using Mozilla and Eclipse datasets and also compared with 

ML based algorithm. The experimental results demonstrated that proposed algorithm reduces 

the tossing path length and also obtains higher accuracy rate. The accuracy rate of proposed 

algorithm for Mozilla and Eclipse datasets is 84% and 82.59% respectively.   

To help the traiger and determine the relevant developer, Anvik et al. [83] examined the 

capabilities of different machine learning techniques such as NB, SVM, EM and C4.5.  Three 

different developer recommendation system is developed using the aforementioned techniques.  

The first model is developer recommender system and aim of this model is to identify the 

developer for fixing the bugs. The second model is component recommender system and it can 

determine the product component of bug reports. The third model is interest recommender 
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system that can determine the interest of a developer for a particular project.  The performance 

of these recommendation system is tested on Bugzilla, GCC, Eclipse, Mylyn and Firefox 

datasets. The results demonstrated that SVM technique based recommendation system performs 

better than others techniques based recommendation systems. It is also observed that component 

based recommendation system improves the precision rate considerably. The precision rate 

achieved for Eclipse, Bugzilla, Mylyn and Firefox datasets is 76%, 96%, 98% and 73% 

respectively. A field study with four tragers is also reported in this study.  The traigers stated 

that proposed recommended systems reduce the bug fixing time of developers.  

A ML based training set reduction approach is presented by Zou et al. [84]. The proposed 

approach integrates the feature selection algorithm with instance algorithm. The aim of this 

integration is to reduce the redundant and noisy information from datasets as well to improve 

the accuracy of bug assignment. The proposed approach is the combination Chi square and 

instance selection algorithm. Chi-square method is used to find the dependency between features 

and developers. Whereas, instance selection algorithm especially iterative case filter (ICF) is 

used to filter the noise and instance reduction. It is also seen that different variants are developed 

on the basis of Chi- square and ICF. These combinations are Chi-square, ICF, Chi-square+ ICF 

and ICF +chi-square. Further, KNN method is utilized to predict the class label of instances. In 

this study, Eclipse dataset is considered for experimental work.  The performance of proposed 

variants is evaluated using precision, recall, F-measure and accuracy parameters. The 

experimental result demonstrated that Chi-square+ ICF and ICF +chi-square variants 

significantly reduce size of the training data and also obtains improved simulation results than 

traditional Chi-square and ICF.   

To reduce the bug fixing time and identify relevant developer for bug fixing, Tamrawi et al. 

[85] developed EB model, called Bugzie. The proposed model consists of fuzzy set based 

approach to determine the correlation between the multiple technical terms and identify the 

experience developer. The correlation information is used to recommend the relevant developer.  

Further the Bugzie model also computes the membership scores of each developer and it is used 

to describe correlation between the fixers and terms. The performance of proposed model is 

tested on Firefox, Eclipse, Apache, NetBeans, FreeDesktop, Gcc and Jazz datasets and 

compared with SVM and NB models using accuracy parameter. The results showed that Bugzie 



33 
 

model gives better accuracy rate than others models. The highest accuracy rate of proposed 

Bugzie model is 72% and it is also noticed that developers take less time for bug fixing.  

Wu et al. [86] developed a SN based recommendation model for recommending the 

developer for bug fixing and called developer recommendation with KNN and expertise ranking 

(DREX). The proposed model consists of two components.  The first component contains the 

KNN method and it is used to compute the similarity between historical and new bug report. In 

second component, simple-frequency method and six social network metrics such as PageRank, 

in-degree, betweenness, closeness and outdegree centrality are used to select relevant developer 

for bug fixing. The performance of proposed model is evaluated using precision, recall and F-

score parameters. The experimental result showed that Outdegree and simple frequency metrics 

performs better than other metrics and attains more than 0.6 recall rate for Mozilla and Firefox 

datasets  

Servant et al. [87] presented an EB based developer recommender system to determine the 

relevant developer for fixing the bugs. This system consists of three components.  These 

components are fault localization (FL), change history (CH) and expertise mapping (EM). The 

aim of FL component is to extract the information about failure locations. Whereas, CH 

component is used to collect the information regarding code editing task performed by 

developer. The work of EM component is to search the compatible developer. The proposed 

system is implemented using WHOSEFAULT tool and simulation results are evaluated using 

accuracy parameter using AspectJ dataset. It is revealed that that proposed system recommend 

the same developers upto 81% and improves the results of baseline technique. Moreover, it is 

also seen that simulation results of expertize technique is compared with existing expertise 

assessment techniques. It is found that proposed expertize technique achieves greater accuracy 

rate.    

To address the developer assignment and assignee task, Xuan et al. [88] presented SN based 

approach for improving the performance of bug assignment. In the proposed SN based approach, 

social network analysis is carried out to rank the developers who participate in the commenting 

process of bug fixing task. Further, NB and SVM algorithms are used to determine the 

appropriate developer. It is observed that authors also consider the developer assignment to 

handle three issues – ranking of developers, evolution and tolerance. The performance of 

proposed approach is investigated on Mozilla and Eclipse datasets using accuracy parameter.  
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The results indicate that the social network analysis improves the average accuracy of NB and 

SVM by 2% and 10%, respectively. It is also seen that developer assignment can have 

significant impact on bug resolution tasks.  

To assign the relevant developer for bug fixing, Xie et al. [89] developed TG based model, 

called developer recommendation based on topic models (DRETOM). The working of 

DRETOM is divided into three steps. In first step, Stanford Topic Modeling Toolbox (STNT) 

is used for grouping the bug reports according to topics. In second step, associations between 

developer and topic is described through probability function. This function formulates the 

relation between developer expertise and interest on bug fixing. Third step ranks the developers 

on the probability function. The performance of DRETOM is evaluated using Eclipse JDT and 

Mozilla datasets. The simulation results of DRETOM is compared with Bugzie [85] and DREX 

[86] model using recall parameter. Experimental results showed that DRETOM outperforms 

than Bugzie and DREX model and achieves 82 % recall rate or Eclipse JDT and 50% for 

Mozilla.   

In continuation of their work, Bhattacharya et al. [90] adopted ML and TG based approach 

for bug assignment or fixing. In this work, authors consider product and component of the bugs 

to determine the relevant features for bug dataset.  These features are used to train the various 

ML based classifiers like NB, SVM, C4.5 and BN along with bug tossing graph. The aim of bug 

tossing graph is to reduce the tossing length. The performance of these classifiers are tested on 

Mozilla and Eclipse datasets and evaluated using accuracy parameter. It is seen that NB and BN 

classifiers performs better than SVM and C4.5 classifiers.  Further, the NB classifier also 

outperforms than BN classifier by reducing the tossing path length for Mozilla and Eclipse up 

to 86% and 83% respectively.  The NB classifier obtains 77.87% (for Mozilla) and 77.43% (for 

Eclipse) accuracy rate. The author also implements the ablative analysis to measure the 

importance of software attributes for improving the accuracy rate. It is revealed that 

aforementioned techniques improve the accuracy rate with reduced training and prediction time.  

Xia et al. [91] presented EB based approach to designed a developer recommender system, 

called DevRec. The primary task of this system is to perform bug report analysis (BRA) and 

developer based analysis (DBA) for determining the relevant developer. In BRA, the similarity 

information between new bug reports and historical bug reports is computed.  This information 

can be used to find the list of developers that have some experience for solving similar bug in 
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past.  In DBA, the affinity of each developer is calculated based on the characteristics of bug 

report. This information is used to find the set of relevant developers. The performance of 

DevRec model is evaluated using Mozilla, NetBeans and Eclipse datasets. The simulation 

results of DevRec model is compared with DREX [86] and Bugzie [85] using recall parameter.  

The simulation results showed that DREX model improves the recall rate than DREX and 

Bugzie models. It is also observed that DREX model exhibits the worst performance among all 

three models.  

Naguib et al. [92] developed EB based approach based on the developer activities for bug 

assignment.  The working of proposed approach is divided into two steps. In first step, LDA 

algorithm is adopted for clustering the bug reports into different clusters. In second step, activity 

profile (AP) of each developer is generated using topic model and history log.  AP indicates the 

developer role, involvement and expertise for resolving the bugs. All these activities are helped 

to identify and rank the relevant developers. Hit score parameter is used to evaluate the 

performance of proposed approach. Further, ATLAS reconstruction, UNICASE, Eclipse and 

BIRT datasets are considered in this study. The simulation results of proposed approach are 

compared with LDA-SVM based model. The experimental results revealed that proposed 

approach performs better than LDA-SVM based model and achieves more than 88% hit ratio 

for all datasets.  

To improve the accuracy of bug assignment, Zhang et al. [93] developed TG based approach 

based on the topic model and relations of developers. The aim of proposed approach is to rank 

the developers on the basis of developer experience and interest for resolving the bugs. The 

proposed approach implements LDA for topic extraction from the previous bug reports. Further, 

the relationship of developers and topics are analyzed using social network. The performance 

of proposed approach is validated using Eclipse, Mozilla Firefox, and Netbeans datasets. The 

simulation results are evaluated using recall, precision and F-measure parameters. It is observed 

that proposed approach provides higher F-measure rate than DRETOM [89] and AP [92]. 

Yang et al. [94] developed TG based recommendation system for bug fixing and 

identification of relevant developer. The proposed system consists of different methods such as 

topic model method, core NLP and Kullback-Leiber. Topic model and core NLP methods are 

used for pre-processing, while Kullback-Leiber method is used to extract features of developers 
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such as same topic, priority, product, component and severity of bug reports. Moreover, the 

social network technique is utilized to capture the commenting activities of developer. The 

proposed system is tested on Eclipse, Mozilla and NetBeans datasets. The experimental results 

showed that proposed system obtains better recommendation results than Out-Degree [86], AP-

based recommender [92] and DRETOM [89], using all datasets.  

 In the continuation of their previous work, Zhang et al. [95] integrated the K-nearest-

neighbor search algorithm and heterogeneous proximity (KSAP) to improve the accuracy of bug 

assignment. The proposed KSAP works with heterogeneous network and historical bug reports 

and consists of two phases. In the first phase, KNN is implemented to determine the similarity 

between historical bug reports and new bug reports.  In the second phase, the developers are 

ranked on the basis of its capabilities to resolve similar kind of bugs using heterogeneous 

proximity. The efficiency of proposed KSAP is investigated over Eclipse, Mozilla, Apache and 

Tomcat datasets and simulation results are evaluated using recall, precision and F-measure 

parameters. The simulation results of KSAP approach is compared with existing ML-KNN, 

DREX, DRETOM, Bugzie, DevRec and DP models. It is seen that KSAP provides improved 

results in comparison to existing models.  

Lui et al. [96] develop a developer recommendation system based on multiple sources to 

avoid cold start problem in bug assignment, called DRS. In this work, authors consider two 

optimizing objectives i.e. time spent for bug fixing (time cost) and accuracy to determine the 

appropriate bug fixer. Further, modern portfolio theory is used to maintain the balance between 

time cost and accuracy.  In DRS, LDA is used to search similar topics. Further, it computes the 

multiple scores for each developer based on time, cost and modern portfolio theory. The score 

is used to rank the developers. The effectiveness of the proposed DRS is validated using Bugzilla 

dataset and its performance is evaluated using average time to fix the bugs. It is observed that 

DRS can reduce the cold start problem of bug assignment considerably through assign the 

relevant developers.  

Yadav et al. [97] adopted EB based approach to determine the appropriate developer for bug 

fixing. The proposed approach works on the developer expertise scores. The developers scores 

are computed using Jaccard and cosine–similarity methods. These methods measure the 

similarity between fixing time, priority and versatility of bug reports. Further, the developers 
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are ranked on the basis of developers score. The proposed approach is tested on FreeDesktop, 

Eclipse, Firefox, Mozilla and NetBeans datasets. The simulation results of proposed approach 

are also compared with existing ML approaches such as NB, SVM and C4.5 in term of precision, 

recall and F-measure parameters. The results demonstrated the proposed approach provides 

significant results than existing ML approaches and also reduced the tossing length.  

To handles the bugs in effective manner, Kanwal et al. [98] designed a machine learning based 

bug assignment model. The proposed model is classified into four phases. In first phase, the text 

of bug reports is pre-processed to reduce the noise effect in text. In second phase, the text and 

five categorical features are extracted. These features are categorical, summary and long 

description (CSTF), summary (SF), summary and long description (TF), categorical and 

summary (CSF) and categorical (CF). In third phase, NB and SVM classifiers are trained with 

different combinations of features for classifying the bugs into different priority classes. In 

fourth phase, a set of developer is assigned according to predicted priority. The performance of 

NB and SVM classifiers are evaluated using accuracy, precision, recall, nearest false negatives 

(NFN) and nearest false positives (NFP) parameters.  The aim of NFN and NFP parameter is to 

determine optimum combination of features for measuring the priority of bugs. It is observed 

that SVM classifier performs better than NB classifier for text features. While, NB classifier 

obtains better results than SVM classifier for categorical features. It is also observed that SVM 

achieves higher accuracy with the combination of text and categorical features.  

Table 2.3: Illustrate the works reported on bug assignment and developer identification approaches 

Paper Approach/Method 
Adoption 

Criteria 
Dataset 

Performance 

parameter 
Advantage Disadvantage 

Xuan et 

al., [81] 

Expectation 

maximization 

(EM) with Naive 

Bayes classifier. 

To address 

the 

deficiency 

associated 

with 

labeled 

bug reports 

in existing 

supervised 

approaches 

Eclipse Accuracy 

Accuracy rate 

of proposed 

semi-

supervised 

classifier is 

higher than 

NB classifier 

Required 

additional cost 

for 

probabilistically 

labeling the 

unlabeled bug 

reports. 
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Bhattac

harya 

et al.,  

[82] 

Refined 

classification, 

ranking function 

and multi-feature 

tossing graph 

(MTG) 

To 

improve 

the 

accuracy 

rate of bug 

assignment 

task and 

reduce the 

length of 

tossing 

path 

Mozilla 

Eclipse 
Accuracy 

Proposed 

algorithm 

reduces the 

tossing path 

length and 

also obtains 

higher 

accuracy rate 

Required more 

features to 

generate the 

multi-feature 

tossing graph 

Anvik 

et al. 

,[83] 

Component-based 

technique with 

Naive Bayes, 

SVM, EM and 

C4.5, classifier. 

