
i

SECURE DELAY AWARE SCHEDULING AND LOAD

BALANCING ALONG WITH REDUCED ENERGY FOR

DEADLINE SENSITIVE APPLICATIONS IN FOG

COMPUTING ENVIRONMENT

 Thesis

Submitted in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

 By

SHIVI SHARMA

In

COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

AND INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT SOLAN, HIMACHAL PRADESH, INDIA

AUGUST 2020

ii

@ Copyrights JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, SOLAN, H.P.(INDIA)

AUGUST, Year 2020

ALL RIGHTS RESERVED

iii

…Dedicated To
My family …

iv

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled “Secure Delay Aware

Scheduling And Load Balancing Along With Reduced Energy For Deadline Sensitive

Applications In Fog Computing Environment” submitted at the Jaypee University of

Information Technology, Waknaghat, Himachal Pradesh, India, is an authentic record of my

work carried out under the supervision of Dr. Hemraj Saini. I have not submitted this work

elsewhere for any degree or diploma. I am fully responsible for the contents of my Ph.D. thesis.

(Signature of the Scholar)

Shivi Sharma

Enrollment No.: 166204

Department of Computer Science& Engineering

Jaypee University of Information Technology, Waknaghat, Solan

(HP), India

Date: 31/08/2020

v

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “Secure Delay Aware

Scheduling And Load Balancing Along With Reduced Energy For Deadline Sensitive Applications

In Fog Computing Environment” submitted by Shivi Sharma at Jaypee University of Information

Technology, Waknaghat, Himachal Pradesh, India, is a bonafide record of her original work carried

out under my supervision. This work has not been submitted elsewhere for any other degree or

diploma.

(Signature of Supervisor)

Dr. Hemraj Saini

Associate Professor

Department of Computer Science &Engineering

Jaypee University of Information Technology,

Waknaghat, Solan (HP), India

Date: 31/08/2020

vi

ACKNOWLEDGEMENT

Indeed the words at my command are not adequate, either in form of spirit or express the depth of

my humility and kindness before Almighty one without whose endless benevolence and blessings

this tedious task could not have been accomplished. I would first like to thank Dr. Hemraj Saini,

Associate Professor, Department of Computer Science Engineering and Information Technology

my supervisor for giving me this opportunity to conduct my Ph.D. research work under his

supervision at the Department of Computer Science and Information Technology. He has

constantly encouraged and supported me throughout my stay at JUIT. His vision towards science

and technology has motivated me to do high-quality work. It is because of his active support, I

could pursue research of my interest and able to conclude my work in time. I have many useful

pieces of advice about research, career, and life from him, which will be more valuable in my future

professional career. Because of his availability, I never felt a lack of guidance. It has been a

wonderful experience to work under his supervision. In them, I found that the best are not only

efficient, effective, and results-driven, but at “core they are persons with the best qualities as human

beings”. Humanity, scientific potentials, kindness, coolness, simplicity, the novelty of ideas are the

arms of their great personality. I am grateful and indebted to Dr. Hemraj Saini for his invaluable

painstaking efforts taken towards my study and for showing me the real path of sincerity &

dedication.

Besides my advisor, I express my sincere gratitude to Vice-Chancellor Prof. (Dr.) Vinod Kumar,

Director and Academic Head Prof. (Dr.) Samir Dev Gupta for kind support and successful

completion of this research work.

I would like to acknowledge Professors Satya Prakash Ghrera for helping me with various

academic issues. I would like to mention special thanks to Professor Vivek Sehgal for supporting

me during my research. I owe my thanks to Dr. Amit, Dr. Ravinder Bhatt, Dr. Tiratha Raj,

Dr.Rajinder Sandhu, Dr.Geetanjali, and other faculty members for providing me feedback, moral

support, valuable suggestions, and necessary facilities during my research work. I also like to thank

Mr. Amit Kumar Shrivastava and the Lab Technicians of all computer labs in JUIT, for their help

and cooperation in helping me with various office-related issues. I am also obliged to the JUIT

library staff that allowed me to use their facilities during my work. I am also grateful to all my

friends, colleagues, seniors, and juniors for their love care, and support.

vii

Finally, I would like to acknowledge my family for supporting me throughout my life. It will never

be possible for me to pay for the price of sacrifices, which my parents have made for my success.

