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ABSTRACT 

 

Cancer is one of the most deadly diseases prevailing now-a-days. One of the common 

characteristic that all cancer cells share is the abnormal growth of cells. Chemotherapy is a 

universal way for treating cancer. However, technical advances in computational methods, 

simple yet very sensitive assays and the accompaniment of combinatorial chemistry artistry 

has now made the backbone of medicinal chemistry research field.  

Taxol having the encouraging anti-cancer activity but there is delay in the development of this 

drug because of its low aqueous solubility and hypersensitivity posed by its formulation in 

cremophor EL. To avoid this hypersensitivity and obtain better clinical use of paclitaxel, 

developing a new co-solvent and improving the formulation for paclitaxel delivery systems 

has become important. In addition to developing better formulation for paclitaxel, there were 

ways to achieve more efficient modified paclitaxel that is prodrug formation. 

Different approaches to build up paclitaxel prodrugs were introduced making it more soluble 

or bioactive before its clinical use. But the approach of formation of these prodrugs was not 

rational as it is very tedious process and many undesirable compounds were also synthesized. 

Theoretical models such as quantitative structure property-relationship (QSPR) can provide a 

set of predictors for any molecular property using the structure of the molecule. Delving into 

the cost- and time-effective computational strategies for the solubility prediction of prodrugs 

was performed. Also to increase the bioavailability, study with human metabolic enzymes 

must be done. With respect to these research gaps, the proposed thesis work has been 

conducted and the objectives are defined in the three different chapters (Chapter 2, 3 & 4). In 

the first objective, a novel QSPR strategy (QSPR-sPL) has been developed for the solubility 

prediction of small datasets as from pharmaceutical perspective small datasets are important 

for the solubility prediction. In the second objective a dataset of paclitaxel prodrug was and 

the substituent groups were taken for the solubility prediction implementing the pipeline 

developed in the first objective.  Also to increase the bioavailability, study with human 

metabolic enzymes hence in the third objective the metabolic study of phosphate paclitaxel 

prodrugs was performed in-silico to inspect their oral bioavailability and found the highly 

soluble isotaxel to be more bioavailable that could be given orally also. Fulfillment of these 

objectives contributed to the solubility property prediction of low soluble drugs and solubility 

prediction of paclitaxel prodrugs    
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CHAPTER 1 

INTRODUCTION AND REVIEW OF LITERATURE  

 

1 INTRODUCTION 

Cancer is one of the most deadly diseases prevailing now-a-days. Cancer comprises a class 

of hundred different diseases. One of the common characteristic that all cancer cells share is 

the abnormal growth. Cancer cells shows uncontrolled growth which have the potential to 

intrude other body parts, destroy adjacent tissues, and can spread to a different body part. 

This disease may affect the people of all the ages but risk for all the ages for various cancers 

increases throughout the world (Figure 1.1). From the very beginning the disease had taken 

the centre stage of healthcare providers but still we are in search of cure for this devastating 

disease. Although cure for the disease is still not in our hands but many advances has been 

achieved for restraining adversity and progression of the disease. 
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Figure 1.1: Distribution of cancer cases continental wise. (a) Visual depiction of cancer cases by Globocan 

2019. (b) Data compilation from panel A. This data clearly indicates Asia as the leader with 48 percent of 

cancer cases. This data also indicates that cancer is not the disease of only rich but the prevalence of cancer 

is at global level; Data source: Globocan 2018; http://gco.iarc.fr. 

As reported in September 2018 by Global Cancer Observatory (Globocan), International 

agency for research on cancer of World Health Organization (WHO), globally there is an 

increase from 14.1 million to 18.1 million new cancer cases and 8.2 million to 9.6 million 

cancer deaths from year 2012 to 2018 [1]. According to the Globocan there has been 

prevalence of 35 types of cancer in 185 countries. Globocan 2018 report provided information 

about the diagnosis of the most common cancers worldwide; including lung cancer (2.09 

million, 11.58% of the total), breast cancer (2.08 million, 11.55% of the total), colorectal 

cancer (1.84 million, 10.23% of the total). The most common cause of cancer deaths were 

lung cancer (1.76 million, 18.4% of total cancer deaths), followed by stomach cancer (0.782 

million, 8.2% of total cancer deaths), and liver cancer (0.781 million, 8.2% of total cancer 

deaths) [2]. Also, cardiovascular diseases contribute to the world mortality rate the most 

followed by cancer [3]. In relation to India, cancer is the second most leading cause of 

mortality with about 0.78 million deaths per year after cardiovascular diseases [4]. According 

to the cancer data compiled by Globocan in 2012, the number of total cancer patients, male 

patients, and female cancer patients were 9,79,786, 4,62,408 and 5,17,378 respectively [5]. 

Similarly, in 2018 the total number of cancer patients were 11,57,294 with 5,70,045 and 

5,87,249 males and females respectively [6]. These figures clearly indicated that the cancer 
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cases are being increased gradually (Figure 1.2). All cancer types including lung, breast, 

rectum, skin, stomach, liver, oesophagus, prostate, bladder etc. were reported in indian 

population. Male population in india was found to be mainly suffering from lip & oral cavity, 

lung, stomach, colorectal, prostate and oesophagus cancers whereas in women most frequent 

cancers were breast, cervix uteri, ovary, lip & oral cavity, and colorectal (Figure 1.3) [7]. The 

age group of incidences of breast cancer among indian women was established less than a 

decade as that in the USA. 

Figure 1.2: Estimated no. of cancer cases in both the sexes projected in the next twenty years. (Data source: 

Globocan 2018; http://gco.iarc.fr). 
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Figure 1.3: Estimated age-standardized incidence rates (World) in 2018, India, both sexes, all ages. (Data 

source: Globocan 2018; http://gco.iarc.fr). 

 

1.1 Current cancer treatments  

From decades various cancer treatments are being employed to curb cancer. Due to ample 

work in the cancer research field we had gained phenomenal knowledge about the cancer 

cells growth, division, and advancements. This knowledge provided scientists insight to 

improve or apply new ways to stop or reverse the growth of the cancerous cells. Till now the 

most common types of cancer treatment are: Surgery, Chemotherapy, Radiation therapy and 

some other targeted therapies. Among all the treatment regimens, chemotherapy is most 

commonly used for treatment, prevention of reoccurrence and palliative care for a variety of 

cancer types. The relative contribution of various cancer target curative regimens is shown 

in the Figure 1.4. 

 

http://gco.iarc.fr/
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Figure 1.4: Proportions of various mechanisms/drugs currently in use for cancer cure. 

Chemotherapy is the term used for the treatment of cancer with any anticancer drug. These 

drugs play their role by any of the mechanisms like interrupting with cell division, DNA 

metabolism and signal transduction. As these drugs are administered systemically and having 

generalized bioavailability, so they can act on the cancer cells from distant sites other than the 

site of origin for cancer. Chemotherapy is a universal way for treating cancer; control the 

disease from spreading, and providing the palliative care for various cancers. Therefore, 

notably more than half of the patients diagnosed with cancer got chemotherapy regimens. 

Traditionally, these agents were determined from the study of naturally occurring compounds 

or of chemically synthesized compounds after assessing their cytotoxicities so as to select 

new promising lead compounds. However, technical advances in computational methods, 

simple yet very sensitive assays along with the advancement in combinatorial chemistry 

artistry has now made the backbone of this research field. Likewise, advances in prodrug 

design techniques, and advances in the drug delivery systems have opened ingenious view in 

this research field. Essentially, the compounds that are modestly selected for cytotoxicities 

against cancer cells not only target cancer cells exclusively but are also having equally 

adverse effects on the healthy cells. Despite having high cytotoxicities, many of the drugs still 

are most effective across the cancerous cells of ovary and breast cancers as well as for some 

of the haematological malignancies, Table 1.1 [8-11].  
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Table 1.1 Currently used drugs for cancer treatment 

Mode of 

Inhibition 

Drugs and their targets 

 

 

 

 

 

 

 

 

 

 

 

DNA integrity 

and metabolism 

Folic acid metabolism: Dihydrofolate reductase inhibitor (Aminopterate, 

Methotrexate, Pemetrexed); Thymidylate synthase inhibitor (Raltitrexed, 

Pemetrexed). 

Purine metabolism: Adenosine deaminase inhibitor (Pentostatin); 

Halogenated/ribonucleotide reductase inhibitors (Cladribine, Clofarabine, 

Fludarabine); Thiopurine (Thioguanine, Mercaptopurine). 

Pyrimidine metabolism:   Thymidylate synthase inhibitor (Fluorouracil, 

Capecitabine, Tegafur, Carmofur, Floxuridine), DNA polymerase inhibitor 

(Cytarabine); Ribonucleotide reductase inhibitor (Gemcitabine); 

Hypomethylating inhibitor (Azacitidine, Decitabine). 

Deoxuribonucleotides metabolism: Ribonucleotide reductase inhibitor 

(Hydroxyurea). 

Topoisomerase I inhibitor: Camptotheca (Camptothecan, Topotecan, 

Irinotecan, Rubitecan, Belotecan). 

Topoisomerase II inhibitor: Podophyllum (Etoposide, Teniposide). 

Topoisomerase II + interclation: Anthracyclines (Aclarubicin, 

Daunorubicin, Doxorubicin, Epirubicin, Idrarubicin, Amrubicin, 

Pirarubicin, Valrubicin, Zorubicin); Anthracenediones (Mitoxantrone, 

Pixantrone). 

Cross linkers: Nitrogen mustards: Mechlorethamine; Cyclophosphamide 

(Ifosfamide, Trofosfamide); Chlorambucil (Melphalan, Prednimustine); 

Bendamustine; Uramustine; Estramustine. 

Nitrosoureas: Carmustine; Lomustine (Semustine); Fotemustine; 

Nimustine; Ranimustine; Streptozocin. 

Alkyl sulfonates: Busulfan (Mannosulfan, Treosulfan). 

Aziridines: Carboquone; ThioTEPA; Triaziquone; Triethylenemelamine, 

Platinum (Carboplatin, Cisplatin, Nedaplatin, Oxaliplatin, Triplatin, 

Tetranitrate, Satraplatin); Hydrazines (Procarbazine); Triazenes 

(Dacarbazines, Temozolomide); Altretamine; Mitobronitol; Streptomyces 

(Actinomycin, Bleomycin, Mitomycin, Plicamycin).  

 

Radiation and 

photosensitizers 

Radiationtherapy: High-energy radiation from x-rays, gamma rays, 

neutrons, protons and other sources. 

Photosensitizers: Aminolevulinic acid/Methylaminolevulinate; Efaproxiral; 

Porphyrin derivatives (Porfimer sodium, Talaporfin, Temoporfin, 

Verteporfin). 

 Receptor tyrosine kinase inhibitor: ErBb: HER1/EGFR (Erlotinib, 
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Signal 

Transduction 

Gefitinib, Lapatinib, Vandetanib, Neratinib), HER2/neu (Lapatinib, 

Neratinib) 

RTK class III: C-kit (Axitinib, Sunitinib, Sorafenib): FLT3 (Lestaurtinib); 

PDGFR (Axitinib, Sunitinib, Sorafenib); VEGFR (Vandetinib, Semaxanib, 

Cediranib, Axitinib, Sunitinib, Sorafenib). 

Non-receptor tyrosine kinase inhibitor: bcr-abl (Imatinib, Nilotinib, 

Dasatinib ); Src (Bosutinib); Janus kinase 2 (Lestaurtinib). 

Enzyme inhibitors: Farnesyl transferase FI (Tipifarnib); CDK inhibitors 

(Alvocidib, Seliciclib); Proteome inhibitor PrI (Bortezomib); PDE II 

inhibitor PhI (Anagrelide); Imp dehydrogenase inhibitor IMPDI 

(Tiazofurine); Lipooxygenase inhibitor L1 (Masoprocol). 

Receptor antagonists/hormones: Endothelial receptor antagonist ERA 

(Atrasentan); Retinoid X receptor (Bexarotene); Sex steroid (Testolactone). 

 

 

 

 

Monoclonal 

Antibodies 

Receptor tyrosine kinase: ErBb: HER1/EGFR (Cetuximab, Panitumumab); 

HER2/neu (Transtuzumab). 

Solid tumors: EpCAM (Catumaxomab, Edrecolomab); VEGF-A 

(Bevacizumab). 

Lymphoid: CD20 (Rituximab, Tositumomab, Ibritumomab). 

Myeloid: CD52 (Alemtuzumab). 

Lymphoid + Myeloid: CD33 (Gemtuzumab). 

Others: Afutuzumab, Alemtuzumab, Bevacizumab/Ranibizumab, 

Bivatuzumab mertansine, Cantuzumab mertansine, Citatuzumab bogatoz, 

Dacetuzumab, Etaracizumab, Farletuzumab, Gemtuzumab, Ozogamicin, 

Inotuzumab ozogamicin, Labetuzumab, Lintuzumab, Milatuzumab, 

Nimotuzumab, Oportuzumab monatox, Pertuzumab, Sibrotuzumab, 

Sontuzumab, Tacatuzumab tetraxentan, Tigatuzumab. 

 

Tubulin 

binding drugs 

Inhibit microtubule assembly: Vinca alkaloids (Vinblastine, Vincristine, 

Vinflunine, Vindesine, Vinorelbine). 

Promote microtubule assembly: Taxanes (Pacxlitaxel. Docetaxel, 

Larotaxel, Ortataxel, Tesetaxel); Epothilones (Ixabepilone). 

 

 

Miscellaneous 

Amsacrine; Trabectidine; Retinoids (Aletretinoin, Tretinoin); Arsenic 

trioxide; Asparagine depleter (Asparaginase, Pegapargase); Celecoxib; 

Demecolcine; Elesclomol; Elsamitrucin; Etoglucid; Lonidamine; 

Lucanthone;  Mitoguazone; Mitotane; Oblimersen; Temsirolimus; 

Vorinostat. 

 

1.2 PROMISING ANTICANCER DRUG TARGET: MICROTUBULE 

STRUCTURE 
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1.2.1 Microtubule structural organization and its dynamics 

Microtubules are prevalent tubular structures that form the cytoskeleton of the cell. 

Microtubule structures are responsible for the formation, and preservation of mitotic spindle 

that play major role in the separation of duplicated chromosomes in the course of cell division 

[12-14]. MTs are hollow rod shaped structures having a diameter of 25 nm, made of tubulin 

subunit which is a dimer of α and β subunits that shows enduring disassembly, and 

rearrangement in the cell. Electron crystallography studies had provided the three dimensional 

structure of the microtubule (Figure 1.5).  

 
Figure 1.5: Molecular structure of tubulin hetero-dimer comprising α- and β- subunit. Ribbon 

representation of X-ray crystallographic data, PDB id 1TUB (3.7 Å) for tubulin depicting α- and β- 

monomers. Alpha helix, beta strands and loops are forming the tubulin structure. GTP is bind to α-subunit 

while the GDP and taxol are shown to be bind to β-subunit. The arrow is illustrating the advancement of the 

protofilaments in the course of microtubule formation. 

Each monomer subunit is asymmetric with nearly width, height, depth of 46 x 40 x 65 Å 

respectively [15]. Every tubulin is segregated into three functional domains: amino terminal, 
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intermediate terminal and carboxy terminal. Amino terminal domain is having the nucleotide 

binding region and the carboxy terminal domain controls the binding of the drugs such as 

vincristine, paclitaxel [16-18]. Each MT consists of 13 protofilaments associated laterally, 

forming hollow rod like structure and consequently forming head-to-tail body of the tubulin 

dimers (Figure 1.6). Incurring head-to-tail association of αβ subunits, protofilament structure 

has α subunit exposed at one end and the other end is open to β unit forming minus and plus 

ends respectively (Figure 1.6). 

 
Figure 1.6: Lateral associations of 13 protofilaments forming the hollow rod- like structure of the 

microtubule which is a long run of head-to-tail association of tubulin dimer. Incurring head-to-tail 

association of αβ subunits, protofilament structure has α subunit exposed at one end and the other end is 

open to β unit forming minus and plus ends respectively. 

1.2.2 Microtubule targeting drugs  

Microtubule targeting drugs are broadly divided into two groups. One group consists of drugs 

inhibiting tubulin polymerization and stimulating MT disassembly. Some of the important 

drugs of this category are vinca alkaloids, combretastatin and colchicine. Taxanes, 

discodermolides, and laulimalides represent the second class of microtubule targeting drugs 

that causes over assembly of MT by promoting tubulin polymerization. In spite of current 

progress in the study of binding interactions of laulimalides, paclitaxel, and colchicine with 

MTs, the specific nature of site-directed binding interactions of anti-MT drugs has been an 

area of profound research. In 1998, Downing and co-workers reported the three dimensional 

electron crystallographic structure of heterodimer αβ tubulin at 3.7 Å resolutions. Several 

binding site illustrating techniques had established three main binding sites on tubulin: (a) 

“colchicine” binding site [19] (b) “vinca alkaloid” binding site [20] and (c) the “taxane” 
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binding site on the MT [21]. The cell-cycle got arrested at the prometaphase of mitosis by 

these compounds. These drugs showed significant effects on MT dynamics also. They alter 

the growth rate and duration or shorten the rate and duration. Also, they alter the transition 

frequency between the growth and shortening phases and also the pause state duration when 

no growth or shortening is evidenced. Some of the reported drugs are explained in the next 

section. 

1.2.3 Drugs inhibiting polymerization of tubulin 

Drugs for vinca alkaloid-binding site: Vinca-alkaloids drugs are derived from naturally 

occurring periwinkle plant, Catharanthus roseus. These were the first class effective anti-

cancer drugs those bind to the microtubules. A few of the vinca-alkaloids, vinorelbine, 

vincristine, vinflunine and vindesine are also used for the treatment of Hodgkin’s and non-

Hodgkin’s lymphomas. They bind to β-tubulin, obstruct MT polymerization and stop the 

mitosis at prometaphase, [22-24] finally causes cell death [24]. Cryptophycins a recently 

identified group of compounds that might bind at “vinca” binding sites and acts against tumor 

cells at a low concentrations than other anticancer drugs [25]. 

Drugs for colchicine-binding site: A toxic, naturally occurring, secondary metabolite 

colchicine is extracted from Colchicum autumnale plant. It binds to αβ-tubulin at a different 

site than “vinca-alkaloid binding site”. Some of the colchicine-binding site drugs such as 

indanocine, 2-aryolindoles and methoxyestradiol (2-ME) binds tubulin, break mitotic spindle 

and arrest the cell cycle in mitosis [26].  

1.2.4 Drugs promoting polymerization of tubulin   

Drugs for Taxane-binding site: Paclitaxel (Taxol), a forbearer member of this family, a 

natural product originated from the bark of Taxus brevifolia (pacific yew tree) [27]. It acts by 

binding to MT and stabilizing the depolymerisation of MTs thus interrupting their dynamic 

stability resulting in cell death [28,29]. Compounds of this family; paclitaxel and docetaxel 

(taxotere) are very well studied. Both the compounds bind to the β-tubulin within the lumen 

of MT thus stabilizing the inter protofilament 3 and blocks disassembly of αβ tubulin [30-34]. 

Taxanes stabilizes the existing MT, additionally it also nucleate newer assembly of other 

polymers. Consequently, the vigorous rearrangement of bipolar spindle arrays is not attained 

and the cell cycle is arrested in the pro-metaphase of mitosis leading to cell death [35]. The 

members of taxane family shows anticancer activity for a range of solid tumor growth such as 

ovarian cancer, breast cancer, non small cell lung cancer (NSCLC), gastro oesophageal cancer 

and also for head and neck cancer [30,36,37]. In the related manner, the disorder caused by 
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taxanes and also by many other anti-MT drugs disturbs the cell’s haemostasis which in turn is 

reported to affect the genes encoding inflammatory mediators like interleukins, tumor 

necrosis factor alpha and nitric-oxide synthase, and also cyclooxygenase 2 enzymes [38-41]. 

Epothilones forms a newer class of drugs in the taxane family. Being a macrolide inhibitor 

this class represent novel anti-MT drugs. Epothilones also bind to MT in the same manner and 

in the same binding site as taxanes [42]. The progress gained by taxanes, epothilones, and 

other anti-MT drugs in curbing cancer cells had instilled the exploration of new anti-MT 

drugs [43,44]. Such as, the useful anticancer drugs discodermolide and dicoumarol create an 

enhanced effect by working synergistically with the paclitaxel [45,46]. Also, naturally 

occurring compounds laulimalide and peloruside A had open ring structure just like 

epothilone and they also stabilize MT, and arrest the cell division [47,48]. The present 

developmental status of anti-cancer drugs of this class is shown in Table 1.2. 

Table 1.2 Tubulin polymerization promoters in clinical development 

Drug Highest Phase Indication Drug type 

AI 850 Phase-I Solid tumors Paclitaxel, in a novel 

polyethoxylated castor oil-

free hydrophobic 

microparticle delivery 

system 

ANG1005 Phase-I Brain cancer 

(Metastatic 

disease), Glioma 

cancer 

Taxane derivative 

ARC 100 

(TPI-287) 

Phase-II Pancreatic cancer, 

Prostate cancer 

(Hormone 

refractory) 

3rd generation cancer to 

overcome drug resistance 

BMS 188797 Phase-I Cancer Taxane 

BMS 275183 Phase-II Non-small cell lung 

cancer, Prostate 

cancer, Solid 

tumors 

Taxane 

BMS 310705 Phase-I Cancer Epothilone analog 

BMS 753493 Phase-I/II Solid tumors Folate receptor targeted 

epothiolone 

Cabazitaxel Phase-III Breast cancer, 

Prostate cancer 

Taxane 
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(Hormone 

refractory) 

Docetaxel Launched Cancer  Taxane 

Docetaxel 

emulsion 

Phase-I Breast cancer Taxane 

DTS 301 Phase-II Glioblastoma, 

Oesophageal 

cancer, Pancreatic 

cancer 

Paclitaxel delivered in 

copolymer gel ReGel 

EndoTAG I Phase-II Cancer Positively charged lipid 

complex to transport 

Ixabepilone Launched Cancer  Epothilone 

KOS 1584 Phase-II Non-small cell lung 

cancer, Solid 

tumors 

Epothilone 

Larotaxel Phase-III Cancer Taxane 

Liposome 

encapsulated 

docetaxel 

Phase-I Solid tumors Taxane 

Milataxel Phase-II Cancer Taxane analog 

NK 105 Phase-I Solid tumors Paclitaxel-incorporating 

polymeric micellar 

nanoparticle (85 nm in 

size) 

OAS PAC 100 Phase-III Ovarian cancer 

(Combiation 

therapy: in 

combination with 

carboplatin) 

Paclitaxel micellar 

Orataxel Phase-III Non-hodgkin’s 

lymphoma, Renal 

cancer, Solid 

tumors 

Taxane 

Paclitaxel –

Bristol Myers 

Squibb 

Launched Cancer Paclitaxel 

Paclitaxel-

Yew tree 

pharmaceutica

Launched Breast cancer, 

Ovarian cancer 

Taxane 
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l 

Paclitaxel-

angiotech 

Launched Inflammation and 

cancer 

Taxane 

Paclitaxel-

Aphios 

Preclinical Cancer Taxane 

Paclitaxel-

Hanmi 

Phase-I Cancer Taxane 

Paclitaxel- 

SuperGen 

Preclinical Solid tumors Taxane 

Paclitaxel 

nanoparticle- 

Dabur Pharma 

Launched  Cancer Taxane 

Paclitaxel 

nanoparticles- 

BioAlliance 

pharma 

Precilinical Solid tumors Taxane 

Albumin bind 

Paclitaxel 

Launched Cancer Taxane 

Patupilone Phase-III Cancer Epothilone B 

PEGylated 

Docetaxel 

Phase-I Solid tumors Taxane 

Sagopilone Phase-II Cancer Epothilone 

Simotaxel Phase-I Solid tumors Taxane 

Tesetaxel Phase-II Cancer Taxane 

TL-310 Phase-I Cancer Taxane Analog 

 

1.3 TAXOL AND ITS HISTORY 

Taxol a natural product and a precursor of taxane, is showing anti-cancer activity [49]. Even 

though, history shows the scientific traces of taxol thirty eight years ago, it had been used in 

the traditional medicine in india as a clarified butter preparation having European yew (Taxus 

baccata) [50]. In 1962, taxol was selected as one of the naturally occurring agent for the 

cytotoxicity screening program led by National Cancer Institute of the United States (NCI) 

[51]. For the first time it was isolated from the bark of western yew (Taxus brevifolia) in 

1967. Wani et al, in 1971 reported specific structure and cytotoxic nature of taxol; in late 

1970s it gained the interest of researchers [52]. It poses a unique mechanism of action which 

was founded in late 1970s and found to be different amid other plant alkaloids and anti-cancer 
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drugs [53]. Preclinical studies approved taxol's anti-cancer activity against various solid 

tumors, accomplished in early 1980’s [54]. Despite having the encouraging anti-cancer 

activity ascertained by clinical trials there was delay in the development of this drug because 

of its low aqueous solubility and hypersensitivity [55]. Thereafter, these problems were 

overcome by the formulation of taxol in cremophor EL and also directing anti-

hypersensitivity intermediate before each taxol dose. 

In the mid 1980’s Phase-II clinical trials of taxol were started as taxol a single agent in the 

patients those responded well in Phase-I. All the patients in these trials were pre-treated with 

anti-hypersensitivity agents. Some tumors profoundly responded to taxol that they were 

showing the objective response rates even higher than 50 percent as in breast cancer, 30 

percent or higher in ovarian cancer and more than 20 percent in NSCLC. The response rates 

achieved were comparable or better than the standard chemotherapy [56]. Since then in 1992 

taxol got the approval for the treatment of advanced ovarian cancer in US. Clinical results 

from Phase-II trials proposed taxol as potential anti-cancer drug. Establishing taxol efficacy 

for treating ovarian cancer, NCI along with Bristol-Myers Squibb pharmaceuticals approved 

taxol for New Drug Application (NDA). Taxol became available in market under the name 

paclitaxel in a 5 ml vials having 30 mg taxol in cremophor EL as a single dose [57]. Ongoing 

trials were devised for exploring combination of taxol with other anticancer drugs, 

overcoming toxicities, pharmacokinetics, and pharmacodynamics asserting its formulation 

and administration route. 

1.3.1 Physicochemical properties of Taxol 

Taxol compound, with molecular formula (C46H49O14N) having the chemical structure as 

shown in Figure 1.7a. Chemically taxol was discovered as a complex diterpenoid having a 

taxane nucleus and a phenylisoserine side chain at C-13 of its molecule [58]. Taxol was also 

found to share structural similarities with other alkaloids such as vincristine and vinblastine 

but the nucleus of taxol was found to be different as shown in Figure 1.7b [59]. Structure of 

taxane nucleus was bring into being from four rings A, B, C, D. Ring A is cyclohexene, ring 

B is cyclooctane, ring C is cyclohexane and ring D is oxetane ring, Figure 1.7b. 

Physiochemical structure of taxol was divided in two segments; a polar segment and a non-

polar segment. These two segments were found to be quite important in the interaction of 

taxol with its receptor, Figure 1.7a. 

The commercial availability of taxol was formed as a white, amorphous, odourless, 

hygroscopic powder with a molecular weight of 859.3 g/mol. It was discovered to be highly 
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insoluble in water and showed a maximum UV absorption at 227 nm. The melting point was 

observed to be 205-208oC and octanol/buffer partitioning was found to be more than 99 [60].   

 
Figure 1.7a: Structure of taxol showing configuration of different functional groups. 

 
Figure 1.7b: Structure of taxol core ring. It consists of ring A (cyclohexene), ring B (cyclooctane), ring C 

(cyclohexane). 14 positions are ranging in order from B-C-A. 

 

 

1.3.2 Source of taxol 

In 1967, taxol was first isolated from the bark of Taxus brevifolia, commonly known as 

pacific yew or western yew. Pacific yew is a shrub of 20-40 feet height, 12-15 inches 

diameter and having life span of 250-300 years. About 0.00002- 0.057% of taxol amount is 

present in different part of Taxus brevifolia but the maximum concentration of taxol is found 

in the dried bark (0.01-0.057%). The production of taxol from the tree is so low that minimum 

three trees of 100 years of lifespan are needed for the treatment of one cancer patient. 

Research groups across the world are working on production of taxol from biomass collection 

of wild species, cell culture, semi synthesis, and total synthesis [61]. 
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1.3.3 Synthesis and semi-synthesis of taxol 

Solution to taxol supply problem can be overcome by semi-synthesis. Semi-synthesis of taxol 

represents some major problems. 10-deacetyl baccatin III can be extracted from the needles of 

different yew plants and the attachment of lengthy side chain of taxol provides a solution to 

the limited supply of taxol [62]. This approach brings supply surveillance and quality 

assurance of paclitaxel [63,64]. 

Advancement in the supply of paclitaxel has been achieved by the complete synthesis of 

compound. The semi-synthesis and complete synthesis of Paclitaxel has been achieved since 

1994, but the approach is very complicated and is burdensome to scale-up the process. 

Therefore, replacing those biochemical assays for the formation of semi-synthetic or synthetic 

taxol did not suggest a beneficial commercial solution. 

 

1.4 PHARMACOLOGY OF TAXOL 

1.4.1 Mechanism of action of taxol 

Taxol displays similar intracellular effects as other anti-cancer drugs but the mechanism of 

action of taxol is quite different from other drugs. It targets microtubule polymers of dimeric 

protein tubulin. Taxol is well known to increase the over-polymerization of microtubules 

which results in non-functional, assembled, and aberrant microtubules that are responsible for 

cell apoptosis [65]. Taxol binds to microtubule at a low concentration as 0.05μmol\L and 

make less concentration of tubulin for the rearrangement of microtubule even in the absence 

of factors such as GTP or MAPs that are customary for the dynamics of microtubules [66]. 

Taxol binds to the microtubules at a different site than colchicine, vinblastine and 

podophyllotoxin, yet the definite binding site of taxol on microtubule is not identified but it 

had been seen that taxol choose to bind to microtubules than tubulin dimers [67].  