To 

examine 

the 

capabilities 

of different 

machine 

learning 

techniques 

Bugzilla 

GCC 

Eclipse 

Mylyn 

Firefox 

Precision 

SVM 

classifier 

based 

recommendati

on system 

performs 

better than 

others 

techniques 

based 

recommendati

on systems 

Needs to extract 

the various 

feature 

‘component’ 

Zou et 

al., [84] 

Chi square and 

instance selection 

with KNN 

classifier 

To reduce 

the training 

dataset 

Eclipse 

Precision 

Recall, 

F-measure 

Accuracy 

Chi-square+ 

instance 

selection 

variants 

significantly 

reduce size of 

the training 

data and also 

obtains 

improved 

simulation 

results than 

traditional 

Chi-square 

Requires more 

features 
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and instance 

selection 

Tamra

wi et 

al., [85] 

Bugzie based on 

fuzzy set 

To reduce 

the bug 

fixing time 

and 

identify 

relevant 

developer 

for bug 

fixing 

Firefox, 

Eclipse, 

Apache, 

NetBeans, 

FreeDesktop

, Gcc 

Jazz 

Accuracy 

Bugzie model 

gives better 

accuracy rate 

than others 

models 

Required 

additional cost 

to generate the 

technical terms 

list that are 

extracted from 

the software 

systems. 

Wu et 

al.,  

[86] 

Developer 

recommendation 

with KNN and 

expertise ranking 

(DREX) 

To 

enhance 

the 

accuracy 

of bug 

assignment 

model 

Mozilla 

Firefox 

Precision 

Recall, 

F-measure 

Outdegree and 

simple 

frequency 

metrics 

performs 

better than 

other metrics 

Need extra cost 

to adjust the 

parameters of 

the algorithm. 

Servant 

et al., 

[87] 

Location 

information (LI), 

Change history 

(CH) and 

Expertise 

mapping. 

To 

improve 

the 

accuracy 

of bug 

assignment 

AspectJ Accuracy 

Proposed 

expertize 

technique 

achieves 

greater 

accuracy rate 

Additional cost 

to locate the 

given bugs 

Xuan et 

al. [88] 

NB , SVM and 

social network 

analysis 

To address 

the 

developer 

assignment 

and 

assignee 

task 

Mozilla 

Eclipse 
Accuracy 

Social 

network 

analysis 

improves the 

average 

accuracy of 

NB and SVM 

Needs extra cost 

for analyzing 

the developer 

relationships 

Xie et 

al., [89] 

DRETOM based 

on topic model 

To 

improve 

the results 

of existing 

assignment 

models 

Eclipse JDT 

Mozilla 

Firefox 

Recall 

DRETOM 

outperforms 

than Bugzie 

and DREX 

model 

Required to set 

the parameters 

of topic based 

model. 
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Bhattac

harya 

et al., 

[90] 

NB, SVM, C4.5 

and BN classifiers 

To reduce 

the tossing 

length 

Mozilla 

Eclipse 
Accuracy 

NB classifier 

outperformed 

the other 

classifiers 

Needs to extract 

the various 

feature 

‘component’ 

and ‘Product” 

Xia et 

al., [91] 

 

 

 

DevRec based on 

bug report-based 

analysis (BRA) 

and develop-

based analysis 

(DBA) 

 

To 

determine 

the 

relevant 

developers 

Mozilla, 

NetBeans 

Eclipse 

Recall 

DREX model 

improves the 

recall rate than 

DREX and 

Bugzie models 

Required more 

features for bug 

report 

characterization 

Naguib 

et al., 

[92] 

 

 

 

 

 

 

 

LDA, topic model 

algorithms 

 

To assign 

the 

appropriate 

developers 

ATLAS 

Reconstructi

on 

UNICASE 

Eclipse 

BIRT 

Hit score 

Proposed 

approach 

performs 

better than 

LDA-SVM 

based model 

Need extra cost 

to adjust the 

parameters of 

the LDA 

algorithm. 

Zhang 

et al., 

[93] 

LDA, social 

network. 

To 

improve 

the 

accuracy 

of bug 

assignment 

Eclipse 

Precision 

Recall, 

F-measure 

Proposed 

approach 

provides 

higher F-

measure rate 

than 

DRETOM and 

AP 

Additional cost 

is required for 

adjusting the 

parameters and 

analyzing the 

social network 

Yang et 

al., 

[94] 

Used topic model 

approach, core 

NLP for 

preprocessing and 

Kullback-Leiber 

for finding the 

similar bug 

To identify 

the 

relevant 

developer 

Eclipse 

Mozilla 

NetBeans 

Precision 

Recall, 

F-measure 

Proposed 

system obtains 

better 

recommendati

on results than 

Out-Degree , 

AP-based 

In the case of 

incorrect word 

frequency 

matching, this 

approach was 

unsuccessful in 

finding the 
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reports, after that 

used multi-factors 

and social 

network 

techniques for 

finding the 

relevant 

developer. 

recommender  

and DRETOM 

similar bug 

topics. 

Zhang 

et al., 

[95] 

KSAP based on 

heterogeneous 

bug repository 

network and K-

NN search 

To 

improve 

the 

accuracy 

of bug 

assignment 

Eclipse 

Mozilla 

Apache 

Tomcat6 

Precision 

Recall, 

F-measure 

KSAP 

approach is 

compared with 

existing ML-

KNN, DREX, 

DRETOM, 

Bugzie, 

DevRec and 

DP models 

Needs to extract 

the various 

feature 

‘component’ 

‘severity’ and 

‘Product” 

Lui et 

al., [96] 

DRS based on 

modern portfolio 

and LDA 

To avoid 

cold start 

problem in 

bug 

assignment 

Bugzilla 
Average fix 

time 

DRS can 

reduce the 

cold start 

problem of 

bug 

assignment 

considerably 

through assign 

the relevant 

developers 

Only calculate 

the average time 

to fix the bugs. 

Yadav 

et al., 

[97] 

Worked on 

developer 

expertise scores. 

Used Jaccard, 

cosine –similarity 

to measure the 

similarity between 

fixing time, 

priority and 

versatility, based 

To 

determine 

the 

appropriate 

developer 

for bug 

fixing 

Freedesktop 

Eclipse 

Firefox 

Mozilla 

Netbeans 

Precision 

Recall, 

F-measure 

Proposed 

approach 

provides 

significant 

results than 

existing 

machine 

learning 

approaches 

Ignore the 

severity of bug 

reports 
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on extracted 

features the 

developers are 

ranked 

Kanwal 

et al. 

[98] 

NB and SVM 

classifiers 

To resolve 

the 

important 

bugs 

Eclipse 

Nearest False 

Negatives, 

Precision 

Recall , 

Accuracy and 

Nearest False 

Positives  

SVM achieved 

the highest 

accuracy with 

both text and 

categorical 

features as 

compared to 

NB classifier  

 

Ignore semantic 

relations of text 
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CHAPTER 3 

PSO- ACO BASED BUG REPORT SUMMARIZATION MODEL 

3.1 INTRODUCTION 

This chapter addresses the summarization issue of bug reports. The aim of bug report 

summarization is to generate short summary of lengthy bug reports [21].  In literature, both of 

supervised and unsupervised approaches have been presented for summarizing the bug reports 

[24,25,31,32]. In supervised approaches, manual summaries of bug reports are prepared and 

relevant sentences are extracted from these summaries. Further, a model is designed to predict the 

relevant sentences using extracted sentences. Whenever, a new bug report is reported, the relevant 

sentences are extracted using trained model.  The shortcomings associated with supervised learning 

approaches is to require large amount of training data and partial towards the specific bug reports 

[29]. Furthermore, manual summaries generation is time consuming, costly and require a lot of 

human efforts. Whereas, unsupervised approaches determine the optimal sentences from summary 

based on diversity and centrality measures. These approaches are more suitable for different types 

of bug reports without any complex changes [32]. It is also noticed that, these approaches are not 

required manual summaries for summarization task. In turn, cost and human effort is reduced. For 

summarization task, summaries are divided into two categories- extractive and abstractive [99]. 

The extractive summary refers to the identification of relevant sentences from the bug report to 

produce the final summary. While, in abstractive summary, the appropriate sentences are selected 

and rephrased to generate a new short sentences. These sentences contain critical information from 

the original sentences. It is observed that the unsupervised approaches provide better results than 

supervised approaches for bug report summarization [31,32,35,36]. It is also noticed that most of 

automatic summarization techniques are extractive in nature. It is observed that main issue with 

bug report summarization is volume of data associated with bug reports. The data is presented in 

the form of comments and large search space. In turn, it is difficult to determine the relevant 

sentences and compute the sentence score [32]. Several other problems are also associated with 

bug reports such as sparsity issue in high dimensional matrix, time cost, accuracy and overfitting 

issue [35,36].  Hence, the main objective of this chapter is to address the following issues.    

 To develop a generalized bug report summarization technique for summarization task  
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 To determine relevant summary subset of bug reports    

 To address the data sparsity of sentences.  

This chapter presents an unsupervised approach based on particle swarm optimization (PSO) and 

ant colony optimization (ACO) approaches to select the optimal summary subset [100-104].  

Initially, PSO is applied to determine the relevant summary subset. Further, ACO algorithm is 

applied to refine the output of PSO algorithm.  The semantic relationship of sentences is also 

computed to handle data sparsity issue. Moreover, two research questions are also designed to show 

the effectiveness of the proposed PSO-ACO model. 

RQ1: Does the performance of the proposed PSO-ACO model is better than PSO model? 

RQ2: Are the unsupervised techniques more feasible than supervised techniques for bug report 

summarization? 

3.2  Formulation of Bug Report Summarization as Optimization Problem  

The optimization of summarization process is a difficult task due to low order value optimization. 

It influences the speed and accuracy of summarization process, but large search space is explored 

for better summarization [101,105-107]. Bug reports consist of large number of comments and 

descriptions. These comments and descriptions contains valuable information for summarization 

task. To extract the relevant sentences for short summaries, a PSO-ACO based summarization 

technique is proposed. Further, the semantic relationship is also determined for extractive bug 

report summarization (BRS). When, bug reports are processed, a weight function is assigned to 

each normalized text. The subset of normalized texts is generated according the user preferences. 

A user preference summarization model contains a large number of subsets. Suppose, the number 

of lines present in a Bug report is x. The number of possible subsets with the combination of 1, 2 

and n sentences of a bug report is r. So, the number of summary subsets with different number of 

sentences is computed using equation 3.1. 

                                                                A = ∑ Cr
xn

r=1                                                             (3.1) 

Assume, summary percentage mentioned by user is z%. Hence, the number of sentences in subset 

based on user percentage is computed through equation 3.2. 
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                                                           N = x ×
z

100
                                                                  (3.2) 

                                                           A ∩ N = B                                                                    (3.3) 

  In equation 3.3, A represents the number of subset with different number of sentences, N denotes 

number of sentences in subset based on user percentage and B contains the common summary 

subsets presented in both of A and N. The optimization process is implemented on the summary 

subsets presented in set B and the aim is to choose minimum summary subsets that can cover 

entire summary. Hence, the bug report summarization problem is formulated as subset selection 

problem.  

3.3 Proposed PSO-ACO Based Summarization Model 

This section presents a PSO-ACO based summarization model to determine the optimal subset of 

summaries. The working of proposed model is demonstrated using Figure 3.1. The proposed model 

consists of four phases. These phases are preprocessing, sentence scoring, summary subset 

selection and performance evaluation.  

3.3.1 Preprocessing Phase 

This phase consists of bug report descriptions, titles and summary percentage in the form of text. 

The text of bug reports (D) is divided into set of passages Pi, D = (P1, P2…PN). These passages are 

further divided into many sentences, Pi = Si. and sentences are further segmented into words Wi, 

Si= (W1, W2……WN) and this process is known as tokenization.  The outcome of tokenization is 

isolated words, called token. Moreover, stop word removal (SWR) and rooting extraction (RE) 

techniques are also applied on the output of tokenization process. SWR technique removes the 

unwanted and insignificant words. Whereas, RE technique is applied for linguistic normalization. 

It can be described as change of inflectional and derived words into familiar base words [108-110]. 

The output of this phase is normalized text and can be acted as the input of second phase.       

3.3.2 Sentence Scoring Phase 

The output of preprocessing phase is tokens i.e. words and features. The score of each words are 

computed using extended frequency criteria. These criteria are illustrated in Figure 3.2. 
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Figure 3.1: Proposed PSO-ACO based Bug Report Summarization Model 

 Informativeness: This criterion determines the specificity of system.  It can be described as 

amount of data reflected in a given document (D) using term (t).   
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 Phraseness: This criterion correspondence to extract the multiple words. The phraseness 

score describes the rigidity of words in multi-word arrangement. This criterion computes the 

significance of a term based on relative frequencies of terms and their segments i.e. unigrams 

or frequencies.   

Furthermore, previous study demonstrates that Kullback–Leibler divergence (KLdiv) method 

provides better results using both of criterias [111]. The basic aim of KLdiv method is to compute 

the divergence between two probability distributions [112]. It also reduces the sparsity of text 

through semantic information of bug report summary. Further, KLdiv method is divided into 

Kullback–Leibler divergence Informativeness (KLI) and Kullback–Leibler divergence Phraseness 

(KLP). The probability of each unigram, bigram and trigram features are computed using equations 

3.4 -3.6 and stored in a matrix.    

                                      

Figure 3.2: Feature Weighting Module 

 KLIP(w)  =  KLI(w) +  KLP(w)                                                                       (3.4) 

KLI(w) =  p(w|S)log
p(w|S)

p(w|C)
                                             // For unigram    (3.5)   

              KLP(w) =  p(mw|S)log
p(mw|S)

∏ p(μr|S)m
r=1

     // For bigram and trigram             (3.6) 

In equations 3.4-3.6, p(w|S) is the probability of  word ‘w’ in sentence ‘S’, p(w|C) is the collection 

of language , p(mw|S) is the probability of multiword in S  and p(μr|S) is the probability of rth 

unigram inside n-gram (mw).  

Informativenes

s 

Phraseness 

Features 

Extract uni-gram 

features 
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features 

Extract tri-gram 

features 
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The score of all words are combined to obtain the sentence scores (SS). Further, the subsets of 

these sentences are evaluated using user provided summary percentage. The subset score (SuS) is 

computed for every subset.  Here, the PSO-ACO technique is applied to determine the optimal 

subsets from the given summary subsets based on subset score. Each subset is represented using 

vector in a search space and described as Sl(l = 1,2,3 … . m). The steps of the preprocessing and 

sentences scoring phases are mentioned in Algorithm 3.1. 