I am especially grateful to my mother Mrs. Shanta Sharma and my father Dr.D.D Sharma for

teaching me the most valuable lesson of life that my job in life is to remain happy, to learn, and to

understand myself. This journey would not have been possible without their inspiration, love, and

prayers. I would like to thank my younger brother Ashish Sharma for his love and care. He always

remained by my side during my happy and hard times to motivate me. Last but not the least; I

would like to thank my husband Bharat Sharma who has been a constant source of encouragement

during this journey. Thank you for always been there whenever I need you to just listen and help

me out in every possible way. I am truly thankful for having you in my life.

Finally, I thank anyone else whose contribution I could have forgotten.

viii

TABLE OF CONTENTS

CONTENTS
PAGE

NO.

DECLARATION BY THE SCHOLAR iv

SUPERVISOR’S CERTIFICATE v

ACKNOWLEDGEMENT vi

LIST OF FIGURES xi

LIST OF TABLES xiii

ABSTRACT xiv

CHAPTER 1. INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 4

1.3 AIM AND OBJECTIVE OF STUDY 5

1.4 CONTRIBUTIONS 5

1.4.1 Load balancing as a resolution for Fog Computing 6

1.4.2 Reducing Energy Consumption and Violation of SLA 6

1.4.3 Delay Aware Scheduling and Load balancing - The Solution in A Four-Tier

Architecture 6

1.4.4 Task Allocation and Secure De-Duplication- Assistance from Fog

Computing 7

1.5 THESIS ORGANIZATION 8

CHAPTER NO. 2. A TAXONOMY ON LARGE SCALE DATA 10

2.1 INTRODUCTION 10

2.2 TECHNIQUES USED IN HANDLING LARGE SCALE DATA 12

2.3 DATA MIGRATION OVERCLOUD OR FOG BASED ON

 APPLICATIONS 13

2.4 RELATED WORK REGARDING FOG COMPUTING AND

 SCHEDULING 17

CHAPTER NO. 3. FOG COMPUTING ENVIRONMENT- STATE OF ART FOR

LOAD BALANCING 19

3.1 TECHNIQUES FOR LOAD BALANCING IN FOG ENVIRONMENT 19

3.2 PROBLEMS RELATED TO LOADING BALANCING AND

 SCHEDULING OF TASK 20

CHAPTER NO. 4. FRAMEWORK FOR SCHEDULING DEADLINE SENSITIVE

APPLICATION ON FOG COMPUTING 21

ix

4.1 AN EFFICIENT SOLUTION FOR BALANCING LOAD USING

 OPTIMIZATION TECHNIQUE 21

 4.1.1 Introduction 21

 4.1.2 Related Work 21

 4.1.3 The issue to be addressed 24

 4.1.4 Proposed System Model 24

 4.1.5 Performance Parameter 30

4.2 REDUCING CONSUMPTION OF ENERGY AND SLAVIOLATION VIA ANN 34

 4.2.1 Introduction 34

 4.2.2 Related Work 36

 4.2.3 The Issue To Be Addressed 37

 4.2.4 Proposed Techniques 38

 4.2.5 Results And Discussions 41

 4.3 SUMMARY 44

CHAPTER NO. 5. : FOG ENVIRONMENT ISSUES OF LOAD BALANCING AND

DELAY AWARE SCHEDULING - A FOUR-TIER ARCHITECTURE SOLUTION 45

5.1 INTRODUCTION 45

5.2 RELATED WORK 45

5.3 THE ISSUE TO BE ADDRESSED 48

5.4 PROPOSED SYSTEM MODEL 49

 5.4.1 System Model 49

 5.4.2 System Design And Architecture 55