Microtubules which are treated with taxol found to be stable even if subjected to calcium or 

low temperature, those conventionally advocates disassembly [68]. Clinical concentrations of 

taxol (0.1-10μmol\l), can be attained by its prolonged infusions, apparently produce two 

morphological affects. First, in the vicinity of taxol there occurs the formation of ample arrays 

of disordered microtubules laterally aligned. This bundle formation occurs in every phase of 

cell cycle [69], interruption of mitotic spindle causes the capture of cell division in the G2/M 

phase. Secondly, taxol provide exceptional stability to microtubule structures that can afflict 

the effects of fundamental cellular regularity elements in this arrangement which finally 

modify microtubule dynamics and divest cell of its capability to control and arrange the 
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cytoskeleton. Due to effects caused by taxol, cell seems to disrupt the mitotic spindle during 

cell division and also the uprightness of interphase microtubules that is crucial for many 

cellular functions. 

1.4.2 Structure cctivity features of taxol 

Taxol has a unique structure, which explains its unusual clinical and pharmacological features 

and also its mechanism of action [70]. Taxol was examined for both as an anti-cancer drug as 

well a tool to understand the various cellular functions of microtubules. Structural 

requirements for obtaining taxol’s effects are based on many studies those were designed to 

learn structure activity features of taxol [71]. The results obtained were suggestive in the 

following ways (Figure 1.7). 

i) C2 and C3 rings configuration are essential for the microtubule assembly. 

ii)  Oxetane ring is also responsible for microtubule assembly. 

iii) Activation of taxol is dependent on esterification of C13 hydroxyl group. 

iv) Major loss in the activity is noticed by the replacement of 3’ phenyl by methyl. 

v) C2 and C7 hydroxyl group’s esterification seems to increase the solubility of taxol. 

vi) Side chain configuration of taxol is least affected by C3 phenyl group and C2 hydroxyl 

group but are necessary for taxol microtubule interaction. 

vii) Efficacy of taxol is increased by the amide substitution at C3 by hydrophobic 

substituent.  

viii) In vitro, cytotoxicity is not affected by C10 acetyl group. 
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Figure 1.8: Structure activity relationship of taxol. 

1.4.3 Resistance possessed by taxol 

Two mechanisms of acquiring the resistance to taxol were observed in vitro. First, cell may 

get mutated when grown in the absence of taxol, lacking normal microtubules in their mitotic 

spindles hence cells become completely or partly reliant on the drug for their normal growth. 

Secondly, taxol may be involved in the multidrug resistance phenotype which advised varying 

degree of cross-resistance to taxol and also to other natural products [53]. 

 

1.5 PRECLINICAL AND CLINICAL INFORMATION OF TAXOL 

1.5.1 Antitumor activity of taxol 

Cytotoxic activity of taxol had been reported since 1971 by NCI after a large panel screening. 

Taxol showed dramatic anti-cancer activity against nearly resistant murine B16 melanoma. It 

showed good anti-cancer activity against a lot of other human tumor xenografts including 

MX-1 mammary tumor when given intravenously, showed moderate activity for human CX-1 

colon, LX-1 lung xenografts, and L1210 murine leukaemia as screened by the NCI panel. In 

1986 Riondel and Jacrot reported that taxol brought significant delay in growth of human 

brain, tongue, ovarian, endometrial, and lung xenografts [72]. Prolonged and frequent drug 
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administration schedules were found to be superior. Combination of taxol with cisplatin 

produced critical delay in the growth of tumor [73]. 

1.5.2 Clinical trials of taxol anti-cancer activity 

Taxol (Paclitaxel) was approved by FDA for the treatment of ovarian and breast cancer 

patients [74]. According to NCI, taxol was in clinical studies in different areas; in phase-I, 

phase-II, and phase-III. Results from completed and ongoing phase I, II, III trials are 

complied in Table 1.3.   

Taxol was proved to be a salvage therapy for patients having advanced or metastatic breast, 

ovarian, head and neck, and NSCLC cancers. Taxol treated tumor patients exhibited 

influential response rates because the patients were pre-treated heavily and also patients were 

prior obstinate towards standard chemotherapy. Taxol activity against cervical, prostate, 

colon, renal cancers was not found to be promising at that time. Also, for bladder, stomach, 

oesophageal cancers as well for paediatric malignancies use of taxol was investigated.  

Table 1.3: Different tumors and their response rates against taxol 

Target tumor Response 

rate (in 

percent) 

References 

Advanced ovarian cancer 36 [75], [76] 

Metastatic breast cancer (with 

one prior chemotherapy) 

59  
[77], [78] 

Metastatic breast cancer 

(without any treatment) 

62  
[79] 

Untreated Non Small Cell Lung 

Cancer (NSCLC) 

22 (21-

24) 

                               [80], [81] 

Small Cell Lung Cancer 

(SCLC) 

34                                    [82] 

Malignant melanoma  16 (12-

33) 

                                   [83] 

Head and Neck 40                             [84] 

 

1.5.3 Animal toxicity of taxol 

Toxicity of taxol was determined using animal models like rats, mice, and pigs. Dose-volume 

restrain in rodents was raised due to the low aqueous solubility of taxol, also the toxicity is 

imparted by cremophor EL (polyoxyethylated castor oil) and formulation of taxol in ethanol. 

Intra-peritoneal (ip) course of administration of drug was used for the toxicological studies 
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during the screening program [85]. Tissues which were having an expeditious cell turnover 

like lymphatic, reproductive, gastrointestinal tissues seemed to have noticeable toxic effects 

than hepatic, nervous, and renal tissues which showed no deposition of end-organ damage in 

post-mortem examinations. Taxol containing vehicle showed innate toxicity [86]. In 

toxicological studies, cremophor EL shows vasodilations, lethargy, hypotension, and laboured 

breathing. Although in the repeated dose regimen vehicle was better tolerated and did not 

showed any cumulative toxicity [87]. Some animals were shown to be more sensitive to the 

hypotensive effects of the cremophor and these results suggested some alternative for the 

insolubility of the taxol. 

1.5.4  Combination chemotherapy of taxol 

Due to the promising results obtained by single-agent taxol in various cancers, the next 

probable step in the development of this drug was to make combination of taxol with other 

active agents in these tumors. Two mainly studied combinations were cisplatin and taxol and 

doxorubicin and taxol. Other combinations like taxol/carboplatin, taxol/etoposide, 

taxol/ifosfamide, taxol/cyclophosphamide, taxol/hexamethylmelamine, and taxol/R-verapamil 

were also studied. These studies clearly defined the role of taxol in ovarian cancer; also these 

studies defined the role of this agent in breast cancer as the combination of taxol with other 

drugs was optimized. Dose response relationships within the range of current clinical dosages 

were important to resolve. Important issues in the development of taxol were its role as 

primary therapeutics in solid tumors, its optimal infusion length, clears understanding of its 

toxicities, and its low solubility.  

1.5.5 Human toxicity 

Taxol's major toxicities were depicted in the phase I trials of the drug. In these trials patients 

were pre-treated with anti-hypersensitivity regime comprising an antihistamine, H1 blocker 

and a H2 blocker. Neutropenia was shown to be dose limiting side effect in most of the cases. 

A proportional increase in the severe neutropenia was observed with the increase in the 

dosage. Also, other dose related toxicities like alopecia, myalgias, nausea, mucositis were 

observed in all patients. Hypersensitivity reactions and cardio toxicity were also seen in the 

patients but these were not dose related toxicities. Although dose-dependent toxicities were 

found but dose-response relationship was not possible to define for taxol [88]. 

1.5.6 Metabolism of taxol 

Predisposition of the entire taxol metabolism was found to be hepatic metabolism and biliary 

metabolism. High concentrations of taxol and hydroxylated metabolites were found in bile of 
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both rat and human [89, 90, 91]. Glucourinated and sulfated metabolites were not identified in 

the human or rat metabolite. Baccatin III was recognised as a minor metabolite in the rat bile. 

With the exception of Baccatin III all other biliary metabolites identified were hydroxylated 

derivatives.  

In vitro metabolism studies of taxol had shown the role of cytochrome P450s (CYPs) in the 

metabolism of taxol in the humans. CYPs from CYP2C family were shown to be responsible 

for the formation of major human hydroxylated derivatives and CYPs from CYP3A family 

were subjected to the formation of metabolite hydroxylated at position C13 [92].  

  

1.6 PHARMACOKINETICS OF TAXOL  

Pharmacokinetic conduct of paclitaxel was studied during the phase I clinical trials. Most of 

these studies included 6 and 24 hours infusion schedules because of the high occurrences of 

major intense hypersensitivity reactions due to the shorter infusions as suggested by the early 

clinical trials. Studies showed that maximum plasma taxol concentrations (Cm) and areas 

under concentration versus time curve (AUC) were well correlated with taxol dose in 6 and 

24 hours administration schedule [93,94]. During the early studies of taxol, biexponential 

elimination model was used for the study of taxol escape from the plasma. Mean alpha and 

beta half lives of taxol were found to 0.34 hour and 4.9 hour respectively. Also, Beijnen 

reported the equity of taxol from plasma by a three compartment model. The half lives were 

described as 10 minutes (t1/2 α), 2 hours (t1/2 β) and 15 hours (t1/2 γ). Mean central (Vdc) and 

steady state volumes (Vdss) of the distribution were found to large, having values of mean Vdc 

and mean Vdss  13.81 l/m2 87 l/m2 respectively [95]. These large values of Vdss that was even 

larger than the total volume of the body indicated taxol bound to proteins or some other tissue 

elements. Plasma protein binding was reported to be 95% to 97% for a wide range of drug 

concentrations [96].  

Although, taxol showed high binding affinity to the plasma proteins but it was also readily 

eliminated from the plasma showing reversible binding of lower affinity. Early phase I trials 

and pharmacological studies found the systemic clearance values to be 496 ml/min/m2. Also, 

the total urinary excretion of the taxol was 5.5%. This data gave the insight that the bulk 

amount of administered taxol dose disappearance was largely done by the metabolism, biliary 

excretion, and/or done by extensive tissue binding and was less contributed by systemic 

clearance and urinary excretion of the taxol was minimum [97].     
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Bioavailability studies done by Fujita H et al, 1994 had suggested that the dose given orally 

gave AUC (oral)/AUC (intravenous) ratio in tumor, liver, bile, plasma was 0.83, 6.71, 18.91 

and 0.45% respectively. Eiseman et al., 1994 defined the pharmacokinetics of paclitaxel after 

ip, po, and sc administration of 22.5 mg/kg of paclitaxel to mice to be 10%, 0 and 0 

respectively. 

Cremophor augments to the nonlinear pharmacokinetics of paclitaxel as shown by 

Sparreboom et al., 1996. In the results given by them, for the given concentration of 

paclitaxel increase in the cremophor amount in the formulation decreases the taxol clearance. 

Also, they exemplified that although the plasma concentration for a fixed dose of taxol 

formulated in the cremophor were higher than the dimethylacetamide and tween 80 

formulations but the concentration of paclitaxel in the tissues was same for all of the three 

tested preparations. 

 

1.7 PHARMACEUTICS OF TAXOL 

1.7.1 Formulation of taxol 

Taxol is a non-polar compound having low-solubility in water. Paclitaxel, which is a 

formulated form of taxol is a clear, colourless, concentrated, and viscous solution consisting 

of 6 mg/ml of taxol in 50% cremophor EL (polyoxyethylated castor oil) and 50% dehydrated 

alcohol. Paclitaxel is infused intravenously after dilution to a concentration of 0.3 to 1.2 

mg/ml with suitable parenteral fluid over 24 hours every 3 week. Cremophor EL was 

examined to cause many alarming hypersensitive reactions in the humans as well as animals. 

Many efforts were made to increase the paclitaxel solubility by chemical modifications while 

holding its anticancer activity but none of the modification was able to replace the taxol: 

cremophor formulation [98]. 

1.7.2 Stability of taxol 

Paclitaxel has been observed to convert spontaneously into 7-epitaxol in the saline solution at 

a temperature of 370 C after 48 hours. Tissue culture medium of J774.2 murine macrophage 

cells gave similar results for the drug, giving 50% of parent drug conversion to 7-epitaxol 

after 72-hours of the drug treatment [99,100]. Paclitaxel hydrolysis to several products 

including 7-epitaxol, baccatin-III, 10-deacetyl baccatin III pursued by the formation of 10-

deacetly taxol [89]. Diluted cremophor EL formulation of paclitaxel has been shown to form a 

particulate matter overtime suggesting the need of in-line filtration of the solution during 

dispensation. The stability of paclitaxel as suggested by bristol-myers company marked the 
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0.03-1.2 mg/ml concentration of paclitaxel  in either NS, D5W, D5W in ringer’s solution 

passed by 0.22 μm filter had not lost the potency in 27 hours kept in storage at normal room 

temperature and normal room lightning conditions. 

1.7.3 Toxicity caused by cremophor EL in the taxol formulation 

Several hypersensitive reactions were observed in the patients treated with cremophor-taxol 

formulation. These acute hypersensitive reactions like, shortening of breath, flushing, chest 

pain, utricaria started immediately after the administration of the formulation. Other observed 

side-effects of cremophor EL were increase in the blood platelet count and serum lipid values, 

and decrease in the percentage of alpha-lipoproteins in the blood. Increase in the tissue-lipids 

in spleen and lymph nodes was also observed due to the cremophor EL as observed by 

histopathlogical examination of the organs [101]. 

1.7.4 Cremophor EL and multidrug resistance 

Mammalian cancer cells were shown to display MDR because of the production of more 

concentrations of p-glycoprotein, a membrane protein that behave as a broad-spectrum pump 

and efflux a number of anti-tumor drugs, like vinca alkaloids, daunorubicin, and doxorubicin 

from the cell. Paclitaxel has also been shown to induce the MDR effect of the cell. Dose-

limiting toxicities imposed by many agents restricted their use but they were effective in 

reversing the MDR. As predicted by the in-vitro experiments that clinically readily available 

concentration of the cremophor EL reverses the MDR effect in the cells [102]. A variety of 

surface active agents some of them were used as pharmaceutical agents were compared to 

cremophor EL and found that Triton X-100 and Tween-80 showed the similar activity as that 

shown by cremophor EL in reversing the MDR effect but cremophor showed the lowest 

inherent cytotoxicity. Thus blocking the drug efflux and the enhanced fluidity of membrane 

did not involve cell lysis. Enhanced membrane fluidity may damage the ability of p-

glycoprotein to efflux the drug from the cell. Though cremophor is found responsible for 

reversing MDR in-vitro and in-vivo but there was also need of high concentration of 

cremophor for resistance modulation. Although cremophor itself was not found to be major 

vesicant for the tumor cells but the formulation of taxol:cremophor may possess the vesicant 

activity [103]. 

      

1.8 PACLITAXEL PRODRUGS   

Chemotherapy is an effective way to treat many types of cancer. Although paclitaxel is 

directed against various cancers but it is confronted with the limitation of extremely low 
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aqueous solubility. The formulation of paclitaxel gave a major impediment because of its low 

aqueous solubility. For that purpose it is always administered with cremophor EL and ethanol 

that may cause serious hypersensitivity in the patients. Hence, to circumvent the 

hypersensitivity and for obtaining better clinical use of the drug improvement in the 

formulation of paclitaxel has become important. Along with the development of new 

formulations for paclitaxel there occurred the development of paclitaxel prodrugs which were 

efficient modified form of paclitaxel.  

1.8.1 Aqueous Solubility: A major limitation of paclitaxel  

Aqueous solubility of a drug is the most important property that affects not only drug’s 

formulation but also the bioavailability of the drug. Prodrugs are the chemically modified 

form of the pharmacologically active drug that must be subjected to in-vivo transformation to 

release the active drug [104]. Prodrug formation of paclitaxel is the approach to improve the 

physicochemical, biopharmaceutical, and pharmacokinetic properties of the drug thereby 

increasing its advancement and its usefulness as an anti-cancer drug [105]. Paclitaxel 

prodrugs formation for increasing its solubility also increases its bioavailability and may also 

represent a life-cycle management opportunity with the improved properties of this 

established drug. 

 
Figure 1.9: Bioactivation of paclitaxel prodrugs (in-vivo) by chemical or enzymatic modifications (adapted 

from Chung et al, 2015). 
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Besides extremely low aqueous solubility paclitaxel also come up with multiple drug 

resistance like other anti-cancer drugs. Paclitaxel prodrug formation strategy overcomes the 

imperfections of the drug to a large extent. The prodrug formation included the small 

molecule and macro molecule, small molecule prodrug formation overcomes the low aqueous 

solubility of paclitaxel and macro-molecule prodrug included the conjugation of paclitaxel 

with polymers or with proteins. Macromolecule prodrug formation of paclitaxel could 

generally enhance the permeability and retention effects (EPR) as for other prodrug strategies 

[106]. In view of this, many prodrugs of paclitaxel were formed for more effective use of this 

highly active anti-tumor drug. As anti-cancer mechanism of paclitaxel was unfolded it was 

crucial to make it more hydrophilic so as to be more bioavailable. Many of the groups worked 

for making it more hydrophilic, two different approaches were followed to make it more 

bioavailable. Firstly, by adding a soluble group to the molecule and forming more soluble 

drug. Another way was making drug hydrophobic which was acceptable for long half-life 

hydrophobic formulation.  

For the formation of paclitaxel prodrugs one has to understand structure-activity relationship 

of the molecule. Early work showed that the central part of the molecule is rigid to accept any 

structural modification but the tail part is flexible for making any structural change. The 

central part of paclitaxel holding 1-OH and 2-benzoyloxy are the vital components for its anti-

cancer activity. Also, the stereochemistry of C2’ and C3’ in the side chain affects the activity 

of drug. Some studies suggested C2’-OH as binding site of the drug to tubulin. Therefore it 

was proposed to be most important functional group in the side chain which is a vital 

component of the drug. Hence early development of the prodrugs mainly focus on C2’ and 

C3’ positions. Though C-7 and C-10 does not interact with the tubulin directly but it was 

suggested that these were involved in the binding of the drug with P-glycoprotein which was 

subjected to MDR phenotype. The complex structure of paclitaxel allows modification of the 

molecule at different positions but for the formation of prodrugs C2’-OH was commonly 

accepted as it is the binding site of paclitaxel to tubulin. Also C7’-OH was also accepted by 

some groups for the formation of prodrugs [107], see chapter 3 for complete details. 

1.8.2 Small Molecule Paclitaxel prodrugs 

Small molecule paclitaxel prodrugs were formed to increase the solubility of the drug. In the 

small molecule prodrug formation phosphate esters of paclitaxel were formed which is a 

common strategy to increase water solubility of the molecule, also which provides a site to 

alkaline phophatase enzymes for the release of the parent drug. Some phosphonooxymethyl 
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ethers of paclitaxel were formed by the addition of phosphate group to the C2’-OH and C7’-

OH of paclitaxel molecule. The prodrugs formed showed great improvement in water 

solubility. Ueda and co-workers, introduced the phosphate group to the 7’-OH of 2’-

ethoxycarbony paclitaxel which raised the water solubility of molecule to 2.5 mg/ml, and the 

formed complexes showed the in-vivo cytotoxicity comparable to paclitaxel [108]. Likewise, 

Damen et al, synthesized two paclitaxel esters of malic acids at 2’-OH and 7’-OH 

respectively. The resulting prodrugs were 50 times more soluble than paclitaxel and showed 

equal anti-tumor activity as that of paclitaxel [109]. Besides, Wohl and co-workers 

synthesized 2’-OH silicated Paclitaxel prodrugs and obtained improved the water solubility 

[110].  

In the initial stage of paclitaxel’s development approach, studies were mainly targeted on its 

low aqueous solubility. In order to achieve more competent paclitaxel many research group 

formed various prodrugs of paclitaxel. With these preparations several prodrugs with 

improved solubility as well as with equivalent anti-cancer properties were formed, those were 

directed for pre-clinical and clinical studies and were subsequently marketed and used for 

various cancers.     

1.9 DATA MINING TECHNIQUES, QSPR MODELS AND VARIOUS 

COMPUTATIONAL TOOLS 

Computational models are imperative for eloquence of biology from descriptive to a 

predictive science. Now-a-days computational approaches are gaining acceptance, practice, 

and recognition in the drug exploration and discovery. Computational techniques bring about 

the use of computing power for streamlining the drug development process; it takes advantage 

of chemical and biological knowledge of ligands, targets and assists in the identification, and 

optimization of novel drugs. Newly designed in-silico filters eliminate the compounds with 

poor abominable properties and aids in selecting the most likely compounds. Rapid 

development in the computer-aided lead identification and development occured in the last 

decade because of the continuous progress, development, and fineness in the computational 

software and hardware power. [111]. These computer-aided techniques are being utilized for 

the identification of active drug candidates, most likely candidates for the further evaluation, 

and optimizing biologically active compounds into drugs by enhancing their physicochemical, 

pharmacokinetic, and pharmaceutical properties. Implicitly the approach is being utilized for 

discovering new drug candidates designed with a reduction in the chemical space and thus 

allowing the focus on the assuring candidates. Particularly, the in-silico techniques allow us to 
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necessarily curtail the time, and resources of the synthetic chemists and of biological testing. 

Along with the identification of new promising leads it is essential in the drug discovery 

process that the drug should not undergo attrition. 

 
Figure 1.10: Traditional and virtual screening of lead compounds.   

 

From decades toxicity of the drug is the major cause for drug attrition and is one of the main 

causes for the drug failure. Preclinical animal studies are time consuming, expensive and 

often provide defined predictability for human effects. Hence, there is a need of time for the 

development of in-silico predictive assessment of toxicity and other pharmacokinetic 

properties so as to minimize the animal testing. It is expected that the in-silico predictive 

model will aid in escaping the resource wastage, will reduce the regulatory review 

responsibility, and will predict the detrimental effects which were not predicted by the animal 

model such as nausea, cognitive impairment, dizziness etc [112]. European policy for the 

evaluation of chemicals (REACH: Registration, Evaluation, And Authorization of Chemicals) 

strongly supported the idea of an alternate in-silico mechanism for predicting the chemical 

toxicity, and other pharmacokinetics of the chemicals so as to lessen the animal trials, and 

sustain the resources and time.  

Quantitative structure activity relationship (QSAR) and Quantitative structure property 

relationship (QSPR) are the frequently used computational predictive methods for the 

toxicology and the pharmacokinetic properties [113]. Both the methods share the same 

principle but the frame of reference in QSAR is biological activity and in QSPR it is bio-
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physico-chemical properties. Molecular descriptors like topological, conformational, spatial, 

electronic etc. are the representative of dependent variables in the QSAR/QSPR models. The 

idea of structure-activity relationship came into existence in eighteenth century but later in the 

late 60s Corwin Hansch had demonstrated the versatility of this predictive approach and led to 

its advancing usage [114]. The field holds the interest in the regulatory arena and was being 

continuously evaluated. The regulatory body of Informatics and Computational Safety 

Analysis Staff (ICSAS) within the CDER at FDA is actively involved in the assessment of 

these predictive models used for toxicology and pharmacokinetic properties [115]. They 

developed various databases of different clinical endpoints, developed various databases, and 

had evaluated the data mining and QSAR techniques. QSAR validation is mostly done using 

the internal dataset or external validation data set, where the validation principles include 

accuracy and the rank ordering [116]. However, there still remain concerns regarding these 

predictive QSAR/QSPR models which should be further addressed through the present 

studies, and can provide promising results. It is also believed that the predictions based on 

direct human data would decrease the reliance on animal studies that are lengthy and time 

consuming. 

In general data mining and QSPR models are dynamic techniques that are able to correlate the 

molecular properties with the physicochemical properties of the molecules [117]. 

QSAR/QSPR techniques can be defined as the application of data analysis and statistical 

methods for the formation of models that could accurately predict the activity or biological 

property of the compounds based on their structures. It finds some empirical relationships 

(QSAR/QSPR) of the form Pi = k’(M1, M2, M3,……..Mn) where Pi  is the property of interest 

of the molecules, M1, M2, M3,……..Mn are the calculated structural properties (descriptors) or 

experimentally determined properties of the molecules and ki is some mathematically defined 

empirical function. QSAR/QSPR modelling aims to establish a trend among the descriptor 

values which parallels the trend in the biological property [118]. The QSAR/QSPR approach 

implies a simple principle of “similarity” that for a long time had established a foundation for 

the medicinal chemistry: compounds having similar structure shows similarity in their 

activities/properties also. QSAR/QSPR model development and validation includes a 

complete workflow that depicts the predictive QSAR/QSPR modelling, proclaiming a 

validated model, and finally some computational hits those could be further experimentally 

verified as shown in Figure 1.10.       
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Figure 1.11: Schematic representation of QSAR/QSPR predictive modelling. 

 

The formation of QSAR/QSPR model includes the step wise process, which starts by the 

careful curation of chemical structures and associated biological activities/properties to form a 

dataset for the subsequent computations. A part of compounds (mostly, 10-20%) is selected 

from the dataset as an external validation dataset. Subsequently, there is employment of 

multiple QSAR techniques based upon the combinatorial exploration of all possible pairs of 

descriptor sets and employing various supervised data analysis techniques “combi-

QSAR/QSPR” and finally select models which represented the higher accuracy of prediction 

in the training and test sets [119]. 

1.9.1 Tools used in the study for the formation of QSPR pipeline (QSPR-sPL), QSPR 

models formation, and validation. 

Gaussview: Gaussview is a graphical user interface, designed for the preparation of 

molecules to give as input to the Gaussian for molecular optimization and also to visualize the 

output [120]. It provides the benefit of advanced visualization facility, it makes easy to set up 

Gaussian calculations, also it let to examine the results implementing a variety of graphical 

techniques. Structure of prodrugs of paclitaxel are large and complex as the structure involves 

a eight-memberred ring, four six-membered rings, one four-memberd ring, and also the side 

carbon chain with branches (Figure 1.7a). This complex structure needs an advanced 

visualization and drawing tool for the drawing of prodrugs structures. paclitaxel prodrugs 
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taken from literature are drawn and their three dimensional coordinates are saved in 

Gaussview. The 3D structure is further taken for the structure optimization in Gaussian09. 

   

Gaussian 09: Gaussian is a computer program that utilizes laws of fundamental mechanics 

for the prediction of molecular structure, energies, and spectroscopic data [121]. It is used for 

the electronic structure modelling. Gaussian 09 provides the capability that will enable to 

model molecular systems with increasing size, more accuracy, and with a broader range of 

real biological situations. It provides comprehensive investigation of molecules by predicting 

the transition state structures, and verifying local minima of the structures. For the 

optimization of molecular structures of paclitaxel prodrugs which is a molecule with higher 

molecular weight and for verifying the global minimum structure vibration frequencies are 

taken into account for which Gaussian 09 provides the accurate structures.      

 

Dragon7: The study implemented Dragon 7.0 software for the calculation of molecular 

descriptors [122]. Molecular descriptor set must be functionally complete set that expresses 

all the features of various molecules so that it can be used to construct predictive models for 

different activities and properties. Dragon 7.0 calculates 5250 molecular descriptors that are 

organized in different logical blocks covering most of the various theoretical approaches. 

Descriptor list of Dragon 7.0 includes simplest atom types, functional groups, geometrical and 

topological descriptors, three dimensional descriptors, and also various properties estimation 

such as logP and drug-like and lead-like alerts. Broad range of different approaches and 

theories are used for descriptors calculation, and their implementation correctness and 

precision is ensured. Most of the common organic and inorganic compounds either charged or 

uncharged are correctly processed for molecular descriptors in Dragon. Paclitaxel prodrugs 

taken for the development of predictive QSPR model for the solubility prediction in the study 

are complex structures to study. Combining molecular descriptors from multiple resources 

might lose the integrity of different descriptor systems, introduce redundancy, and sometimes 

forfeit causation. Hence for the descriptor calculation Dragon 7 was used as it will give a 

complete and clean non redundant set which can be used for the formation of QSPR model for 

paclitaxel prodrugs. 

  

WEKA: WEKA is popular open source software that has tools for data pre-processing, 

implementation of various algorithm and visualization tools also so that machine learning 



31 

 

techniques can be developed and applied to the data mining [123]. Regression is an important 

class in predictive modelling.  Linear regression is an approach for modelling relationship 

between a scalar dependent variable and more explanatory non-dependent variable. Also, 

dissolving a compound in aqueous solution is a complex process, involving multiple factors 

accounting for solute-solute, solvent-solvent, and solute-solvent interactions. Therefore, it is 

reasonable to introduce nonlinearity to the QSPR models to tackle the complex problem with 

correspondingly improved complexity of the models. Hence for the development of QSPR 

model for solubility prediction of paclitaxel prodrugs for which a descriptor set of 5250 

descriptors is calculated using Dragon 7 software and AIC and VIF multicolinearity indicators 

are used to reduce the co linearity in the data. Then WEKA which is comprehensive software 

for the application of various machine learning algorithms and comparison of different 

outputs was used for the formation of QSPR model for the paclitaxel prodrugs. 

  

MATLAB: MATLAB also known as matrix laboratory is a computing environment and 

programming language. Although MATLAB allows various computations like plotting of 

functions, matrix manipulations, implementation of algorithm, but primarily MATLAB is 

used for numerical computing. Regression is a statistical modelling technique used to describe 

a continuous response variable as a function of one or more predictor variables [124]. It can 

help to understand and predict the behaviour of complex systems or analyze experimental 

biological data. For multiple and multivariate regression model MATLAB provides 

regression methods that accommodate multiple response variables and enables multivariate 

regression to generate predictions. In the development of QSPR strategy for solubility 

prediction of paclitaxel prodrugs, a pipeline is developed and to compare the results obtained 

from the developed pipeline, regression model is also developed from MATLAB stepwiselm 

tool. It has been established that R2 and Q2 values obtained from QSPR-sPL are comparable 

to the R2 and Q2 values obtained with the MATLAB stepwiselm tool.  