Algorithm 3.1 

Input: Bug reports as text input, D  

Output: Summary subsets (SuS)  with the respective score, SuSl = {S1, S2, … … . . Sm}, m = B by using 

equations 3.1-3.2.  

1. PRE-PROCESSING PHASE 

1.1. Initially, pre-processing of a bug report is executed. 

1.2. Tokenization(Di) 

1.3. Stop word removal(Di) 

1.4. Rooting(Di) 

2. SENTENCE SCORING PHASE 

2.1. Extract informative features (unigram, KLI) by using equation 3.5 

2.2. Extract phraseness features (bigram and trigram, KLP) by using equation 3.6 

2.3. Combination of two scores KLI and KLP using equation 3.4. 

2.4. KLIP score of all words are added to get the sentence scores (SS). 

2.5. Generate the subset according to user summary percentage. 

2.6. Calculate the summary subset score (SuS) for every subset. 

The output of the second phase is sentences scores. These scores are given as input to third phase.  

3.3.3 Summary Subset Selection Phase 

In this phase, PSO-ACO technique is used to determine the optimal summary subsets. The steps of 

PSO-ACO technique is described in Algorithm 3.2. Figure 3.3 illustrates the flow chart of the 

proposed PSO-ACO technique. The algorithm starts with initialization of the population of PSO 

algorithm in terms of sentence score and other user defined parameters like, maximum number of 

iteration, βp1, βp2, and  α(t) . 
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Algorithm 3.2: Proposed PSO-ACO Based Subset Selection Algorithm 

Input: Summary subset (m) with respective score 

Output: Summary subset (n) with best optimized score, whereas n<m 

Step 1: Initialize the particles and user define parameters viz population, iteration etc 

Step 2: For, each subset or particle, d= 1,2…N 

Compute fitness function and  Particles initial position= subset score  

Step 3: Subset best known position = initial position: pbestd ← Posd
(t)

 

Step 4: Assume,  initial velocity is zero 

Step 5: While ( condition is not met), do following: 

Step 6: Update the Particle’s velocity using equation 3.7 

Veld
(t+1)

= α(t)Veld
t + βp1randp1(t)(pbestd − Posd(t)) +

βp2randp2(t)(gbestd − Posd(t))                                                                                  (3.7)                                                                                                                                          

Step 7: Update the Particle’s position using equation 2 

Posd
(t+1)

= Posd
(t)

+ Veld
(t+1)

         (d = 1,2 … . . N)                                        (3.8) 

Step 8: If  f(Posd
(t)

) <f (Posd
(t+1)

)  

  Posd
(t+1)

← Posd(t) 

Step 9: If  f (Posd
(t+1)

)<f(pbestd) 

  pbestjd   ← Posd
(t+1)

 

Step 10: If  f (pbestd)<f(gbestd)  

  gbestd ← pbestd 

End while 

End for 

Step 11: Sort the particles according the gbest and Calculate ROUGE score 

Step 12: Initialize the ants and other user defined parameters of ACO algorithms 

Step 13: Initialize the pheromones using equation 3.9 

                              pA(T) =
(τA(T))

α
.ηA

β

∑ (τA(T))
α

.ηA
β

A

                                                                     (3.9) 

Step 14: Update the pheromones using equation 3.10 

                            𝜏𝐴(𝑇 + 1) = 𝜌𝜏𝐴(𝑇) + ∆𝜏𝐴(𝑇)                                                         (3.10) 

Step 15: If (value of subset is not changed) 

Add the subset in subset list and calculate the transition probability  

Select the subset with higher probability and calculate ROUGE score 

Step 16: Else, update the pheromones of all subsets and go to step 13 

Step 17: Obtain the final summary subset with best optimized score 

*Velid
t  is the old velocity,  Veld

(t+1)
 is the new velocity,  Posd

(t)
 represent as current position , Posd

(t+1)
is 

updated particle  position , gbestd  is the global best position , pbestd is the personal best position, βp1, βp2 

are the learning factors as positive constant , randp1(t), randp2(t)  are random numbers between [0,1] and 

α(t) is the inertia weight . ηβ describe the background information of features to improve the results,  τA(T) 

is pheromone amount for the Ath feature in time T, α and β are the control parameters that provides the 

pheromone and background information, and pA(T) is the Transition probability , ρ is defined as 

evaporation rate of pheromone trail and lies between [0, 1], ∆τA(T) is the pheromone trail amount added 

to Ath feature between time ∆ and ∆T 
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Figure 3.3: Flowchart of PSO-ACO based Summary Subset Selection Algorithm 
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The particles are described in terms of subset score assume initial velocity of particles is zero. Next 

step is to, calculate the cosine similarity of subsets as fitness function. Until the termination 

condition is not met, update the velocity and position of particles using equations 3.7 and 3.8. At 

the end of every iteration, compare the particle’s current position with its personal best. If personal 

best position is better than update the current position. The personal best position of all particles is 

compared with global best position. If personal best position of any particle is better than global 

best position than update its global best position. This process continues on until the personal best 

position is equal to global best position of particle. After that, sort the subsets according to its global 

best position. The output of PSO algorithm is given as input to ACO algorithm. Initialize the user 

define parameters of ACO algorithm. Initialize the pheromones and update its value using 

equations 3.9 and 3.10. If the value of the subset does not change after the few iterations, then 

calculate its transition probability otherwise update the pheromones of all subsets.  The output of 

algorithm is optimal summary subset. 

3.3.4 Performance Evaluation Phase 

This phase evaluates the performance of proposed model. The performance of model is evaluated 

using ROUGE score parameter [113]. The system generated summary is compared with the manual 

summary to determine the efficiency of PSO-ACO technique. Therefore, all possible n-grams 

words (w) are extracted from system generated and manual summaries subsets using equations 

3.11-3.13.      

  P (wi|w0 … … wi − 1)  =  P (wi)                                                            (3.11) 

 P (𝑤𝑖|𝑤0 … … 𝑤𝑖 − 1)  =  P (𝑤𝑖|𝑤𝑖−1)                                                    (3.12)                

    P (wi|w0 … … wi − 1)  =  P (wi|wi−1wi−2)                                          (3.13)  

The n- gram represents the combination of n continuous words into a single word. In this 

experiment unigram, bigram and trigram are considered.  Moreover, common occurrence of n-

grams is computed between system generated and manual summaries.  

3.4 Experimental Results and Discussion 

This section describes the experimental results of proposed PSO-ACO model. The proposed model 

is implemented using Java platform. The system is equipped with an Intel Core i5 (7th generation), 
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8GB of DDR4 memory and NVIDIA GEFORCE GPU, and Windows 10 operating system with 

64- bit and CPU @ 2.70GHz. The performance of proposed model is evaluated using Rastkar 

dataset [24,25]. This dataset contains thirty-six bug reports from four different projects. These 

projects are KDE, Eclipse Platform, Gnome and Mozilla. These thirty six bug reports are divided 

into three summary sets. The ROUGH score parameter is described using equation 3.14. 

ROUGE =
∑ ∑ Countmatch(gramn)gramn∈CC=RSS

∑ ∑ Count(gramn)gramn∈CC=RSS
                                           (3.14)                                   

In equation 3.14, RSS is the reference summary set, Countmatch(gramn) is the maximum no. of 

common n-grams between system generated and reference summaries.  Count (gramn) is the 

number of n-grams in the reference summary. The user defined parameters setting of proposed 

PSO-ACO model is presented in Table 3.1.  

3.4.1 RESULTS  

This subsection presents the experimental results of proposed PSO-ACO model. The system-

generated summaries are compared with three manual summaries of each bug report. These 

summaries are denoted as Summary Set 1, Summary Set 2 and Summary Set 3. In this work, thirty 

percent of summary is considered to conduct the experiments. The performance of PSO-ACO 

model is compared with well-known supervised and unsupervised models such as particle swarm 

optimization (PSO), grasshopper approach (EGA), bug report classifier (BRC), email classifier 

(EC) and email meeting classifier (EMC) [24,25]. The PSO and grasshopper models are 

unsupervised in nature, whereas rest of are supervised in nature [114, 31].  The basic aim of this 

work is to explore the problem space efficiently and analyze the trigram and bigram more 

effectively. The ROUGE score parameter is used to evaluate the experimental results. It is also 

mentioned that both of PSO-ACO and PSO based summarization models are developed in this 

work.   

3.4.1.1 Summary Set 1  

The summary set 1 consists of the summaries generated through software company expert for 

thirty-six bug reports. These summaries are compared with system generated summaries using 

ROUGE score parameter. The system generated summaries are computed using proposed PSO- 

ACO model. The performance of the proposed PSO-ACO model is compared with several other 



53 
 

models such as PSO, EGA, BRC, EC and EMC [25,31]. The experimental results of proposed 

PSO-ACO model and other models are presented in Table 3.2. It is seen that proposed PSO-ACO 

model provides higher ROUGE score rate as compared to other models. It is also noticed that EGA 

exhibits worst performance among all models. The average ROUGE score obtained through 

proposed PSO-ACO model is 92.60. It is also revealed that PSO based summarization model gives 

better results than BRC, EC, EMC and EGA models. But, the integration of PSO-ACO techniques 

improves the results of PSO technique. Figure 3.4 demonstrates the graphical representation of 

simulation results of the proposed PSO-ACO model and other models being compared using 

Summary Set 1. It is stated that proposed PSO-ACO model achieves better quality results than 

other models. 

Table 3.1: PSO-ACO parameters setting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.2 Summary Set 

The summary set 2 contains the summaries generated by technical expert. Summary set 2 is 

considerably different from summary set 1. The system generated summaries are compared with 

summaries generated through technical expert. Table 3.3 illustrates the simulation results of 

proposed PSO-ACO model and other models using Summary Set 2.  ROUGE score parameter is 

used as performance measure to   validate the results of PSO-ACO based summarization model

Parameters of PSO-ACO Values 

Particles 100 

Iterations of Particles 500 

C1 1.9 

W 0.4-0.9 

C2 1.9 

VMAX 0.1 

ANTS 100 

ρ 0.5 

Iterations of Ants 500 

𝛼 0.7-1 

𝛽 2-5 

Initial Value of 

Pheromone 

AVG(GLOBAL 

BEST) 

Pheromone Intensity AVG(LOCAL BEST) 
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Table 3.2: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EGA  

                    techniques using ROUGE score parameter for Summary Set 1 

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA 

1 79.03 77.9 92 79.9 85 74.6 

2 88.54 87.4 88.4 86.5 87.6 77.2 

3 93.33 92.8 84.6 90.9 89.1 78.1 

4 92.16 91 74.5 86.5 86 77.7 

5 88.85 88.2 75.3 84.8 90.3 78 

6 86.23 85 70.6 87.5 89.4 79.1 

7 96.77 96 86.3 91.6 90.5 80.2 

8 96.6 93.5 91.9 89.2 93.9 79.8 

9 90.33 90.2 92.3 89.5 90.7 79.1 

10 96.08 93.4 90.9 91.8 92.6 79.8 

11 96.49 95.6 87.3 91.7 91.6 79.8 

12 93.61 92.6 91.4 91.1 87.1 79.4 

13 94.44 93 93.8 88.1 91.9 79.7 

14 91.41 88.9 92.1 83.4 86.5 79.5 

15 96.55 95.2 90.4 92.9 93.4 80.1 

16 93.98 93 92.7 92.3 92.8 80 

17 94.12 93.4 91.5 92 91.1 80.1 

18 95.57 94.7 90.5 90.9 91.4 80.7 

19 92.29 91.5 82.6 90.4 91.9 80.1 

20 91.97 92.9 89.3 92.7 90.9 79.5 

21 95.89 94.4 91.5 90.7 94 79.6 

22 94.33 93.7 89.5 91.9 89.8 79.1 

23 98.49 98 81.8 94.5 91.7 78.7 

24 91.53 90.4 91.7 88.2 68.4 78 

25 90.55 87.2 90 84.6 87.5 77.7 

26 94.03 93.2 89.9 61.5 69.1 78.4 

27 93.88 91.4 80.6 67.5 90.4 78.2 

28 91.47 90.6 89.3 91 88 78.2 

29 94.16 93.3 86.4 66.9 89.5 78.8 

30 90.05 88.5 81.4 85.5 87.4 78 

31 93.26 91.9 83 89.1 89.9 77.3 

32 92.33 91.8 82.8 89.8 91.6 64.1 

33 93.66 91.3 88.1 89.5 88 51 

34 96.12 95.1 87.6 60.9 64.1 38 

35 88.86 87.7 82 64.6 43.3 35.7 

36 86.53 83.1 76.4 49.3 43.3 35.8 

Average 92.6 91.3 86.7 84.7 85.5 74.2 
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Figure 3.4: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques  

on Summary Set 1 

It is revealed that the proposed PSO-ACO based summarization model achieves higher ROUGE 

score in comparison to other models being compared. The ROUGE score rate of proposed PSO-

ACO model is 87.92. It is also observed that EC model exhibits worst performance among all other 

models. But, it is seen that there is no significant difference between the performance of PSO- ACO 

and PSO based summarization models.  But, the performance of the PSO algorithm is slightly 

improved using integration of PSO-ACO. Figure 3.5 demonstrate the experimental results of 

proposed PSO-ACO model and other model using Summary Set 2. ROUGE score parameter is 

used to illustrate the simulation results of different models.  It is revealed that there is significant 

difference between the performances of proposed PSO-ACO model and other models like BRC, 

EC, EMC, EGA. But, it is observed that the performance of PSO and PSO-ACO based 

summarization models is almost similar. 