5.5 EXPERIMENTAL SETUP 58

 5.5.1 Simulation Model 58

 5.5.2 Parameters Definition 61

5.6 RESULT AND DISCUSSION 62

 5.6.1 Comparison Analysis 62

5.7 SUMMARY 69

CHAPTER NO. 6. TASK ALLOCATION USING FOG ASSISTANCE AND SECURE

DE-DUPLICATION. 70

6.1 INTRODUCTION 70

6.2 RELATED WORK 70

6.3 SYSTEM MODEL 73

 6.3.1 System Design and Architecture 74

6.4 EXPERIMENTAL RESULTS AND DISCUSSION 84

 6.4.1 Simulation Environment 84

x

 6.4.2 Case Study 86

6.5 RESULT AND DISCUSSION 87

 6.5.1 Evaluation Measures 87

 6.5.2 Comparative Analysis 88

6.6 SUMMARY 95

CHAPTER 7 CONCLUSION 96

7.1 CONCLUSION 96

7.2 FUTURE WORK 98

BIBLIOGRAPHY 99

LIST OF PUBLICATIONS 110

xi

LIST OF FIGURES

FIGURE NO. CAPTION PAGE

NO.

Figure 1.1 Basic design of Fog Computing 1

Figure 1.2 Three-Tier Framework of Fog Computing 3

Figure 1.3 Challenges of Fog Computing 4

Figure 2.1 Fog Computing architecture 11

Figure 2.2 Number of research paper 16

Figure 2.3 Distribution of Fog Computing concerning the survey 17

Figure 4.1 Assignment of VMs 28

Figure 4.2 Assignment of jobs to VMs 28

Figure 4.3 Multiple parent case 29

Figure 4.4 Execution structure 30

Figure 4.5 Computational cost of sample queries 32

Figure 4.6 SLR for DAG and proposed 32

Figure 4.7 Energy Consumption 33

Figure 4.8 SLRVM and ECRVM 33

Figure 4.9 Fog Computing environment 35

Figure 4.10 SLA in the fog environment 38

Figure 4.11 ANN used to optimized allocation of job 40

Figure 4.12 Comparison of EC w.r.t number of jobs 42

Figure 4.13 Comparison of SLA violation w.r.t number of jobs 43

Figure 5.1 Proposed System Model 51

Figure 5.2 Task Classification and Scheduling in Fog Cluster 54

Figure 5.3 iFogSim Network Topology 60

Figure 5.4 UB1 and DC1 in the region 61

Figure 5.5 Comparison of Response Time 64

Figure 5.6 Comparison of Scheduling Time 65

Figure 5.7 Comparison of Load balancing Rate 66

Figure 5.8 Comparison of Delay Vs. Number of Tasks 67

Figure 5.9 Comparison of Delay Vs. Number of FN 68

Figure 5.10 Comparison of Energy Consumption 69

Figure 6.1 Fog Assisted cloud of IIoT 72

Figure 6.2 System Architecture 74

xii

Figure 6.3 Karastuba Hybrid Multiplier (A) 160bits and (B) 192bits 80

Figure 6.4 Merle Hash Tree for Indexing 83

Figure 6.5 Simulation topology 84

Figure 6.6 Average latency vs. No. of devices 89

Figure 6.7 User satisfaction vs. No. of devices 89

Figure 6.8 Network lifetime vs. the number of devices 90

Figure 6.9 Energy Consumption vs. the number of devices 91

Figure 6.10 Security strength vs. key size Security strength vs. key size 92

Figure 6.11: Security strength vs. message size 93

Figure 6.12 Security strength vs. encryption time 94

Figure 6.12 Security strength vs. decryption time 94

xiii

LIST OF TABLES

TABLE

NO.

CAPTIONS PAGE

NO.