  

y-scrambling: y-scrambling is used to verify the absence of chance correlation between the 

independent variables and the aqueous solubility in the training set and further validate the 

model. When the compounds in the external test set fall into the applicability domain of the 

training set, the model will provide a decent prediction to the test set despite the occurrence of 

over fitting [125]. To check the model avoid over fitting, the solubility model was subjected 

to a different validation test. Y-scrambling constructs a new model after shuffling the 
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modelled property, usually termed y vector, and to compare the performances of the Y-

randomized model with the original model. A large deviation in the performances of the two 

models is a good indication of a statistically solid model. Y-scrambling completely 

demolished the correlation between the independent variables and the dependent variables, 

demonstrating that the relationships extracted in the QSPR modelling are true relationships. 

Therefore, the Y-scrambling test clearly verified the absence of chance correlation in the 

QSPR model. 

 

admetSAR: admet structure activity relationship (admetSAR) server is a comprehensive 

knowledge and tool for predicting  Absorption, Distribution, Metabolism, Excretion, Toxicity 

(ADMET) properties of drug compounds and environmental molecules [126]. ADMET 

properties of molecules play an important role in the drug discovery process and also in the 

assessment of environmental risk. admetSAR 2.0 describes several properties that should be 

taken for the screening of drug molecules for the metabolic study of molecules. In the study 

of bioavailability of paclitaxel prodrugs, molecules those are representing more favourable 

properties are further taken for docking and molecular dynamics simulation studies.  

 

AutoDock: AutoDock is a molecular docking tool, designed for the prediction of small 

molecule and substrate interaction [127]. It has been widely used and examples of its 

successful application have been seen in extensive literature available on PubMed and other 

scientific resources. It is very fast, effective and accurate tool and provides high quality 

predictions of ligand conformations. It also shows good correlations between experimental 

and predicted inhibition constants. It uses free-energy scoring function, the AMBER force 

field, and a larger dataset of diverse protein-ligand complexes with known inhibition 

constants. In the AutoDock diverse and larger set of HIV-1 protease complexes are used for 

the validation of best protein-ligand model which confirms the standard error of 2.5 kcal/mol. 

It is enough for the discrimination of lead molecules with milli, micro, nano, and molar 

inhibition constants. For the docking studies we have used AutoDock where the molecules 

were screened on the basis of binding energies and the conformation poses.  

 

AutoDock Vina: AutoDock Vina shows improved average accuracy of the binding mode 

predictions as compared to AutoDock [128]. It is found to be more improved than many other 

docking programs. AutoDock vina is used for finding the consensus in the results obtained 



33 

 

from AutoDock. For screening the molecules for further molecular dynamics simulation 

studies the molecules which are showing consensus among AutoDock and AutoDock Vina 

are taken into account.  

 

Gromacs: Gromacs is molecular dynamics tool used for carrying out the molecular dynamics 

simulation of proteins, lipids, and nucleic acids [129]. It is very fast optimizing tool and also 

supports various kind of force fields. All the molecules attain convergence at the end of 

simulation period. It is used in the study for carrying out the molecular dynamics simulation 

study of paclitaxel prodrugs with cytochromes, to study the bioavailability of the prodrugs. 

 

1.10 PROBLEM IDENTIFICATION  

Paclitaxel prodrug formation for the increase in solubility was employed and prodrugs with 

increased solubility were also obtained. Although many of the prodrugs of paclitaxel were 

formed in the past but the process of formation was not rational. The formation process 

includes many of the experimental set-ups along with the formation of many side compounds 

that are not cost- and time- effective thus hampering the growth of this nano-molar active 

drug. On the other side there are techniques QSAR/QSPR methods for the prediction of 

biological activities or the properties for the biological or chemical compounds [130]. A 

rational solution for the formation of paclitaxel prodrugs with improved solubility can be 

found. Also no such QSPR model has been suggested for the solubility prediction of 

paclitaxel prodrugs, which has a very bulky molecule and has complex structure. Looking 

into research gap between the two commendable techniques; the predictive QSAR/QSPR 

techniques and the prodrug formation of the Paclitaxel the current study tried to fill this gap of 

by employing the computational and data analysis methods for the formation QSPR model for 

the solubility prediction of Paclitaxel prodrugs.  

As discussed previously the formation of prodrugs of Paclitaxel includes the addition of a 

hydrophobic group to the chemical structure of the Paclitaxel and made the whole compound 

inactive, this inactive compound becomes active in the human body and release the parent 

drug in its native form so that it can show its desired effect. Hence, the promoiety that is 

added to the Paclitaxel for the formation of prodrug must be pharmacologically affable, 

exhibit clinical effect, and imped the anti-cancer property of the Paclitaxel. The current study 

tried to put efforts for the formation of a QSPR strategy and models for the solubility 

prediction of Paclitaxel and also the formation of QSPR model for the substructures that were 
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added for the formation of prodrugs. Metabolic study of the prodrugs is also carried 

computationally so that we can contribute a comprehensive view of predictive information for 

the solubility and bioavailability of paclitaxel prodrugs. 
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CHAPTER 2 

DEVELOPMENT OF NOVEL QSPR STRATEGY FOR 

SOLUBILITY PREDICTION 

SUMMARY 

Paclitaxel, a nanomolar active anti-cancer drug with a major limitation of poor solubility had 

been studied from years and several prodrugs with better solubility than paclitaxel had been 

synthesized. Prodrug design is a widely known molecular modification strategy that aims to 

optimize the physicochemical and pharmacological properties of drugs to improve their 

solubility and pharmacokinetic features and decrease their toxicity. Theoretical models such 

as Quantitative Structure Property-Relationship (QSPR) models and data mining methods are 

efficient techniques that correlate molecular characteristics with physicochemical properties 

of molecules. However, the availability of physicochemical parameters for all molecules is 

difficult, molecular descriptors determined from these structures were explored for the 

development of QSPR models. Therefore, a QSPR model can provide a set of predictors for 

any molecular property using the structure of the molecule. With the advent of computational 

approaches the rational solution for the prodrug formation of paclitaxel has been attempted. 

Robust QSPR models for the solubility prediction are formed using robust statistical 

measures AIC and VIF multicollinearity indicators for the selection of independent and 

significant descriptors. Geometry optimization of these paclitaxel prodrugs was performed at 

the parametrization method 6 (PM6) and Austin model 1 (AM1) levels of geometry 

optimization by the Gaussian software. Four descriptor groups, 2D Autocorrelation, 

CATS_3D, WHIM, and GETAWAY administered initial QSPR models with an average 

accuracy for both the optimized geometry datasets. Multi-tiered descriptor selection process 

was performed for obtaining the most favourable models which contain five and four 

descriptors for PM6 and AM1 optimized geometry datasets respectively. Thus the formed 

QSPR pipeline (QSPR-sPL) was implemented for the formation of QSPR models and 

obtained R2 & Q2 values were 0.86 & 0.83 and 0.87 & 0.86 for PM6 and AM1 geometries 

respectively. QSPR-sPL was also implemented on Huuskonen small dataset and the final 

formed QSPR model had only two descriptors with the R2 and Q2 values 0.87 and 0.85, 

respectively which was found to be comparable to the results of paclitaxel prodrugs dataset. 

This approach can be applicable to different datasets for the solubility prediction which 

further can guide the synthesis of molecule with better solubility.  
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2.1 Introduction 

Aqueous solubility is one of the important physicochemical properties that in turn affect the 

bioavailability of a drug by the way of dissolution and absorption. Efficient drug formulation 

carries a risk due to the poor solubility of the drug. Lead molecules with superior solubility 

generally show good pharmacokinetic properties; thereby increasing the chance for providing 

better outcomes in clinical trials. General solubility equation (GSE) and AQUeous Functional 

group Activity Coefficient (AQUAFAC) [1,2]  are two of the most popular aqueous solubility 

prediction models presently available in the literature but they are of limited use as they 

utilize experimental data for the solubility prediction. Quantitative Structure Property 

Relationship (QSPR) models and data mining methods are efficient techniques that are able 

to correlate molecular characteristics with the physicochemical properties of molecules [3]. 

There are QSPR models those are efficient in the prediction of aqueous solubility of a diverse 

set of organic compounds [4-14]. Also, for the solubility prediction of drug-like organic 

molecules the practiced QSPR model gave a correlation coefficient of 0.99 [15]. Though the 

described QSPR models for solubility prediction were of excellent accuracy, but the 

descriptors/parameters used to develop these models were dependent upon the compound 

series [16]. Positive results were given by the models those were mostly developed on large 

number of molecules [6,15] and the prediction accuracy of the QSPR model got scaled down 

significantly when a model is developed by utilizing a small size dataset [17]. But taking into 

account the pharmaceutical perspective, a QSPR model for the solubility prediction needs to 

be developed from the small dataset to assist the synthesis of better soluble molecules in 

future [18,19]. In this objective thesis emphasis on the development of a robust QSPR 

strategy (QSPR-sPL) for the solubility prediction using the solubility data of twenty two 

paclitaxel prodrugs.  

Paclitaxel, a western yew isolated in 1971 from Taxus brevifolia [20]. (Figure 2.1) is a 

complex diterpene which provides antitumor activity against ovarian, breast, lung and 

prostate cancers [21]. The anticancer activity of this drug emanates from its capability to 

stabilize the microtubule by promoting its assembly that in turn arrest cell cycle at the G2/M 

phase, that also develops organizational and functional alteration of nuclear envelope and 

bring cell death [22]. Despite this, use of this drug is limited because of poor aqueous 

solubility, and hence lesser bioavailability. It is commonly administered intravenously in a 

vehicle containing cremophor EL (polyethoxylated castor oil) that leads to many significant 
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side-effects like severe anaphylactoid hypersensitive reactions, hyperlipidemia, aggregation 

of erythrocytes, etc. [23]. 

 

Figure 2.1: Structure of paclitaxel. 2’ and 7’ hydroxyl groups are the potential sites for adding hydrophilic 

groups to make prodrugs with better solubility. 

Recognizing poor solubility as a major obstacle for this highly active drug, many prodrugs 

for increasing the solubility of paclitaxel were synthesized by the addition of hydrophilic 

groups such as carboxylic acids, phosphates, sugar derivatives, etc. [24].  

Structure Activity-Relationship (SAR) study of paclitaxel showed that 2’ and/or 7’ hydroxyl 

groups in the structure as the potential sites for the addition of hydrophilic groups (Figure 

2.1). Though increase in water solubility of paclitaxel prodrugs was obtained [25-29], but the 

advent of formation of the prodrugs was not judicious as in many cases undesirable 

compounds were formed and also it is a very time consuming process. A QSPR model can 

guide the synthesis of paclitaxel prodrugs with better solubility. Though, there is difficulty in 

finding the physicochemical parameters for all molecules hence, molecular descriptors 

determined from the structures were explored for the development of QSPR models. The 

study delved into the development of QSPR-sPL that is implied for the formation of QSPR 

models for the solubility prediction from a small dataset of 22 paclitaxel prodrugs (Appendix 

A, Table A.1). Dragon molecular descriptors were extracted for each prodrug molecule and 

the multicollinearity indicators like Akiake Information Criteria (AIC) and Variance Inflation 

Factor (VIF) [30] were implied for the extraction of independent descriptors. The developed 

QSPR models for the prediction of aqueous solubility were validated using 4-fold cross-

validation.  

 

2.2 Material and methods  

2.2.1 Solubility data collection  

7’ 

   2’ 
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Structures of twenty two diverse paclitaxel prodrugs were collected from the literature having 

either better or comparable solubility with the paclitaxel [25-29]. Initial coordinates of 

paclitaxel were taken from PubChem (www.ncbi.nlm.nih.gov) and the structures of different 

prodrugs were drawn in GaussView [31].  

2.2.2 Geometry optimization 

Despite the experimental advents, computational approaches those of quantum mechanical 

calculations are adopted for determining the microscopic properties of the molecules. A 

molecule is characterized by the combination of electronic wave functions which represents 

each atom forming the molecule. Several parameters such as radial and angular parts of the 

molecule which were further defined by bond angles, bond lengths, and dihedral angles of 

rotation about single bond of the molecule forms the electronic wave function of a 

polyatomic molecule.  Energy of the molecule is defined by the Schrodinger wave equation 

(Hψ = Eψ). Different energies are found for the molecules of different configurations. 

Molecular energies and properties are majorly calculated by means of four methods: 

molecular mechanics, ab-initio, semi-empirical and density-functional theory (DFT) 

methods. Semi-empirical methods make use of simpler approximate Hamiltonian operator, 

and uses empirical parameters whose values are adjusted to fit the experimental values in 

contrary to the ab-initio calculations that are based on the correct Hamiltonian without 

making use of the experimental data. The principle behind the DFT is based on the electron 

probability density, ρ and it is used for the calculation of molecular electronic energy. The 

DFT method uses wave function that includes fewer variables for the calculation of energy 

and other properties. Molecular mechanics methods recognize the molecule as a set of atoms 

and articulated the molecular energy as a total of bond bending, and stretching energies. 

Basis function 

Electronic orbital or electronic wave function of atoms/molecules is represented by the 

mathematical function known as basis set. These functions are used in Hartee-Fock method 

and density function theory methods for the conversion of partial differential equation 

generated from a molecule into algebraic equations for the appropriate effective 

implementation on the computer. There are several types of atomic orbitals such as Slatter 

type, Gaussian-type, numerical and different classes of basis sets such as minimal, split 

valence, correlation-consistent, pople basis, plane-wave, Karlsruhe etc. Minimum energy 

configuration of a molecule from different configurations is defined as energy minimization. 

Mainly, the algorithms used for the geometry optimization are steepest descent and conjugate 

gradient algorithm. Steepest descent is used in the initial steps of the geometry optimization 

http://www.ncbi.nlm.nih.gov/
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and afterwards conjugate gradient method is employed for obtaining the global energy 

minima of the structures. All positive vibrational frequencies illustrate the global energy 

minima for the structures. Semi-empirical methods are based on three approximations; the 

elimination of the core electrons from the calculation, the use of minimum number of basis 

sets, and the reduction of number of two-electron integrals. Semi-empirical methods are 

efficient methods for obtaining energy minimized structures for larger systems.  

In the present study, due to the high molecular weight of the paclitaxel  structures of all the 

drawn molecules were optimized at the levels of parametrization method 6 (PM6) and austin 

model 1 (AM1) [32] using Gaussian 09 quantum chemistry software [33]. A global energy 

minimum of each structure was verified by analyzing vibrational frequencies. The energy 

minimized structures were further used for the descriptor extraction. 

2.2.3 Structural descriptor by DRAGON 7  

Molecular descriptors are being used for the prediction of biological or physiochemical 

properties of the molecules implying QSAR/QSPR and for the automatic evaluation of 

molecular libraries. Descriptors are obtained by treating the molecules as real objects, and 

translated into a molecular representation that enables mathematical regimen. The 

information content of the molecular descriptors obviously depends on the character of its 

representation and also on the algorithm used for the calculation of descriptors. All the 

molecular descriptors should contain chemical information, should follow some invariance 

properties and should be determined from well-established procedure so that molecular 

descriptors could be extracted for any kind of datasets.  

It is trivial to assume that a single descriptor or a small set of molecular descriptor will be 

able to describe a whole molecule. DRAGON 7 software [34] is adept to provide variety of 

descriptors by making use of different molecular representations. DRAGON 7 allows the 

calculation of 5250 descriptors that includes simple molecular descriptors determined by 

simply counting different atom types or structural fragments of the molecules 1-dimensional 

(1D), additionally descriptors derived by algorithm that is applied on the topological 

representation of the molecules are mostly called 2-dimensional (2D) descriptors. Also, there 

are descriptors derived from the spatial arrangement of molecule known as to be geometrical 

or 3-dimensional (3D) descriptors. All the 5250 descriptors derived from DRAGON 7 belong 

to thirty different molecular descriptor groups (Appendix A, Table A.2). All the 1D, 2D, and 

3D descriptors were calculated for each paclitaxel prodrug using the geometry optimized 

structures.                

2.2.4 Structural descriptor reduction 
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The descriptors were obtained for the dataset in thirty different descriptor groups which were 

not reduced using the standard protocol (mainly the reductionist approach) but were reduced 

implementing multicolinearity indicators, following the formation of QSPR models. The 

reductionist approach was not able to provide the efficient QSPR models. We had observed 

that the QSPR models for both the geometry optimized datasets were inconsistent as 

compared to the results of some individual descriptor groups. For the descriptor reduction, 

the standard protocol was not followed in exact sense. The approach described here identified 

only significant and unbiased descriptors through feature reduction and selection in stepwise 

manner that helps to optimize the model.  

In statistics, the dependence between two random variables commonly refers to the degree of 

linear relationship between the variables is measured by the correlation and the measure of a 

set of number from its average termed as variance, were taken into consideration for the 

descriptors in an individual descriptor group and on that basis each descriptor group was 

segregated into eight independent subgroups: “positively very high correlated with high 

variance (pvhchv), positively very high correlated with low variance (pvhclv), positively high 

correlated with high variance (phchv), positively high correlated with low variance (phclv), 

positively moderately correlated with high variance (pmchv), positively moderately 

correlated with low variance (pmclv), zero correlated with high variance (zchv) and zero 

correlated with low variance (zclv)”. The compilation of these eight subgroups for each 

individual group was executed and accomplished in R-3.2.2 (cran.r-project.org). Descriptors 

showing no variance with solubility property were expelled from the pool of descriptors for 

the dataset [35,36]. Thereafter, on each sub-group of each descriptor group akaike 

information criteria (AIC) [37] was applied that eliminated the most dependent response 

indicators from each sub-group. AIC follows penalized-likelihood criteria. It is commonly 

used for choosing the best predictor subsets in regression analysis and is frequently used for 

comparing models, which cannot be obtained using ordinary statistical tests. The AIC for a 

model is customarily written in the mathematical form as, [-2logL + kp], where L is the 

likelihood function, p is the number of parameters in the model, and k is 2 for AIC. It was 

calculated for each subgroup; also ‘p’ value is calculated for each sub-group. All the sub-

groups in each descriptor groups were then optimized for the value of p < 0.05 and thus the 

predictor variables were determined. The process was stopped when the p-value of response 

variable becomes less than the value of intercept. Various other statistical characteristics for 

the models like coefficient of determination R2, fisher static F, and p value for each 

descriptor’s coefficient were also calculated. 
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The variance inflation factor (VIF) multi-collinearity indicator was also applied for the 

descriptor reduction and to predict only independent variables. VIF is based on square of the 

multiple correlation coefficients resulting from regression of a predictor variable against all 

other predictor variables. VIF for a variable would be large if that variable has strong linear 

relationship with at least one other variable and the correlation coefficient would be close to 

1. In each sub-group VIF value less than 5 was taken and the descriptors which were showing 

value of more than 5 were discarded. The whole process of descriptor reduction is shown in 

Figure 2.2.  

 

Figure 2.2: Stage-wise workflow of descriptor reduction  

2.2.5 Non linear multiple regression study 

The descriptors obtained from the DRAGON 7 that gave a pool of 5250 descriptors 

categorized in thirty different descriptor groups. Descriptor values for some of the descriptors 

were positive and others are negative. It indicated that the extracted structural descriptors 

those were having positive values vary linearly with log (ely) (logarithm of solubility) 
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whereas descriptors with negative values vary exponentially with log (ely). Therefore, the 

following regression equation (Eqn. 1) was proposed: 

                                      log(𝑒𝑙𝑦) = 𝑙𝑜𝑔𝛽0 +𝛽𝑝𝑙𝑜𝑔𝑋𝑝 +𝛽𝑛𝑋𝑛                                .. Eqn. 1 

where logβ0 is a constant, βp is the coefficient of positively valued descriptors, logXp is the 

logarithm of descriptor value, βn is the coefficient of negatively valued descriptor, and Xn is 

the negative descriptor value. 

2.2.6 Formation of QSPR model  

Descriptor reduction and selection advent was followed to identify independent descriptors 

for QSPR model development. WEKA-3.6.11 software [38] was implemented using classifier 

linear regression to perform the step-wise regression analysis for the formation of QSPR 

models from the selected descriptors for both PM6 and AM1 geometry optimized datasets. 

However, 2-fold, 3-fold, 4-fold and 5-fold cross-validations were observed for the QSPR 

models but 4-fold cross-validation gave R2 and Q2 values much closer for all analyses. 

Therefore, only 4-fold results were reported exclusively for all correlation (Q2) analyses. To 

identify any chance correlation in the formed QSPR models Y-Randomization test was 

executed in QSPR models. DTC_yRandomization program 

(http://teqip.jdvu.ac.in/QSAR_Tools/) was practiced with the generation of ten random 

models and R2
yrand & Q2

yrand values were obtained for the QSPR models. This 

yRandomization approach is based on the obtained values of Q
2

yrand and R
2

yrand and their 

relationships as those given by Eriksson and Wold [39], defined in the following section:   

If, Q2 yrand < 0.2 and R2 yrand < 0.2 → no chance correlation; 

any Q2
 yrand and 0.2 < R2 yrand < 0.3 → negligible chance correlation; 

any Q2 yrand and 0.3 < R2 yrand < 0.4 → tolerable chance correlation; 

any Q2 yrand and R2 yrand > 0.4 → recognized chance correlation. 

 

For passing this test, the cRp
2 parameter should be more then 0.5. 

cRp
2 = R* (R2 – (Average Rr)

2 )1/2 

where “Average Rr”= average ‘R’ from random models. 

 

2.3 Result and discussion 

In the current study, the QSPR solubility prediction pipeline QSPR-sPL from a small dataset 

of paclitaxel prodrugs was developed by implementing AIC and VIF multicollinearity 

indicators for the identification of independent and significant descriptors. Subsequently, the 

http://teqip.jdvu.ac.in/QSAR_Tools/
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QSPR-sPL was implemented for both AM1 and PM6 geometry optimized datasets for the 

identification of independent descriptors. The QSPR models were formed and reviewed for 

any chance correlation. Initially, the models were developed on each individual thirty 

descriptor groups. The descriptor groups those were depicting successful models initially are 

described in Table 2.1. The significant descriptors from these descriptor groups were further 

combined and selected for the formation of optimal QSPR models (Table 2.2). 

 Individual thirty groups of descriptors were assessed for R2 and Q2 values. From the thirty 

descriptor groups only four groups namely 2D Autocorrelation, CATS_3D, WHIM, and 

GETAWAY were showing correlation with solubility (Table 2.1, Fig. 2.3(a-d)). 2D 

Autocorrelation descriptor group provided favourable results for both the optimized 

geometries though descriptors from GETAWAY and WHIM groups showed good 

correlations with solubility for only AM1 and PM6 optimized geometry structures 

respectively.      

 

 

  

Figure 2.3: Experimental solubility (ly) vs predicted solubility (ely) of paclitaxel prodrugs. a. Performance of 

2D Autocorrelation descriptors with AM1 geometry dataset; b. Performance of GETAWAY descriptors with 

AM1 geometry dataset; c. Performance of 2D Autocorrelation descriptors with PM6 geometry dataset; and d. 

Performance of WHIM descriptors with PM6 geometry dataset. 

Table 2.1:   Regression (R2) and 4-fold cross validation correlation (Q2) coefficients of the QSPR model 

developed using Dragon molecular descriptor groups 
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S. 

No. 

Descriptor 

Group 

AM1 optimized geometry dataset PM6 optimized geometry dataset 

  No. of  

descriptors# 

R2 / $R2
yrand

 Q2 / $Q2
yrand RMSE No. of  

descriptors# 

R2/$R2
yrand Q2/$Q2

yrand RMSE 

1 2D 

Autocorrelati

-on 

10 (7) 0.91/0.31 0.62/-0.82 3.39 6 (2) 0.74/0.06 0.72/-0.23 2.07 

2 CATS_3D 5 (1) 0.37/0.04 0.30/-0.17 4.78 5 (3) 0.62/0.13 0.30/-0.36 3.38 

3 GETAWAY 8 (3) 0.57/0.12 0.65/-0.35 2.61 13 (3) 0.37/0.13 0.15/-0.28 3.73 

4 WHIM 5 (1) 0.23/0.03 0.15/-0.17 3.75 5 (2) 0.60/0.05 0.65/-0.25 2.68 

#QSPR equation indicating descriptors are provided in Appendix A (Eqn A1-A8). Parenthesis indicates the no. of significant 

descriptors included in QSPR model. 

$ R2
yrand & Q2

yrand values are calculated to determine statistical significance of the model (Section 2.2.6). 

Measured R2& Q2 values for the respective descriptor groups (Table 2.1) was average; hence 

QSPR model for paclitaxel prodrugs was developed by applying the QSPR-sPL on the whole 

pool of 5250 descriptors belonging to three descriptor classes (1D, 2D and 3D). Individual 

descriptor class was segregated into eight subgroups (pvhchv, pvhclv, phchv, phclv, pmchv, 

pmclv, zchv and zclv) on the basis of correlation and variance among the descriptors. 

Thereafter, the selected descriptors from same subgroup those belong to three different 

classes were merged to determine eight subgroups of descriptors. Then for selecting 

independent and significant descriptors, AIC and VIF multicollinearity indicators were 

applied on each subgroups.  The developed QSPR models from the significant descriptors 

gave R2 and Q2 values 0.90 & 0.93 and 0.66 & 0.40 for PM6 and AM1 optimized geometries 

respectively (Appendix A, Table A.3). Thereby, the obtained lower values of Q2 (0.66 & 

0.40) signified that the formed QSPR model was erratic if compared with the obtained results 

from some individual descriptor groups (Table 2.1). Thereof, the independent and significant 

descriptors from four descriptor groups; 12 for AM1 and 10 for PM6 geometry optimized 

structures respectively were merged. Subsequently, from these descriptors significant 

descriptors were selected by removing the dependent descriptors implementing the 

multicollinearity indicators. The formed QSPR models attained reasonably better values of 

R2&Q2, but the accuracy achieved were proportionate with that obtained by significant 2D 

Autocorrelation descriptors (Table 2.1 & Appendix A, Table A.4). 

QSPR models lacking the reasonable Q2 values can be explained as a result of low correlation 

coefficients of CATS_3D, WHIM (in AM1 optimized geometry) and GETAWAY (in PM6 

optimized geometry) descriptor groups (Table 2.1). Accordingly, only descriptors those were 

providing reasonable correlation were used for the formation of two different QSPR models. 
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2D Autocorrelation descriptors were providing good correlation for both the geometry 

optimized datasets. The selected 2D Autocorrelation descriptors were combined with 

significant GETAWAY and WHIM descriptors for AM1 and PM6 geometry optimized 

structures respectively and the QSPR model was determined. The formed resultant models 

gave reasonable correlations for both geometry optimized datasets (Table 2.2, Fig. 2.4(a-b)). 

Further for obtaining more consistent and optimal QSPR models, 11 significant descriptors 

sorted from above step (combination descriptors from AM1 and PM6 geometries) were 

benefitted, and the regression (R2) and correlation (Q2) coefficients for these descriptors were 

calculated for both geometries. Rational QSPR models with equitable regression and 

correlation coefficients were determined (Model I & II, Table 2.2 and Figure 2.4(c-d)). 

Moreover yRandomization results indicated the statistical significance of these models. 

  

  

Figure 2.4: Experimental solubility (ly) vs predicted solubility (ely) of paclitaxel prodrugs. a. AM1 optimized 

geometry dataset with ten 2D Autocorrelation and GETAWAY descriptors; b. PM6 optimized geometry dataset 

with four 2D Autocorrelation and WHIM descriptors; c. AM1 optimized geometry dataset with 11 descriptors 

from a and b; d. PM6 optimized geometry dataset with 11 descriptors from a and b. 

 

Table 2.2: Regression (R2) and 4-fold cross validation correlation (Q2) coefficients of the QSPR model 

determined through combination of descriptors 
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 No. of  descriptors%  $R2 $Q2 RMSE No. of  descriptors% $R2 $Q2 RMSE 

1 a10 (7) 0.92 0.82 2.45 b4 (4) 0.85 0.80 2.11 

2. c11 (4) 0.87/0.19 0.86/-0.38 1.79 c11 (5) 0.86/0.29 0.83/-0.56 1.91 

%QSPR equations indicating the descriptors are provided in Appendix A (Eqn. A11-A12) and Model I & II. Parenthesis 

indicates the no. of significant descriptors in QSPR equation. These selected descriptors were used to develop enhanced 

QSPR model. a Seven 2D Autocorrelation and three GETAWAY descriptors from Table 2.1 were used; b Two 2D 

Autocorrelation and two WHIM descriptors from Table 2.1 were used; c Seven and four selected descriptors explained in 

previous two steps (a & b), respectively are used to make QSPR model. 

$ R2
yrand & Q2

yrand values are calculated to determine statistical significance of the model (Section 2.2.6). 

QSPR Models:        𝑙𝑦 = −9.5239 − 172.1078 ∗ 𝑀𝐴𝑇𝑆4𝑖 − 38.9269 ∗ 𝑀𝐴𝑇𝑆8𝑒 + 25.3947 ∗ 𝑀𝐴𝑇𝑆7𝑠+ 1155.1885 ∗ 𝐽𝐺𝐼8 

.....Model I 𝑙𝑦 = 111.2416 + 45.625 ∗ 𝑀𝐴𝑇𝑆7𝑒 − 239.2606 ∗ 𝑀𝐴𝑇𝑆4𝑖 − 48.2859 ∗ 𝐺𝐴𝑇𝑆3𝑝− 50.5689 ∗ 𝐺𝐴𝑇𝑆5𝑖 − 5.94 ∗ 𝐾𝑣 

.....Model II 

To validate the efficacy of proposed pipeline QSPR-sPL, Huuskonen dataset [7] comprising 

twenty one molecules was taken and the whole pipeline was followed for the solubility 

prediction and QSPR model was developed. Descriptors obtained from individual descriptor 

groups were analyzed and for the dataset five groups provided significant R2 and Q2 values 

(Table 2.3).  