3.4.1.3 Summary Set 

The summary set 3 contains the summaries described through an English exper
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Table 3.3: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques using ROUGE score 

parameter for Summary Set 2 

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA 

1 75.68 74.58 70.76 52.07 64.27 71.75 

2 82.81 81.62 85.25 57.65 63.48 74.28 

3 92.12 91.33 81.65 59.83 64.88 75.1 

4 89.4 88.16 68.12 57.38 63.95 74.64 

5 85.05 83.98 73.23 55.53 66.06 74.81 

6 83.81 82.6 60.78 58.28 66.83 75.74 

7 93.06 92.25 83.26 59.88 66.6 76.85 

8 92.23 87.39 88.32 58.51 68.34 76.07 

9 88.72 88.15 90.14 59.15 66.96 73.75 

10 91.81 89.3 86.65 59.94 68.16 74.26 

11 91.4 90.52 80.59 60.29 65.7 74.51 

12 91.26 90.34 88.44 59.04 58.42 74.46 

13 87.83 86.79 91.25 52.67 68.2 74.35 

14 73.73 71.21 89.07 54.3 64.33 74.56 

15 93.1 91.68 85.69 60.91 68.26 77.53 

16 92.08 91.06 72.32 60.4 67.25 77.29 

17 91.02 90.14 88.98 59.92 66.98 76.62 

18 90.22 89.62 86.98 59.3 67.93 77.44 

19 89.11 88.27 92.95 60.08 66.48 77.18 

20 91.2 91.97 84.84 60.66 65.62 75.53 

21 91.49 90.02 89.81 58.8 70.79 62.4 

22 86.87 86.38 84.39 60.75 65.93 61.63 

23 96.27 95.87 90.85 61.21 64.14 62.13 

24 88.86 87.75 86.76 54.84 22.22 61.12 

25 82.5 76.78 88.36 25.59 63.43 59.87 

26 85.67 84.78 83.49 28.22 45.2 61.6 

27 87.76 84.66 83.65 58.18 64.51 74.35 

28 90.76 89.87 88 59.55 62.18 74.76 

29 89.92 88.79 83.03 55.93 66.28 74.76 

30 80.39 78.99 63.33 55.98 64.26 74.3 

31 90.29 88.94 81 59.39 65.33 72.57 

32 89.81 89.24 81.82 58.92 45.19 59.87 

33 87.78 87.5 73.93 59.13 64.57 47.12 

34 90.96 89.89 79.92 58.48 58.91 34.62 

35 86.39 85.56 74 50.82 21.6 32.59 

36 73.63 66.91 72.7 22.3 43.23 32.2 

Average 87.92 86.47 82.06 55.39 61.29 68.13 
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Figure 3.5: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques  

on Summary Set 2 

The simulation results of the system generated summaries are also compared with summary set 3. 

Table 3.4 depicts the simulation results of proposed PSO-ACO model and other models such as 

BRC, EC, EMC, EGA, PSO models. From simulation results, it is seen that proposed PSO-ACO 

model achieves better quality results than PSO, BRC, EC, EMC, EGA models. The proposed PSO-

ACO model obtains 84.51 ROUGE score rate. It is revealed that EMC models provides worst 

results among all other classifiers for summary set 3. It is also stated that the significant difference 

is occurred between the performance of proposed PSO-ACO and PSO based summarization 

models. Figure 3.6 depicts the graphical representation of simulation results of proposed PSO-ACO 

model and PSO, BRC, EC, EMC, EGA models using Summary Set 3. It is seen that the average 

ROUGH score of the proposed PSO-ACO model is better than other compared models. Hence, it 

is stated that PSO-ACO based summarization model is capable to generate the short summaries 

without affecting the structure of bug report 
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Table 3.4: Comparison of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques using ROUGE score 

parameter for Summary Set 3 

Sr. No. Proposed PSO-ACO PSO BRC EC EMC EGA 

1 75.47 74.37 43.89 51.2 41.19 69.29 

2 80.42 79.23 54.38 55.98 40.54 70.85 

3 89.29 88.7 50.24 56.29 42.91 71.52 

4 81.72 80.16 62.96 53.78 41.08 70.98 

5 82.33 81.17 66.63 54.19 42.11 71.87 

6 82.6 81.4 57.67 55.57 43.47 72.68 

7 86.12 85.32 63.64 56.41 42.68 73.59 

8 91.26 83.91 54.88 56.28 45.15 73.18 

9 84.61 84.94 65.47 57.17 43.08 70.64 

10 89.32 86.41 74.77 57.75 44.72 71.43 

11 87.71 86.84 60.8 58.19 42.83 72 

12 89.57 87.72 75.25 56.73 39.56 72.15 

13 83.59 82.47 67.37 49.54 43.87 71.99 

14 68.68 66.16 75.37 52.19 40.04 72.63 

15 91.87 90.42 72.9 60.29 45.193 76.13 

16 91.49 90.45 67.55 59.44 44.55 75.2 

17 88.9 87.88 64.75 58.16 44.17 74.27 

18 86.71 86.6 75.08 57.84 44.25 75.28 

19 87.77 86.93 62.95 59.21 43.28 75.32 

20 90.27 90.69 54.59 58.19 43.67 73.4 

21 85.33 83.87 74.57 55.94 45.18 60.45 

22 84.39 83.96 62.92 59.64 43.09 59.98 

23 95.38 94.97 76.65 60.61 43.29 60.72 

24 87.97 86.85 66.69 53.45 21.99 58.44 

25 77.77 73.51 74.83 24.5 40.31 56.91 

26 78.9 76.83 70.29 26.86 22.51 58.35 

27 83.47 80.57 65.51 56.57 40.96 70.67 

28 90.05 89.16 60 56.05 41.9 70.91 

29 80.37 78.99 67.61 51.73 41.32 58.17 

30 77.55 76.19 77.86 53.25 41.1 58.74 

31 84.9 83.55 71.27 56.61 42.04 57.1 

32 86.84 86.27 77.58 56.16 21.71 45.17 

33 83.25 82.21 75.05 27.4 41.84 32.84 

34 81.22 80.45 71.11 27.67 17.77 21.1 

35 84.12 83.01 74.66 49.24 21.03 31.88 

36 71.06 64.7 69.5 21.57 20.54 31.51 

Average 84.51 82.97 66.86 51.71 39.03 63.54 
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Figure 3.6: Simulation results of proposed PSO-ACO, PSO, BRC, EC, ECM and EGA techniques  

on Summary Set 3 

The average results of three summary sets using all techniques are reported in Table 3.5. It is 

observed that proposed PSO-ACO technique provides better results than other techniques. 

Whereas, EC techniques exhibits worst performance among all techniques. Hence, it is said that 

proposed PSO-ACO is one of the efficient and effective model for bug report summarization. 

Furthermore, two fundamental research questions are also designed to differentiate the 

performance of proposed PSO-ACO model and other existing models.  

Table 3.5: Average Rough score of proposed PSO-ACO, PSO, BRC, EC, EMC and EC techniques 

Dataset 

Techniques 

Proposed 

PSO-ACO 
PSO BRC EC EMC EGA 

Summary Set 1 92.6 91.3 86.7 84.7 85.5 74.2 

Summary Set 2 87.92 86.47 82.06 55.39 61.29 68.13 

Summary Set 3 84.51 82.97 66.86 51.71 39.03 63.54 

3.4.1.4 Statistical Test  

This subsection deals with the statistical analysis of the simulation studies. The objective of the 

statistical analysis is to find the significant differences between the performance of proposed 
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technique and other techniques being compared. To validate the existence of the proposed 

technique and prove its significance, some statistical tests are applied on the experiment results. 

These tests have been widely applied in the machine learning domain [133]. A statistical test is 

applied to check the substantial differences between the performances of techniques. In this study, 

Friedman and Wilcoxon tests are employed for demonstrating the statistical analysis [134-135]. 

The value of α (level of confidence) is set to 0.1. The results of Friedman test are illustrated in 

Tables 3.6-3.7. Table 3.6 summarizes the average ranking of each technique computed through 

Friedman test using average ROUGH score parameter. The critical value of Friedman test at the 

confidence levels 0.1 is 11.070504. The corresponding p value and statistics result are reported in 

Table 3.7. It is clearly seen that null hypothesis is rejected at the confidence level 0.1 and significant 

differences are occurred between the performances of all techniques. From the literature, it is noted 

that Friedman test cannot distinguish the datasets which are used for comparison as it assigns equal 

importance to each dataset [134]. In this experiment, the p−values of Wilcoxon’s rank sum test are 

also conducted. Wilcoxon’s rank sum test is a nonparametric statistical test. It is more sensitive 

than Friedman test as it assumes proportionality of differences between two pairs samples. 

Moreover, it is safer than Friedman test as it does not assume the normal distributions and the 

outliers affecting lesson. The aim of this test is to indicate the proposed PSO-ACO technique 

provides notable improvement as compared with other bug report summarization techniques. The 

result of this test is illustrated in Table 3.8. The p-values of proposed PSO-ACO in comparison to 

other techniques are reported in Table 3.8. It is observed that all p-values are less than 0.1. Hence, 

it is stated that proposed PSO-ACO technique is statistical better than other compared techniques.  

Table 3.6: Average ranking of techniques using Friedman tests  

Techniques 
Proposed 

PSO-ACO 
PSO BRC EC EMC EGA 

Ranking 1.00 2.00 3.33 5.33 5.00 4.33 

Table 3.7: Results of Friedman test based on avg. ROUGH score parameter 

Method Statistical value p value Critical Value Hypothesis 

Friedman 13.47619 0.019302 11.070504 Rejected 
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Table 3.8: P−values of Wilcoxon rank sum test (pairwise method) 

Technique 1 Technique 2 P −value 

Proposed PSO-ACO 

 

PSO 0.09246 

BRC 0.05628 

EC 0.01317 

EMC 0.007819 

EGA 0.002691 

 

RQ1: Does the performance of proposed PSO-ACO model is better than PSO model? 

Ans. RQ1): To address the summarization issues of bug reports, two models are developed in this 

work. These models are PSO based subset selection model and PSO-ACO based sub selection 

model for summarization task.  The results of these models are presented in Tables 3.2-3.4 and 

Figures 3.4-3.6. It can be seen that Average ROUGE score of proposed PSO-ACO based subset 

selection approach is in between 92% to 85 %. While, the Average ROUGE score of PSO approach 

is between 91% to 83%. On the analysis of ROUGE score parameter, it is concluded that PSO-

ACO based model gives better results than PSO model. The bug report summary subset evaluated 

using PSO-ACO are more effective and produced a less redundant summary. Moreover, problem 

space is fully explored using PSO-ACO based model and effectively analyzed bigram and trigram 

in the sentences. It is noted that PSO based summarization model sometimes stuck in local optima 

and converged. So, the feasible solution is not obtained every time through PSO model.  To 

overcome the local optima problem of PSO model, it is integrated with ACO technique. The ACO 

technique optimizes the summary subsets produced by PSO model. The simulation results of PSO-

ACO model also favor the above statement and it is concluded that incorporation of ACO technique 

with PSO model enhances the simulation results of PSO model considerably.  

RQ2: Are the unsupervised techniques more feasible than supervised techniques for bug report 

summarization? 

Ans. RQ2): In this work, two types of models i.e. supervised and unsupervised are considered to 

address the summarization issues.The PSO-ACO, PSO and EGA models are based on the 
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unsupervised techniques. Whereas, BRC, BC and EMC models consist of the supervised 

techniques.    The simulation results of both models are illustrated in Tables 3.2-3.5. It can be said 

that the unsupervised techniques give better quality results than supervised techniques. The 

unsupervised techniques can be an effective tool for bug report summarization task and not required 

training data. On the other hand, supervised techniques require training data that can enhance time 

and cost factors.   Hence, it can be stated that unsupervised techniques can be a feasible option for 

bug report summarization process and also reduce time and cost.  

3.5 Summary 

Bug report summarization is the part of the bug tracking system. In this chapter, PSO-ACO based 

bug summarization model is proposed for bug report summarization. The proposed model takes 

the advantage of KLIP approach. The aim of proposed model is to determine the optimum subset 

of summary. The efficiency of the proposed model is tested over Rastkar dataset and simulation 

results are compared with existing supervised and unsupervised models. The results showed that 

proposed PSO-ACO model provides better efficiency than PSO, Existing Grasshopper, Bug Report 

Classifier, Email Classifier and Email Meeting Classifier models. It is also observed that 

combination of PSO and ACO enhances the simulation results of PSO model in efficient manner.  
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CHAPTER 4 

RFB METHOD FOR BUG SEVERITY CLASSIFICATION 

4.1 Introduction 

The primary task of bug severity classification model (BSCM) is to classify the data in different 

severity classes [52]. The BSCM consists of different machine learning techniques to predict 

severity classes of bugs. The severity classification can be formulated as a classification problem 

and bug dataset is developed using the content of bug reports [65]. To design the bug dataset, 

semantic and syntactical relationship between content of bug report is identified. Further, this 

relationship is used to determine the relevant features for severity classification. But, several 

issues are associated with feature extraction techniques especially in case of bug severity 

prediction [62-71]. These issues are highlighted as 

 Sentences are considered as stack of words with unordered sequence of words 

 Ignore the semantic relationship between words 

 Interpretation of the slightly variant sentences 

These issues affect the prediction rate of classification techniques and in turn, poor classification 

results can be obtained through classifiers. Furthermore, several researchers have been used bag 

of word and term frequency methods to determine the appropriate features for classification task 

[65-69].  

 

Figure 4.1: Example of bug reports [6] 

Figure 4.1 depicts the two bug reports with IDs 63456 and 63457.  The bug ID 63456 describes 

the sentences as “Drupal website functionality is not good". Whereas, in bug ID 63457, it can 

be read as “Drupal website functionality is not very good”. It is observed that both of sentences 

consist of same bag of words and classify these sentences in same class. But, bug ID 63456 is 

more critical than bug ID 63457. Because, images are not uploaded on the website and entire 

Bug Report ID #: 63456 

Title: Not able to upload an image on the Drupal 

website. 

Description: Drupal website functionality is not useful. I 

am not able to upload the image.    

 

Bug Report ID #: 63457 

Title: Multiple users can’t access in Drupal website. 

Description: Drupal website functionality is not very good. 

The image uploading is too slow when concurrent users 

access the system.  
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image functionality is affected. In previous studies, n-gram method is also reported to determine 

the word order. This method also provides the same word order, but it can enhance the 

dimension and sparsity factors in data [59]. In turn, the computational cost of classification 

model is tremendously increased. It is also noticed that, feature extraction techniques cannot 

capture all latent features due to linear equation and fixed length of polynomial terms [59].  So, 

to address the above mentioned issues of feature selection techniques, a deep learning based 

framework is used in this chapter to determine the relevant features for prediction task [115]. 