Table 1.1 Cloud Computing Vs Fog Computing 2

Table 4.1 Summary of Different Aspects and Methods Utilized by

Different Researchers

23

Table 4.2 Load balancing using ABC 26

Table 4.3: Costing of VMs for different jobs 29

Table 4.4 Simulation environment 31

Table 4.5 Multi-objective Job Scheduling (MMJS) 39

Table 4.6 MMJS using Artificial Neural Network (ANN) 40

Table 4.7 Energy Consumption evaluation 42

Table 4.8 SLA Violation evaluation 43

Table 5.1 Major Research Motivations 50

Table 5.2 Rules for Tasks Classification 53

Table 5.3 Task scheduling using EDF 57

Table 5.4 Simulation Environment 59

Table 5.5 Fog Node Design 61

Table 5.6 Drawbacks of Previous Approaches 63

Table 6.1 Algorithm for Clustering using MoWo 78

Table 6.2 Properties of SHA-3 80

Table 6.3 Best Fog Node selection using FASWO 82

Table 6.4 Simulation Settings 85

Table 6.5 Sensors and Functionalities 86

Table 6.6 Security Strength For Proposed Vs. Previous Works 93

Table 6.7 Security Strength for The Proposed Vs. Previous Works with

respect to encryption time

94

Table 6.8 The Proposed Vs. Previous Works- Security Strength with

respect to decryption time

95

xiv

LIST OF ACRONYMS

AI Artificial Intelligence

ABC Artificial Bee Colony

ANN Artificial neural network

ASTM Abstract Syntax Tree Metamodel

BLA Bees Life Algorithm

BP Back Propagation

CC Cloud Computing

CDC Cloud Data Center

CH Cluster Head

CMaS Cost makespan aware scheduling

CS Cloud Server

DASLB Delay Aware Scheduling And Load Balancing

DVFS Dynamic Voltage and Frequency Scaling

EC Energy Consumption

EDF Earliest Deadline First

FASWO Fast Artificial Fish Swarm Optimization

FATASD Fog Assisted Task Allocation and Secure De-duplication

FC Fog Computing

FCFS First Come First Serve

FLA Fuzzy logic algorithm

FN Fog Node

xv

HM Hybrid Multiplier

HP High Priority

IoT Internet of Things

IIoT Industrial Internet of Things

KNN K Nearest Neighbor

LP Low Priority

LB Load Balancing

PSO Particle Swarm Optimization

PS Proxy Server

RDD Resilient Distributed Datasets

SA Scheduling Algorithm

SLVMR Schedule Length of VM ratio

VM Virtual Machines

xvi

ABSTRACT

Fog Computing (FC) is the extension of cloud computing (CC) to meet the need of modern age

technologies like the Internet of Things (IoT), Artificial Intelligence (AI), 5G, and other such

aspects. Fog Computing extends its services to cloud computing by storing the data on Fog Nodes

(FN) locally instead of increasing the burden on the cloud. The chief feature of Fog Computing is

to present the user with the ideal elucidation, which is efficient and fast. The major critical issues

that Fog Computing experience are that of load balancing (LB) and energy consumption (EC). The

present thesis has designed a framework for scheduling deadline sensitive applications to provide

an efficient solution for Load balancing using optimization techniques and to minimizing energy

consumption in Fog Computing. Further, it has focused on designing the Four-Tier Architecture in

fog computing environment for Delay Aware Scheduling and Load Balancing (DASLB) and

developed a model to provide Fog-Assisted Task-Allocation and Secure De-duplication

(FATASD) using Two-Fitness based One-to-One Matching Algorithm (2FBO2) and Multi-

Objective Whale Optimization Algorithm (MoWo) in Cluster-based IIoT (Industrial Internet of

Things). Fog-assisted has been a topic of interest in the research community. With the upsurge in

the utilization of IoT devices, the transmission of duplicate data increased. To avoid this, the

present research has used Cluster-based IIoT for the implementation of de-duplication and task

allocation on fog layers. The first objective of the present study is to design a framework for

scheduling deadline sensitive applications. This has been achieved in the study in two stages. In

the first stage, an effective solution has been designed for load balancing using optimization

techniques. The present study has thus focused on the drop in the runtime of schedule length and

minimization of energy consumption rate. To achieve these results, the present research has

proposed an algorithm based on the Artificial Bee Colony (ABC) optimization to balance the load.