Table 2.3: Regression (R2) and validation correlation (Q2) coefficients of the QSPR model for Huuskonen 

dataset 

S. No. Descriptor Group No. of  descriptors$ *R2 *Q2 RMSE 

1 P_VSA 3 (2) 0.87 (0.08) 0.85 (-0.26) 0.95 

Results of individual descriptor groups 

1 P_VSA-like descriptors 55 (2) 0.87 0.83 0.952 

2 3D autocorrelations 80 (3) 0.91 0.81 0.816 

3 RDF descriptors 210 (6) 0.86 0.75 1.006 

4 Molecular properties 20 (6) 0.91 0.80 0.819 

5 Drug-like indices 28 (1) 0.77 0.75 1.262 

*
Values in italic indicate R2

yrand (0.08) & Q2 
yrand (-0.26) values which are calculated using ten random models. The cRp

2 

value is 0.73 (Section 2.2.6). 
$
Parenthesis indicates the no. of significant descriptors included in QSPR model. 

These descriptors were merged following the selection of independent and significant 

descriptors. Two suggestive descriptors from P_VSA descriptor group provided the QSPR 

model with R2 and Q2 values 0.87 and 0.85, respectively with model measures comparable to 
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earlier models (Table 2.2). yRandomization results also decipher no chance correlation for 

the formed QSPR model (Table 2.3). 

In the literature various QSPR models for the solubility prediction, those based on different 

methodologies with diverse datasets were reported [8-13]. Results obtained in the current 

study were compared to previously reported QSPR solubility models (Table 2.4). Klopman 

and Hou’s solubility prediction model was trained on 1168 organic compounds with 118 

descriptors [9]. Also, the solubility prediction model developed by McElroy and Jurs had 

descriptors from topological, geometrical, electronic, and hybrid group extracted from 298 

compounds [10]. The proposed QSPR of Tetko et al. was formed by 879 diverse organic 

compounds and had 34 descriptors which were sorted from 94 descriptors and were related to 

electrotopological characteristics of the molecules [11]. Though Cheng and Merz QSPR 

model did not need 3D structures of the molecules, and required only 2D descriptors [12]. 

Similarly, Delaney QSPR approach did not necessitate 3D representation of the molecules 

and the model had only 4 descriptors describing the solubility property [13]. Hou et al. used 

76 descriptors to build a QSPR model from 878 organic compounds with correlation 

coefficient 0.95 which is highest among all the proposed QSPR models [14]. Model 

developed by Ghasemi et al. used 110 drug organic compounds and it is based on four 

descriptors for the solubility prediction [15]. 

Table 2.4: Comparison among the results obtained from literature methods and the model formed in the study 

Model TdN* dN* Dataset 

(N) 

R2 Q2 Data series* Descriptor group* Descriptor 

extracting software 

Klopman 

and Hou  

NA 118 1168 0.95 NA Organic 

chemicals 

including drug 

like  

Structural 

descriptors 

MPAR  

McElroy 

and Jurs  

229 11 298 0.96 0.92 Organic 

compounds 

Topological, 

Geometric, 

Electronic, Hybrid 

descriptors 

ADAPT toolkit 

Tetko et 

al.  

94 34 879 0.93 0.89 Diverse organic 

compounds 

Molecular 

connectivity, 

Shape, Flexibility, 

Indicator indices, 

E-state indices 

NA 
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Cheng and 

Merz  

139 8 775 0.89 0.83 Small organic 

compounds 

MW and 

Electrotopological 

indices 

Cerius package 

Delaney  9 4 1144 NA NA Low MW 

organic 

compounds 

Physiochemical 

properties 

SMILES  

Hou et al.  NA 76 878 0.96 0.95 Organic 

compounds 

2D Molecular 

topology 

Drug-LOGS 

Ghasemi 

et al.  

56 4 110 0.99 NA Drug organic 

compounds 

MW, HB, HLB, 

PSA 

MMPP 

Current 

study 

5250 5 22 0.86 0.83 Paclitaxel 

prodrugs (PM6 

geometry) 

2D-

Autocorrelation, 

WHIM 

Dragon 7 

 

Current 

study 

5250 4 22 0.87 0.86 Paclitaxel 

prodrugs (AM1 

geometry) 

2D Autocorrelation Dragon 7  

 

*TdN: Total no. of descriptors; dN: Descriptors used for model formation; *MW: Molecular weight; NA: Not Available 

The QSPR models proposed in the current study are comparably efficient as those present in 

the literature for the solubility prediction (Table 2.4). As compared to other methods, our 

optimal QSPR models required only 4 and 5 descriptors in Model I and Model II respectively 

for solubility prediction. The efficacy of the QSPR pipeline for solubility prediction was also 

evaluated through different measures. It was implemented on Huuskonen dataset, consists of 

twenty one molecules that provided similar result as obtained for paclitaxel prodrug dataset 

(Table 2.2 & 2.3). Twelve more paclitaxel prodrugs were also added to earlier datasets of 22 

molecules (Appendix A, Table A.5). This dataset of thirty four prodrugs was divided into 

twenty two and twelve as training and test datasets, respectively. QSPR model was built on 

the training dataset and the model was evaluated on test dataset, the Q2 values for 

independent test set were 0.80 and 0.60 for PM6 and AM1, respectively (Appendix A, Table 

A.6). These outcomes proved that proposed pipeline; QSPR-sPL is effective in the solubility 

prediction.  

2.4 Conclusion 

Aqueous solubility is a fundamental property for therapeutic efficacy of a drug. Studies done 

in the past revealed that the QSPR models are data series specific. Therefore, the current 

study proposed a QSPR pipeline, QSPR-sPL for the solubility prediction which is applicable 

to smaller dataset having potential to provide significant accuracy. Paclitaxel prodrugs were 
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subjected to the QSPR-Pac and the QSPR models with significant accuracies were developed, 

those were further validated for any chance correlation by the yRandomization test. The 

developed models were comparable to solubility QSPR models those were reported earlier. 

The proposed protocol was also implemented on Huuskonen small dataset and the final 

QSPR model was obtained with two descriptors. For this dataset the R2 and Q2 values were 

0.87 and 0.85, respectively. The proposed QSPR pipeline, QSPR-Pac for the formation of 

QSPR model for solubility prediction can be applied to different datasets and that may 

provide promising result. Hence, it can be used to direct the prediction of solubility thus 

assist the synthesis of future molecule with better solubility. 
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CHAPTER 3 

QSPR MODELS FOR THE SOLUBILITY PREDICTION OF 

PACLITAXEL PRODRUGS AND IN-SILICO MODELS FOR 

THE METABOLIC STUDIES OF HYDROPHILLIC 

SUBSTITUIENT GROUPS 

SUMMARY 

Paclitaxel drug is directed for the treatment of various cancers such as ovarian, breast and also 

lung cancer. Regardless of being a nanomolar active drug, there is limited use of paclitaxel as 

it has poor aqueous solubility. As a result of this limitation many prodrugs of paclitaxel with 

increased solubility were formed in the past but synthesis process was not rational. The QSPR 

pipeline developed for the solubility prediction is used for the solubility prediction of 

paclitaxel prodrugs. In this study, eight QSPRs with statistical significance for four different 

datasets were developed for the solubility prediction. All the molecules were geometry 

optimized at PM6 and AM1 levels, followed by descriptor extraction from Dragon 7 that is 

giving a pool of 5250 descriptors. Additionally, quasi-mixture descriptors were extracted for 

the same dataset. For the formation of parsimonious QSPRs only independent descriptors 

those were selected using the pipeline developed in the previous study and QSPR models 

were obtained with 12 and 10 descriptors and R2 & Q2 values of 0.78 & 0.60 and 0.80 & 0.69 

for AM1 and PM6 optimized geometry datasets respectively. Also, for substituent group 

dataset QSPRs having 8 and 9 descriptors with R2 & Q2 0.82 & 0.76 and 0.93 & 0.83 values 

were determined for AM1 and PM6 optimized geometry dataset respectively. Quasi-mixture 

descriptors for substituent group datasets as they were providing the more statistical inference 

as substituent groups are easy to interpret as compared to the whole molecular structure of 

paclitaxel prodrug. It provided the QSPR models with R2 & Q2 values of 0.70 & 0.58 and 0.69 

& 0.52 for AM1 and PM6 optimized geometries respectively. Eventually to study the 

metabolism of the substituent group dataset the in-silico docking and MD simulation studies 

were performed and a computational model was set for the QSPR, docking, MDS based 

studies. It is expected that the proposed QSPR models developed in the study would be useful 

for medicinal and chemical synthesist, as one of the most major area where the computational 

chemist can contribute to the synthesis of new therapeutic drug formation is study of SAR.  
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3.1 Introduction 

A naturally occurring alkaloid paclitaxel (taxol), belongs to taxane group. These dynamic 

diterpenes are cytotoxic in nature and are isolated from Taxus brevifolia [1]. Precisely, 

paclitaxel is a clinically successful anticancer agent [2] and most effective in the treatment of 

different cancers like ovarian, breast, head and neck tumors, non-small cell lung cancer, and 

Kaposi’s sarcoma [3-6]. The major bottleneck in its efficacy as an antitumor agent is its poor 

aqueous solubility; affected by this limitation there have been continuous efforts from the past 

for the formation of surfactants, emulsions, liposomes, cyclodextrins, and polymers so the 

solubility of paclitaxel can be improved [7-10]. 

Aqueous solubility that tends to be one of the most imperative physicochemical properties is 

one of the biological factors that affect the bioavailability of a biological molecule hence 

imparting a risk in the potent drug formulation [11]. Taxol that is the commercial formulation 

of paclitaxel constitutes two components; a surfactant, cremophor EL (polyethoxylated castor 

oil) and water-free ethanol. Both these excipients are used for enhancing the solubility of 

paclitaxel and the prepared formulation is given intravenously to the patients [12]. Along with 

that cremophor EL imparts many clinical side effects such as hyperlipidmia, anaphylactoid 

hypersensitive reactions, aggregation of erythrocytes, etc [13]. 

Prodrugs are modified form of drugs that undergo biological conversion in the body before it 

shows pharmacological effects [14]. Paclitaxel prodrug formation for increased solubility has 

also been explored to obtain its effective application [15]. The chemical structure of paclitaxel 

has a bulky, composed and fused ring together with number of hydrophobic substituent 

groups making it highly lipophillic in nature. Hence, a lot of hydrophilic substituent groups 

like carboxylic acids, phosphates, sugar derivatives etc. were added to paclitaxel structure for 

the formation of prodrugs with increased aqueous solubility [16-20]. Structure Activity- 

Relationship (SAR) studies explains 2’ and/or 7’ hydroxyl groups are the successful 

distinctive sites for making an addition to paclitaxel structure of hydrophilic groups for the 

formation of prodrugs (Figure 3.1). Nevertheless formation of paclitaxel prodrugs increases 

the solubility of drug to many folds but also the formation process associates with the 

synthesis of undesirable compounds those are summing to the cost of new prodrug 

evolvement. Also, in the synthesis process of prodrugs, pharmacokinetics and 

pharmacodynamics properties of the drug molecule could be altered. Though the cytotoxic 

activities of paclitaxel prodrugs formed were comparable to drug molecule. Hence there is an 
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immediate need for some alternative computational methods for the solubility prediction of 

paclitaxel prorugs so that the development of prodrugs could be cost and time effective. 

 

Figure 3.1: Structure of paclitaxel. 2’ and 7’ hydroxyl groups are the potential sites for adding hydrophilic 

groups to make prodrugs with better solubility. 

Quantitative Structure Property-Relationship (QSPR) and data mining studies are efficient 

means to analyze molecular properties. Descriptors describe the structure and detailed 

description of molecular components that in turn model the molecular property being studied 

[21]. Hence molecular descriptors obtained from paclitaxel prodrug structures are used and 

QSPR models for the solubility prediction have been proposed. The hydrophilic substituent 

groups in the structure of molecule that are significantly responsible for solubility are difficult 

to portray. Whilst the descriptors derived from the substituent groups’ molecular structures 

and subsequently the QSPR models formed will be easier to define. Therefore QSPR models 

from the substituent groups that were added to the paclitaxel for the formation of more 

soluble prodrugs were also formed and included in this study. In addition to Dragon 

descriptors, the quasi-mixture simplex representation of molecular structure (SiRMS) 

descriptors was also calculated for the substituent group dataset. SiRMS are based on the 

theory of 11 fundamental tetratomic fragments with connectivity and composition [22]. 

Independent and significant descriptors from the datapool of 5250 descriptors and the SiRMS 

descriptors were selected by implementing robust statistical measures like Akaike information 

criteria (AIC) and variance inflation factor (VIF), multicollinearity indicators [23-24]. 

Descriptor selection was also carried out using ‘stepwise fit’ in MATLAB 

(https://in.mathworks.com/help/matlab/) to review the descriptor selection and false positives 

could be removed. Cross-validation of all the models was accomplished. For the validations 

https://in.mathworks.com/help/matlab/
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of the developed models and to identify the chance correlations if any, Y-randomization test 

was performed.  

Also, the metabolic studies of hydrophilic substituent groups would be substantial in the 

synthesis of new prodrugs, thus a molecular docking and molecular dynamics simulation 

(MDS) based model for the substituent groups’ dataset, characterizing the most promising 

hydrophilic groups added for the formation of paclitaxel prodrugs. Cytochromes P450 (CYPs) 

liver metabolic enzymes would likely to characterize the kinetics of the substituent groups. 

CYPs are the major members of heme-thiolate protein family subsisting sixty different human 

isoforms which metabolizes ninety percent of the xenobiotics. The six major human isoforms 

of CYPs were subjected to docking with the substituent group dataset and the most favourable 

results were obtained from the Cytochrome 1A2 (CYP1A2), and the four substituent groups 

those were then subjected to MDS. 

In such a way, QSPR modelling, molecular docking, and MDS based computational model 

supports a better view for the hydrophilic substituent groups those could be added to the 

paclitaxel drug molecule for the development of prodrugs with increased solubility and those 

could further be metabolised by the human body. 

 

3.2. Materials and Methods 

Development of QSPR models correlating aqueous solubility of paclitaxel prodrugs and 

hydrophilic substituent groups with Dragon descriptors and with quasi-mixture SiRMS 

descriptors is described below (Figure 3.2).  

3.2.1 Paclitaxel prodrugs and hydrophilic substituent groups’ datasets  

A dataset of eighty diverse, more or comparably soluble paclitaxel prodrugs was formed. 

Also, a dataset comprising of sixty five unique, hydrophilic substituent groups those were 

added to the paclitaxel drug molecule in order to form the prodrugs in the past studies was 

collected from the literature (Appendix B, Table B.1) [16-20]. The solubility and activity 

values of the formed prodrugs were also collected from the literature. As there is diversity in 

the structures and in efficacy of the molecules; 1-dimensional (1D), 2-dimensional (2D) and 

3-dimensional (3D) descriptors describing the whole structures, correlating with aqueous 

solubility were extracted for both the datasets. 
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Figure 3.2: Geometry optimization, descriptor extraction, selection, development and validation of QSPR 

model. 

3.2.2 Solubility data  

Solubility values of the previously formed prodrugs were taken from the literature after that 

the solubility values were converted in log10(S) for studying the correlation of solubility with 

the molecular descriptors. This step is required for organizing the solubility of the data in a 

linear manner. 

3.2.3 Geometry optimization of the structures 

Paclitaxel prodrugs and hydrophilic substituent groups’ initial structures were drawn in Gauss 

View [23]. For optimizing the geometries of the structures semi-empirical methods were 

employed and the molecular structures were optimized levelled at parameterization method 6 

(PM6) and Austin Model 1 (AM1) in Gaussian 09 quantum chemistry software [24]. As 

described in the chapter 2 in accordance with the QSPR-sPL.   

3.2.4 Dragon7 and SiRMS descriptor extraction and reduction 

For each molecule a large pool of 5250 descriptors were obtained by Dragon7 software [25], 

also 2D SiRMS descriptors for substituent group dataset were calculated by SiRMS master 

[26]. Dragon7 descriptors were grouped in thirty different descriptor groups and were broadly 

categorized in three classes i.e. 1-dimensional (1D), 2-dimensional (2D) and 3-dimensional 
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(3D) (Appendix A, Table A.2). Following the QSPR-sPL for descriptor reduction it was 

performed on the basis of variance and correlation. Various other statistical characteristics for 

the models like coefficient of determination R
2, Fisher static F and p value for each 

descriptor’s coefficient were also calculated. The whole process of descriptor reduction for all 

the datasets is shown in Figure 3.3. 

 

 

Figure 3.3: Model optimization 

The 2D quasi-mixture SiRMS descriptors obtained for the substituent group dataset were also 

reduced implementing AIC and VIF multicollinearity indicators. MATLAB stepwiselm 

function was also implemented for the selection of descriptors having covariance value (p < 

0.05) were selected from each descriptor group and the individual descriptor groups were 

subjected for the calculation of regression and correlation values. Significant descriptors from 

different descriptor groups were combined and again significant variables were selected. The 

optimal QSPR model was attained by combining the critical descriptors from the descriptor 

groups.  

3.2.5 Non-linear regression determination for descriptor selection 

Descriptor numerical values obtained for all the molecules differ from positive to negative as 

attained from the descriptor extraction. Hence, the equation which is proposed in QSPR-sPL 

was used for the formation of regression models. 



70 

 

𝑙𝑜𝑔10(𝑆) = 𝑙𝑜𝑔𝛽0 +  𝛽𝑝𝑙𝑜𝑔𝑋𝑝 +  𝛽𝑛𝑋𝑛              Eqn 1 

In the equation, logβ0 is a constant; βp serve as the coefficient of descriptors with positive 

value; logXp represents the logarithm of positive descriptor value; Xn shows the value of 

negative descriptor; and βn serve the coefficient for negative descriptor. Significant descriptors 

obtained from each descriptor group were combined and then again chosen until there 

optimum R
2 and Q

2 values were obtained for each dataset. Finally, optimal models were 

formed and introduced for prediction of solubility for paclitaxel prodrugs and the hydrophilic 

substituent groups. 

3.2.6 Formation of QSPR models and their validation 

The QSPR models from dselected Dragon descriptors and also from the selected quasi-

mixture SiRMS descriptors were developed and validated implementing QSPR-sPL pipeline.  

 

3.2.7 ADMET Prediction of substituent groups 

Computation of pharmacokinetic properties of substituent group dataset comprising sixty five 

molecules those were added to paclitaxel molecule for prodrugs formation was carried out 

using admetSAR 2.0 (http://Immd.ecust.edu/admetsar2), a web based server. Simplified 

Molecular-Input Line Entry System (SMILE) format for all the molecules was given input to 

admetSAR 2.0 that computed forty six properties for the dataset. The server does the 

prediction of various pharmacokinetics properties. From the dataset molecules those were 

showing favourable pharmacokinetic properties were further employed to molecular docking 

studies against CYP1A2 enzyme.  

3.2.8 CYP1A2 binding site study 

CYP1A2 protein structure was downloaded from the PDB (PDB ID: 2HI4, 1.95 Å). CYP1A2 

is a major human CYPs family enzyme that metabolizes various small drugs, procarcinogens 

and also endogenous compounds. Planar active site of the enzyme is reported with the 

dimensions that are in agreement with its substrates [27]. “Thr118, Ser122, Thr124, Phe125, 

Thr223, Phe226, Phe256, Asn257, Phe260, Asp313, Ala317, Phe319, Thr321, Leu382 and 

Ile386” [28] amino acid residues highlights the active site in the structure of CYP1A2. 

Docking of all the substituent groups was performed in the described active site cavity. 

3.2.9 Molecular docking 

Pharmacokinetic aspect of the molecules was studied by ADMET properties. From the 

substituent group dataset thirty four substituent groups were selected and were implied to 

molecular docking against CYP1A2 in the above defined active site in AutoDock 4.2.6 [29]. 

http://immd.ecust.edu/admetsar2
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AutoDock makes use of Lamarckian genetic algorithm for carrying out molecular docking 

and uses empirical scoring function for ranking the docked molecules. Semi-empirical free 

energy force field is used in regard of the calculation of ligand binding conformation. Protein-

ligand binding conformation was used for the calculation of intermolecular energy starting 

from the unbound protein-ligand conformation. Protein’s active site residues were employed 

to specify the grid and a grid box of dimensionality X=68, Y=86 and Z=74 grid points 

including the grid spacing of 0.397 Å was generated. All the molecules of substituent group 

dataset were set for docking with the population size of 150, number of maximum generations 

27,000, maximum evaluations of 2,50,000, with a gene mutation rate of 0.02 and crossover 

rate of 0.8. All the molecules were implemented for the generation of 100 binding poses for 

the respective docking. Binding affinity was taken as the parameter for determining the 

docking and the best docked poses. 

3.2.10 Molecular dynamics simulation study of best docked complexes  

Four docked complexes with highest binding affinity were selected and were further subjected 

to molecular dynamics (MD) simulation for studying the stability of the docked complexes. 

Gromacs v5.1.2, [30] was used for performing the MD simulation as long as 50 ns to validate 

the stability of protein-ligand complexes. Prodrg server [31] was used for obtaining the ligand 

topologies for all the five substituent groups using GROMOS 96 53a6 force field parameters 

[32]. The initial structures of all the five systems were solvated in a cubic box of SPC water 

model (three point model having three interaction sites that corresponds to three atoms of 

water molecule) and were charge neutralized by eleven chloride ions. The obtained structures 

were energy minimized for 50,000 steps with steepest descent algorithm, pursued by NVT 

(constant number of particles, volume, and temperature) and NPT (constant number of 

particles, pressure, and temperature) equilibration of 0.1 ps, each one using the leap-frog 

integrator algorithm [33]. The Brendensen thermostat [34] algorithm was used to control the 

simulation temperature, and Parrinello-Rahman isotropic pressure coupling [35] was practiced 

for controlling pressure.  

GROMOS 96 53a6 force field [36] was used for the MD simulation of apo-CYP1A2, 

CYP1A2-Bisulphite 2’ acryoltaxol, CYP1A2-Fluorescent taxol, CYP1A2-Complex of 

paclitaxel with carbamate linkage to β-glucuronic acid, and CYP1A2-sulphate of paclitaxel 

for 50-ns time-scale to observe time dependent trajectories of systems in explicit solvent. The 

production MD was set again to time of 0 ps and the entire run was for 50 ns, with 

coordinates, velocities, energies stored at every 10 ps. The integration time-step was 2 fs, 
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treating all atoms explicitly and were coupled with LINCS constraint algorithm for restraining 

hydrogen and heavy atom bonds, the van der Waal cut-off was observed at 0.9 nm, and the 

Verlet cut-off scheme was used with Coloumb, with particle mesh ewald (PME) long range 

electrostatics [37]. Initial velocities were allowed on the basis of Maxwell distribution at 300 

K with 1 nm minimum distance enforced in all the three directions within the periodic 

boundary conditions. The root mean square deviation (RMSD), root mean square fluctuation 

(RMSF), radius of gyration (Rg), hydrogen bonds (H-bonds), and solvent accessible surface 

area (SASA) calculations were done using the in-built gmx rms, gmx rmsf, gmx gyration, 

gmx h_bond and gmx sasa tools, respectively. The final MD trajectories were obtained using 

visual molecular dynamics (VMD) [38] and Chimera v1.13.1 [39] and Origin Pro 6.0 was 

used for plotting the respective graphs.  

3.2.11 Principal Component Analysis 

Projection of first two principal components (PCs) for the docked complexes kept on MD 

simulation for 50 ns was also analysed using the built-in principal component analysis (PCA) 

or essential dynamics method of Gromacs, also eigenvectors, eigenvalues, eigRMSF were 

evaluated. The correlated motions of the proteins that majorly define the protein functions 

were observed by the PC analysis and the principal components were grouped according to 

the protein functions [40]. All the translational and rotational movements of the complexes 

were removed and covariance matrices for all the complexes were formed. The following 

equation was used for the computation of elements of the positional covariance matrix C:                                       𝐶𝑖𝑗 = iq( <q i >)(q j -<q j >)(i,j = 1,2,.. 3N)                                       Eqn 3 

The i
th Cα atom was represented by the cartesian coordinate qij and N being the number of 

atoms. The equilibrated trajectory that was superimposed on a reference structure, overall 

translations and rotations were removed using ‘Least-square fit’ method. All the matrices 

were diagonalized adopting the orthogonal co-ordinate transformation matrix Λ to predict the 

remaining eigenvectors and eigenvalues λi. 

                                                           Λ = TCT ij

T
                                                                                         Eqn 4 

In the above equation, eigenvectors corresponds to the direction of relative motion of <q i > 

were represented in the columns. Each eigenvector associated with the eigenvalues 

representing the total mean-square fluctuation of the system along the corresponding 
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eigenvector. The obtained last 30 ns trajectories were analysed for the calculation of 

eigenvector and eigenvalues using gmx covar and gmx anaeig in-built tools of Gromacs. The 

free energy of the systems implementing the first two principal components was performed 

using gmx sham tool [30].  

3.2.12 Computing MM-PBSA Binding free energy  

Molecular Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA) method was used for the 

computation of binding free energy of the protein-ligand interactions. g_mmpbsa tool [41] of 

the Gromacs was used for the calculation of binding free energy for the last 10 ns trajectories 

snapshots obtained from MDS, that is an average of three energy terms; potential energy in 

the vacuum, polar-solvation energy and non-polar solvation energy in the case of protein-

ligand binding, the binding energy of the bound system is an average.  

 

3.4 Results and discussion 

Individual descriptor groups’ performance was determined and only the descriptors from each 

group providing significant R2 & Q2 values (Appendix B, Table: B.2-B.5) were coupled and 

again chosen so as to develop consistent QSPR models. The process of descriptor selection 

was followed till the valid R2 & Q2 values were obtained for both the datasets. The descriptors 

selection process for each group was also performed in MATLAB using ‘stepwise fit’. 

Significant descriptors from descriptor groups were selected for both AM1 and PM6 

geometry optimized datasets (Appendix B Tables: B.6–B.9) and the QSPR models with 

optimum R2 & Q2 values were developed.  

QSPR models (Model I - VIII, Table 1, Figure 3.4 (a-d) and Figure 3.5 (a-d)) results from 

both the datasets provided good correlation values. The description of the models conduct and 

nature are provided in the Table 3.1. 

QSPR Models: 

I. Model developed using molecular descriptor selected with AIC&VIF indicators 

for paclitaxel prodrugs with AM1 optimized geometry dataset. 

𝑙𝑜𝑔10 (𝑆) = 0.4564(𝑂𝑛0𝑉) − 0.5017(𝑀𝑆𝐷) − 75.9343(𝑃𝑊5) − 0.1402(𝐻𝑇𝑒) −  56.6473(𝐻𝐴𝑇𝑆3𝑖)  +                              207676(𝑅4𝑝) + 0.153(𝑃𝑉𝑆𝐴𝑆5) − 2.5513(𝑁𝑠𝑠𝑁𝐻) −  0.0002(𝑀𝑜𝑟01𝑢) + 6.8766(𝐸1𝑣) +0.432(𝐶006) + 3.395(𝐶𝐴𝑇𝑆2𝐷05𝐷𝑃) +  25.1779  
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II. Model developed using molecular descriptor selected with AIC&VIF indicators 

for paclitaxel prodrugs with PM6 optimized geometry dataset. 

 𝑙𝑜𝑔10 (𝑆) = 0.1189(𝐴𝑇𝑆𝐶1𝑚) − 0.555(𝐴𝑇𝑆𝐶1𝑣) + 0.5481(𝑁𝑠𝑠𝐶𝐻2) + 1.0881(𝑁𝑠𝑠𝑁𝐻) +                       1.1215(𝑁 − 068) − 2.4335(𝐶𝐴𝑇𝑆2𝐷05𝐷𝑃) + 1.142(𝑥𝐶𝐴𝑇𝑆2𝐷03𝑁𝐿) −                       0.0136(𝑇(𝑁. . 𝑁)) + 11.2824(𝐵05[𝑁 − 𝑁]) + 0.1785(𝐹08[𝐶 − 𝑁]) − 1.8115  

 

 

III. Model developed using molecular descriptor selected with AIC&VIF indicators 

for substructure with AM1 optimized geometry dataset. 

    𝑙𝑜𝑔10 (𝑆) =  0.5168(𝐶006) + 0.0008(𝐼𝐷𝐸𝑇) + 0.1916(𝑀𝑜𝑟03𝑒) + 0.6081(𝑥𝑀𝑜𝑟32𝑠) +                            0.2319(𝐴𝑇𝑆𝐶4𝑣) − 2.1004(𝐺𝐴𝑇𝑆4𝑒) − 0.2506(𝑆𝑀6𝐺) − 0.0228(𝐿2𝑢) +                            6.5945  

                

 

IV. Model developed using molecular descriptor selected with AIC&VIF indicators 

for substructure with PM6 optimized geometry dataset. 

𝑙𝑜𝑔10 (𝑆) =  −2.2096(𝑀𝑜𝑟32𝑚) + 0.1218(𝑀𝑜𝑟05𝑒) + 0.5745(𝑀𝑜𝑟12𝑝) − 1.21 +                           0.8687(𝑀𝑜𝑟25𝑝) + 0.4239(𝑀𝑜𝑟31𝑖) + 0.0975(𝑀𝑜𝑟21𝑠) + 0.0517(𝑇𝑢)  +                           0.0016(𝑉𝑠) + 2.7316  

 

Table 3.1: Regression (R2) and 10-fold cross validation correlation (Q2) coefficients of the QSPR models for 

paclitaxel prodrugs and substructures with PM6 and AM1 optimized geometry dataset 

S. 

No. 

Descriptor 

Group 

Descriptor 

selection 

algorithm 

AM1 optimized geometry dataset PM6 optimized geometry dataset 

   No. of 

descriptors 

R2\*R2
yrand Q2\*Q2

yrand RMSE No. of 

descriptors 

R2\*R2
yrand Q2\*Q2

yrand RMSE 

1 Paclitaxel 

prodrugs 

AIC & VIF 

Function 

21 (12) 0.78\0.13 0.60\-0.31 1.55 16 (10) 0.80\0.14 0.69\-0.20 1.46 

2 Substituent 

groups 

AIC & VIF 

Function 

8 (8) 0.82\0.16 0.76\-0.21 1.33 9 (9) 0.93\0.17 0.83\-0.26 0.55 

3 Paclitaxel 

prodrugs 

MATLAB 

‘Stepwise 

fit’ 

9 (9) 0.85\0.10 0.79\-0.18 1.02 16 (7) 0.82\0.08 0.79\-0.14 1.40 

4 Substituent 

groups 

MATLAB 

‘Stepwise 

7 (6) 0.83\0.10 0.67\-0.30 1.2 16 (13) 0.88\0.26 0.83\-2.2 1.11 
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fit’ 
Parenthesis indicates the no. of significant descriptors included in QSPR model for a particular group. 