Deep learning framework also improves the generality of model by considering different kernels 

with filter. Moreover, random forest with boosting method (RFB) is implemented to predict 

severity of bugs. The proposed RFB model is self-capable to learn feature representation without 

manual intervention of feature engineering. This model also explores the semantic and non-

linear features mapping of bug reports. The simulation results of proposed RFB model is 

compared with existing model [65].  Further, two research question is also designed to validate 

the capability of proposed RFB model. These research questions are listed as 

RQ 1: Can deep learning approach extract relevant features for automated BSCM?   

RQ 2: Is integration of random forest and boosting method improve the performance of BSCM  

            than traditional machine learning technique? 

4.2 Proposed BSCM 

The objective of the proposed BSCM is to predict different severity classes of bugs. The 

proposed model is based on the deep learning framework and RFB techniques. The deep 

learning framework is considered to identify more appropriate features for the prediction of 

severity classes. Whereas, RFB severs as classifier and predicts labels of severity classes.   

Figure 4.2 illustrates the working of proposed BSCM. It consists of five steps and these steps 

are Preprocessing, N-gram Extraction (NE), Feature Extraction with Deep Learning and 

Classification using RFB. 

4.2.1  Preprocessing  

The task of preprocessing step is to determine unwanted words from the bug reports and remove 

it. These words can degrade the learning performance of classification system. The 

preprocessing step reduces the feature space of bug reports. In turn, the effort cost of triage is 
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minimized [109].     The preprocessing step consists of three tasks. These tasks are summarized 

as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Proposed BSCM based on Deep Learning and RFB techniques  

 Tokenization: In tokenization, stream of text is divided into several words, numbers, 

punctuations. The aim of tokenization process is to determine the unique tokens in each 

Pre-processing 

Tokenization Stop Word Removal Stemming 

Normalized Text 

Bug Report 

Text 

N-gram Extraction 

Uni-gram Bi-gram Tri-gram 

Deep Learning Based Feature Extraction 

Feature Set  

Classification Layer 

Random Forest with Boosting 

Reduced Feature Set  

Severity Classes 

Severity Classification 

Title, Description and Summary 
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bug reports.  It is also noted that punctuations can be replaced with blank spaces, non-

printable escape characters are removed, and capital words are converted into lowercase. 

 Stop-word removal: It is referred to determine the stop words in given big reports. The 

stop words can be described as verbs, nouns, articles, pronouns, adverbs, prepositions 

etc.   

 Stemming: It is the process to identify the common stem of words. These common stem 

of words act as features and can be stored in feature set. Suppose different occurrence of 

a word in bug report is give as “move”, “moves”, “moved”, and “moving”. All these 

occurrences can be replaced with word “move” and it is known as feature. 

Mathematically, it can be represented using equations 4.1-4.2. 

BR = {S1, S2 … … . Sj}                                                                               (4.1) 

Sj = {f1, f2 … . fk}                                                                                     (4.2) 

4.4.2   N-gram Extraction (NE) 

N-gram method explores the semantic relationship between the content of bug reports. This 

method also computes the frequency of features and describes the feature vectors in more 

meaningful manner [116]. The N-gram model can be described through features and these 

features are identified using unigram, bigram and trigram. 

p(fi|f1, … … … . fi−1) = p(fi|fi−k+1, … … , fi−1)                                           (4.3) 

In the equation 4.3, fi represents the ith feature and p denotes a probability function. In unigram, 

it is assumed that next features are independent to each other and mutual information cannot be 

considered among features.   Hence, the conditional probability for unigram method is computed 

using equation 4.4.   

p(f1
k|ω1) = ∏ p(fi|ω1)                                                                            (4.4) 

Here, ω1 denotes the independent features, fi represents the  ith feature and p denotes a 

probability function.  

In case of bigram method, it is stated that continuous features share language information. So, 

the conditional probability of bigram method is measured using equation 4.5.   

                               p(f1
k|ω2) = ∏ p(fi+1|fi, ω2)                                                                (4.5) 

In equation 4.5, ω2 denotes the dependency of two adjacent features, fi and fi+1 represent the 

two adjacent features and p denotes the probability function. 
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Trigram method is similar to bigram method. It trigram method, three consecutive features are 

considered to compute the conditional probability. It is computed using equation 4.6. 

p(f1
k|ω3) = ∏ p(fi+1|fi, fi−1, ω3)                                                          (4.6) 

In equation 4.6,  ω3 describes the relationship between three consecutive features i.e. , fi−1, fi 

and fi+1. It is observed that different N-gram methods are taken into consideration to determine 

the frequency of features. These methods can be applied to analyze the sentence individually 

and sometime all these methods are applied to determine the all possible features for the given 

bug reports. The relationship between N-gram features can be described using equation 4.7.   

p(f1
k, fk+1) = ∑ p(f1

k)p(fk+1|fk … fk−m, ωi)p(ωi)                                           (4.7) 

In equation 4.7, f1
k denotes the mean of feature string with “n” number of  features, fk+1 denotes 

the (K+1)th feature, ωi denotes the probability of ith feature string and p(ωi) describes the 

probability of assumption i.  

4.4.3 Feature Extraction with Deep Learning 

This subsection presents the deep learning technique for feature extraction. The deep learning 

technique is employed to determine the reduced set of features from given set of features. The 

aim of deep learning technique is to determine more relevant features from the feature set. The 

feature extraction process with deep learning consists of five layers. These layers are described 

as Input, Convolutional, Activation, Dropout, Max pooling and Fully connected layer. The 

schematic diagram of feature extraction with deep leaning is demonstrated using Figure 4.3.     

Convolutional Layer: The work of convolutional layer is to scan the input data through various 

kernels. These kernels correspond to different features. This layer also reduces the dimension 

of dataset using non-linear features and computed 2D convolutional. Initially, all features are 

computed using N-gram techniques and given to convolutional layer to generate new features.  

Suppose, tj ∈ ℝi  and it can be interpreted as ith  dimension of jth feature in a given ℝ feature 

space and all other features can be represented using equation 4.8.   

t1:n =  t1⨁t2 … … ⨁tn                                                                                           (4.8) 

In equation,  ⨁ denotes concatenation operator that executes filter operation ∈ ℝi and t denotes 

the features. 

fi = l(w ∙ tj:j+g−1 + b)                                                                (4.9) 
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In equation 4.9, w is a weight matrix, 𝐭𝐣:𝐣+𝐠−𝟏 denotes the window size, 𝐛 is bias term related to 

feature space (ℝ) and 𝐥 denotes a non-linear sigmoid function. The equation 4.9 is used to extract 

the new feature map and it is illustrated using equation 4.10.  

f = [f1, f2, … . , fn−h+1]                                                                (4.10) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Proposed Deep Learning Based Feature Extraction 

Max Pooling Layer: This layer reduces the size of feature map and it can be computed using 

max value. The main work of this layer is to pass valid information to the next layer using 

consecutive operation on complex features and also address the overfitting issue 

Dropout Layer: The dropout layer addresses the co-adaption issue of features. This layer 

invokes a dropout rate function to disconnect the neurons from the connected layers. The 

dropout is set to 0.2 and training data is also efficiently generalized at this point.  

Activation Function: The role of activation function is to activate the neurons. The neurons are 

activated on the basis of information. If, the information is appropriate, the corresponding 

neuron is activated, otherwise, it is deactivated. Further, the activation function also computes 

a neuron value for each neuron. In this work, sigmoid and Tanh activation functions are used.    
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Fully Connected Layer: In this layer, all extracted features are combined to generate feature 

set.  

4.4.4 Classification Layer 

The classification layer of proposed BSCM implements ensemble RFB technique as classifier. 

RFB technique is the integration of random forest (RF) [117] and boosting method [118]. In 

RFB technique, RF is used to determine different tree structures from the given dataset with 

different threshold. But, it is not capable to take intelligent decision regarding the combination 

of different trees. Hence in RFB technique, RF method is used to construct all possible tress 

using features space with respect severity classes. Whereas, boosting method is applied to 

compute the threshold values for model selection in testing phase. The algorithmic steps of RFB 

technique is presented in Algorithm 4.1 and Figure 4.4. 

Algorithm 4.1 : Random Forest with Boosting (RFB) 

Input:  Training samples with CN features and labels 

Output: Trained RFB 

Step 1: Randomly select “k” features from total “m” features, Where k << m 

Step 2: Among the “k” features, calculate the node “d” using the best split 

point. 

Step 3: Split the node into daughter nodes using the best split 

Step 4: Repeat 1 to 3 steps until “l” number of nodes will not be  reached 

Step 5: Build forest by repeating steps 1 to 4 for “n” number times to 

create “n” number of decision trees 

Step 6: Determine class label of training data  

Step 7: Compute weighted error rate of  decision tree 

Step 8: Calculate the weight of decision tree’s (w) using equation 4.11  

        w = 1
2⁄ log

(M−1)(1−e)

e
                                                     (4.11)                                                  

Step 9: If (w >0)  

Update weight of training samples 

Step 

10: 

Else reject the tree, repeat steps 7-10 

* M is the number of classes, *e is the error rate of  incorrect classified samples 
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Figure 4.4: Flowchart of proposed random forest with boosting classifier 

4.3 Experimental Results and Discussion 

This section presents the simulation results of proposed BSCM. The effectiveness of the 

proposed model is tested over five bug report datasets. These datasets are Mozilla, Eclipse, 

JBoss, OpenFOAM and Firefox.  The performance of proposed BSCM is evaluated using F-

measure, Precision, Accuracy and Recall parameters [119]. The proposed model is implemented 
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using window 10 based system having Intel Core i5 (7th generation) processor, 8GB RAM and 

NVIDIA GEFORCE GPU and CPU @ 2.70GHz. Deep learning based feature selection 

technique is implemented using Keras and TensorFlow.   

4.3.1 Performance Measure 

This subsection describes the various performance measures that are considered to evaluate the 

performance of proposed BSCM model. These performance measures are listed below. 

 Accuracy: This measure evaluates the performance of proposed model in terms of correctly 

classified data instance. It is computed using equation 4.12. 

Accuracy =
TP + TN

TP + TN + FP + FN
                                                   (4.12) 

In equation 4.12, TP denotes true positive instances, TN represents true negative instances, FP 

denotes false positive instance and FN denotes false negative instances. 

 Precision: It indicates positive instances that can be predicted as actually positive. It is also 

known as Type-1 error.  This parameter is computed using equation 4.13. 

Precision =
TP

TP + FP
                                                                 (4.13) 

In equation 4.13, TP denotes the true positive instances that are positive, whereas FP denotes 

the false positive instances i.e. false instances that are predicted as positive instances.      

 Recall: This parameter indicates actual positive instances among all positive instances. It is 

also known as Type-2 error and computed using equation 4.14.  

Recall =
TP

TP + FN
                                                                           (4.14) 

In equation 4.14, TP denotes the true positive instances that are actual positive, whereas FN 

denotes the false negative instances i.e. positive instances that are predicted as false instances.      

 F-measure: It is described in terms of precision and recall. It is different than accuracy 

parameter. The accuracy parameter considers the positive as well as negative data instances. 

But, F-measure only considers the positive data instances either identified as positive or 

negative. F-measure parameter is computed using equation 4.15.   

F − measure =
2TP

2TP + FP + FN
                                                       (4.15) 

In equation 4.15, TP defines number of reports correctly labeled to a class, TN denotes number 

of reports correctly rejected from a class, FP denotes number of reports predicted correct, but 
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actual labelled as incorrect and FN denotes reports predicted incorrect, but actually labelled as 

correct. 

4.3.2 Dataset  

In this work, the five open source datasets are used [65]. These datasets are Mozilla, Eclipse, 

JBoss, OpenFOAM and Firefox. Table 4.1 presents the characteristics of these datasets.    

Table 4.1 : Characteristics of bug report datasets used for experiments 

Datasets 
Total 

Instances 
Features Classes Severity Classes 

Mozilla 539 90 7 
Blocker, Critical, Enhancement, Major, 

Normal, Minor, Trivial 

Eclipse 693 68 5 Blocker, Critical, Enhancement, Major, Normal 

JBoss 573 75 5 High, Low, Medium, Unspecified, Urgent 

OpenFOAM 795 100 8 
Blocker, Crash, Feature, Major, Minor, Text, 

Trivial, Tweak 

Firefox 620 85 7 
Blocker, Critical, Enhancement, Major, 

Normal, Minor, Trivial 

 

4.3.3 Parameter Settings  

This subsection illustrates the user defined parameters setting of proposed BSCM. The 

parameter settings of proposed model are presented in Table 4.2. Moreover, cross entropy is 

considered as loss function for the optimization process.  

4.3.4  Results 

This subsection describes the simulation results of proposed BSCM. The performance of BSCM 

is tested over five different datasets and evaluated using different performance measures 

presented in subsection 4.3.1. Further, the simulation results of proposed model are taken in 

terms of binary classification and multi class classification. The simulation results of binary 

classification are compared with existing Zhou et al. model [26].    
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Table 4.2: Parameters setting of proposed BSCM 

Parameter Value 

Input 1000*200 

Dropout Rate 0.2 

Activation Function sigmoid, Tanh 

Filter Size 20 

Stride 1 

Depth 128 

Pooling Max Value 

Fully connected layer Random forest 

4.3.4.1 Binary Classification Results  

This subsection presents the simulation results of proposed BSCM using binary classification. 

For binary classification, bug datasets are divided into two classes i.e. bug and non-bug. The 

simulation results of proposed model are compared with Zhou et al. model [65]. The precision, 

recall and f-measure parameters are considered to evaluate the performance of proposed model. 