In the second phase, a system has been designed to decrease the usage of energy and Service-Level

Agreement (SLA) violations in Fog Computing. During the execution of IoT applications in fog

environments, load balance is still an issue. Thus, to tackle the issue, the present research is

dedicated to finding an efficient solution for Load balancing using an optimization technique. The

existing researches are focused on decreasing the consumption of energy without taking into

consideration the violation of the SLA. Owing to the inconsistency in scheduling, the consumption

xvii

of energy became more because of a lack of host classifier. The present research has focused on

scheduling of job & resources which are energy aware based on the idea of artificial intelligence.

Many jobs are considered for calculating the helpfulness of the proposed system, 70.2MJ and, 66.5

MJ respectively, are average values measured in the number of jobs without and with the

optimization algorithm 0.776 and 0.742 respectively, are the average values witnessed for violation

of SLA with and without optimization algorithms. Therefore, in Fog Computing, a reduction of 3.9

% in SLA violation was observed when an optimization algorithm is applied. Hence, it has been

established that the performance of the proposed work has led to a reduction in energy

consumption.

The second objective is addressing the issues of Load balancing and Delay Aware Scheduling using

a newly designed Four-Tier Architecture in a fog environment. Load balancing and scheduling are

the most important aspects of Fog Computing, which prominently influence the performance of an

arrangement. The methods preceding are suffering from the failures of fog-node, scarcity of

resources, Distributed or Centralized Sort-of Environment, etc. To achieve better performance of

the problems of prior works, the present research has suggested a Four-Tier Structure. By the

placement of the Fog Computing Model between IoT devices and the Cloud Model, idleness is

reduced by optimum scheduling and Load balancing. To manage the enormous expanse of data

sensing from various IoT devices, the proposed fog computing system in this research comprises

four particular levels that isTier1, Tier2, Tier3, and Tier4. Tier 1 is the base level consisting of IoT

modules, Router-based on Dual Fuzzy-Logic Algorithm, workloads (applications) are divided into

two levels, High Priority (HP) and Low Priority (LP), respectively. Fuzzifier considers four

metrics: Arrival Time, Minimum Execution Time, Maximum Completion Time, and Task Size.

Assignment with High Priority is transferred to the 3rd Stage (Fog-Tier). A novel fog called

Artificial Fractals was invoked in the third tier. Fog Node is clustered utilizing the clustering

algorithm (K-mean++). The request is transferred to the Cloud-Tier if an IoT system does not

receive the essential asset. Proposed work has been approved by the implementation of Video

Surveillance & Object Tracking (VSOT) application in iFogSim Platform and output is assessed

in-terms of Scheduling Time (SC), Response Time (RT), Delay, Energy Consumption (EC), and

load-balancing (LB) rate. We test the simulation results for different output parameters. Then

verified that the proposed Four Tier Fog Architecture is superior to previous works.

xviii

The third and final objective of the study is to provide Fog Assisted Task Allocation and Secure

Deduplication (FATASD). As an outcome of increasing IoT devices, the transmission of duplicate

data over the Internet has increased. This increase in transmission due to duplicate data has then

increased the pressure on the data center resources. The scenario of transmission of duplicate data

causes the Cloud Server (CS) to delay the services to be provided to users on time. To deal with

this scenario, distribution and secured deduplication have been designed, that is, the elimination of

redundant information in computer data for fog enabled IIoT. By using novel security and

optimization algorithms for IIoT applications, we had designed architecture that will allow better

task allocation and stable fog de-duplication. In this objective, the researcher offered job

distribution and protected data de-duplication in cluster-based Industrial IoT. This chapter is

focused on the third objective of the present research that is to provide FATASD by using 2FBO2

and MoWoA (Multi-objective Whale Optimization Algorithm) in Cluster-based Industrial IoT

(IIoT- Industrial Internet of Things). For this, a system called Fog-assisted Internet-of-Things

(FaCIIoT) has been designed which entails five things such as Fog Nodes (gateways), IoT devices

(Sensors), trusted authority, Cloud Server, and proxy server (PS). The index structure is founded

on the Merkle hash tree. To attain data privacy, the researcher suggested a safety algorithm for data

encryption. The simulation of the suggested model is executed using iFogSim. It is a Java-based,

open-source network simulator. IFogSim’s works to simulate the surrounding that consists of a vast

amount of IoT devices and Fog Node Simulation is shown to execute the suggested as well as a

prior job comparison due to user satisfaction, average latency, to name a few aspects. The suggested

system has demonstrated that it is performing better than prior jobs.