                            *Statistical significance of the models is determined by R2
yrand & Q2

yrand values as calculated (Section 3.2.6). 

V. Model developed using molecular descriptor selected with MATLAB ‘step-wise-

fit’ for paclitaxel prodrugs with AM1 optimized geometry dataset.   𝑙𝑜𝑔10 (𝑆) = 0.6907(𝑛𝐶𝑏) + 4.7408(𝑛𝑅𝐶𝐻𝑂) − 1.5841(𝑛𝐶˖𝑂(𝑂)2) − 0.8635(𝑛𝑅𝑁𝐻𝑅) +                         1.8856(𝑁068) − 1.7953(𝐶𝐴𝑇𝑆3𝐷09𝐷𝐿) + 3.6031(𝐶𝐴𝑇𝑆3𝐷19𝐴𝑃) +                          0.7004(𝐶𝐴𝑇𝑆3𝐷11𝐴𝑁) − 1.4474(𝐶𝐴𝑇𝑆3𝐷02𝑁𝐿) + 1.2857  

 

VI. Model developed using molecular descriptor selected with MATLAB ‘step-wise-

fit’ for paclitaxel prodrugs with PM6 optimized geometry dataset. 

        𝑙𝑜𝑔10(𝑆) =  −9.7178(𝐴𝑇𝑆𝑐6𝑣) + 7.2219(𝐺𝐴𝑇𝑆6𝑠) + 7.4503(𝑁𝑠𝐶𝐻3) + 3.7658(𝑁𝑠𝑠𝑁𝐻)  +                                  0.874(𝐶𝐴𝑇𝑆2𝐷01𝐷𝐷) + 1.0976(𝐶𝐴𝑇𝑆2𝐷𝑁𝐿) + 2.3893(𝐶𝐴𝑇𝑆3𝐷03𝐴𝐿) + 13.0683  

 

VII. Model developed using molecular descriptor selected with MATLAB ‘step-wise-

fit’ for substructure with AM1 optimized geometry dataset.fit’ for substructure 

with AM1 optimized geometry dataset. 

𝑙𝑜𝑔10(𝑆) =  −0.3448(𝑛𝐶𝑠) + 1.868(𝑛𝐶𝑞) + 9.6299(𝑛𝑅𝐶𝑂𝑁𝐻2) − 3.7002(𝑛𝑁 = 𝐶𝑁 <) +                           5.8506(𝑛𝑅𝑁𝐻𝑅) − 1.603(𝑛𝑆𝑂2𝑂𝐻) − 0.4912  

 

VIII. Model developed using molecular descriptor selected with MATLAB ‘step-wise-

fit’ for substructure with PM6 optimized geometry dataset. 

                       𝑙𝑜𝑔10(𝑆) = 2.5006(𝐶ℎ𝑖0𝐸𝐴) − 0.042 (𝑃𝑉𝑆𝐴𝐿𝑜𝑔𝑃5   ) − 2.1627 (𝑃𝑉𝑆𝐴𝑒1) + 0.0528 (𝑃𝑉𝑆𝐴𝑆5 ) +                                             9.7303(𝑛𝐴𝑟𝑂𝐶𝑂𝑁) + 2.9485(𝑛𝑅𝑁𝐻𝑅) + 0.8348(𝑛𝑅𝑂𝑅) − 5.4092(𝑛𝑆𝑂3) −                                             3.3368(𝑆𝑑𝑠𝐶𝐻) − 3.1137(𝑆𝑑𝑑𝐶) + 3.3186(𝑁𝑑𝑠𝐶𝐻) − 0.2048(𝑁𝑎𝑎𝐶𝐻) −                                             1.1079(𝑁𝑠𝑠𝑠𝐶𝐻) − 1.1623  
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Figure 3.4: Experimental solubility (ly) vs predicted solubility (logS) of Paclitaxel prodrugs. Performance of 

descriptors selected with AIC&VIF indicators for Paclitaxel prodrugs with [a] AM1 geometry dataset; [b] with 

PM6 geometry dataset; [c] Performance of descriptor selected with AIC&VIF indicators for substructures with 

AM1 geometry dataset; and [d] for substructures with PM6 geometry dataset.  
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Figure 3.5: Experimental solubility (ly) vs predicted solubility (logS) of paclitaxel prodrugs. Performance of 

descriptors selected with MATLAB ‘stepwise-fit’ for paclitaxel prodrugs with [a] AM1 geometry dataset; [b] 

with PM6 geometry dataset; [c] Performance of descriptor selected with MATLAB ‘stepwise-fit’ for 

substructures with AM1 geometry dataset; and [d] for substructures with PM6 geometry dataset. 
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In the current study, two different approaches were used for descriptor selection and 

comparable R2 & Q2 values were achieved. PM6 and AM1 optimized geometry datasets for 

the substructure molecules formed the QSPR models with more precision than the QSPR 

models constituted from datasets of paclitaxel prodrugs for both PM6 and AM1 optimized 

geometry. Therefore, additionally for the substructure dataset, the ‘quasi-mixture’ descriptors 

were extracted and 2D QSPR model with these descriptors for both PM6 and AM1 geometry 

optimized molecules were also formed. Quasi-mixture descriptors were defining the probable 

intermolecular interactions in pure compounds. All the common descriptors which were 

frequent in all the substructures were taken and making use of QSPR-sPL, QSPR models for 

both datasets with geometries optimized at PM6 and AM1 levels. For the formed QSPR 

models, comparable R2 & Q2 values were attained (Table 3.2). 

Table 3.2: Regression (R2) and 10-fold cross validation correlation (Q2) coefficients of the QSPR models 

formed from Quasi-mixture descriptors for the substructures with PM6 and AM1 optimized geometry dataset 

S. No. AM1 optimized geometry dataset PM6 optimized geometry dataset 

 No. of  

descriptors 

R2\R2
yrand Q2\Q2

yrand RMSE No. of  

descriptors 

R2\R2
yrand Q2\Q2

yrand RMSE 

1 8 (5) 0.70\0.12 0.58\-0.50 1.70 7 (6) 0.69\0.09 0.52\-0.32 1.71 

Parenthesis indicates the no. of significant descriptors included in QSPR model. 
      *Statistical significance of the models is determined by R2

yrand & Q2
yrand values as calculated (Section 3.2.6). 

Different properties of the molecule like polarity, relative aromaticity, topology, and aliphatic 

degree of the molecules influence the drug solubility. The set of QSPR models formed 

provides the descriptors that can define the solubility prediction for paclitaxel prodrugs 

(Appendix B Table B.2-B.5). A descriptor group like atom-type E-state indices determines 

the individual atom topologies as well as calculates the contribution of a distinct atomic 

fragment. Atom topologies can be defined by the intrinsic electronic and topological state 

along with the electronic field effect of a molecule on a particular atom [42]. Hence these 

descriptors are found to be instrumental for identifying the atoms or fragments in the 

molecule that are responsible for solubility. Additionally P_VSA-like descriptor group 

defines the sum of atomic Van der Wall surface area (VSA) contribution of each atom within 

a molecule [43]. The solubility of a drug can be defined as the degree of drug-solvent 

interaction. Thereof, the P_VSA descriptors are correlated with the solubility of the molecule. 

Chemical functional groups in a molecule are counted by the functional group descriptors 

[44]. The complex and large structure of paclitaxel benefitted the study of functional group 
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count descriptors for the paclitaxel descriptors, while any substituent group can be added for 

the formation of more soluble prodrugs. Thus the functional group count descriptors explain 

its association while studying the aqueous solubility of prodrugs. 3D-Morse descriptors 

describes the 3 dimensional structures of molecules into the numerical form based on the 

range of electron diffraction’s scattering parameter values along with a variety of weighting 

schemes [45]. These descriptors played an important role in the prediction of aqueous 

solubility of prodrugs as there were structurally similar molecules in the dataset and these 

descriptors reflects a change in the values if the molecular geometry of the molecules gets 

differed.  

Atom-centred fragments subsists a central atom encircled one or several shells of atoms that 

are distanced at the similar topological distance [46]. For storing the local spectral parameters 

different ACF fragments are designed and these descriptors thus describe the solubility 

property of the molecules being studied. Descriptors like WHIM (Weighted Holistic Invariant 

Molecular) define the various molecular features viz. shape, size, symmetry, and atom 

distribution in the three dimensional structure of a molecule. A weighting scheme is used for 

obtaining the specific details of the molecules in the descriptor set [47]. The descriptors are 

explaining the solubility property for the molecule as shape, size, and symmetry of the drug 

molecule affects the drug solvent interaction. Atomic properties those are distributed ahead of 

the molecular topology are measured numerically from 2D Autocorrelation descriptors; they 

imply an autocorrelation function to the different molecular regions to calculate the 

descriptors [48]. These descriptors measure the solubility of the molecule towards the 

different path lengths in the molecular structure.  

Increase in the solubility of the prodrugs by the addition of substituent groups makes them a 

potential molecule. But the enzymatic actions in the body are also the determining factors for 

the potent substituent groups that could be added to the paclitaxel for the formation of 

prodrugs. Hence for this purpose the study includes the analyses of ADMET criterion to 

substituent group dataset; that consists of sixty five molecules with the help of admetSAR 2.0. 

(Appendix B, B.10). Further, on the basis of various calculated ADMET properties the 

selection of thirty four molecules was done and those were then subjected further for the 

molecular docking studies. 

CYPs 450 liver enzymes are a major class of metabolic enzymes that metabolizes the 

xenobiotics. These enzymes metabolize almost ninety percent of the small molecules, drugs, 

and xenobiotics in the human body. Henceforth, a computational model based on molecular 
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docking and MD simulation was attempted for the prediction of most likely substructures for 

the formation of more soluble paclitaxel prodrugs. The computational metabolic property of 

substituent group dataset was calculated; further molecular docking of the thirty four selected 

molecules against CYP1A2 was performed using AutoDock 4.2.6. Taking into account the 

binding energies of the thirty four molecules, four top scoring molecules were chosen and 

were implied to MD simulation studies. Results of the molecular docking studies are 

presented below in Figure 3.6 and Table 3.3 In the table, the amino acid residues in bold are 

representing the hydrogen bond forming residues. 

Table 3.3: Docking results of the selected substituent groups with PM6 optimized geometry against CYP1A2 

showing the binding affinity and the interacting residues 

S 

No. 

Substituent groups Binding energy 

(kjmol-1) 

Interacting residues 

1. Bisulphite 2’ acryoltaxol -33.59 Arg108, Leu 123, Thr124, Trp133, 

Arg137, Thr385, Ile386, His388, 

Phe451, Gly452, Arg456, Arg457. 

2. Flourescent taxol -38.07 Arg108, Leu123, Thr124, Arg137, 

Leu144, Ile200, Asp313, Ile314, 

Ala317, Gly318, Arg456, Gly460, 

Ala464, Ile459, Cys458. 

3. Paclitaxel with carbamte 

linkage to β-glucuronic acid 

-31.42 Arg108, Leu123, Thr124, 

Trp133, Arg137, Leu382, Thr 385, 

Ile 386, Glu411, Leu450, Phe451, 

Gly452, Arg456, Cys458, Ile459 

4. Sulphate of paclitaxel -41.04 Arg108, Leu123, Thr124, Trp133, 

Arg137, Phe226, Asp320, Thr321, 

Ile386, Leu450, Phe451, Gly452, 

Arg456, Cys458, Ile459, Leu497,  

Ala317 

 

A top scoring molecule bisulphite 2’ acryoltaxol-CYP1A2 with binding energy -33.59 kj.mol-

1 was selected and interaction in the binding site were analyzed using LigPlot, thence amino 

acid residues Arg108, Leu123, His388, Arg456 were found to form hydrogen bonds, and 

residues Thr124, Trp133, Arg457 etc. were found to form hydrophobic contacts with 

CYP1A2 (Figure 3.6a and Table 3.3). In the same way, Fluorescent taxol-CYP1A2 docked 

complex provided the binding energy of -38.07.1 kj.mol-1. The complex was shown to have 

hydrogen bond formation with amino acid residues Arg108, Thr124, Arg456, Ile459, and 
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Arg137, Ala317, Cys458, Leu123 residues had hydrophobic interactions in the complex 

(Figure 3.6b and Table 3.3). Paclitaxel with carbamate linkage to β-glucuronic acid 

substituent group allowed the binding energy of -31.42 kj.mol-1, with Arg108, Trp133, 

Arg137 amino acids build polar contacts along with residues Leu123, Thr124, Ile386 etc. 

forming the hydrophobic contacts in the complex (Figure 3.6c and Table 3.3). Trp133, 

Arg137, Arg456 amino acid residues of sulphate of paclitaxel presented the polar interactions 

in the active site of CYP1A2 permitting -41.04 kj.mol-1 of binding energy (Figure 3.6d and 

Table 3.3). The results of virtual screening performed on the substituent group dataset predict 

the most encouraging substituent group class that could be probable in the increase of aqueous 

solubility of paclitaxel prodrugs. Additionally for the enrichment of the molecular docking 

results MD simulations were carried out and the stability of the complexes was study at 

detailed atomic level. 
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Figure 3.6: Ligand Interaction diagram [a] Bisulphite 2’ acryoltaxol with CYP1A2; [b] Fluorescent taxol with 

CYP1A2; [c] Paclitaxel with carbamate linkage to β-glucuronic acid with CYP1A2 [d] Sulphate of paclitaxel 

with CYP1A2. 

MD Simulation Study 

The stability of docked complexes studied at the atomic level can be analyzed by the MD 

simulations. The dynamic study of CYP1A2 docked with four different substituent groups’ 

complexes and one apo-protein for a time scale of 50 ns was performed on Gromacs. The 

equilibration state for all the five systems was acquired and equilibrated trajectories for the 

last 30 ns were evaluated for the computation of rmsd, rmsf, radius of gyration, SASA and 

binding free energy. 
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Root mean square deviation (RMSD) 

Root mean square deviation (RMSD) describes the conformational shift occurring in the 

backbone of the protein for all systems over the simulation time scale. Dynamic stability of 

the simulated systems is defined by RMSD. RMSD values were calculated for all the five 

systems and the respective equilibrated trajectories were obtained after 20 ns, Figure 3.7a. 

Average values of “apo-CYP1A2, CYP1A2-Bisulphite of 2’ acroyltaxol, CYP1A2- 

Fluorescent taxol, CYP1A2-Paclitaxel with carbamate linkage to β-glucuronic acid and 

CYP1A2-Sulphate of paclitaxel” substituent groups were found to be 0.370, 0.346, 0.307, 

0.320 and 0.371 nm respectively. The observed rmsd values for all the molecules infer the 

stability of the molecules with respect to the apo-protein. Two substituent groups bisulphite of 

2’ acroyltaxol and paclitaxel with carbamate linkage to β-glucuronic acid showed the highest 

stability. The substituent groups’ complexes with CYP1A2 showed the stability hence got 

metabolised by the enzyme. 

 

Figure 3.7: Molecular dynamics simulation. (a) RMSD of the Cα backbone of substituent groups over the 50 ns 

MDS at 300 K, (b) RMSF of residues of substituent groups during MDS, In all panels the color code is: 

CYP1A2 (black) and the ligands CYP1A2-Bisulphite of 2’ acroyltaxol (red), CYP1A2-Flourescent taxol (navy 

blue), CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid (yellow), CYP1A2- Sulphate of 

paclitaxel (magenta). 

Residue Mobility Analysis 

Residue mobility calculations for the systems for the last 30 ns equilibrated trajectory were 

noted as shown in Figure 3.7b. The average values of RMSF for “apo-CYP1A2, CYP1A2-

Bisulphite of 2’ acroyltaxol, CYP1A2-Flourescent taxol, CYP1A2-paclitaxel with carbamate 

linkage to β-glucuronic acid and CYP1A2-Sulphate of paclitaxel” were 0.141, 0.167, 0.132, 

0.117 and 0.112 nm respectively. These RMSF values showed the stability of the complexes. 

a b 
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According to the results obtained with these RMSF values paclitaxel with carbamate linkage 

to β-glucuronic acid and sulphate of paclitaxel substituent groups were found to be the most 

stable. The molecules forming stable complexes with CYP1A2 shows metabolism of these 

groups giving a good pharmacokinetics description. 

Compactness Analysis 

Density of a protein-ligand complex is described by Radius of gyration factor (Rg). It 

averages the distance between the centre of mass of the protein atoms and terminal atoms in a 

specific time-frame. The compact protein is considered to be more stable and there is less 

variation in the value of gyration while the dispersed protein structure will be less stable.  In 

general, the compact protein shows lesser amount of variation in the gyration value while the 

open structure presents higher Rg value. For a given time frame, Rg values for all the 

complexes were plotted, Figure 3.8a. Average values of Rg for “apo-CYP1A2, CYP1A2-

Bisulphite of 2’ acroyltaxol, CYP1A2-Flourescent taxol, CYP1A2-paclitaxel with carbamate 

linkage to β-glucuronic acid and CYP1A2-Sulphate of paclitaxel” were 2.27, 2.31, 2.30, 2.27 

and 2.28 respectively. All the substituent group complexes were found to be less or 

comparably stable than the apo-protein, Figure 3.8a. The CYP1A2-paclitaxel with carbamate 

linkage to β-glucuronic acid complex presented comparable stability as that of apo-protein, 

hence predicting the metabolism of these groups with CYP1A2, they will be metabolised by 

the CYP1A2 enzyme. 

 

Figure 3.8: Molecular dynamics simulation. (a) Rg vs time of substituent groups during MDS. (b) Number of 

hydrogen bonds interaction between protein and ligand during simulation time scale for ligand complexes. In all 

panels the color code is: CYP1A2 (black) and the ligands CYP1A2-Bisulphite of 2’ acroyltaxol (red), CYP1A2-

Flourescent taxol ( navy blue), CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid (yellow), 

CYP1A2- Sulphate of paclitaxel (magenta). 

a b 
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Hydrogen Bonding Analysis 

Transient interactions in the protein-ligand complex are defined by hydrogen bonds formed 

between the protein-ligand providing a stable complex. In the MD simulation run calculation 

of the number of hydrogen bonds formed in the docked structures in a specific time-scale was 

observed, Figure 3.8b. Average number of hydrogen bonds formed in “CYP1A2-bisulphite of 

2’ acroyltaxol, CYP1A2-flourescent taxol, CYP1A2-paclitaxel with carbamate linkage to β-

glucuronic acid and CYP1A2-sulphate of paclitaxel” were 0-3, 0-1, 0-2 and 0-1 respectively. 

CYP1A2-bisulphite of 2’ acroyltaxol was observed to have the highest number of hydrogen 

bonds than other molecules. The acceptable hydrogen bonds for all the substituent groups 

were observed, explaining the stable interactions with the CYP1A2 enzyme. 

Principal Component Analysis 

Principal component analysis predicts the correlated motion of the complexes. Overall 

motions in the proteins are described by the principal components (PCs) that are defined by 

few key eigenvectors. Hence the eigenvalues of the complexes for the 50 eigenvectors were 

plotted Figure 3.9a. The first five eigenvectors explained 67%, 72.01%, 64.34%, 69.18%, 

68.69% of the motions respectively of “apo-CYP1A2, CYP1A2-Bisulphite of 2’ acroyltaxol, 

CYP1A2-Flourescent taxol, CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid 

and CYP1A2-Sulphate of paclitaxel” for the last 30 ns equilibrated trajectory. The results 

explained that bisulphite of 2’ acroyltaxol, paclitaxel with carbamate linkage to β-glucuronic 

acid and sulphate of paclitaxel substituent groups showed few motions in comparison to the 

apo-protein thus forming a stable structure with CYP1A2. PCA result reveals the metabolism 

of these selected substituent groups by the CYP1A2 isoform of the cytochrome.  

 

Figure 3.9: Principal component analysis. (a) Projection of the motion of the protein in phase space along the 

PC1 and PC2 (b) Plot of eigenvalues vs. eigenvector index. First 50 eigenvectors were considered. In all panels 

a 
b 
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the color code is: CYP1A2 (black) and the ligands CYP1A2-Bisulphite of 2’ acroyltaxol (red), CYP1A2-

Flourescent taxol (navy blue), CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid (yellow), 

CYP1A2- Sulphate of paclitaxel (magenta). 

Also, the first two eigenvectors for the complexes representing the correlated motions were 

plotted oppositely in a phase space in which the correlated motions are represented by the 

individual spectrum (Figure 3.9b). Stability of the complex is characterized by the dense 

nature of the complex and scattered complex showed instability. Bisulphite of 2’ acroyltaxol 

substituent group was found to be least stable among the substituent groups. 

Solvent accessible surface area (SASA) 

Interactions in the protein are reflected by the conformational changes in the three 

dimensional structure of the protein. Relative solvent accessible surface area gives the 

measure of conformational changes occurring in the protein during binding of the ligand. 

Both polar and non-polar interactions among the protein’s amino acid residues constitute the 

solvation free energy for the protein. SASA value for each docked complex was computed 

over the concluding 30 ns equilibrated trajectory, Figure 3.10a. Average SASA values 

obtained for “apo-CYP1A2, CYP1A2-Bisulphite of 2’ acroyltaxol, CYP1A2-Flourescent 

taxol, CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid and CYP1A2-Sulphate 

of paclitaxel” were 235.69, 242.24, 237.55, 235.41 and 232.64 nm2 respectively. These results 

showed that the substituent group paclitaxel with carbamate linkage to β-glucuronic acid and 

sulphate of paclitaxel substituent groups were depicting lesser or comparable SASA values as 

that of the protein. Thus giving the conformational stability of CYP1A2 while ligand binding. 

Individual residue contribution to the SASA value leading to the change in the conformation 

of the protein was also calculated. A graph of the residues and SASA value was plotted in 

Figure 3.10b. Average SASA values of the residues attained for “apo-CYP1A2, CYP1A2-

Bisulphite of 2’ acroyltaxol, CYP1A2-Flourescent taxol, CYP1A2-paclitaxel with carbamate 

linkage to β-glucuronic acid and CYP1A2-Sulphate of paclitaxel” were 0.48, 0.50, 0.49, 0.48 

and 0.48 nm2 respectively. Depending on the values obtained for the residue SASA it is 

inferred that these substituent groups would be metabolised by the enzyme CYP1A2. 
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Figure 3.10: Solvent accessible surface area. (a) The SASA plot for CYP1A2 and substituent group complexes 

in water with respect to time. (b) The Residue SASA plot for CYP1A2 and substituent group complexes. In all 

panels the color code is: CYP1A2 (black) and the ligands CYP1A2-Bisulphite of 2’ acroyltaxol (red), CYP1A2-

Flourescent taxol (blue), CYP1A2-paclitaxel with carbamate linkage to β-glucuronic acid (dark cyan), CYP1A2- 

Sulphate of paclitaxel (magenta). 

Gibbs free energy landscape 

Orientation of the binding of ligand to protein is described by Gibbs free energy landscape. 

During the MD simulation of substituent groups with CYP1A2 it was observed for PC1 and 

PC2 to view the changes in the conformational state upon ligand binding. The obtained range 

of energy values were; 0 to 8.66, 0 to 8.17, 0 to 9.17, 0 to 9.35 and 0 to 8.98 kj.mol-1 for 

“CYP1A2, CYP1A2-bisulphite of 2’ acroyltaxol, CYP1A2-flourescent taxol, CYP1A2-

paclitaxel with carbamate linkage to β-glucuronic acid and CYP1A2-sulphate of paclitaxel” 

respectively, Figure 3.11. The substituent groups were representing the agreeable transitions 

of different conformations, favouring the metabolism of the groups by CYP1A2 isoform. 
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Figure 3.11: Gibbs free energy Landscape. The free energy landscape calculated for PC1 and PC2. In the figure, 

(a) CYP1A2, (b) CYP1A2-Bisulphite of 2’ acroyltaxol, (c) CYP1A2-Flourescent taxol, (d) CYP1A2-paclitaxel 

with carbamate linkage to β-glucuronic acid, (e) CYP1A2-Sulphate of paclitaxel. 

MMPBSA Binding Free Energy Study 

Binding free energy is the determining factor for the interaction between two molecules. 

Ingrained MM\PBSA tool in Gromacs [30], was employed for binding free energy 

calculations. Summation of the non-bonding interactions of complex constitutes binding free 

energies for the complexes which is tabulated in the Table 3.4. All the substituent groups 

were depicting the favourable binding free energy with CYP1A2 hence forming stable 

structure with the protein. 

Table 3.4: Table represents the Van der Waals, electrostatic, polar solvation, SASA and binding energy in 

kJ.mol-1 for substituent groups 

S. No. Compound Van der Waals 

energy 

Electrostatic 

energy 

Polar solvation 

energy 

SASA energy Binding 

energy 

1. Bisulphite of 2’ 

acroyltaxol 

-59.87 ± 66.41 -24.35 ± 29.10 62.01 ± 82.07 -6.19 ± 6.97 -28.39 ± 33.89 

2. Flourescent taxol -196.64 ± 10.91 -22.03 ± 11.06 89.74 ± 15.28 -18.73 ± 0.85 -147.67 ± 12.57 

3. Paclitaxel with 

carbamate linkage to 

-142.41 ± 56.29 -52.205 ± 25.42 101.93 ± 79.23 -15.52 ± 6.45 -108.21 ± 20.74 
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β-glucuronic acid 

4. Sulphate of paclitaxel -238.83 ± 44.50 -21.46 ± 7.85 104.70 ± 24.75 -21.89 ± 4.37 -177.50 ± 32.66 

QSPR models for the solubility prediction of paclitaxel prodrugs those are geometry 

optimized at AM1- and PM6-levels were obtained and the metabolic study of the substituent 

group dataset those were added to the molecule for the formation of prodrugs was also carried 

out to find the most efficient groups that not only increase the solubility but also can be 

metabolized in the body. 

 

3.4 Conclusion 

Eight new QSPR models based on the fundamentals of aqueous solubility and optimization of 

descriptor space from the paclitaxel prodrugs dataset and also from the substructure dataset 

which were optimized at both AM1- and PM6 geometry levels with good statistics were 

obtained. Model IV, that is obtained from substructure dataset along with molecular 

geometries optimized at PM6 level and the descriptor were selected with the AIC & VIF 

multicollinearity indicators is the most rigorous one. Model III developed from the 

substructure molecules optimized at AM1 level and those descriptors were selected implying 

AIC and VIF multicollinearity indicators can be set up after Model IV. Also, the results 

obtained from two different descriptor selection methods and the ‘quasi-mixture’ descriptors 

for the specific validation of substituent group dataset were accomplished. The study also 

incorporates the metabolic study of substituent group dataset in the human body. This 

approach will be useful for the medicinal chemists to improve the solubility profile of the 

future prodrugs by suggesting the structural modifications in the molecule. A systematic and 

robust approach of developing mixture QSPR models was also attempted and good statistical 

standards were obtained. It is anticipated that developed models will be used as a plausible 

resource for the aqueous solubility prediction for the paclitaxel prodrugs. In addition to that, 

the eight new proposed QSPR models will support a classic way of criterion readjustment for 

the future prodrugs concerning their solubility prediction. Also, the computational model 

based on molecular docking and MD simulation was formed for studying the binding mode of 

substituents with the CYP1A2 and the results affirmed the metabolism of substituent groups 

by the CYP1A2 enzyme. This computational model predicts the solubility of the prodrugs to 

be formed. It will also help the selection of potential candidates which could be predicted by 

the formation of a model that studies the metabolism of the potent substituent groups.  
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CHAPTER 4 

MOLECULAR DOCKING AND SIMULATION STUDIES OF 

PACLITAXEL PRODRUGS WITH CYTOCHROME 3A4 TO 

CORRELATE SOLUBILITY AND BIOAVAILABILITY 

THROUGH PHYSICOCHEMICAL CHARACTERIZATION 

 

SUMMARY 

Prodrugs are biologically inactive drug molecules that may be developed through rational 

drug design with an objective to improve a drug’s pharmaceutical and pharmacokinetic 

properties. Paclitaxel a highly potent anticancer drug, is directed against many cancers like 

breast cancer, ovarian cancer etc. Along with its excellent antitumor activity the drug had a 

major limitation of low water solubility. To overcome this limitation of this nanomolar active 

drug many prodrugs were formed in the past. Though increase in the solubility of the drug 

was obtained but that does not account for its increase in bioavailability. CYP3A4 liver 

enzymes are responsible for the metabolism of fifty percent of the drugs and are a major 

metabolizing enzyme for paclitaxel. Phosphate prodrugs well are known to account the 

insolubility of many drugs and thus increasing their bioavailability also. In this study we 

calculated the ADMET properties of a dataset of twenty phosphate prodrugs of paclitaxel. On 

the basis of reflection of three favourable, ten prodrugs were chosen for further docking 

studies against CYP3A4. Finally, three prodrugs showing unfavourable binding affinities 

were selected for Molecular Dynamics Simulations and from this in-silico study identification 

of all the three selected prodrugs as unstable compared to paclitaxel. The instability of these 

prodrugs showed their lesser interaction with the CYP3A4 and hence contributing more 

towards its bioavailability. Thus the three suggestive prodrugs those were studied in-silico for 

oral bioavailability can be further validated for gastrointestinal cancer and this computational 

study gives an insight for the formation of new paclitaxel prodrugs with increased 

bioavailability. 
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4.1 Introduction 

Paclitaxel a proven anticancer drug its potential is explored and found the drug to be 

nanomolar active for various types of cancers and specifically uses for ovarian, breast, and 

lung cancer [1]. Conventionally, the anti-cancer activity of paclitaxel resides in its ability to 

stabilize microtubules, and therefore arrest cellular proliferation. The mechanism of action of 

paclitaxel is different than other microtubule interacting drugs; it misleads the tumor cell into 

passing the G1/S checkpoint and into another cycle of DNA replication. DNA replication in 

the absence of cytokinesis is called endoreduplication and results in the generation of giant 

cells with 4N, 8N, 16N, and even 32N DNA content, this leads subsequently to delayed 

apoptosis [2]. Also, paclitaxel posses the ability to interact with the tubulin at low 

temperatures and also can interact with the beta tubulin in the absence of Guanosine-5’-

triphosphate (GTP), a microtubule associated protein [3]. Apart from microtubule binding 

paclitaxel induce non-cytoskeletal effects also that could restrain malignancy as well. Such as, 

paclitaxel activates macrophages enhancing their anticancer effector functions. The pairing of 

paclitaxel and a “priming” signal, such as interferon c (IFNc), trigger macrophages in vivo to 

lyse tumor cells [4].    