Table 4.3 illustrates the simulation results of proposed model and Zhou et al. model. It is 

observed that proposed model obtains better quality results than Zhou et al. model. It is seen 

that proposed model obtains the f-measure rate in the range of 91- 99%, while the f-measure 

rate of Zhou et al. model ranges in between 79-93%. On the analysis of precision parameter, it 

is stated that precision rate of proposed model is in between 92-99%. Whereas, Zhou et al. model 

achieves the precision rate in the range of 80-93%. Moreover, it is also revealed that proposed 

model obtains higher recall rate using all datasets i.e. 92-99%. Whereas, the recall rate of Zhou 

et al. model is ranging in between 80-93%. Hence, it is concluded that proposed model improves 

the severity classification rate significantly than Zhou et al. model. From simulation results, it 

is noticed that the proposed deep learning based feature extraction technique determine the 

relevant features for prediction task. It is stated that proposed feature extraction technique 

enhances the results of proposed BSCM.   
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Table 4.3: Experimental results of proposed model and Zhou et al. model using five datasets 

Datasets 

Zhou et al. Proposed model 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Mozilla 82.60 82.40 81.70 98.48 98.52 98.12 

Eclipse 81.80 82.10 81.60 99.38 99.48 99.12 

JBoss 93.70 93.70 93.70 98.88 98.95 98.42 

OpenFOAM 85.30 85.30 84.70 95.25 95.35 94.55 

Firefox 80.30 80.50 79.50 92.75 92.95 91.95 

 

 

Figure 4.5: Comparison of proposed model and Zhou et al. model using F-measure parameter 

Figure 4.5 demonstrates the simulation results of proposed model and Zhou et al. model for all 

datasets using f-measure parameter. It is seen that proposed model obtains higher f-measure rate 

than Zhou et al. model using all dataset. It is also noticed that proposed model obtains higher f-

measure rate for Eclipse dataset i.e. 99.12 % than Mozilla, JBoss, OpenFOAM and Firefox 

datasets.    
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Figure 4.6: Comparison of proposed model and Zhou et al. model using precision parameter 

 

Figure 4.7: Comparison of proposed model and Zhou et al. model using recall parameter 
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The precision parameter results of proposed model and Zhou et al. model using all datasets is 

presented in Figure 4.6. It is stated that proposed model provides higher precision rate than Zhou 

et al. model. Further, it is also observed that proposed model obtain better precision rate for 

Eclipse dataset. Figure 4.7 shows the simulation results of proposed model and Zhou et al. model 

using recall parameter. Again, it is seen that proposed model obtains better recall rate as 

compared to Zhou et al. model. It is also noted that proposed model obtains higher recall rate 

for Eclipse dataset in comparison to other datasets being taken.   

4.3.4.2 Multi- Class Classification Results 

This section presents the simulation results of proposed BSCM using multi class severity 

prediction. The multi class severity prediction is more difficult than binary severity prediction. 

Hence, efficiency of the proposed model is also investigated using multi class severity 

prediction. It is also mentioned that previous works is not reported on multi class severity 

prediction in literature. The same datasets are used for multi class severity prediction. The details 

of these datasets along with the severity classes is presented in Table 4.1. The simulation results 

are evaluated using f-measure, recall, precision and accuracy parameters. The simulation results 

of proposed model using all datasets are illustrated in Table 4.4. It is also observed that proposed 

model effectively computes the f-measure, recall, precision and accuracy rates for each severity 

class of every dataset. The average precision rate of proposed model for Mozilla, Eclipse, JBoss, 

OpenFOAM and Firefox datasets is 94.47%, 96.19%, 94.55%, 98.67% and 97.33% 

respectively. Whereas, average recall rate obtained by the proposed model for Mozilla, Eclipse, 

JBoss, OpenFOAM and Firefox datasets is 91.46%, 93.57%, 91.76%, 95.96% and 94.76% 

respectively.  The average F-measure rate of Mozilla, Eclipse, JBoss, OpenFOAM and Firefox 

datasets is 93.27%, 94.86%, 93.88%, 97.23% and 95.96% respectively. The average accuracy 

rate of proposed model is 94.92%, 95.76%, 94.91%, 98.89% and 97.22% for Mozilla, Eclipse, 

JBoss, OpenFOAM and Firefox datasets respectively. It is also noticed that JBoss dataset 

achieves higher average accuracy, precision, recall and f-measure rate than others datasets. 

Figures 4.8-4.11 demonstrates the simulation results of proposed model using accuracy, 

precision, recall and f-measure parameters for all datasets in graphical manner. It is stated that 

average results of all classes of each dataset is used to plot these figures. Hence, it is concluded 

that the proposed model is also capable and efficient for multi class severity prediction.    
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Table 4.4: Experimental results of proposed model for severity classification using five datasets 

Datasets Classes Precision (%) Recall (%) F-measure (%) Accuracy (%) 

Mozilla 

Blocker 82.9 80.23 81.54 85.45 

Critical 96.43 95.34 94.34 96.33 

Enhancement 95.33 80.22 95.45 97.43 

Major 98.45 97.45 92.34 96.3 

Normal 97.44 95.34 96.45 95.24 

Minor 94.35 96.34 97.44 96.34 

Trivial 96.35 95.34 95.33 97.33 

Firefox 

Blocker 86.16 83.35 84.73 83 

Critical 97.97 92.23 95.27 97.92 

Enhancement 98.3 92.23 95.98 97.55 

Major 97.98 97.61 96.64 97.19 

Normal 97.28 96.9 97.64 97.53 

Minor 97.23 97.04 97.24 98.33 

Trivial 98.43 95.68 96.52 98.85 

Eclipse 

Blocker 80.34 81.23 83.45 83.45 

Critical 97.33 89.23 96.35 98.33 

Enhancement 98.34 90.29 95.35 98.32 

Major 99.4 97.85 95.85 97.22 

Normal 97.35 97.29 98.4 97.24 

Jboss 

High 96.8 97.29 97.84 98.29 

Low 98.27 97 96.75 98.93 

Medium 99.08 95.45 96.72 99.22 

Unspecified 99.59 93.68 97.08 99.19 

Urgent 99.59 96.37 97.76 98.82 

OpenFOAM 

Blocker 83.45 82.34 83.45 83.4 

Crash 98.7 98.42 98.89 99.38 

Feature 99.28 97.81 98.33 98.56 

Major 99.61 98.51 97.11 99.54 

Minor 99.06 95.29 97.02 99.28 

Text 99.29 91.21 97.3 99.77 

Trivial 99.45 95.52 97.05 99.22 

Tweak 99.82 99.02 98.57 98.68 
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Figure 4.8: Illustrates the results of proposed BSCM using accuracy parameter of all datasets 

 

 

 

 

 

 

 

 

Figure 4.9: Illustrates the results of proposed BSCM using precision parameter of all datasets 

 

 

  

 

 

 

 

 

 

Figure 4.10: Illustrates the results of proposed BSCM using recall parameter of all datasets 
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Figure 4.11: Illustrates the results of proposed BSCM using f-measure parameter of all datasets 

RQ1: Can deep learning approach extract relevant features for automated BSCM?   

Ans. RQ1): In the proposed BSCM, two techniques are employed i.e. deep learning and RFB. 

The deep learning techniques is employed to extract relevant features and RFB is applied for 

classification and prediction task. RFB is the combination of random forest and boosting 

methods and applied to predict the severity classes. In proposed model, initially N-gram 

techniques are applied to extract the features from bug reports. The extracted features are stored 

in a feature set. But, it is noted that all features are not equally important and some of are 

irrelevant. In turn, the performance of bug severity model can be degraded. To improve the 

performance of bug severity model, various researchers have adopted feature extraction 

technique to refine the feature set. In this work, deep learning based feature extraction technique 

is applied to determine the relevant features form feature set. It is stated that N-gram technique 

extracts 90, 68, 75, 100, 85 features for Mozilla, Eclipse, JBoss, OpenFOAM and Firefox 

datasets respectively. Further, deep learning based feature extraction method is applied on above 

mentioned feature set to identifies relevant features for design the final dataset. It is stated that 

deep learning technique significantly reduces features in feature set for all datasets. The relevant 

features determined through deep learning technique for Mozilla, Eclipse, JBoss, OpenFOAM 

and Firefox datasets are 7, 5, 5, 8 and 7 respectively. These features are used to design the final 

datasets and these datasets are used to test the efficiency of proposed BSCM. The simulation 

results of proposed model are reported in Table 4.3 and 4.4 for binary and multi class severity 
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prediction respectively. It is stated that proposed model obtains state of art results for severity 

prediction as compared Zhou et al. model. The significant improvement can be seen in 

simulation results of proposed model. It is only possible due to extraction of relevant features 

using deep learning based feature extraction technique. Hence, it is stated that deep learning 

technique extracts relevant features for automated BSCM and also improve the severity 

prediction results.      

RQ2. Is integration of random forest and boosting method improve the performance of 

BSCM than traditional machine learning technique? 

Ans. RQ2): In BSCM, RFB classifier is proposed for prediction the severity classes. The RFB 

classifier is the combination of random forest and boosting methods. In RFB, random forest 

method constructs all possible tree structure using the features of datasets. Whereas, boosting 

method computes threshold values of each node of the tree. The simulation results of proposed 

BSCM model is compared with Zhou et al. model.  This model consists of Multinomial Naive 

Bayes (MNB) classifier for severity prediction. The simulation results of both models are 

reported in Table 4.3. It is observed that proposed model provides more significant results than 

Zhou et al. model.  It is noticed that average f-measure of proposed model ranges in between 

91% to 99 %, whereas f-measure rate of Zhou et al. model is in between 79-93%.  Similar types 

of results are obtained for recall and precision parameters using proposed model and Zhou et al. 

model. Hence, it can be said that proposed model outperforms than Zhou et al. model. In 

proposed model, RFB classifier is implemented for severity prediction. So, it can be stated that 

integration of random forest and boosting method improves the performance of BSCM and also 

provides better results than traditional machine learning technique.   

4.4 Summary 

In this chapter, a bug severity model based on deep learning and RFB method is proposed for 

severity classification, called BSCM. In the proposed model, deep learning based feature 

extraction technique is applied to determine the relevant features for the prediction of severity 

classes. Further, RFB classifier is developed to classify the data in different severity classes. 

The RFB technique is the combination of random forest and boosting methods. The performance 

of the proposed model is tested over five different datasets. The simulation results are evaluated 

using f-measure, precision, recall and accuracy parameters. Moreover, the results are also 
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interpreted using binary severity prediction and multi class severity prediction. The performance 

of proposed model is compared with Zhou et al. model for binary bug severity prediction. It is 

observed that proposed model provides better results than Zhou et al. model. It is also stated that 

proposed model also obtains good results for multi class severity prediction. Hence, it can be 

said that proposed model is one of efficient, effective and capable model for bug severity 

prediction. 
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CHAPTER 5 

DEVELOPER RECOMMENDATION SYSTEM FOR BUG 

ASSIGNMENT 

5.1 Introduction 

A bug repository consists of large number of bug reports. These bugs can be characterized as 

valid, invalid, important, unique, critical, duplicate, blocker, unimportant and so on [82]. All 

these bugs are analyzed through triager. The task of triager is to identify the real and important 

bugs that can require immediate attention of the developer to resolve it. Hence, to identify the 

appropriate developer for resolving the bugs is one of difficult task [83]. On the other side, large 

number of bugs are deposited in bug repository per day and size of bug repository increases 

tremendously. It becomes challenging for a triager to handle the bugs manually and also 

determine the important bugs that need to be addresses quickly [84-86]. So, to determine the 

appropriate developer to address the important bugs efficiently and quickly is challenging task 

for bug assignment model [95-97]. This chapter addresses the appropriate developer issue of 

bug assignment model. This issue is handled through severity prediction of bugs and further, 

the developers are assigned to resolve the bugs on the basis of three metrics. Hence, in this 

chapter, a new bug assignment model is developed to determine the appropriate developer. The 

proposed model is based on swarm intelligence [120] and machine learning (ML) approaches 

[121]. The swarm intelligence technique is applied to extract the important attributes of bug 

reports. Whereas, ML techniques are employed to identify the bugs severity.  

5.2 Proposed Developer Recommendation (DevRE) System  

This section presents the developer recommendation system for bug assignment based on swarm 

intelligence and ML approaches. The aim of proposed model is to predict the bugs severity and 

choose the appropriate developer for resolving the bugs according bugs severity. Further, in this 

work, ant colony optimization (ACO) based feature weighting technique is applied to determine 

the important attributes from the feature set. The NB and SVM approaches are used to measure 

the severity of bugs [122-123]. Further, a list of developer is available as per bugs severity that 

can solve the bugs efficiently and quickly in past. The schematic working of proposed model is 
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illustrated in Figure 5.1 and consists of four phases. These phases are preprocessing, feature 

extraction, ACO based feature weighting, and developer assignment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1:  Proposed Developer Recommendation System 

5.2.1 Preprocessing Phase 

The first phase of proposed bug assignment model is preprocessing phase. In this phase, various 

preprocessing methods are employed on the content of bug reports. The bug reports are 

described in any natural language especially English and consist of paragraphs. The objective 

of preprocessing phase is to determine the tokens from paragraph and this process is known as 

tokenization. Further, stop words and unwanted words are removed from the list of tokens [110].       
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5.2.2 Feature Extraction Phase 

In this phase, TF-IDF and N-gram methods are applied to extract the features and also described 

the textual features as vector-space model [116,124]. This model describes the bug reports in 

terms of weighted features and this process is illustrated using equation 5.1. 

BRx = (w1f1, w2f2, … … . wnfn)                                        (5.1)                                                           

Where, n denotes the total number of features and wifi is the weight of ith feature. 

Further, it is stated that TF-IDF is a statistical method for extracting the informative features. 

This method considers the frequency of words to identify the features in bug reports and 

importance of features is measured through its occurrence. Words (feature) that are frequently 

occurred in bug reports, having more significance and weight than other words or feature. 

Sometimes, it is not necessary that frequency of words can be considered as significant 

parameter to measure the importance of features. Assume, tf(x, y) is the term frequency of yth 

feature in the bug report BRx , df(y) is the document frequency of yth feature and N represents 

the total number of bug reports in the corpus. TF-IDF is computed using equation 5.2. 

TF − IDF(x, y) = tf(x, y) × log (
N

df(y)
)                                                  (5.2) 

TF-IDF represents each feature in vector space and corresponding bug report vector is              

described using equation 4.3. 

VBRx
= (tf(BRx, y1), tf(BRx, y2) … … . tf(BRx, yx))                                (5.3) 

A feature in vocabulary expresses the dimension of bug report vector. Suppose, tf(BR2, y1) is 

the term frequency with feature y1 in bug report BR2. If a query feature is not present in bug 

report, then zero value is put in the matrix for corresponding feature.  If, this value is multiplied 

with other features, the values of these features will be zero. Hence, the corresponding bug 

report is not retrieved, and it is known as data sparsity. The data sparsity issue is handled through 

N-gram method. Because, it follows word pairs paradigm i.e. bigrams and trigrams and also 

preserve the semantic relationship of texts. It is based on the feature segment and weight of N-

gram is calculated using equation 5.4. 