In future studies, the optimal method alongside the idea of Artificial Intelligence to cope with the

overload issue in Fog Nodes with the least Energy Consumption rate has been suggested. We’ve

intended to integrate task offloading to reduce any fog-node failures and work on other real-time

applications such as healthcare services. Further research can be completed on another technique

for data replication techniques in Fog network data management, which may additionally

minimize overall reliance and delay.

Keywords: Fog computing, Internet of Things, Energy Consumption, Scheduling, Load

Balancing

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cisco [1] presented the term “Fog Computing” to designate the extension of cloud computing (CC)

to meet the requirements of new-age technologies like 5G, Internet of Things, Artificial

Intelligence, and other such aspects. The services provided to IoT users by Fog Computing (FC)

include data processing and storage services. The Fog Computing extends its services to Cloud

computing by storing the data on Fog Node locally instead of increasing the burden on the cloud

by sending the data to be stored in the cloud. In this manner, Fog Computing improves the

performance of the cloud and increases its efficiency. Fog Computing decreases the rate at which

data to be processed, transferred to the cloud thereby facilitating the cloud in the storage and

analysis of data as well. This service of Fog Computing results in decreasing network traffic and

latency [2]. Figure 1.1 below presents a pictorial representation of Fog Computing.

Figure 1.1: Basic design of Fog Computing

2

Fog computing positions fog-node all over the network. Devices from the controller switch act as

Fog-node that are then being deployed in target areas like within a vehicle or office floor. The data

generated by IoT devices are then analyzed using one of these nodes. Here in the Fog-node analyzes

the data without the data being sent back to the cloud, which reduces the pressure on the cloud,

thereby reducing latency and overcrowding of jobs for the cloud. Cloud Computing and Fog

Computing differ on the ground that Cloud Computing provides centralized access to resources.

On the other hand, Fog Computing provides decentralized access, which is local. Table 1.1 below

presents the major differences as follows:

Table 1.1 Cloud Computing v/s Fog Computing

Characteristic CC FC

Location Awareness No Yes

Geo-distribution Centralized Supported

Client-Server Distance Multiple hops One hop

Real-time Interactions Support Centralized Support

Mobility Support Low Support

Latency High Low

Service Site Within the internet Local Network Edge

Delay High Low

Though Fog Computing provides privileges to Cloud computing some aspects need to be addressed

to enhance the efficiency and effectiveness of Fog Computing as the number of IoT devices is

increasing. It comprises the innovative concept of supplying IoT devices with storage space and

computing capability. It consists of mentioned segments in sequence from bottom to top: IoT

Devices (Lower Tier), Fog- nodes (Middle Tier), and Cloud (Top Tier). IoT Layer aims to link any

physical object such as wearable devices, cameras, vehicle sensors, and home appliances, which

creates massive data volumes. The cloud gives foundation level assistance, which upholds

information investigation and capacity frameworks. The majority of IoT applications need less

latency. In terms of latency, the cloud impacts their performance to overcome this issue fog

computing has been implemented, where services that are far from the cloud can offer and thereby

diminish the overcrowding and latency of the network. Figure 1.2 shows the three-tier framework.