After establishing the potential of this nanomolar active drug towards various types of cancers 

and its unique mechanism of action to interact with tubulin and able to arrest cells in mitosis 

and later the cell undergoes apoptosis had aroused much interest for further development. 

Despite being nanomolar active against various types of cancers the drug posses a major 

limitation of low aqueous solubility [5]. The chemical nature of drug is highly hydrophobic 

and because of its poor solubility it has to be solubilised in unfriendly carriers such as 

cremophor EL that run the risk of hypersensitivity reactions; such as hyperlipidemia, 

aggregation of erythrocytes, peripheral neuropathy, and abnormal lipoprotein patterns [6]. To 

avoid this hypersensitivity and obtain better clinical use of paclitaxel, developing a new co-

solvent and improving the formulation for paclitaxel delivery systems had became important. 

In addition, for developing better formulation for paclitaxel there were ways to achieve more 

efficient modified paclitaxel. Extensive research had been carried out in the past few years, 

for the formation of new approaches of paclitaxel delivery systems. Different carriers were 

involved for the formation of better delivery systems for paclitaxel like nanoparticle [7], 

micelles [8], liposomes [9], lipid cells [10], β-cyclodextrins [11,12], cubosomes [13], and 

microplate [14]. Along with these drugs formulating techniques there were ways to achieve 

more efficient modified paclitaxel that is prodrug formation. Prodrug design is a widely 
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known molecular modification strategy that aims to optimize the physicochemical, and 

pharmacological properties of drugs to improve their solubility, pharmacokinetic properties 

and decrease the toxicity of the drugs [15,16]. The prodrug formation modes can overcome 

the limitation of paclitaxel’s low aqueous solubility. In the past, many paclitaxel prodrugs 

were formed, that included the formation of diverse small and large molecule prodrugs. Small 

molecule prodrug includes the formation of paclitaxel carbonates, phosphates, silicates, 

proteins, sugars and polymers were employed for the macromolecule prodrug formation [17-

20]. Also, the targeting potential and retention effects (EPR) of paclitaxel could be increased 

with macromolecular prodrugs [21]. Different approaches to build-up paclitaxel prodrugs 

were introduced making it more soluble but the approach of formation of these prodrugs was 

not rational as many undesirable compounds were formed and also all these approaches were 

very tedious to follow, hence QSPR models were developed for the solubility prediction of 

paclitaxel prodrug [22] which may assist in the formation of new prodrugs with better 

solubility. The solubility of the molecule gets increased by the addition of various substituent 

groups; also it affects the bioavailability of the molecule.  

The prodrug design is a widely known molecular modification strategy that aims to optimize 

the physicochemical and pharmacological properties of drugs to improve their solubility and 

pharmacokinetic features. Prodrug approach has been very successful for obtaining the better 

clinical use of paclitaxel, the development of new molecules with increased solubility hence 

with enhanced bioavailability of the drugs; assimilation of those was limited because of low 

aqueous solubility and low permeability. Paclitaxel prodrugs with increasing solubility 

include common hydrophilic groups such as phosphates, carbonates, silicates, etc. Phosphate 

esters offer a way to increase the solubility as well as the bioavailability for many sparingly 

soluble drugs [23]. Phosphate esters are relatively stable than the other esters those are 

commonly used for the formation of prodrugs, as they have low pKa (1-2) [24,25,26] hence 

they can tolerate the acidic conditions prevailing in the stomach, absorbed by gut wall, and 

passes to the liver [27,28].  

The most common liver enzymes, cytochrome P450 are major drug metabolic enzymes that 

are expressed mainly in liver [29]. Different variants of cytochrome P450 are extensively 

responsible for the kinetic delineation of any compound that depends on the phase I 

metabolism [30]. CYP3A4 isoform belongs to a class of heme-thiolate enzymes present in the 

humans, and that are responsible for the metabolism of fifty percent of the compounds [31]. 

CYPs carry out various reactions to accomplish the metabolism of various drugs and drug like 
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molecules such as aromatic oxidation, epoxidation, N-, S-, O-dealkylation, aliphatic 

hydroxylation, and S- N-oxidation [32]. Although, the main P450 enzymes responsible for the 

metabolism of paclitaxel and its prodrugs are CYP2C8 and CYP3A4 but the 6α-

hydroxypaclitaxel a major metabolite formed by CYP2C8 is not the predominant metabolite 

in all individuals, and CYP3A4 that is responsible for the formation of other metabolites C3’-

hydroxypaclitaxel and C2-hydroxypaclitaxel may play a primary role in the metabolism of 

paclitaxel and its prodrugs [33]. 

In the present study, the interaction of paclitaxel, its phosphate prodrugs, and a highly soluble 

prodrug of paclitaxel; isotaxel that is 5000 times more soluble as compared to paclitaxel with 

CYP3A4 is studied in-silico and characterizes the bioavailability of the phosphate prodrugs to 

the intestinal cancerous cells. CYP3A4 plays a major role in drug absorption and it acts as a 

barrier to the prodrugs to reach the intestinal cancerous cells. For the drug to be more 

bioavailable to the intestinal cancerous cells they should not get metabolised in the liver by 

the CYP3A4 and thus reaches to the intestine where they would exhibit their anti-neoplastic 

effects and finally led to cell-death. ADMET properties of a set of twenty paclitaxel 

phosphate prodrugs were calculated using the admetSAR web server. The best way to 

understand the precise interaction pattern of prodrugs with the receptor is molecular docking. 

After the initial screening considering the different pharmacokinetic properties, molecular 

docking of the selected ten phosphate prodrugs those were showing more three more 

favourable pharmacokinetic properties; oral bioavailability, mutagenesis, and CYP3A4 

inhibition was carried out. Molecular dynamics simulations (MDS) of the selected three 

prodrugs those were showing moderate interaction with the CYP3A4 in the docking study 

was performed using Gromacs 5.0. Various criterion like root mean square deviation 

(RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), 

principal component analysis (PCA), and binding free energy were evaluated to study the 

interaction pattern of these prodrugs with the CYP3A4. The unstable complexes of prodrugs 

with CYP3A4 as revealed by the MDS study thus explained the more bioavailability of these 

paclitaxel phosphate prodrugs to the intestinal cancerous cells and thus can reach the site of 

action and subsequently lead to apoptosis. The computational calculation of ADMET 

properties, interaction pattern, and instability studies of paclitaxel phosphate prodrugs 

suggested the potential candidate prodrugs that could be delivered orally and are further 

suggested for effective use against gastrointestinal cancer (GIT). 
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4.2 Materials and Methods  

The step-wise methodology followed for in-silico study of interaction pattern for prodrugs 

and CYP34 and characterizing them to be more bioavailable is described as follow (Figure 

4.1). 

 
Figure 4.1: Pharmacokinetic prediction, molecular docking and molecular dynamics simulation study of 

CYP3A4 with the paclitaxel phosphate prodrugs. 

4.2.1 Protein & paclitaxel phosphate prodrugs data collection and geometry optimization    

A dataset of twenty diverse paclitaxel phosphate prodrugs having solubility better or 

comparable with paclitaxel was collected from literature [17-20]. The initial structures of all 

the prodrugs were drawn in GaussView [34] and the molecular structures were optimized at 

the level of parameterization method 6 (PM6) semi-empirical methods in Gaussian 09 

quantum chemistry software [35].  

Also, the structure of CYP3A4 (PDB ID: 2J0D, 2.75 Å) was taken from RCSB 

(http://www.rcsb.org/). Structurally, CYP3A4 is a homodimer with two identical chains. It 

has a small N-terminal domain that is rich in β-sheet and larger C-terminal domain that is 

comprised of mainly α-helices and contains the active site [36]. The secondary structure of 

enzyme has 268 or 55% amino acid residues engaged in forming α-helices and alone 35 or 7% 

residues are engaged in forming β-sheets [36]. The α-helices follow the P450 naming 

convention that includes the naming of helices in alphabetical designation starting from the 

N-terminus [37]. The structural similarity of CYP3A4 is found to be most common to the 

http://www.rcsb.org/
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enzyme structures of mammalian family 2 P450s [38]. But notable differences between the 

overall structure of CYP3A4 and other family 2 P450s are observed in the regions of helix D 

to H and the helix B to C. These two regions presume different conformations of the enzymes 

of family 2 constantly in response to the identity of bound ligands which illustrate their 

flexibility and structural diversity.  In the CYP3A4, F and G helices that constitutes the upper 

bound of active site are truncated that results in extended unstructured linkers to the mediating 

F’ and G’ helices. The unique Phe cluster of six phenylalanine residues, three from the linker 

region interacts with phenylalanines from helix F’, the B-C region, and helix I is localized in 

the upper region of active site and form the primary residues of peripheral binding region 

[39]. Also, the presence of a hydrophobic region, residues 36-50 in the N-terminal region of 

the globular enzyme is the principal structural deviation of CYP3A4 from other eukaryotic 

CYP450 superfamily enzymes. The hydrophobic region is thought to form the interaction 

region with microsomal membrane along with some parts of F’G’ loop [39]. Chimera 1.13.1 

software [40] was employed for carrying out the minimization of the complete protein 

structure implementing the Amber ff99SB force field. 

4.2.2 Interpretation of CYP3A4 binding site  

The most interesting feature of CYP3A4 is the general size and shape of active-site cavity, 

present adjacent to the heme group. The active site cavities of 2C8 and 3A4 are found to be 

1438 Å3 and 1386 Å3 in volume respectively when cropped at the narrowest constrictions of 

solvent channels [41]. The comparison of active-site volume of CYP3A4 with CYP2C8 was 

performed as both share almost the same cavity volume to oxidize the comparably large 

substrates. Difference in the secondary and tertiary structures of the protein is followed by the 

difference in the shapes of cavities that presumably affect the substrate selectivity and enzyme 

catalysis [41]. The two enzymes differ in the architecture of active-sites as the structure of 

3A4 is much more open in the proximity of heme group and the volume of cavity is 

distributed much more uniformly as compared to the undulating volume of CYP2C8 [41]. 

The structure of CYP3A4 presents a large substrate-binding cavity that is consistent with the 

sizes of substrates that are oxidized by the enzyme such as erythromycin (Molecular weight, 

Mr 734), cyclosporin (Mr 1203), bromocryptine (Mr 654). The Phe cluster present at the roof 

of active-site contributes to the homo cooperativity of the enzyme like multiple molecules of 

testosterone (Mr 288) or progesterone (Mr 314) can possibly be accommodated [41].  The 

protein model indicated (PDB id 2J0D, 2.05 Å) the active site residues in the structure are 

Tyr53, Phe57, Arg106, Phe108, Met114, Arg119, Leu120, Leu210, Leu211, Arg212,  
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Phe213, Asp214, Phe215, Phe220, Val240, Phe241, Ile301, Phe304, Ala305, The309, Ile369, 

Ala370, Arg372, Leu373, Glu374 [39]. The prodrugs of paclitaxel (Mr > 833) were docked in 

the above described active site of the protein model CYP3A4.  

4.2.3 ADMET prediction of paclitaxel phosphate prodrugs 

Estimation of pharmacokinetic properties is an important step in drug discovery process. The 

drugs should exhibit advantageous Absorption, Distribution, Metabolism, Excretion, and 

Toxicity (ADMET) criterion. Well-known in-vitro and in-vivo based computational models 

are used for the estimation of ADMET parameters. admetSAR v2.0 

(http://Immd.ecust.edu/admetsar2) [42], a web-based server was used for carrying out the 

prediction for the pharmacokinetic properties of paclitaxel phosphate prodrugs. Simplified 

Molecular-Input Line Entry System (SMILE) format for all the molecules was provided as 

input to admetSAR 2.0. Various pharmacokinetic properties such as caco-2 cell permeability, 

human intestinal absorption, blood-brain barrier, Pgp substrate/inhibitor, carcinogenicity, 

mutagenicity etc. were predicted by the server (Appendix C, CT1).  

4.2.4 Molecular Docking study 

Pharmacokinetic aspect of the molecules was studied by ADMET properties; from the 

paclitaxel phosphate prodrug dataset ten phosphate prodrugs were selected and were implied 

to molecular docking against CYP3A4 in the above defined active site in AutoDock 4.2.6 

[43]. Also, AutoDock Vina [44] was used for the molecular docking of the selected prodrugs 

to establish the consensus in the docking study. AutoDock uses free energy of docking 

molecules implying 3-dimensional potential grids. AutoDock grid preparation module was 

used for the generation of a 3-dimesional grid box around the predefined active-site residues 

and a grid box of dimensionality X=50, Y=76, and Z=52 grid points including the grid 

spacing of 0.375 Å was generated. AutoDock employs Lamarckian genetic algorithm for 

carrying out molecular docking and uses empirical scoring function for the ranking of docked 

molecules. Protein-ligand binding conformation was used for the calculation of 

intermolecular energy starting from the unbound protein-ligand conformation. All the 

molecules of substituent group dataset were set for docking with the population size of 150, 

number of maximum generations 27,000, maximum evaluations of 2,50,000, with a gene 

mutation rate of 0.02 and crossover rate of 0.8. All the molecules were employed for the 

generation of 100 binding poses for the respective docking. Binding affinity was taken as the 

parameter for determining the docking and the best docked poses. Also, all the selected 

prodrugs were redocked using the fast and efficient AutoDock Vina program. AutoDock Vina 

http://immd.ecust.edu/admetsar2
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used the defined box center around the defined active-site residues. It uses the ‘Iterated Local 

Search global optimizer’ for optimization. The algorithm works in a number of successive 

steps subsists of a mutation and a local optimization, with the acceptance of each step 

according to the metropolis criterion. All the molecules were bestowed for the 9 runs and the 

binding free energy was calculated scoring function that takes into accounts both knowledge-

based potentials and empirical scoring functions.  

4.2.5 Conformation stability analysis  

Selected docked complexes of phosphate prodrugs with CYP3A4 exhibiting less binding 

affinity than paclitaxel were further subjected to MDS for studying the stability of the docked 

complexes. Gromacs v5.1.2 [45], was used for performing the MDS as long as 1 microsecond 

to validate the stability of protein-ligand complexes. ProDrg server [46] was used for 

obtaining the protein and ligand topologies for all the five substituent groups using 

GROMOS96 53a6 forcefield parameters [47]. The initial structures of all the five systems 

were solvated in a cubic box of SPC water model (three point model having three interaction 

sites that corresponds to three atoms of water molecule) [48] and were charge neutralized by 

five chloride ions. The obtained structures were energy minimized for 50,000 steps with 

steepest descent algorithm, pursued by NVT (constant number of particles, volume, and 

temperature) and NPT (constant number of particles, pressure, and temperature) equilibration 

of 0.1 ps, each one using the leap-frog integrator algorithm [49]. The Brendensen thermostat 

[50] algorithm was used to control the simulation temperature, and Parrinello-Rahman 

isotropic pressure coupling [51] was practiced for controlling pressure.  

GROMOS96 53a6 all atom force field [52] was used for the MD simulation for 1 

microsecond time-scale to observe time dependent trajectories of systems in explicit solvent. 

The production MD was set again to time of 0 ps and the entire run was for 1microsecond, 

with coordinates, velocities, energies stored at every 20 ps. The integration time-step was 2 fs, 

treating all atoms explicitly and were coupled with LINCS constraint algorithm for restraining 

hydrogen and heavy atom bonds, the van der Waal cutoff was observed at 0.9 nm, and the 

Verlet cutoff scheme was used with Coloumb, with particle mesh ewald (PME) long range 

electrostatics [53,54]. Initial velocities were allowed on the basis of Maxwell distribution at 

300 K with 1 nm minimum distance enforced in all the three directions within the periodic 

boundary conditions. The root mean square deviation (RMSD), root mean square fluctuation 

(RMSF), radius of gyration (Rg), hydrogen bonds (H-bonds), and solvent accessible surface 

area (SASA) calculations were done using the in-built gmx rms, gmx rmsf, gmx gyration, 
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gmx h_bond and gmx sasa tools, respectively. The final MD trajectories were obtained using 

visual molecular dynamics (VMD) [55] and Chimera v1.13.1 [56] and Origin Pro 6.0 was 

used for plotting the respective graphs. 

4.2.6 Principal Component Analysis 

Projection of first two principal components (PCs) for the docked complexes kept on MD 

simulation for 100 ns was also analysed using the built-in principal component analysis 

(PCA) or essential dynamics method of Gromacs, also eigenvectors, eigenvalues, eigRMSF 

were evaluated. PCA is utilized to analyze the relationship between different conformers on 

the basis of equivalent residues of the conformers/structures. The correlated motions of the 

proteins that majorly define the protein functions were observed by the PC analysis and the 

principal components were grouped according to the protein functions [57]. All the 

translational and rotational movements of the complexes were removed and covariance 

matrices for all the complexes were formed. The following equation was used for the 

computation of elements of the positional covariance matrix C:                                       𝐶𝑖𝑗 = iq( <q i >)(q
j
-<q

j
>)(i,j = 1,2,.. 3N)                                       Eqn 3 

The ith Cα atom was represented by the Cartesian coordinate qij and N being the number of 

atoms. The equilibrated trajectory that was superimposed on a reference structure, overall 

translations and rotations were removed using ‘least-square fit’ method. All the matrices were 

diagonalized adopting the orthogonal co-ordinate transformation matrix Λ to predict the 

remaining eigenvectors and eigenvalues λi. 

                                                  Λ = TCT ij

T                                                                                                          Eqn 4 

In the above equation, eigenvectors corresponds to the direction of relative motion of <q i > 

were represented in the columns. Each eigenvector associated with the eigenvalues 

representing the total mean-square fluctuation of the system along the corresponding 

eigenvector. Eigenvalue corresponding to each in brief, the ensuing principal components 

(orthogonal eigenvectors) characterize the axes of maximal variance for structures 

distribution. Projection of the distribution onto the subspace defined by the best principal 

components concludes in representing the structural dataset in a lower dimension.     

The obtained last 650 ns trajectories were analysed for the calculation of eigenvector and 

eigenvalues using gmx covar and gmx anaeig in-built tools of Gromacs. The free energy of 
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the systems implementing the first two principal components was performed using gmx_sham 

tool [58]. 

4.2.7 Computing MM-PBSA binding free energy  

Molecular Mechanic/Poisson-Boltzman Surface Area (MM-PBSA) method was used for the 

computation of binding free energy of the protein-ligand interactions. g_mmpbsa tool [59] of 

the Gromacs was used for the calculation of binding free energy for the last 100 ns trajectories 

snapshots obtained from MDS, that is an average of three energy terms; potential energy in 

the vacuum, polar-solvation energy and non-polar solvation energy in the case of protein-

ligand binding, the binding energy of the bound system is an average. 

 

4.3 Results and discussion 

The solubility of these prodrugs had increased but the enzymatic actions in the body are also 

important determinant that further determines the bioavailability of the compounds. A set of 

test class that is well-organized was used for providing insight that how a drug behaves in the 

human body. Results were analyzed systematically as explained in further sections. 

4.3.1 Pharmacokinetics analysis 

The ADMET criterion is implied to paclitaxel phosphate prodrug dataset consisting of twenty 

molecules using admetSAR 2.0. Various properties were computed by the server such as 

BBB, HIA, Caco-2 cell permeability, Pgp substrate/inhibitor etc. On the basis favourable 

pharmacokinetic properties oral bioavailability, mutagenesis, and CYP3A4 inhibition ten 

prodrugs from the dataset were selected for further docking studies. 

4.3.2 Molecular Docking studies 

CYP3A4 enzyme act as major metabolic enzymes for the xenobiotics. CYP3A4 metabolize 

fifty percent of the drugs in the body, thus to study the bioavailability of the paclitaxel 

prodrugs we carried out the interaction study of CYP3A4 enzyme that is having the larger 

active site as compared to the other CYPs in the family as the paclitaxel molecule is a large 

molecule and thus so the prodrugs formed were also bulkier. After the first screening of the 

molecules implying ADMET properties, Autodock 4.2.6 was used for the docking of the 

selected ten molecules from dataset against CYP3A4. Considering binding energies of all the 

molecules we choose three prodrugs: 2’ phosphonoxy methyl carbonate paclitaxel, 2’ 

phosphonoxy methyl ether derivative and isotaxel from the ten molecule dataset. Results 

obtained from the docking studies of molecules are presented below (Table 4.1 and Figure 

4.2). Residues in bold represent the hydrogen bond forming residues (Table 4.1). 
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Table 4.1 Docking study result of the selected paclitaxel prodrugs with PM6 optimized geometry against 

CYP3A4 showing the binding affinity and the interacting residues 

S 

No. 

Paclitaxel and 

its Substituent 

groups 

Substituent at 2’ site * 

(structure2-4) 

Binding 

energy by 

AutoDock 

(kJ.mol
-1

) 

Binding 

energy by 

AutoDockVina 

(kJ.mol
-1

) 

Interacting residues 

1 Paclitaxel 

 

 

-50.54 

 
 

-48.28 

Arg 105, Arg 106, Phe 108, 
Ser 119, Arg 212, Phe 213, 
Phe 215, Ile 369, Ala 370, 
Met 371, Arg 372, Leu 373, 
Pro434, Phe 435, Asn 441, 
Cys 442, Gly 481, Leu 482. 

 

2 

 
Isotaxel 

 

 

-32.71 

 
 

-34.72 

Phe 57, Arg 105, Arg 106, 
Phe 108, Ser 119, Arg 212, 
Phe 213, Phe 215, Phe 304, 
Ala 305, Thr 309, Ile 369, 
Ala 370, Met 371, Arg 372, 
Glu 374, Phe 435, Cys 442, 
Gly 481, Leu 482. 

 

3 

 
2’ Phosphonoxy 

methyl ether 
derivative of 

Paclitaxel 

 

 
 
 

-31.67 

 
 
 

-32.63 

Phe 57, Arg 105, Arg 106, 
Phe 108, Ser 119, Ile 120, 
Arg 130, Arg 212, Phe 215, 
Phe 241, Ile 301, Ile 369, 
Ala 370, Met 371,  Leu 373, 
Glu 374, Arg 375, Pro 434, 
Phe 435, Gly 436, Ser 437, 
Arg 440, Asn 441, Cys 442, 
Gly 481, Leu 482, Leu 483. 

 

4 

2’ Phosphonoxy 
methyl 

carbonate 
Paclitaxel 

 

 

-31.50 

 
 

-43.93 

Arg 105, Arg 106, Phe 108, 
Ser 119, Ile 120, Arg 212, 
Phe 215, Ala 305, Thr 309, 
Ile 369, Ala 370, Arg 372, 
Lue 373, Glu 374, Cys 442, 
Ala 448. 

 

The docking results obtained by two different docking algorithms AutoDock and AutoDock 

Vina had shown the consensus among the binding values for the chosen molecules from the 

dataset of phosphate prodrugs. Paclitaxel binds with differing residues of CYP3A4 and made 

hydrogen bonds with Arg212, Ala370, and Cys442 forming complex that gave binding energy 

of -50.54 kJ.mol-1 and -48.28 kJ.mol-1 by AutoDock and AutoDock Vina respectively. The 

complex formed was uphold by some non-polar interplay of Phe 108, Arg130, Gly 481, etc. 

residues with CYP3A4 (Figure 4.2a and Table 4.1). Phosphonoxy methyl carbonate binds 

with various residues of the CYP3A4 and forms hydrogen bonds with Arg106, Glu374, and 

Cys442 with complex giving binding energy of -31.5 Kcal.mol-1and -43.93 kJ.mol-1 by 

AutoDock and AutoDock Vina respectively. The complex was stabilized by various 

hydrophobic interactions also with residues Phe215, Arg372, Leu373 etc. (Figure 4.2b and 

Table 4.1). Similarly phosphonoxy methyl ether derivative of Paclitaxel makes the docking 
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complex with CYP3A4 forming hydrogen bonds with Arg105, Arg106, Ser119, Arg212, 

Glu374 residues and also hydrophobic interactions giving the binding energy of -31.67 

kJ.mol-1 and -32.63 kJ.mol-1 by AutoDock and AutoDock Vina respectively (Figure 4.2c and 

Table 4.1).  The complex of isotaxel with CYP3A4 enzyme giving the binding energy of -

32.71 kJ.mol-1 and -34.72 kJ.mol-1 and by AutoDock and AutoDock Vina respectively 

accompanying the polar interactions of residues Arg212, Phe304, Ala370 and hydrophobic 

interactions with the residues Phe213, Ile369, Met371 etc (Figure 4.2d and Table 4.1).  

 

 

Figure 4.2: Ligand interaction diagrams. [a] Paclitaxel with CYP3A4; [b] 2’ Phosphonoxy methyl carbonate 

paclitaxel with CYP3A4; [c] 2’ Phosphonoxy methyl ether derivative of paclitaxel with CYP3A4 [d] Isotaxel 

with CYP3A4. 
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4.3.3 Molecular Dynamics Simulation 

Molecular dynamics of the docked complex is a computerized method for studying the 

physical movements of the atoms while binding [60].  Five molecular dynamics simulation 

(MDS) for the four docked complexes, and one apo-protein for 1 microsecond was carried 

out. Equilibration state for all the systems had obtained and the trajectories were observed for 

RMSF, Rg and SASA H-bonds for the last 350 ns equilibrated trajectories including last 100 

ns binding free energy analysis. 

 

Root mean square deviation (RMSD) 

Dynamic stability of all the systems is described by the RMSD; it calculates the changes in 

the protein’s backbone framework during the simulation time scale. All the five systems were 

occupied for the calculation of RMSD values and the trajectories of all the systems were 

observed after 650 ns as shown in Figure 4.3a. Average values of RMSD for apo-CYP3A4, 

CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl carbonate, CYP3A4-2’ Phosphonoxy 

methyl ether derivative of paclitaxel, and CYP3A4-Isotaxel were 0.48880 nm, 0.4648 nm, 

0.4417 nm, 0.4513 nm, and 0.5125 nm respectively. RMSD pattern observed for the prodrugs 

is more comparable to the apo-protein and paclitaxel. RMSD of the CYP3A4-isotaxel is 

highly deviating from the CYP3A4-Paclitaxel complex thus representing that the formed 

prodrug is forming less stable complexe with CYP3A4 as compared to paclitaxel. CYP3A4 is 

a metabolizing enzyme and the formed prodrugs are representing the less stability than the 

paclitaxel molecule hence the result obtained from computational study proposes that the 

prodrugs are more bioavailable than paclitaxel as they may not get metabolized in the liver 

before reaching the site of action [61,62]. 

RMSF Fluctuation 

Residue mobility calculation for the concluding 350 ns equilibrated trajectory was done after 

the RMSD calculation as illustrated in Figure 4.3b. The average RMSF values obtained for 

apo-CYP3A4, CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl carbonate, CYP3A4-2’ 

Phosphonoxy methyl ether derivative of paclitaxel and CYP3A4-Isotaxel were 0.1656 nm, 

0.1270 nm, 0.1410 nm, 0.1352 nm and 0.2786 nm respectively. Paclitaxel showed good 

RMSF value and the prodrug isotaxel showed highest RMSF value amongst all including 

paclitaxel. Other prodrugs also showed higher RMSF values than the CYP3A4-Paclitaxel 

complex. It had been observed that the prodrugs were not forming well stable complex than 

paclitaxel and inducing the highest amount of fluctuation [61,62]. 
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Figure 4.3: Molecular dynamics simulation. (a) RMSD of the Cα backbone of paclitaxel prodrugs over the 1000 

ns MDS at 300 K, (b) RMSF of residues of paclitaxel prodrugs during MDS. In all panels the color code is: 

CYP3A4 (black) and the ligands CYP3A4-Paclitaxel (red), CYP3A4-2’-Phosphonoxy methyl carbonate 

paclitaxel (yellow), CYP3A4-2’-Phosphonoxy methyl ether derivative (blue), and CYP3A4-Isotaxel (magenta). 

Hydrogen Bonds 

Protein-ligand stability is majorly defined by the hydrogen bonds as they contribute the 

transient interactions to the complex formation, which provide stability to the protein-ligand 

complex. In the current study, we had calculated the number of hydrogen bonds formed by 

the complexes while binding. The number of hydrogen bonds formed in the complexes in the 

time scale is plotted in Figure 4.4a. Moderately the number of hydrogen bonds formed for 

CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl carbonate, CYP3A4- 2’ Phosphonoxy 

methyl ether derivative of paclitaxel and CYP3A4-Isotaxel were 0-8, 0-3, 0-4 and 0-2 

respectively. CYP3A4-Isotaxel shows the least number of hydrogen bonds as comparable to 

the CYP3A4-Paclitaxel complex and other prodrugs also showed less number of hydrogen 

bond formation in the complex. 