F(fn|fn−N+1
n−1 ) =

C(fn−N+1
n−1 fn) + 1

C(fn−N+1
n−1 ) + v

                                                            (5.4) 

Where,  fn is the next feature,  fn−N+1
n−1  represents the sequence of features, v is the total number 

of possible (N-1) gram and C is the probability.  



85 
 

 

 

 

 

 

 

 

 

 

5.2.3 Feature Selection Phase  

The aim of this phase is to select the relevant features for measuring bugs severity. In feature 

extraction phase, lot of features are extracted based on statistical and semantic information of 

bug reports. But, it is observed that all features are not equally important. Sometimes, large 

number of features can result in low prediction rate and also responsible for non-linearity 

problem in data. In turn, the performance of classifiers can be degraded. Hence, feature selection 

is an important technique that can improve the performance of classifiers. In this technique, 

relevant features are selected from the feature set. In this work, ACO based feature selection 

technique is applied to select the optimum features for bug severity. This algorithm is developed 

by Dorigo et al. for solving the constrained and unconstrained optimization problems [125]. 

This algorithm has been applied to solve variety of optimization problems such as function 

optimization, clustering, wireless sensor network, image processing, routing etc. [126-129], and 

obtains optimal results for these problems.   In feature selection phase, an ACO based feature 

weighting technique is implemented to identify the relevant features for bug severity prediction. 

The aim of this technique is to compute the weight of each features presented in the feature set. 

The weight of features is used to determine the significance of features and further, the features 

with higher weight are selected for bugs severity prediction. The working of ACO based feature 

weighting technique is described as follows. To determine the relevant features, the entire 

dataset divides into k number of clusters. Initially, k number of cluster centers are randomly 

chosen from the dataset. Further, the cluster centers are optimized using the ACO based 

clustering algorithm. The next step is to arrange the different data instances into k clusters using 

distance function. Generally, Euclidean distance is used for data arrangement in respective 

Algorithm 5.1: Preprocessing and Feature weighting 

Input: BRh =    (BR1,BR2, … … . . BRh) a textual bug reports with seven classes,  

                          h=7. 

Output: BRh = (BR1
′ , BR2

′ … … … BRh
′ ) feature set of bug reports.  

Step 1:  Read each bug report, bug reports of class, from the bug report dataset. 

Step 2:  Tokenized the text and removed the stop words from the text. 

Step 3:  Calculate the occurrence weight for every unigram feature of the BR, by TF-

IDF approach. 

Step 4:  Calculate the occurrence weight for every bi-gram and tri-gram in bug report 

BR, by N- gram approach. 
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clusters [130]. Now, a weight function is used to compute the weight of each feature of feature 

set and on the basis of weight function, features are selected for severity prediction. The working 

procedure of ACO based feature weighting is illustrated in figure 5.2. Consider, a bug report 

with n number of features, m number of data.  

        

 

 

  

 

 

 

 

 

 

Figure 5.2: ACO based feature weighting process 

instances, and k number of clusters. The features of bug report are described 

using D1, D2, D3, … . , Dn. Step 1 illustrates the features of bug dataset and corresponding values 

of these features. Step 2 corresponds to bug severity levels identified through ACO based 

clustering algorithm and the predicted severity levels can be associated with each bug report 

such as SL1, SL2, SL3, … . , SLn. A weight function (Wg) is also computed for each severity level. 

This weight function is multiplied with features values to obtain the final weight of features. In 

step 3, weight of each feature bug dataset is computed through a weight function. The weight 

function (wg) is described using equation 5.5 and it is computed for each attribute of sample 

dataset. The weight coefficient  is computed using following equations.  

wg =
∑  Fg

D
g=1

∑  Cg
D
g=1

  i. e. Fg =
∑  ∑ xi,k

𝑛
𝑖=1

SL
k=1

i
                                                  (5.5) 

 In equation 5.5, wg represents the weight coefficient of gth feature, Fg denotes the average 

weight of gth feature, Cg denotes the cluster center of gth feature computed through ACO 
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algorithm, i denotes number of bug reports with same severity level within in the features, SL 

denotes the severity level of bug reports. The steps of proposed ACO based feature weighting 

technique is given in Figure 5.3 and Algorithm 5.2  

Algorithm 5.2 : Proposed ACO Based Feature Weighting Technique 

Input: Bug report dataset 

Output: Reduced feature set 

Step 1: Load the dataset and specify the numbers of initial clusters centers  

Step 2: Initialize the population of ants, set the intensity of pheromone trial and maximum 

iteration. 

Step 3: Randomly identified initial cluster centers for every ant 

Step 4: Evaluate the value objective function using sum of squared distances and assign 

the items to the clusters with minimum objective function 

Step 5: While (condition is not met) 

Step 6: Calculate the transition probability using equation 5.6 

                              𝑝𝐴(𝑇) =
(𝜏𝐴(𝑇))

𝛼
.𝜂𝐴

𝛽

∑ (𝜏𝐴(𝑇))
𝛼

.𝜂𝐴
𝛽

𝐴

                                                                (5.6)                                                                

Step 7: Update the pheromones using equation 5.7. 

                         𝜏𝐴(𝑇 + 1) = 𝜌𝜏𝐴(𝑇) + ∆𝜏𝐴(𝑇)                                                (5.7)                                                     

Step 8: Determine the new positions of ants  

Step 9: Recalculate the value of objective function  

Step 10: End while 

Step 11: Obtained the optimal clusters centers 

Step 12: Determine the final weights of each features (fi) by using equation 5.8 

𝑓𝑖 = (∑  ∑ ∑
𝑋𝑖ℎ

𝐶𝑖𝑘

𝑘

𝑘=1

ℎ

𝑗=1

𝑑

𝑖=1

 ) ×
1

𝑑
                                                                   (5.8) 

Step 13: Select the features with maximum weight.  

* ηβ describe the background information of features to improve the results,  τA(T) is pheromone 

amount for the Ath feature in time T, α and β are the control parameters that provides the pheromone 

and background information, and pA(T) is the Transition probability , ρ is defined as evaporation rate 

of pheromone trail and lies between [0, 1], ∆τA(𝑇) is the pheromone trail amount added to Ath feature 

between time ∆ and ∆𝑇 , d is the total number of features, h is the number of data instance, k is the 

number of clusters, 𝑋𝑖ℎ is the ith feature of hth data instance, 𝐶𝑖𝑘 is the ith feature of kth cluster  

The output of feature selection phase is reduced set of features. Further, these features are used 

to train the machine learning classifier and predict the bugs severity.  
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Figure 5.3: Flow chart of proposed ACO Based Feature Weighting Technique  
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5.2.4 Developer Recommendation Phase 

This subsection presents the idea of developer recommendation system. This phase provides a 

list of relevant developer to solve the bug reports. The appropriate developers are identified 

using metrics, similarity and recommendation processes. These processes are described below.    

5.2.4.1 Proposed Metrics: To determine the relevant developer, three matrices are proposed in 

this work. These metrics are capability ranking, bug severity level and average bug fixing time.  

The final ranking of developer is devised on the basis of these metrics.  These metrics are 

described as follows. 

 Capability Ranking(𝐂𝐝𝐞𝐯): This ranking is based on the developer’s skills for solving the bug 

reports. It is noticed that each bug report requires some specific skill to solve it. It is stated that 

a developer can handle the bug reports efficiently, if similar type of bug is solved in near past. 

Hence, capabilities of developer’s can be explored for solving bug reports. Further, it is also 

observed that capabilities of developer’s can be tested through machine learning approaches 

with respect to historical data. If, a new bug is reported in bug repository, its severity is 

measured. A relevant developer is identified using machine learning approaches for solving it. 

The capability ranking is based on the skills of developers to fix the bugs. It can be computed 

using the past experience of developers for fixing the bugs.  So, in this work, capability ranking 

is used to rank the developers instead of machine learning classifiers.  

 Bug Severity Level: In this work, bug severity is also considered as possible metric for rank 

the developers. It is fact that all bugs are not equally important and not required immediate 

attention. Some bugs are classified as more severe than other and these bugs require immediate 

attention of developer. Otherwise, unusual things will be reported. So, the severity of bug reports 

is important aspect and can be classified into different severity levels. It can be easily done 

through NB and SVM classifiers. It is stated that bug report datasets are available in literature 

and machine learning classifiers can be trained on these datasets and predicted the severity 

levels. If, new bugs are added into repository, severity level of these bugs can be predicted 

through machine learning classifiers. Further, the appropriate developer is allocated to fix the 

bugs. It is also assumed that list of developers is prepared according severity levels. But, a 

developer can fix the bugs with more than one severity levels. So, a weighted severity list is 

described for each developer that maintains the sequence of severity levels handled through 

developer. It can be defined as ratio of different severity level of bugs handled through a 
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developer and number of bugs fixed. The weighted severity list is computed using equation 5.9 

for a developer.      

SLlist = ∑ β ×
Bugi

Total Bug

SL

i=1

                                                                 (5.9) 

In equation 5.9, Bugi denotes ith level of bug severity, SL denotes the number of severity levels, 

β represents the criticality of bugs  to be resolved and SLlist denotes the severity list associated 

with developers. 

 Average Bug Fixing Time (𝐓𝐚𝐯𝐠): This metric is described in terms of average time taken by 

a developer for fixing the bugs. Bug fixing time consists of various factors such as problem 

formulation through developers, solution construction, review and assess the code. It is also an 

important parameter to identify the relevant developer due to criticality of bugs. The average 

bug fixing time can be defined as ratio of total time taken by a developer to solve bugs and 

number of bugs solved.     

On the analysis of bug reports, it is noticed that bug reports consist of different fields such as 

component, product, timestamp, severity level, expertise etc. Hence, the afore mentioned 

metrics are multiplied to obtain the final ranking of developers and it is computed using equation 

5.10.   

Drank = γ1Cdev + γ2SLlist + γ3Tavg                                                (5.10) 

In equation 5.10, Drank denote the final rank of developers, Cdev describes the capability 

learning of developer, SLlist denotes severity level of bugs and Tavg denotes the average bug 

fixing time. γ1, γ2 and γ3 are three control parameters such that γ3 < γ1 <  γ2 and value of 

these parameter is in the range of 0 and 1.  

5.2.4.2 Similarity Process 

Whenever, a new bug is reported in the bug repository system. The features are extracted from 

bug reports. Further, similarity process in invoked to measure the severity of bug reports and 

also to determine the appropriate developer. In this work, cosine similarity is adopted for 

measuring the similarity between bug reports and appropriate developer. Through the similarity 

process, a list of potential developers is prepared to fix similar type of bugs. 
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5.2.4.3 Recommendation Process 

The final step of developer recommendation phase is to determine the rank of developers. 

Developers are ranked according their capability to handle and fix the bugs. Basically, developer 

metrics i.e. capability ranking, bug severity level and average bug fixing time are used to rank 

each developers and final ranking of developer is computed using equation 5.10. Moreover, a 

similarity measure is applied to determine capable developer based on final ranking. This 

process fetches the appropriate developer from existing system to fix the bugs and allocated to 

top ranked developer for its solution. If top ranked developer is not free, then it will be allocated 

to next one in the list. This process is continued until bugs are not fixed.         

5.3 Results and Discussion 

This section describes the simulation results of proposed bug assignment model. The proposed 

model is implemented using JAVA programming language. The performance of the proposed 

model is tested using four datasets. These datasets are Eclipse, Firefox, JBoss, OPENFoam and 

Mozilla. The details of these datasets are presented in Table 5.1. Further, the recall, precision, 

F-measure and accuracy parameters are considered to determine the severity levels of bugs 

[119]. Whereas, recall@5 and recall@10 parameters are used to measure the performance of 

proposed bug assignment model [131]. Hence, in this work, two experiment are conducted and 

these experiments are listed as 

 Experiment 1: Bugs Severity Level Prediction   

 Experiment 2: Identification of Relevant Developer for Fixing Bugs 

Table 5.1: Details of bug reports considered for experiment [65]. 

Dataset No. of Bugs BTS Severity Level 

Mozilla 539 Bugzilla 7 

Eclipse 693 Bugzilla 5 

JBoss 573 Redhat Bugzilla 5 

OpenFOAM 795 Manits 8 

Firefox 620 Bugzilla 7 

5.3.1 Experiment 1: Results and Discussion 

This subsection presents the simulation results of bugs severity level prediction. To predict the 

bug severity levels, ACO-NB and ACO-SVM approaches are used. Initially, relevant features 
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of bugs reports are identified through ACO based feature weighting technique and further, SVM 

and NB machine learning classifiers are used to predict the bug severity level. Simulation results 

of these approaches are evaluated using accuracy, F-measure, recall and precision parameters 

and compared with SVM and NB approaches. Table 5.2 presents the simulation results of bug 

severity level prediction using five well known datasets. These datasets are Eclipse, Mozilla, 

JBoss, OpenFOAM and Firefox. It is observed that ACO-NB approach provides better results 

than ACO-SVM, SVM and NB approaches using all datasets. It is also noticed that SVM 

approach exhibits worst results for most of datasets. On other side, it is stated that ACO-SVM 

provides more accurate bug severity prediction in comparison to SVM and NB approaches. 

Hence, it is concluded that ACO based feature selection technique improves the simulation 

results of SVM and NB considerably.    

Table 5.2: Comparison of proposed bug assignment model, NB and SVM Classifiers for all five datasets 

Approaches Datasets 
Performance Parameters 

Precision (%) Recall (%) F-measure (%) Accuracy (%) 

ACO-NB 

Mozilla 78.75 77.51 78.61 80 

Eclipse 81.05 77.43 79.69 79.6 

JBoss 80.85 79.23 80.52 79.6 

OpenFOAM 77.59 76.85 77.71 78.25 

Firefox 77.04 77.22 77.62 79 

ACO-SVM 

Mozilla 75.71 77.09 76 76.21 

Eclipse 73.33 72.08 72.53 74.72 

JBoss 73.65 72.56 72.62 75.24 

OpenFOAM 76.46 73.33 74.52 74.52 

Firefox 71.78 68.01 68.78 71.78 

NB 

Mozilla 74.32 71.79 73.52 75.85 

Eclipse 72.85 71.22 72.52 73.4 

JBoss 74.05 70.42 72.69 74.8 

OpenFOAM 73.71 72.24 73.45 74.5 

Firefox 73.03 72.08 73.05 75.57 

SVM 

Mozilla 72.62 75.51 73.57 73.67 

Eclipse 73.56 68.73 70.89 71.67 

JBoss 73.95 69.12 70.91 71.67 

OpenFOAM 74.46 72.65 73.14 71.87 

Firefox 69.22 67.22 67.38 65.34 

Figure 5.4 shows the simulation results of ACO-NB, ACO-SVM, NB and SVM using precision, 

recall, F-measure and accuracy parameters for Eclipse dataset. It is stated that ACO-NB 
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approach provides more significant results than other approaches being compared. It is also 

observed that SVM exhibits worst performance among all approaches. The simulation results 

of bug severity level prediction using Firefox dataset are presented in Figure 5.5. It is seen that 

ACO-NB approach obtains better result for severity levels prediction as compared to ACO-

SVM, NB and SVM approaches. It is also revealed that NB approach gives more accurate results 

than ACO-SVM and SVM approaches due to linearity of data. It is noticed that if data is linear 

separable, then the performance of SVM classifier is not up to mark.  