Compactness Analysis 

Rg factor is used to define the compactness of the protein-ligand complexes all along the 

simulation time-scale. It is a distance measure between the center of mass of the protein atoms 

with its terminal atoms in a time frame. In general, the compact protein shows a lesser amount 

of variation in the gyration value while the diffused structure shows higher Rg value. In the 

current study, we plotted the Rg values vs. time for all the complexes (Figure 4.4b). The 

average Rg values obtained for CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl 

carbonate, CYP3A4-2’ Phosphonoxy methyl ether derivative of paclitaxel and CYP3A4-

Isotaxel were 22.568, 22.616, 22.776 and 23.318 respectively. All the prodrugs showed Rg 
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values higher than the apo-protein. It indicates that the prodrug complexes are less stable as 

compared to the paclitaxel. On this basis, we can infer that the modelling study suggest the 

prodrugs to be more bioavailable than the paclitaxel molecule which can be further validated 

experimentally. As CYP3A4 is a major metabolizing enzyme and the formed prodrugs were 

found to be less stable than the paclitaxel molecule in the computational studies hence the 

result suggests that the prodrugs were more bioavailable than paclitaxel as they may not get 

metabolized in the liver before reaching the site of action [61,62]. 

 
Figure 4.4: Molecular dynamics simulation. (a) Number of hydrogen bonds interaction between protein and 

ligand during simulation time scale for paclitaxel and other ligand complexes, (b) Rg vs time of  paclitaxel 

prodrugs during MDS. In all panels the color code is: CYP3A4 (black) and the ligands CYP3A4-Paclitaxel (red), 

CYP3A4-2’-Phosphonoxy methyl carbonate paclitaxel (yellow), CYP3A4-2’-Phosphonoxy methyl ether 

derivative (blue), CYP3A4-Isotaxel (magenta). 

Solvent accessible surface area 

Solvation free energy of a protein is the result of interaction among polar and non-polar 

residues of the protein. The SASA is that surface area of the protein which is monitored by 

the solvent molecule’s probe when it seeks the Van der Waals surface of the protein. 

Hydrophobic residues are most responsible for the increment of the SASA value. The SASA 

value of each complex was calculated from the last 350 ns equilibrated trajectory and shown 

in Figure 4.5a. We got the average SASA values of 213.0139, 220.0228.54, 222.05273 and 

230.5543 nm2 for CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl carbonate, 

CYP3A4-2’ Phosphonoxy methyl ether derivative of paclitaxel and CYP3A4-Isotaxel 

respectively. The average SASA value for all the prodrugs which is higher than the paclitaxel 

showed that all the prodrugs are providing the conformational instability while binding of 

ligand. All the prodrugs showing more SASA values compared to the paclitaxel, representing 
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that all the prodrugs producing instability on binding to the CYP3A4 thus proposing them to 

be more bioavailable [61,62]. 

An important parameter, residue SASA value that give an understanding of conformational 

change per residue contribution. A graph had been plotted between residues and SASA value 

(Figure 4.5b). The average residue SASA values gained for apo-CYP3A4, CYP3A4-

Paclitaxel, CYP3A4-2’ Phosphonoxy methyl carbonate, CYP3A4- 2’ Phosphonoxy methyl 

ether derivative of paclitaxel and CYP3A4-Isotaxel were 0.4728, 0.4630, 0.4783, 0.4837 and 

0.5012 nm2 respectively. All the prodrugs showing more residual SASA as compared to the 

paclitaxel, thus there was reflection of instability by all the prodrugs on binding to the 

CYP3A4 [61,62].  

 
Figure 4.5 Solvent accessible surface area. (a) The SASA plot for paclitaxel and all other complexes in water 

with respect to time, (b) The Residue SASA plot for paclitaxel and other ligand complexes. In all panels, the 

color code is CYP3A4 (black) and the ligands CYP3A4-Paclitaxel (red), CYP3A4-2’-Phosphonoxy methyl 

carbonate paclitaxel (yellow), CYP3A4-2’ Phosphonoxy methyl ether derivative (blue), CYP3A4-Isotaxel 

(magenta). 

Principal Component Analysis 

In the MDS, the principal component analysis predicts the correlated motion of the 

complexes, in the calculation of the Principal Components (PCs) the overall motions in the 

proteins is described by a few key eigenvectors. Hence in the study, we had plotted the 

eigenvalues with the eigenvectors for the 50 eigenvectors in Figure 4.6a.  The first five 

eigenvectors of apo-CYP3A4, CYP3A4-Paclitaxel, CYP3A4-2’ Phosphonoxy methyl 

carbonate, CYP3A4- 2’ Phosphonoxy methyl ether derivative of paclitaxel and CYP3A4-

Isotaxel explained 63.15%, 64.91%, 61.85%, 59.47%, 64.53% of the motions respectively for 

the last 350 ns equilibrated trajectory. It was observed that all the prodrugs showed 
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comparable motions as compared to the paclitaxel. Hence, the modelled results are suggesting 

the instability of prodrugs towards CYP3A4.  

As previously stated, we had taken 50 eigenvectors for predicting the correlated motion of the 

complexes and had observed that the first five eigenvectors are the key for studying overall 

protein dynamics. The first two eigenvectors were plotted opposite to each other in a phase 

space where each one of the spectrum represents the correlated motions (Figure 4.6b). The 

denser cluster characterizes the stability of the complex while the dispersed cluster represents 

the less stable cluster. It was seen from the results obtained that CYP3A4-Isotaxel showed the 

diffused cluster among all the other prodrugs also the other two prodrugs are less stable as 

compared to the CYP3A4-Paclitaxel complex. It was also in agreement with the above 

described results [61,62]. 

 
Figure 4.6 Principal component analysis. (a) The plot of eigenvalues vs. eigenvector index. First 50 eigenvectors 

were considered (B) Projection of the motion of the protein in phase space along the PC1 and PC2, In all panels 

the color code is: CYP3A4 (black) and the ligands CYP3A4-Paclitaxel (red), CYP3A4-2’Phosphonoxy methyl 

carbonate (yellow), CYP3A4-2’Phosphonoxy methyl ether derivative (blue), CYP3A4-Isotaxel (magenta). 

Gibbs free energy landscape 

The Gibbs free energy landscape can serve to give the information for the binding of a ligand 

to the protein. For PC1 and PC2 it was calculated to read the conformational state changes 

during ligand binding, Figure 4.7. The free energy values were ranged from 0 to7.87, 0 to 

8.17, 0 to 8.02, 0 to 8.43 and 0 to 10.1 kj.mol-1 for apo-CYP3A4, CYP3A4-Paclitaxel, 

CYP3A4-2’ Phosphonoxy methyl carbonate, CYP3A4-2’ Phosphonoxy methyl ether 

derivative of paclitaxel and CYP3A4-Isotaxel respectively. The bluer region represents the 

high energy state structure. The apo-protein reflects bluer region as compared to all the 

prodrugs while CYP3A4-Isotaxel showed the energy range from 0 to 10.1kj.mol-1 that is 
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highest among all the prodrugs. It had been concluded from the above results that all the 

prodrugs are energetically unfavourable [61,62]. 

 

Figure 4.7: Gibbs free energy landscape. The free energy landscape calculated for PC1 and PC2.  In the figure, 

(a) CYP3A4, (b) CYP3A4-Paclitaxel, (c) CYP3A4-2’ Phosphonoxy methyl carbonate paclitaxel , (d) CYP3A4-

2’ Phosphonoxy methyl ether derivative, (e) CYP3A4-Isotaxel. 

4.3.3 MMPBSA binding free energy analysis 

The binding ability of the ligands to the protein is assessed with the help of binding free 

energy calculation which is the sum of non-bonded interaction energies of the complex. 

MMPBSA tool [59] that is directed by the Gromacs, was adopted for the calculation of 

binding free energy. All the binding free energies of the complexes are summarized in Table 

2, Here we had concluded that all the prodrugs were showing comparable binding energy to 

the paclitaxel. Isotaxel showed the binding energy relatively less than paclitaxel. Hence this 

prodrug is most favorable with respect to the pharmacology of the compound and is most 

bioavailable than the other prodrugs, however other two prodrugs were also showing 

respectively good bioavailability as depicted from Table 2.  
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Table 4.2: Table represents the Van der Waals, electrostatic, polar solvation, SASA and binding energy in 

kJ.mol-1 for control compound and prodrugs 

S. No Compound Van der Waals 

energy 
Electrostatic 

Energy 
Polar solvation 

energy 
SASA energy Binding energy 

1  
Paclitaxel 

-426.88 ± 12.82 -35.59 ± 5.46 234.42 ± 14.49 -35.89 ± 1.18 -263.94 ± 15.94 

2 Phosphonoxy methyl 
carbonate Paclitaxel 

-439.82 ± 18.86 -60.11 ± 14.13 256.37 ± 22.76 -37.75 ± 1.67 -281. 39 ± 22.82 

3 2’-Phosphonoxy 
methyl ether 

derivative 

 
-451.64 ± 16.89 

 
-25.27 ± 7.82 

 
160.77 ± 11.89 

 
-39.22 ± 1.60 

 
-355.36 ± 16.50 

4  
Isotaxel 

-346.18 ± 15.28 -25.02 ± 6.93 151.55 ± 15.81 -37.72 ± 1.87 -257.37 ± 13.72 

 

Molecular docking and dynamics studies of paclitaxel prodrugs with CYP3A4 for correlating 

bioavailability was done. Various parameters like RMSD, RMSF, Rg, SASA, PCA and 

binding free energy were analyzed for all the complexes using the Gromacs inbuilt tools and 

all the results obtained by the in-silico studies were in good opinion and are in agreement that 

the bioavailability of all the three paclitaxel prodrugs is more than the paclitaxel which can 

further be validated using the biochemical assays and animal models. Solubility and 

bioavailability could be achieved by careful selection followed by in vitro and in vivo 

evaluation of the prodrug. 

4.4 Conclusion  

Oral prodrugs should have high chemical stability, provide improved solubility, permeability, 

and quantitatively convert to parent drug quickly to minimize unwanted metabolism and 

maximize drug exposure. Paclitaxel a proven anticancer drug but with limitations for its 

solubility and finally bioavailability was studied through QSPR strategies and other 

computational investigations. Increase in solubility accounts for the bioavailability of the 

drug. The bioavailability of the drug is also turn to the interaction of the prodrugs with the 

human body enzymes. CYP3A4 which is a metabolizing enzyme accounts for the metabolism 

of the drugs and is responsible for the bioavailability of the prodrugs. The prodrugs must not 

be broken into the parent drug and the group that is added to it before reaching to the site of 

action. Here in our current study, we provided a docking and simulation-based model for the 

bioavailability prediction of the prodrugs. A series of in-silico studies on the prodrugs of the 

Paclitaxel for increasing the bioavailability of the molecules were performed. The results 

obtained from the docking and simulation studies favored that the isotaxel molecule which 
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had solubility 5000 times more than the paclitaxel is exhibiting good bioavailability, as it is 

showing an unstable complex with the CYP3A4. Results for other two molecules were also 

promising and all three molecules are suggested for the improved bioavailability. It is thus 

expected that the computational docking and simulation studies for the prediction of 

bioavailability of the prodrugs will be a great support for the synthetic chemist for the 

formation of new paclitaxel prodrugs. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

  

5.1 Conclusion  

Cancer is one of the leading causes of death now-a-days globally. Cancer cells are 

characterized by uncontrolled growth, invasive intrusion, destruction of adjacent tissues and 

spread to other body locations via blood and/or lymph. This disease may affect the people of 

all the ages but risk for all the ages for various cancers increases throughout the world. 

Cancer statistics, as reported by the Globocan 2018 report that this devastating disease affects 

the whole world population and all types of cancers have been reported effecting the males 

and female population with apparently different kinds of tumors. Since healthcare providers 

has gained remarkable knowledge in this field and are searching for better ways to stop the 

growth of tumor cells and the cure for this devastating disease. Although many advances has 

been achieved in treatment, prevention of reoccurrence, and obtaining the palliative care for a 

variety of cancers. Among all the treatment regimens, chemotherapy is widely used for the 

treatment of cancer. Chemotherapy is the general term for any treatment involving the use of 

chemical agents to stop cancer cells from growing. These chemical agents can work by any of 

the mechanisms such as interfering with DNA metabolism, cell division or signal 

transduction.  

Paclitaxel, one of the most interesting anticancer drugs is being used in chemotherapy from 

years. This natural product drug with unique mechanism of action and dramatic anti-cancer 

activity is a complex diterpenoid with specific structural features vital for its activity. 

Paclitaxel targets a variety of tumors including ovarian, breast, lung, colon, and also 

melanoma and lymphoma. The major limitation with this nanomolar active drug is its 

extremely low solubility that prevented its entrance into the clinic widely. Many efforts in the 

past were made to increase the solubility of the drug while accommodating the anti-cancer 

activity of the molecule. However, structural modifications and pharmaceutical formulations 

were the main approaches for obtaining the better clinical properties of the molecule, also 

formation of surfactants, emulsions, liposomes, cyclodextrins, and polymers were done so the 

solubility of paclitaxel can be improved.  

Aqueous solubility that tends to be one of the most imperative physicochemical properties is 

one of the biological factors that affect the bioavailability of a biological molecule hence 
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imparting a risk in the potent drug formulation.
 
Taxol

 
that is the commercial formulation of 

paclitaxel, constitutes two components; a surfactant, cremophor EL (polyethoxylated castor 

oil) and water-free ethanol. Both these excipients are used for enhancing the solubility of 

paclitaxel and the prepared formulation is given intravenously to the patients. Along with that 

cremophor EL imparts many clinical side effects such as hyperlipidmia, anaphylactoid 

hypersensitive reactions, aggregation of erythrocytes, etc. Hence the clinical application of 

paclitaxel has been widely affected by its side-effects including that is occurred due to 

cremophor EL. It has been reported that this type of hypersensitivity reactions is noted in all 

the drugs those use cremophor EL as a formulation vehicle. Therefore, an increased interest 

in developing new formulations of paclitaxel has elevated the need to understand the basic 

physicochemical properties of paclitaxel.  

Prodrug design is a widely known molecular modification strategy that aims to optimize the 

physicochemical and pharmacological properties of drugs to improve their solubility, 

pharmacokinetic features, and decrease their toxicity. The chemical structure of paclitaxel has 

a bulky, composed and fused ring together with number of hydrophobic substituent groups 

making it highly lipophillic in nature. As for prodrug strategy, understanding the structure 

and activity relationship is the first step. Pioneer work showed that the central part of 

paclitaxel is rigid to a change in structure, while its side chain tail can be flexible. Structure 

activity relationship (SAR) studies explains 2’ and/or 7’ hydroxyl groups are the successful 

distinctive sites for making an addition to paclitaxel structure. Paclitaxel prodrug formation to 

increase the solubility of the drug had been seeked for obtaining its effective application. 

Many hydrophilic substituent groups like carboxylic acids, phosphates, sugar derivatives etc. 

were added to paclitaxel structure for the formation of prodrugs with increased aqueous 

solubility. However, the approach of formation of these prodrugs was not rational as it is very 

tedious and in many undesirable compounds was also synthesized. 

 

Figure 5.1: Structure of paclitaxel. 2’ and 7’ hydroxyl groups are the potential sites for adding hydrophilic 

groups to make prodrugs with better solubility. 
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Theoretical models such as Quantitative structure property-relationship (QSPR) models and 

data mining methods are efficient techniques that correlate molecular characteristics with 

physicochemical properties of molecules. However, the availability of physicochemical 

parameters for all molecules is difficult. Molecular descriptors determined from these 

structures were explored for the development of QSPR models. A QSPR model can provide a 

set of predictors for any molecular property using the structure of the molecule. Thus 

availability of solubility data for prodrugs of paclitaxel allows lead to develop the QSPR 

models for the solubility prediction of paclitaxel prodrugs and thus guide in the rational 

formation of more potent prodrugs of paclitaxel. In the study, a QSPR strategy has been 

synthesised for the solubility prediction using a small dataset implementing computational 

techniques that would be cost- and time- effective to screen a vast number of structural 

parameters and identification of structural descriptors determining the solubility of prodrugs.  

After establishing the fact, that poor solubility is a major bottleneck for this highly active 

drug and its prodrugs (derivatives), the current study emphasizes the formation of a robust 

QSPR model using small solubility data utilizing 22 paclitaxel prodrugs dataset. The data set 

used for QSPR model development in this study consists of previously reported 22 paclitaxel 

prodrug with different substitution on the 2’-OH and 7’-OH of paclitaxel structure. Each of 

these compounds had associated experimentally determined solubility. For the formation of 

effective QSPR strategy the geometry optimization, descriptor extraction, descriptor 

selection, development of QSPR model, and validation was performed in stepwise and 

validated manner thus establishing a strategy for the formation of a successful QSPR model 

for solubility prediction. Geometry optimization of prodrugs was done implementing two 

different methods such as PM6 and AM1 were implemented to determine the optimized 

molecular geometries of prodrugs using Gaussian 09 quantum chemistry software. Global 

energy minima of each structure were verified by analyzing vibrational frequencies. These 

minimized structures were eventually employed for the extraction of Dragon 7 descriptors; 

thus obtaining 5250 descriptors for each molecule. The descriptors were classified in three 

descriptor classes; 1D, 2D, 3D. There are various descriptor groups such as 2D 

autocorrelation, CATS_3D, GETAWAY, WHIM, 3D-Morse etc. Each descriptor group is 

divided into eight independent subgroups on the basis of co-relation and covariance. Then on 

each subgroup, AIC and VIF multi-colinearity indicators were applied for the selection of 

independent descriptors (p-value < 0.05). For the model formation from the selected 

descriptors “Non-linear multiple regression analysis” was performed and the models were 

cross validated and to detect the chance correlation yRandomization was performed.  
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Some descriptor values are positive and some are negative that indicated that the extracted 

molecular descriptors with positive values vary linearly with log (ely) (logarithm of 

solubility) whereas others (negative descriptors values) vary exponentially with log (ely). 

Therefore, the following regression equation (Eqn. 1) was proposed.                                        log(𝑒𝑙𝑦) = 𝑙𝑜𝑔𝛽0 +  𝛽𝑝𝑙𝑜𝑔𝑋𝑝 +  𝛽𝑛𝑋𝑛                   …Eqn 1 

where logβ0 is a constant, βp is the coefficient of positively valued descriptors, logXp is the 

logarithm of descriptor value, βn is the coefficient of negatively valued descriptor, and Xn is 

the negative descriptor value. 

Rational QSPR models with equitable regression and correlation coefficients were 

determined for AM1 and PM6 geometry optimized datasets with R
2
&Q

2 
values 0.87&0.86 

and 0.86&0.83 respectively. Moreover yRandomization results indicated the statistical 

significance of these models. The QSPR models related to solubility are based on different 

methodologies with diverse datasets. Results of the current study are comparable to earlier 

reported QSPR solubility models. As compared to other methods the performance of formed 

QSPR models is optimal with 4 and 5 descriptors. This objective concludes in the formation 

of an effective pipeline for the descriptor selection and formation of QSPR models with high 

statistical standards. 

 

Figure 5.2: QSPR pipeline (QSPR-sPL) 
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Being poorly soluble, the bioavailability for paclitaxel remains very low. Hence opportunities 

must be explored better for the formation of more potent prodrugs could be formed. This led 

us to develop QSPRs which guided us in-silico in designing more potent prodrugs. Also our 

curiosity was raised to look into the precise hydrophilic groups that were incorporated in the 

structure for the formation of prodrugs. Understanding of molecular structure of paclitaxel 

revealed some important sites that would be important to improve the solubility of prodrugs 

and thus towards bioavailability.  

Paclitaxel chemical structure includes a bulky, composed, and fused ring along with a 

number of hydrophobic substituent which makes its chemical nature highly lipophillic. 

Several prodrugs of paclitaxel were synthesized by the addition of hydrophilic substituent 

groups such as phosphates, carboxylic acids, sugar derivatives etc. Substituent groups that are 

contributing significantly towards solubility are difficult to interpret, while the descriptors 

derived from the substituent's molecular structures and subsequently the formed QSPR model 

will be easier to interpret. The metabolism of the substituent groups would be more 

meaningful in the modelling of new prodrugs. The kinetic description of the substituent 

groups would depend on the liver metabolism involving CYPs. CYPs form the extensive 

heme-thiolate protein family consisting of sixty different human isoforms that metabolizes 

ninety percent of the xenobiotics.  

The best way to understand the precise interaction pattern of substituent groups with receptor 

is molecular docking and molecular dynamics simulation (MDS) study. Thus a docking and 

MDS study based model on the substituent group dataset, depicting the hydrophilic groups 

that are more favourable for the formation of paclitaxel prodrugs was performed. All the 

different isoforms of CYPs were subjected to docking with the substituent group dataset but 

the most favourable results were obtained from the cytochrome 1A2 (CYP1A2). In the 

objective, QSPR modelling, docking, and MDS based model is developed that provide a 

better view of the substituent groups those would be added to the paclitaxel molecule for the 

formation of better soluble prodrugs and also further get metabolised in the human body. 

Descriptor selection was done using the QSPR pipeline (QSPR-sPL) described in the first 

objective. Development of consistent and optimal QSPR models was done by formation of 

QSPR model by combining calculated descriptors from each group those were showing 

reasonable R
2
 and Q

2
. The descriptors were selected and combined (R

2
 & Q

2
) till the highest 

accuracy model is obtained for both the PM6 and AM1 geometry optimized datasets. 

yRandomization for the detection of chance correlation is done at each step using 

DTC_yrandomization program. Eight new QSPR models based on the fundamentals of 
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aqueous solubility and optimization of descriptor space from the paclitaxel prodrugs dataset 

and also from the substructure dataset which were optimized at both AM1- and PM6 

geometry levels with good statistics were obtained.  

Table 5.1: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models for 

paclitaxel prodrugs and substructures with PM6 and AM1 optimized geometry dataset 

S. 

No. 

Descriptor 

Group 

Descriptor 

selection 

algorithm 

AM1 optimized geometry dataset PM6 optimized geometry dataset 

   No. of 

descriptors 

R2\*R2
yrand Q2\*Q2

yrand RMSE No. of 

descriptors 

R2\*R2
yrand Q2\*Q2

yrand RMSE 

1 Paclitaxel 

prodrugs 

AIC & VIF 

Function 

21 (12) 0.78\0.13 0.60\-0.31 1.55 16 (10) 0.80\0.14 0.69\-0.20 1.46 

2 Substituent 

groups 

AIC & VIF 

Function 

8 (8) 0.82\0.16 0.76\-0.21 1.33 9 (9) 0.93\0.17 0.83\-0.26 0.55 

3 Paclitaxel 

prodrugs 

MATLAB 

‘Stepwise 

fit’ 

9 (9) 0.85\0.10 0.79\-0.18 1.02 16 (7) 0.82\0.08 0.79\-0.14 1.40 

4 Substituent 

groups 

MATLAB 

‘Stepwise 

fit’ 

7 (6) 0.83\0.10 0.67\-0.30 1.2 16 (13) 0.88\0.26 0.83\-2.2 1.11 

 

The two methods mentioned above could provide consistently better results based on the 

multi-way comparison and are hereby suggesting the quasi-mixture descriptors also. It is 

based on the theory of 11 basic tetraatomic fragments with connectivity and composition for 

the substituent group dataset. For all the substituent molecules, the quasi-mixture simplex 

representation of molecular structure (SiRMS) descriptors was calculated. The results 

obtained from the ‘quasi-mixture’ descriptors for the specific validation of substituent group 

dataset also validated the effectiveness of the proposed QSPR models. The study also 

incorporates the metabolic study of substituent group dataset in the human body. The 

favourable results obtained by various structural parameters like RMSD, RMSF, Rg, H-bond, 

and Principal Component Analysis (PCA) were evaluated for the stability studies of CYP1A2 

enzyme and selected substituent groups. This approach will be useful for the medicinal 

chemists to improve the solubility profile of the future prodrugs by suggesting the structural 

modifications in the molecule. 

The prodrug approach has been very successful in last decade for enhancing the development 

of new molecules to enhance oral bioavailability of drugs whose assimilation is limited due to 

low aqueous solubility and permeability. Prodrugs with increasing solubility include common 
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hydrophilic groups such as phosphates, carbonates and silicates etc. Phosphate prodrugs show 

prominent increase in solubility in paclitaxel. Also, the phosphate prodrugs have low pKa (1-

2). 

In the last objective, interaction of CYP3A4 with paclitaxel and its phosphate prodrugs is 

studied in-silico to characterize the bioavailability of the prodrugs for its oral usage. In this 

study, the interaction of paclitaxel, its phosphate prodrugs, and a highly soluble prodrug of 

paclitaxel, isotaxel that is 5000 times more soluble as compared to paclitaxel with CYP3A4 is 

studied in-silico and characterizes the bioavailability of the phosphate prodrugs to the 

intestinal cancerous cells. CYP3A4 plays a major role in drug absorption and it acts as a 

barrier to the prodrugs to reach the intestinal cancerous cells. For the drugs to be more 

bioavailable to the intestinal cancerous cells they should not get metabolised in the liver by 

the CYP3A4 and thus reaches to the intestine where they would exhibit their anti-neoplastic 

effects and finally led to cell-death. 

ADMET properties of a set of twenty paclitaxel phosphate prodrugs were calculated using 

the admetSAR web server. After the initial screening considering the different 

pharmacokinetic properties, molecular docking of the selected ten phosphate prodrugs those 

were showing more favourable pharmacokinetic properties was carried out. Molecular 

dynamics study (MDS) of the selected three prodrugs those were showing moderate 

interaction with the CYP3A4 was performed at 1 microsecond. Various criterions like 

RMSD, RMSF, SASA, PCA, and free energy landscape were evaluated to study the 

interaction pattern of these prodrugs with the CYP3A4. Also, MM-PBSA binding free energy 

is calculated and results showed the average binding of three phosphate prodrugs with 

CYP3A4. The unstable complexes of prodrugs with CYP3A4 as revealed by the MDS study 

thus explained the more bioavailability of these paclitaxel phosphate prodrugs to the 

intestinal cancerous cells and thus can reach the site of action and subsequently lead to 

apoptosis. The computational calculation of ADMET properties, interaction, and instability 

studies of paclitaxel phosphate prodrugs suggested the potential candidate prodrugs that 

could be delivered orally and are further suggested for effective use against gastrointestinal 

cancer (GIT). 

5.2 Future prospects: 

The QSPR strategy for the solubility prediction can be further sophisticated using the more 

exhaustive double cross-validation techniques. Also, the QSPRs formed for the solubility 

prediction of paclitaxel prodrugs could be more refined by using proteochemometric 
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techniques. The phosphate prodrugs those were studied in-silico for the bioavailability 

analysis can be further experimentally validated. The data generated in this research work 

presents a compelling evidence for further preclinical and clinical evaluation. Thus the future 

holds promises for the better and more efficient prodrugs with not only increased solubility 

but also for the oral bioavailability of paclitaxel for more specific cancer types. It is 

anticipated that the proposed models and generated computational information will be of 

utmost use to the scientific community for its experimental validations and further 

dissemination. 
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APPENDIX A 

A.1 Prodrug molecules of Paclitaxel incorporated for quantitative structure-property 

relationship (QSPR) model development. 

Various sites of Paclitaxel molecule which facilitate the synthesis of different prodrugs with 

better solubility (Figure A.1). 

 

Figure A.1: Structure of Paclitaxel with 2’, 7’, 9’ and 10’ sites which assist to make prodrugs with better 

solubility. 

Twenty two Paclitaxel prodrugs having either better or comparable solubility to Paclitaxel 

were collected from literature. The details about the prodrugs and their solubility are provided 

in table A.1. 

Table A.1: Prodrugs of Paclitaxel included for QSPR model development 

S. No Compound 

Name 

Solubility 

(g/ml) 

Substituent 

2’ 7’ 

1.   

2’-
Ethylcarbonat

e Paclitaxel 

 

0.00025 

 

 

H 

2.   

Ethylene 

glycol 

Paclitaxel 

 

 

1.2 

 

 

H 

9’ 7’ 

2’ 

10’ 
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3.   

 

Phosphate 

derivative of 

2’ ethoxy 

cabonyl 

Paclitaxel 

 

 

 

5 

 

 

 

 

H 

4.   

Phosphonic 

acid 

diphosphate 

derivative of 

adenine 

containing 

butenolide 

Paclitaxel 

 

 

 

0.042 

 

 

 

 

H 

5.   

2’ Malyl 

Paclitaxel 

 

0.2 

 

 

H 

6.   

 

7’ Malyl 

Paclitaxel 

 

 

0.5 

 

H 

 

7.   

2’-7’ Malyl 

Paclitaxel 

 

0.3 

  

8.   

 

Paclitaxel-2’-
adipic acid 

 

 

0.40625 

 

 

 

H 

9.   

 

Paclitaxel-2’-
adipoyl 

glucose 

 

 

 

0.0145 

 

 

 

H 
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10.   

 

β–
Glucouronylca

rbamte 

prodrug of 

Paclitaxel 

 

 

 

0.5 

 

 

 

H 

11.  
 

Protaxols 

 

0.35 

 

 

H 

12.  
 

Protaxols 

 

0.46 

 

H 

 

13.  
 

Protaxols 

 

0.84 

 

 

H 

14.  
 

 

Ethoxy 

carbonyl 

derivative of 

Paclitaxel 

 

 

 

0.000053 

 

 

 

H 

15.  
 

 

Ethoxy 

carbonyl 

derivative of 

Paclitaxel 

 

 

0.000104 

 

 

 

H 

16.  
 

 

2’-O-Succinyl 

Paclitaxel 

 

 

0.000137 

 

 

 

H 

17.  
 

Protaxols 

 

1.2 

 

 

H 
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18.  
 

 

Protaxols 

 

0.1 

 

 

H 

19.  
 

 

Protaxols 

 

 

0.1 

 

 

 

H 

20.  
 

 

Protaxols 

 

 

0.1 

 

 

H 

21.  
 

Protaxols 

 

0.5 

  

      22. 
 

Taxol-2’-
methylpyridini

um acetate 

 

1.504 

 

 

H 

 

A.2 Number of Descriptors in each group provided by Dragon7 Software 

The descriptors extracted from Dragon7 software form thirty groups (Table A.2). These 

descriptors are used for QSPR models development by using the statistical methods. 

Table A.2:  Descriptor groups extracted from Dragon 7 

S. No. Descriptor Group Class No. of Descriptors 

1 Constitutional 

Indices 

1 D 47 

2 Ring descriptors 1 D 32 

3 Topological Indices 2 D 75 

4 Walk and path 

counts 

2 D 46 

5 Connectivity 

Indices 

2 D 37 

6 Information Indices 1 D 50 

7 2D matrix-based 

descriptors 

2 D 607 

8 2D Autocorrelations 2 D 213 
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9 Burden eigen values 2 D 96 

10 P_VSA-like 

descriptors 

2 D 55 

11 ETA indices 2 D 23 

12 Edge adjacency 

indices 

2 D 324 

13 Geometrical 

descriptors 

3 D 38 

14 3D matrix- based 

descriptors 

3 D 99 

15 3D autocorrelations 3 D 80 

16 RDF descriptors 3 D 210 

17 3D- MoRSE 

descriptors 

3 D 224 

18 WHIM descriptors 3 D 114 

19 GETAWAY 

descriptors 

3 D 273 

20 Randic  molecular 

profiles 

3 D 41 

21 Functional group 

counts 

3 D 154 

22 Atom-centred 

fragments 

3 D 115 

23 Atom-type E-state 

indices 

2 D 172 

24 CATS 2D 2 D 150 

25 2D Atom Pairs 2 D 1596 

26 3D Atom Pairs 3 D 36 

27 Charge descriptors 3 D 5 

28 Molecular 

properties 

1 D 20 

29 Drug-like indices 1 D 28 

30 CATS 3D 3 D 300 

 

A.3 QSPR equations determined using individual group of descriptors provided in Table 

A.1. 

A.3.1 AM1 optimized geometry dataset. 

2D Autocorrelation descriptor group: 𝑙𝑦 =  −90.1437 − 4.081 ∗ 𝐴𝑇𝑆𝐶5𝑒 − 48.691 ∗ 𝑀𝐴𝑇𝑆7𝑒 − 69.2967 ∗ 𝑀𝐴𝑇𝑆8𝑒 +42.1957 ∗ 𝑀𝐴𝑇𝑆7𝑠 + 41.4876 ∗ 𝐺𝐴𝑇𝑆5𝑖 + 3.6659 ∗ 𝐺𝐺𝐼4 + 3074.5835 ∗ 𝐽𝐺𝐼8   ..Eqn. A1 

 

CATS_3D descriptor group: 𝑙𝑦 =  −0.1672 ± 0.4725 ∗ 𝐶𝐴𝑇𝑆3𝐷_15_𝐴𝐴         ..Eqn. A2 

 

GETAWAY descriptor group:  𝑙𝑦 =  3.7241 + 8.4763 ∗ 𝐻3𝑝 + 0.8764 ∗ 𝐻5𝑠 +  17.7689 ∗ 𝑅3𝑚                       ..Eqn. A3 
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WHIM descriptor group:  𝑙𝑦 = 5.3801 − 16.3759 ∗ 𝑘𝑣                                                                                       ..Eqn. A4 

 

A.3.2 PM6 optimized geometry dataset 

2D Autocorrelation descriptor group 𝑙𝑦 = 69.6424 − 215.7847 ∗ 𝑀𝐴𝑇𝑆5𝑖 − 58.5471 ∗ 𝐺𝐴𝑇𝑆3𝑝                                     ..Eqn. A5 

 

CATS_3D descriptor group: 𝑙𝑦 = −0.6135 − 3.1315 ∗ 𝐶𝐴𝑇𝑆_3𝐷_14_𝐷𝐷 − 1.8206 ∗ 𝐶𝐴𝑇𝑆3𝐷_19_𝐷𝐴– 3.6055 ∗𝐶𝐴𝑇𝑆3𝐷_18_𝐷𝑁                                                                                                             ..Eqn.A6 

 

GETAWAY descriptor group: 𝑙𝑦 = 39.0765 − 17.2143 ∗ 𝐻3𝑣 + 13.4728 ∗ 𝐻4𝑣 − 13.8719 ∗ 𝑅4𝑒     ..Eqn. A7  

 

WHIM descriptor group: 𝑙𝑦 =  −78.1809 + 518.9924 ∗ 𝐺𝑢 − 20.9545 ∗ 𝑘𝑣                                                    ..Eqn. A8 

 

A.4 QSPR models developed using the complete pool 5250 descriptors 

As the QSPR model’s performance for individual descriptor groups was moderate, the QSPR 

model for Paclitaxel prodrugs was determined by applying the protocol (Figure 2) on the 

complete pool of 5250 descriptors which belong to three classes (1D, 2D and 3D). Further, 

each class of descriptors was divided into eight subgroups (pvhchv, pvhclv, phchv, phclv, 

pmchv, pmclv, zchv and zclv) on the basis of correlation and variance among the descriptors. 

Then, selected descriptors from same subgroup belong to a given class were combined. AIC 

and VIF multicollinearity indicators were applied on each eight subgroups of descriptors. 

Then only independent descriptors in each subgroup were combined which were further 

selected to give the final QSPR model (Table A.3). Low values of Q2 (0.66 & 0.40) indicate 

that QSPR model is inconsistent as compared to results of some individual descriptor groups 

(Table I). The models given in the following table are statistically not significant, and appear 

to be over-fitted as difference between R2 and Q2 is quite high (Table A.3, Eqn. A9 & A10). 

Table A.3: QSPR models developed using total 5250 descriptors 

S. No. Optimized Geometry Descriptors No. of  

descriptors 

*
R

2 *
Q

2 *
RMSE 

1 AM1 optimised 

geometry dataset 

Dragon 7 

descriptors 

(5250) 

15 (8) 0.93 0.40 6.0863 

2 PM6 optimised 

geometry dataset 

Dragon 7 

descriptors 

(5250) 

11 (6) 0.90 0.66 2.50 

*Regression (R2), 4-fold cross validation correlation (Q2) coefficients and root mean square error (RMSE) 
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QSPR equations 𝑙𝑦 = −27.0291 + 5.941 ∗ 𝐻5𝑒 + 12.8101 ∗ 𝑛𝑇𝐴 − 26.0675 ∗ 𝑀𝐴𝑇𝑆8𝑒 + 143.4973 ∗𝑆𝑝𝑀𝑖𝑛4_𝐵ℎ(𝑝) − 29.3487 ∗ 𝑆𝑝𝑀𝑎𝑥6_𝐵ℎ(𝑚) − 10.5846 ∗ 𝐹05(𝑂 − 𝑂)𝑥1152 −57.4799 ∗ 𝑊𝑖𝐴_𝐺 − 1.6147 ∗ 𝑅𝐷𝐹150𝑝                                                                            ..Eqn. S9 

                              

                                                                                                       𝑙𝑦 = 110.9287 − 6.7539 ∗ 𝐶𝐴𝑇𝑆2𝐷05𝐴𝐴 + 46.4443 ∗ 𝐼𝐷𝐷𝐸 + 3.8496 ∗ 𝑀𝐴𝑇𝑆5𝑖 +2.5137 ∗ 𝑁% + 325.235 ∗ 𝐺𝐴𝑇𝑆5𝑖 − 97.5698 ∗ 𝐺𝐴𝑇𝑆6𝑝                                            ..Eqn. S10 
 

A.5 QSPR models developed by combining individual descriptor groups provided in 

Table A.1  

The QSPR model development for each thirty groups was performed, but only four descriptor 

groups (2D Autocorrelation, CATS_3D, WHIM and GETAWAY) provided significant 

correlation with solubility for both PM6 and AM1 optimized geometry structures. We 

combined the significant descriptors from each group and then the QSPR models were formed 

for both AM1 and PM6 optimized geometry datasets in WEKA 3.6.11 using classifier linear 

regression module. The correlation and regression coefficients obtained for AM1 and PM6 

optimized geometry datasets are provided in Table A.4 (Eqn S11& S12). The models given in 

the following table are statistically not significant, and appear to be over-fitted as difference 

between R2 and Q2 is quite high. 

Table S4: Regression (R2) and 4-fold cross validation correlation (Q2) coefficients 

S. No. Optimized 

Geometry 

Descriptor Group No. of  

descriptors 

R
2
 Q

2
 RMSE 

1. AM1 optimised 

geometry dataset 

2D Autocorrelation + 

CATS_3D + GETAWAY 

+ WHIM 

12 0.90 0.60 5.42 

2. PM6 optimised 

geometry dataset 

2D Autocorrelation + 

CATS_3D + GETAWAY 

+ WHIM 

10 0.91 0.46 3.32 

 

QSPR equations 𝑙𝑦 =  −90.1437 − 4.081 ∗ 𝐴𝑇𝑆𝐶5𝑒 − 48.691 ∗ 𝑀𝐴𝑇𝑆7𝑒 − 69.2967 ∗ 𝑀𝐴𝑇𝑆8𝑒 + 42.1957∗ 𝑀𝐴𝑇𝑆7𝑠 + 41.4876 ∗ 𝐺𝐴𝑇𝑆5𝑖 + 3.6659 ∗ 𝐺𝐺𝐼4 + 3074.5835 ∗ 𝐽𝐺𝐼8 

                                                                                                                                    ..Eqn. A11 

 

 𝑙𝑦 = 3.5362 − 158.6092 ∗ 𝑀𝐴𝑇𝑆5𝑖 − 35.7838 ∗ 𝐺𝐴𝑇𝑆3𝑝 + 269.8457 ∗ 𝐺𝑢 −  11.5829 ∗𝑘𝑣                                                                                                                               ..Eqn. A12 
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A.6 QSPR models developed for thirty four molecules 

In addition to twenty two Paclitaxel prodrugs (Table A.1), twelve more similar prodrugs 

(Table A.5) were added to evaluate the performance of proposed protocol with more data 

points. Details about the substituent of prodrugs and their solubility data are provided below. 

Table A.5: Additional 12 prodrugs of Paclitaxel included for evaluating the performance of QSPR model 

S. No. Compound Name Solubility (g/ml) Substituent  

2’ 7’ 

23 

 

Phophonoxy methyl ether 

derivative of Paclitaxel 

 

0.25 

 

 
 

H 

24 

 

2’-(N,N dimethylglycl) taxol 

 

2 

 

 
H 

25 9-dihydro taxol* 0.01875 - - 

26 10-acetyl 9-dihydro taxol* 0.0005 - - 

27 

 

 

Paclitaxel Phosphates 

 

 

0.5 

 
 
 

H 

 

28 

 

 

Protaxols  

 

 

1.2 

 

 
 

H 

29 

 

Carbamate linkage of β-

glucuronic acid to Paclitaxel 

 

0.25 

 
 
 

H 

30 

 

 

 

Paclitaxel Phosphates 

 

 

0.5 
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*
Hydrogen substitution at 9’ position instead of acetyl group as in paclitaxel prodrug no. 25, and H substitution at 10’ 

position instead of double bond with oxygen in prodrug no. 26. 

 

A.6.1 QSPR models development and validation for the above mentioned thirty four molecules datasets 

We had added twelve more (Table A.5) similar compounds (data points) to the model and had 

divided total thirty four data points into a set of twelve and twenty two as training and test 

sets, respectively. Descriptor selection for each thirty groups was performed following the 

same protocol (Figure A.2) and R2 & Q2 values were obtained. Descriptors providing 

successful models were combined and then selected to enhance QSPR models for training 

dataset. QSPR model developed from training dataset was evaluated on the test dataset. Ten 

yRandomization runs were also performed to find out significance of the descriptors (Section 

1.4). The R2 & Q2 and R2
yrand & Q

2
yrand values and Q2 values for the test set were obtained 

(Table A.6). 

31 

 

 

 

 

Protaxols 

 

 

 

 

0.01               

 
 
 
 
 

H 

32 

 

 

 

Paclitaxel Phosphates 

 

 

 

0.5 

 

 
 

 

33 

 

 

 

Protaxols  

 

 

 

1.2 

 

 
 
 

H 

34 

 

 

Glucose conjugated 

Paclitaxel 

 

 

0.35 

 

 
 
 
 

H 
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Table A6: Regression (R2), validation & cross correlation (Q2) coefficients of the developed QSPR model 

S. No. Optimized 

Geometry 

Descriptor Group No. of  

descriptors 

R
2
/
$
R

2
yrand Q

2
/
$
Q

2
yrand RMSE cRp^2 Q

2
 (Test 

set) 

1 AM1 Constitutional + 

Burden eigen 

values + 

GETAWAY 

5 (1) 0.71/0.03 0.67/-0.37 2.06 0.50 0.60 

2 PM6 Geometrical 

+GETAWAY 

3 (2) 0.89/0.12 0.80/-0.74 1.32 0.75 0.80 

$R2
yrand & Q2

yrand values are calculated to determine statistical significance of the model (Section 1.4). 
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APPENDIX B 

 

B.1 Prodrug molecules of Paclitaxel incorporated for quantitative structure-property 

relationship (QSPR) model development. 

Eighty Paclitaxel prodrugs having either better or comparable solubility to Paclitaxel were 

collected from literature. The details about the prodrugs and their solubility are provided in 

Table B.1. 

Table B.1: Prodrugs of Paclitaxel included for QSPR model development 

S. No. Compound Name Solubility 

(g/ml) 

Substituent 

2’ 7’ 
 

1 

 

2’-Ethylcarbonate 

Paclitaxel 

 

0.00025 

 

 

H 

 

 

2 

 

Ethylene glycol Paclitaxel 

 

 

1.2 

 

 

 

 

 

H 

 

 

3 

 

 

Phosphate derivative of 2’ 
ethoxy cabonyl Paclitaxel 

 

 

 

5 

 

 

 

 

H 

 

 

4 

 

Phosphonic acid 

diphosphate derivative of 

adenine containing 

butenolide Paclitaxel 

 

 

 

0.042 

 

 

 

 

H 
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5 

 

2’ Malyl Paclitaxel 

 

0.2 

 

 

 

H 

 

6 

 

 

7’ Malyl Paclitaxel 

 

 

0.5 

 

 

 

H  

 

7 

 

2’-7’ Malyl Paclitaxel 

 

0.3 

  
 

 

8 

 

 

Paclitaxel-2’-adipic acid 

 

 

0.40625 

 

 

 

 

H 

 

 

9 

 

 

Paclitaxel-2’-adipoyl 

glucose 

 

 

 

0.0145 

 

 

 

 

H 

10  

 

β–Glucouronylcarbamte 

prodrug of Paclitaxel 

 

 

 

0.5 

 

 

 

 

H 

 

11 

 

Protaxols  

 

0.35 

 

 

 

H 

 

 

12 

 

            Protaxols  

 

0.46 

 

 

H 

 
 

13 

 

Protaxols  

 

0.84 

 

 

 

H 
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14 

 

 

Ethoxy carbonyl derivative 

of Paclitaxel 

 

 

 

0.000053 

 
 

 

 

 

H 

 

 

15 

 

 

Ethoxy carbonyl derivative 

of Paclitaxel 

 

 

0.000104 

 

 

 

 

 

H 

 

 

16 

 

 

2’-O-Succinyl Paclitaxel 

 

 

0.000137 

 

 

 

 

H 

 

17 

 

Protaxols  

 

1.2 

 

 

 

H 

 

 

18 

 

 

Protaxols  

 

0.1 

 

 

 

H 

 

 

19 

 

 

Protaxols  

 

 

0.1 

 

 

 

 

H 

 

 

20 

 

 

Protaxols  

 

 

0.1 

 

 

 

 

H 

 

21 

 

Protaxols  

 

0.5 
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22 

 

Taxol-2’-
methylpyridinium acetate 

 

1.504 

 

 

H 

23 

 

Phophonoxy methyl ether 

derivative of Paclitaxel 

 

0.25 

 

 

 

H 

24 

 

2’-(N,N dimethylglycl) 

taxol 

 

2 

 

 

H 

25 9-dihydro taxol
*
 0.01875 - - 

26 10-acetyl 9-dihydro taxol
*
 0.0005 - - 

27 

 

 

Paclitaxel Phosphates 

 

 

0.5 

 

 

 

H 

 

28 

 

 

Protaxols  

 

 

1.2 

 

 

 

H 

29 

 

Carbamate linkage of β-

glucuronic acid to 

Paclitaxel 

 

0.25 

 

 

 

 

H 

30 

 

 

 

Paclitaxel Phosphates 

 

 

0.5 

 
 



141 

 

31 

 

 

 

 

Protaxols 

 

 

 

 

0.01             

 

 

 

 

 

 

H 

32 

 

 

 

Paclitaxel Phosphates 

 

 

 

0.5 

 

 

 

 

33 

 

 

 

Protaxols  

 

 

 

1.2 

 

 

 

 

H 

34 

 

 

Glucose conjugated 

Paclitaxel 

 

 

0.35 

 

 

 

 

 

H 

35 

 

 

Paclitaxel Phosphates 

 

 

10 

 

 

 

H 

 

 

 

36 

 

 

Paclitaxel Phosphates 

 

 

5 

 

 

 

H 
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37 

 

 

Phosphonoxy methyl ether 

derivative of Paclitaxel 

 

 

0.25 

 

 

 

 

H 

 

38 

 

Phosphonoxy methyl ether 

derivative of Paclitaxel 

 

 

0.25 

 

 

 

 

H 

39  

Bisulphite of 2’ 
acrylotaxol 

 

0.029 

 

 

H 

40 

 

 

Bisulphite of 2’ 
acrylotaxol 

 

 

0.0525 

 

 

 

H 

 

 

41 

 

 

Phosphates of Paclitaxel 

 

 

3.5 

 

 

 

H 

42 

 

 

Glucuronic acid 

conjugated Paclitaxel 

 

 

 

0.08 

 

 

 

 

H 

 

43 

 

Carbonates of Paclitaxel 

 

0.051 

 

 

H 

 

44 

 

Phosphate of Paclitaxel 

 

1 

 

 

H 
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45 

 

 

Succinyl Paclitaxel 

 

0.025 

 

 

 

H 

 

46 

 

Heteroaromatic taxane 

 

0.01 

 

 

 

H 

47 

 

 

 

Carboxyl chain Paclitaxel 

 

 

 

70 

 

 

 

 

H 

 

48 

 

Carbonate of Paclitaxel 

 

0.50 

 

 

H 

 

49 

 

Sulfonated acryol taxol 

 

0.0525 

 

 

H 

50 

 

Methyl Phosphate of 

Paclitaxel 

 

10 

 

 

 

H 

 

51 

 

Methyl Phosphate of 

Paclitaxel 

 

10 

 

H 

 

52 

 

 

Phospahte of Paclitaxel 

 

5 

 

 

 

H 

 

53 

 

Phospahte of Paclitaxel 

 

5 

 

 

 

H 

54 Sodium salt of malyl 

Paclitaxel 

 

0.60 

 

 

H 
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55 

 

 

Isotaxel 

 

 

0.45 

 

 

 

H 

 

56 

 

Paclitaxel with carbamate 

linkage to β-glucuronic 

acid 

 

 

0.25 

 

 

 

H 

57 

 

 

Phosphate of Paclitaxel 

 

 

0.5 

 

 

H 

 

 
 

58 

 

Phosphate of Paclitaxel 

 

3 

 

  

 

 

59 

 

 

Sulphates of Paclitaxel 

5 

 

 

 

 

H 

60 

 

 

 

Sulphates of Paclitaxel 

 

 

 

10 

 

 

 

 

 

H 

 

 

 

61 

 

 

 

Sulphates of Paclitaxel 

 

 

 

10 
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62 

 

 

 

Sulphates of Paclitaxel 

 

 

 

2 

 

 

 

H 

 

 

63 

 

 

Sulphates of Paclitaxel 

 

 

2 

 

 

 

H 

 
 

64 

 

Carbonates of Paclitaxel 

 

 

0.01 

 

 

 

H 

65 

 

Carbonates of Paclitaxel 

 

0.05 

 

 

H 

 
 

66 

 

Carbonates of Paclitaxel 

 

 

0.05 

 
 

 

H 

67 

 

Carbonates of Paclitaxel 

 

0.02 

 

 

H 

 
 

68 

 

Carbonates of Paclitaxel 

 

 

0.02 

 

 

 

 

H 

 

 

69 

 

 

Carbonates of Paclitaxel 

 

 

0.0125 

 

 

 

 

H 

70 

 

Phosphonoxy methyl 

carbonate 

 

 

0.25 

 

 

 

H 
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71 2’{[4-(3-sulfopropyl)-

amino}-1,4 

dioxobutyl]oxy taxol 

0.295 

 

 

 

H 

72 

 

 

Carboxyl chain Paclitaxel 

 

 

70 

 

 

 

 

H 

 

73 

 

Bisulphite of 2’acroyltaxol 

 

0.047 

 

 

H 

 

74 

 

Phototaxol 

100 

 

 

 

H 

75 

 

 

Phosphate of taxol 

 

 

2.5 

 

 

 

H 

 

 

76 

 

 

Phosphonic acid 

diphosphate derivative of 

adenine containing 

butenolide Paclitaxel 

 

 

0.037 

 

 

H 

 

 

77 

 

Paclitaxel 2’-triphosphono 

γ-(z) ethylidene-2,3 

dimethoxybutenolide 

 

 

0.019 

 

 

 

H 

78 

 

 

Phototaxol 

 

100 

 
 

 

 

 

H 
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*Hydrogen substitution at 9’ position instead of acetyl group as in paclitaxel prodrug no. 25, and H substitution at 10’ 
position instead of double bond with oxygen in prodrug no. 26 

 

B.2 Performance of the individual descriptor groups was assessed and only descriptors 

providing significant R
2
 & Q

2
 values (Table B.2-B.5) were combined and further 

selected for the development of consistent QSPR models. 

Table B.2: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptors selected with AIC & VIF indicators for Paclitaxel prodrugs with AM1 

optimized geometry dataset 

 

 

79 

 

 

Carboxyl chain Paclitaxel 

 

 

70 

 

 

 

H 

80 

 

 

Carboxyl chain Paclitaxel 

 

 

70 

 

 

 

H 

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

Constitutional 

descriptors 

 

1D 

 

47 (3) 

 

0.45 

 

0.39 

 

2 

 

Ring descriptors 

 

2D 

 

72 (5) 

 

0.52 

 

0.41 

 

3 

 

Topological 

indices 

 

2D 

 

96 (2) 

 

0.45 

 

0.42 

 

4 

 

P_VSA-like 

descriptors 

 

2D 

 

55 (2) 

 

0.60 

 

0.59 

 

5 

 

Edge adjacency 

indices 

 

2D 

 

324 (1) 

 

0.46 

 

0.44 

 

6 

 

3D-MoRSE 

descriptors 

 

3D 

 

224 (2) 

 

0.46 

 

0.41 

 

7 

 

WHIM 

descriptors 

 

3D 

 

114 (2) 

 

0.48 

 

0.44 

 

8 

 

GETAWAY 

descriptors 

 

3D 

 

273 (5) 

 

0.59 

 

0.48 

 

9 

 

Functional group 

counts 

 

3D 

 

154 (2) 

 

0.52 

 

0.49 
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Parenthesis indicates the no. of significant descriptors included in QSPR model from the respective group 

 

Table B.3: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with AIC&VIF indicators for Paclitaxel prodrugs with PM6 

optimized geometry dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parenthesis indicates the no. of significant descriptors included in QSPR model from the respective group. 

 

Table B.4: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with AIC&VIF indicators for substructures with AM1 optimized 

geometry dataset 

10 Atom-centered 

fragments 

3D 115 (2) 0.47 0.39 

 

11 

 

Atom-type E-

state indices 

 

2D 

 

172 (3) 

 

0.62 

 

0.60 

 

12 

 

CATS 2D 

 

1D 

 

150 (1) 

 

0.45 

 

0.43 

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

Constitutional 

descriptors 

 

1D 

 

47 (2) 

 

0.50 

 

0.42 

 

2 

 

2D 

autocorrelations 

 

2D 

 

213 (8) 

 

0.65 

 

0.60 

 

3 

 

P_VSA-like 

descriptors 

 

2D 

 

55 (2) 

 

0.65 

 

0.63 

 

4 

 

GETAWAY 

descriptors 

 

3D 

 

273 (2) 

 

0.53 

 

0.46 

 

5 

 

Functional group 

counts 

 

3D 

 

154 (3) 

 

0.65 

 

0.63 

 

6 

 

Atom-centered 

fragments 

 

3D 

 

115 (2) 

 

0.60 

 

0.57 

 

7 

 

Atom-type E-

state indices 

 

2D 

 

172 (2) 

 

0.67 

 

0.65 

 

8 

 

CATS 2D 

 

1D 

 

150 (3) 

 

0.63 

 

0.60 

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

Information 

indices 

 

1D 

 

50 (3) 

 

0.60 

 

0.57  

 

2 

 

2D 

autocorrelations 

 

2D 

 

213 (3) 

 

0.58 

 

0.56  

 

3 

 

3D matrix-based 

 

3D 

 

99 (2) 

 

0.57 

 

0.56  
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Parenthesis indicates the no. of significant descriptors included in QSPR model from the respective group. 
 

Table B.5: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with AIC&VIF indicators for substructures with PM6 optimized 

geometry dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parenthesis indicates the no. of significant descriptors included in QSPR model from the respective group. 

 

B.3 QSPR models developed from the descriptor selection done with Matlab ‘stepwise 

fit’ for both the datasets with the molecular geometries optimized at PM6 and AM1 

methods.  

The QSPR models formed using the selected descriptors with Matlab ‘stepwise fit’ for the 

Paclitaxel prodrugs and the substructures added at the 2’ site of the prodrugs with both the 

PM6 and AM1 optimized geometry datasets were formed and validated in WEKA 3.6.11 

using classifier linear regression module. The intial models were developed following the 

pipeline as described in Fig. 3 for all thirty descriptor groups individually for both datasets. 

descriptors 

 

4 

 

3D-MoRSE 

descriptors 

 

3D 

 

224 (3) 

 

0.68 

 

0.59  

 

5 

 

WHIM 

descriptors 

 

3D 

 

114 (1) 

 

0.50 

 

0.48 

 

6 

 

Functional group 

counts 

 

3D 

 

154 (2) 

 

0.65 

 

0.62  

 

7 

 

Atom-centered 

fragments 

 

3D 

 

115 (2) 

 

0.65 

 

0.63  

 

8 

 

Atom-type E-state 

indices 

 

2D 

 

172 (2) 

 

0.61 

 

0.60  

 

9 

 

2D Atom Pairs 

 

2D 

 

1596 (3) 

 

0.65 

 

0.60  

 

10 

 

CATS 3D 

 

3D 

 

300 (3) 

 

0.60 

 

0.53  

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

3D-MoRSE 

descriptors 

 

3D 

 

224 (7) 

 

0.84 

 

0.82  

 

2 

 

WHIM 

descriptors 

 

3D 

 

114 (2) 

 

0.86 

 

0.86  

 

3 

 

Functional group 

counts 

 

3D 

 

154 (3) 

 

0.67 

 

0.65  

 

4 

 

Atom-centered 

fragments 

 

3D 

 

115 (2) 

 

0.65 

 

0.62  
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Performance of the individual descriptor groups is assesed and only those descriptors that are 

providing significant R
2
 & Q

2
 values (Table B.6-B.9) are combined and further selected for 

the development of consistent QSPR models. 

Table B.6: Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with Matlab ‘stepwise fit’ for Paclitaxel prodrugs with AM1 

optimized geometry dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parenthesis indicates the no. of significant descriptors included in QSPR model. 
 

Table B.7 Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with Matlab ‘stepwise fit’ for Paclitaxel prodrugs with PM6 

optimized geometry dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parenthesis indicates the no. of significant descriptors included in QSPR model. 
 

Table B.8 Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with Matlab ‘stepwise fit’ for substructures with AM1 optimized 

geometry dataset 
 

Parenthesis indicates the no. of significant descriptors included in QSPR model. 

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

2D autocorrelations 

 

2D 

 

213 (2) 

 

0.95 

 

0.93  

 

2 

 

Functional group 

counts 

 

3D 

 

154 (8) 

 

0.83 

 

0.69  

 

3 

 

Atom-centred 

fragments 

 

3D 

 

115 (11) 

 

0.85 

 

0.64  

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

2D autocorrelations 

 

2D 

 

213 (5) 

 

0.73 

 

0.68  

 

2 

 

Atom-type E-state 

indices 

 

2D 

 

172 (3) 

 

0.73 

 

0.65  

 

3 

 

CATS 2D 

 

1D 

 

150 (6) 

 

0.72 

 

0.66  

 

4 

 

2D Atom Pairs 

 

2D 

 

1596 (5) 

 

0.75 

 

0.73  

 

5 

 

CATS 3D 

 

3D 

 

300 (9) 

 

0.81 

 

0.75  

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

Functional group 

counts 

 

3D 

 

154 (7) 

 

0.87 

 

0.83  

 

2 

 

CATS 2D 

 

1D 

 

150 (8) 

 

0.86 

 

0.81  

 

3 

 

2D Atom Pairs 

 

2D 

 

1596 (11) 

 

0.90 

 

0.79  
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Table B.9 Regression (R
2
) and 10-fold cross validation correlation (Q

2
) coefficients of the QSPR models 

developed using molecular descriptor selected with Matlab ‘stepwise fit’ for substructures with PM6 optimized 

geometry dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parenthesis indicates the no. of significant descriptors included in QSPR model. 
 

 

 

 

 

S No. 

 

Group Name 

 

1D\2D\3D 

 

No. of 

Descriptors 

 

R
2
 

 

Q
2
 

 

1 

 

P_VSA-like 

descriptors 

 

2D 

 

55 (15) 

 

0.62 

 

0.64  

 

2 

 

Edge adjacency 

indices 

 

2D 

 

324 (13) 

 

0.60 

 

0.42  

 

3 

 

RDF descriptors 

 

3D 

 

211 (16) 

 

0.53 

 

0.51  

 

4 

 

Functional group 

counts 

 

3D 

 

154 (14) 

 

0.83 

 

0.71  

 

5 

 

Atom-centred 

fragments 

 

3D 

 

115 (16) 

 

0.77 

 

0.67  

 

6 

 

Atom-type E-state 

indices 

 

2D 

 

172 (16) 

 

0.66 

 

0.64  
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