 

Figure 5.4: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Eclipse 

dataset 

Figures 5.6 presents the simulation results of ACO-NB, NB, ACO-SVM and SVM approaches 

using OpenFOAM dataset. It is noticed that ACO-NB outperforms than other approaches being 

compared. It is also observed that SVM approach achieves better recall and precision rates as 

compared to NB approach. While, NB approach provides better result using F-measure and 

accuracy parameters for OpenFOAM datasets. The simulation results of all approaches for 

severity levels prediction using JBoss dataset are reported in Figure 5.7. It is stated that ACO- 

NB provides better results for severity levels prediction as compared to ACO-SVM, NB and 

SVM approaches. Further, SVM approach exhibits worse results for JBoss dataset using recall, 
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F-measure and accuracy parameters. It is also observed that precision rate of ACO-SVM, NB 

and SVM approaches is almost similar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Firefox 

dataset 

  

Figure 5.6: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using 

OpenFOAM dataset 
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Figure 5.7: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Jboss 

dataset 

 

Figure 5.8: Bug severity level prediction using ACO-NB, NB, ACO-SVM and SVM approaches using Mozilla 

dataset 

Figure 5.8 illustrates the results of bug severity level of ACO-NB, ACO-SVM, NB and SVM 

approaches using Mozilla dataset. It is noted that ACO-NB approach predicts the bugs severity 
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more accurately in comparison to other approaches. It is observed that SVM exhibits poor 

performance for Mozilla dataset in terms of precision and accuracy parameters. Whereas, the 

recall rate of NB approach is worse among all approaches. It is also observed that accuracy rate 

of ACO-SVM and NB approaches is almost similar. Hence, it can be revealed that ACO-NB 

approach provides more promising results for bugs severity level prediction.    

5.3.2 Experiment 2: Results and Discussion 

Experiment 2 corresponds to the identification of appropriate developers for fixing the bugs. To 

determine the appropriate developer, three metrics are deigned to rank each developer. It is also 

stated that weightage of severity level metric is higher than other two metrics. The efficacy of 

proposed DevRE system is tested using five bug datasets. Further, recall@5, recall@10, 

precision@5 and precision@10 parameters are used to evaluate the performance of proposed 

system.   Table 5.3 presents the simulation results of proposed developer recommendation 

system. It is observed that proposed recommendation system works efficiently with recall@10 

parameter than recall@5. It is also seen that proposed recommendation system achieves higher 

recall@10 rate i.e. 67.83 for Eclipse dataset, whereas, low recall@10 rate i.e. 51.07 is obtained 

for Firefox dataset. On the analysis of recall@5, it is noted that proposed recommendation 

system provides higher recall@5 rate i.e. 52.37 with Mozilla dataset and less recall@5 rate i.e. 

37.56 for Firefox dataset. Further, it is noticed that proposed recommendation system gives 

better precision results using precision@10 than precision@5. It is observed that optimum 

precision@5 result are obtained for Firefox dataset, whereas Mozilla datasets exhibits worst 

precision results among all datasets. It is also seen that proposed system provides similar 

precision@10 rate i.e. 13.69 and 13.83 for Eclipse and Mozilla datasets respectively. The higher 

recall@10 rate obtains for Firefox dataset i.e. 18.45 among all datasets. The results of proposed 

developer identification system are also compared with other existing recommendation systems 

using Eclipse and Firefox datasets. These systems are ReComm, Drex-Frequency, Drex-

Outdegree, Bugzie and Dretom [132,86,85,89]. Drex recommendation system is based on k-

nearest-neighbor search and expertise ranking [86].  Bugzie recommender system is based on 

fuzzy set theory and cache method. It is developed for bug triage [85]. Dretom recommendation 

system is based on topic models and designed for bug resolutions [89]. The results are compared 

using recall and improvement parameters.           
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Table 5.3: Simulation results of proposed DevRE system using different bug datasets 

Dataset 
Parameter 

Recall@5  Recall@10  Precision@5  Precision@10  

Eclipse 49.68 67.83 19.34 13.69 

Firefox 37.56 51.07 24.73 18.45 

JBoss 41.24 54.67 18.27 15.53 

OPENFoam 47.56 58.98 21.78 17.69 

Mozilla 52.37 61.14 17.06 13.83 

Table 5.4 illustrates the results of proposed recommendation system and other existing systems 

using recall@5 and improvement (imp) parameters. It is stated that proposed recommendation 

system obtains better results than other existing systems. The recall@5 rate of  Eclipse and 

Firefox datasets are 49.68 and 37.36 respectively. It is also revealed that Dretom system exhibits 

poor performance among all recommendation systems. Further, it is also noticed that proposed 

DevRE recommendation system improves the simulation results significantly.     

Table 5.4: Simulation results of proposed DevRE system and other existing recommendation  

                   systems using Eclipse and Firefox. 

Dataset Parameter Eclipse  Firefox 

Proposed DevRe recall@5  49.68 37.56 

ReComm 
recall@5  41.95 26.99 

imp(%) 18.43 39.16 

Drex-Frequency 
recall@5  37.36 22.95 

imp(%) 32.98 63.66 

Drex-Outdegree 
recall@5  36.24 22.03 

imp(%) 37.09 70.49 

Bugzie 
recall@5  17.08 14.87 

imp(%) 190.87 152.59 

Dretom 
recall@5  14.7 14.89 

imp(%) 237.96 152.25 

The simulation results of proposed DevRE system and other existing recommendation systems 

using recall@10 and improvement (imp) are reported in Table 5.5. The proposed DevRE system 

achieves higher recall@10 rate i.e. 67.83 and 51.07 for Eclipse and Firefox datasets as compared 

to rest of recommendation systems. It is also stated that Dretom system obtains poor results 

mailto:Recall@5
mailto:Recall@10
mailto:Precision@5
mailto:Precision@10
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
mailto:Recall@5
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among all compared recommendation systems. It is concluded that proposed DevRE system 

significantly improves the bug assignment recommendation rate.    

Table 5.5: Simulation results of proposed DevRE system and other existing recommendation  

                   systems using Eclipse and Firefox. 

Dataset Parameter Eclipse  Firefox 

Proposed DevRe recall@10  67.83 51.07 

ReComm 
recall@10  56.41 40.63 

imp(%) 20.24 25.7 

Drex-Frequency 
recall@10  47.98 35.56 

imp(%) 41.37 43.62 

Drex-Outdegree 
recall@10  47.75 35.95 

imp(%) 42.05 42.06 

Bugzie 
recall@10  30.39 25.02 

imp(%) 123.2 104.12 

Dretom 
recall@10  24.45 24.99 

imp(%) 177.42 104.36 

Table 5.6 illustrates the simulation results of proposed DevRE system and other 

recommendation systems using precision@5 and improvement (imp) parameters. It is observed 

that proposed system gives better precision results than other existing recommendation systems 

using both of datasets.  

Table 5.6: Simulation results of proposed DevRE system and other existing recommendation  

                   systems using Eclipse and Firefox. 

Dataset Parameter Eclipse  Firefox 

Proposed DevRe precision@5  19.34 24.73 

ReComm 
precision@5  16.91 21.17 

imp(%) 14.37 16.82 

Drex-Frequency 
precision@5  16.79 20.87 

imp(%) 15.19 18.5 

Drex-Outdegree 
precision@5  15.27 20.21 

imp(%) 26.65 22.37 

Bugzie 
precision@5  9.8 14.44 

imp(%) 97.35 71.26 

Dretom 
precision@5  7.97 14.18 

imp(%) 142.66 74.4 

mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Recall@10
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
mailto:Precision@5
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But, the proposed system obtains better precision@5 results i.e. 24.73 for Firefox dataset rather 

than Eclipse dataset i.e. 19.34. The worse precision@5 results are reported by Dretom and 

Bugzie systems i.e. 14.18 and 14.44. Significant improvement is reported in precision@5 rate 

using proposed system.  

The simulation results of proposed system and other recommendation systems are reported in 

Table 5.7. There is the significant difference between the performance of proposed DevRE 

system and other recommendation systems using precision@5 and precision@10 parameters. It 

is stated that proposed system provides better quality results than other existing system. 

Whereas, Dretom system exhibits worse performance among all datasets.  

Table 5.7: Simulation results of proposed DevRE system and other existing recommendation  

                   systems using Eclipse and Firefox. 

Dataset Parameter Eclipse Firefox 

Proposed DevRe precision@10  13.69 18.45 

ReComm 
precision@10  11.82 16.34 

imp(%) 15.82 12.91 

Drex-Frequency 
precision@10  10.23 15.16 

imp(%) 33.82 21.7 

Drex-Outdegree 
precision@10  10.17 15 

imp(%) 34.61 23 

Bugzie 
precision@10  8.69 12.24 

imp(%) 57.54 50.74 

Dretom 
precision@10  6.68 11.97 

imp(%) 104.94 54.14 

The performance of proposed DevRE recommendation system is also compared with some 

machine learning based recommendation systems. The accuracy parameter is considered to 

evaluate the performance of these systems. The performance of these recommendation systems 

is tested on Eclipse, Firefox, OPENFoam and Mozilla datasets. Table 5.8 presents the simulation 

results of proposed DevRE system, NB, SVM, and C4.5 based recommendation systems [97]. 

It is observed that proposed system obtains better quality results than other recommendation 

systems. The proposed DevRE system obtains higher accuracy rate i.e. 80.16 for Eclipse dataset 

mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
mailto:Precision@10
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and low accuracy rate i.e. 76.43 for Mozilla dataset. It is also seen that NB based recommender 

system obtains worse results for Eclipse and Mozilla dataset, whereas, C4.5 provides worst 

results for Firefox and OPENFoam datasets. Hence, it is concluded that proposed DevRE system 

provides more effective and efficient results for bug recommendation as compared to existing 

ones.  

Table 5.8: Simulation results of proposed DevRE system and other existing machine learning  

                   based recommendation system using accuracy parameter 

Dataset NB SVM C4.5 Proposed DevRe 

Eclipse 65.22 77.21 73.55 80.16 

Firefox 70.93 76.4 65.33 78.04 

OPENFoam 67.95 77.44 66.62 79.74 

Mozilla 61.41 72.9 69.31 76.43 

5.4 Summary 

In this chapter, a Developer Recommendation (DevRE) System is proposed for assigning the 

bugs to relevant developers. The proposed DevRE system consists of four phases. In the 

proposed model, ACO based feature weighting technique is implemented to determine the 

relevant features for severity prediction. Moreover, three metrics i.e. capability ranking, bug 

severity level and average bug fixing time are designed to determine appropriate developer for 

bug fixing. Further, NB and SVM classifiers are applied to measure the bugs severity level. Two 

experiments are considered to evaluate the performance of proposed bug assignment model. In 

first experiment, bugs severity levels are predicted through ACO-NB and ACO-SVM 

techniques. It is noticed that ACO-NB techniques provides more effective results for prediction 

of bugs severity levels. In second experiment, several existing recommendation systems are 

considered to compare the performance of proposed DevRE system for bug assignment. It is 

observed that proposed DevRe system provides more accurate results than other 

recommendation systems.   
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE OF WORK 

In this thesis, the bug resolution techniques are studied and categorized.  The aim of this work 

is to overcome the data dimensionality, sparsity and estimation issues of bug reports and also 

improve the solution quality of bug resolution process.  Thus, the primary objectives of the 

thesis are to implement domain specific bug report summarization technique, improve the 

accuracy of bug severity classification model and develop a model for bug assignment. To 

address the above mentioned issues, three different models are developed for bug report 

summarization, bug severity classification and bug assignment. The entire work is categorized 

into three chapters. 

In chapter three, a PSO-ACO based bug report summarization technique is developed to handle 

bug summarization issue.  The aim of proposed technique is to determine the optimum subset 

of summary. In this chapter, a PSO-ACO based summary subset selection algorithm is 

proposed.  The simulations results showed that PSO-ACO based algorithm provides better   

results for summarization task. It is also observed that combination PSO and ACO enhances 

the simulation results of PSO technique in efficient manner.  

The chapter four of thesis addresses the accuracy issue of bug severity classification models. 

A bug severity model based on deep learning is proposed for severity classification, called 

BCR. In BCR model, CN method is also integrated to determine relevant set of features for 

severity classification. The performance of BCR model is compared with Zhou et al. model for 

binary bug severity classification. It was showed that BCR model provides better results.  

Chapter five deals with bug fixing issue of bug BRP. In this chapter, a developer 

recommendation (DevRE) system is proposed to identify the relevant set of developers for bug 

fixing. The appropriate developer for fixing the bugs is identified through three metrics. The 

proposed DevRE system also integrates the ACO based feature weighting technique. The aim 

of ACO technique is to determine optimal features for severity prediction. Whereas, NB and 

SVM techniques are applied for classification of severity data. Further, severity classes are 

used to determine relevant developers for bug fixing. 

6.1  Future Scope 

This thesis addresses the three issues of BRP process i.e. bug report summarization, severity 

classification and bug assignment. To determine the optimal set of features, ACO and PSO 
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techniques is applied on bug report dataset. In future, some other meta-heuristic algorithms like 

ABC, Cuckoo search, Bat algorithm will be explored to determine optimal features. Further, 

NB, SVM and RFB classifiers are used to predict the severity classes and bug fixing. In future, 

some ensemble classifiers and meta-heuristic techniques will be considered for severity 

prediction and bug fixing. Furthermore, in future, bug duplicate detection, bug localization and 

patch generation issues will be taken into consideration and proposed new models to address 

these issues.    
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