3

 Fog Aggregator

Node

 Fog Aggregator

Node

Cloud-Tier

Fog-Tier

IoT-Tier User Devices

Fog node 1 Fog node 2 Fog node 3 Fog node 4

Figure 1.2: Three-Tier Framework of Fog Computing

IoT applications require enormous handling capacity, information storage to permit constant

dynamic and quick broadband information streaming frames. For IoT based applications, IoT and

distributed computing integration are needed [5]. Cloud storage is a capable approach focused on

the desired Quality-of service (QoS) and the Pay-As much You-Use Pricing Model for on-demand

access. It provides storage and high computational capabilities [4]. While cloud storage can offer

many services, such as storing large volumes of data, IoT applications face challenges such as lack

of sufficient network capacity, latency, mobile support, and location awareness. To overcome these

issues, fog computing was introduced to leverage the capabilities of cloud solution [8], as it

provides large-scale connectivity between IoT devices and cloud computing environments, which

ensures better facilities without the constraints. Fog computing is a virtualized platform with a

resource pool that offers creative business models for processing, storing, networking of end-users,

and traditional cloud data centers. This methodology is appropriate for low idleness, video web-

based, gaming, augmented reality, and so on brilliant applications. Still, there are some challenges

in Fog computing that have been displayed in Figure 1.3 [3].

4

Figure 1.3: Challenges of Fog Computing

The present study has recognized and defined different fog-related research challenges, which are

needed to be taken care of so that the future of fog computing shall become a capable and noticeable

resolution for evolving services with extremely varied necessities. Scheduling is one of the major

aspects responsible to arise the need to accomplish resource productivity and dodge bottlenecks.

Thus, the present research is focused on dealing with some of these issues, which have been

presented in the subsequent sections.

1.2 Problem Statement

The major critical issues that Fog Computing experiences are Load Balancing (LB) and Energy

Consumption (EC). Load balancing is the process of proficiently distributing inward bound

network traffic across the backend servers or the server pool. Computation and storage are the

major requirements of the users. In the fog environment, the allocation of resources should

consider the current load at Fog Nodes. In addition, schedulers and resource managers should be

invoked to take into consideration the most appropriate Fog Nodes [4]. This causes a load

5

imbalance problem. Herein, some of them remain idle while others become overloaded. The load-

balancing scheme in Fog Computing has three stages. The first stage involves a load balancer that

collects the material related to the allocation of workload. The second phase revolves around

making decisions on the paramount probable data dissemination. Finally, the data communicated

from one overloaded node to another is done in the third stage.

The increased use of Cloud Computing has also introduced the world to a significantly new issue

of increased energy consumption. To increase the efficiency and processing of Cloud Data Centers

(CDC), the numbers of PCs are being increased. This leads to an increase in energy consumption.

Thus, to deal with this ever-increasing energy consumption, Fog Computing offers a solution to

cloud infrastructure. The reduction of energy consumption through Fog Computing has been a

challenge for the community of current researchers. Resource allocation techniques for requests of

the users is the aspect on which the consumption of energy is dependent across fog servers. Thus,

it is important to develop an energy-aware scheduling process to save on energy in the Fog

Computing environment as well. Based on the above discussion; the present research is focused on

presenting the solutions to issues of Load Balancing and Energy Consumption.

1.3 Aim and Objective of the Study

The research aims to design a “Secure Delay Aware Scheduling and Load balancing for Deadline

Sensitive Applications in Fog Computing Environment”. The objectives have been defined below:

 To design a Framework for Scheduling Deadline Sensitive Applications.

 Utilization of optimization technique to address the challenge of Load balancing.

 Reducing Service level violation and controlling the consumption of energy in Fog

Computing.

 Addressing the issues of load balancing and Delay Aware Scheduling using a newly

designed Four-Tier Architecture in a fog environment.

 To provide Fog Assisted Task Allocation and Secure Deduplication in cluster-based

Industrial IoT.

 1.4 Contributions

The thesis contribution in the present research has been focused on three aspects, which have been

discussed below-

6

1.4.1 Load Balancing as a resolution for Fog Computing

One of the most significant issues of Fog Computing that need to be addressed is Load balancing

Even in a heterogeneous environment of Fog Computing where there are so many nodes and resources

available to share the increasing pressure, Load Balancing remains a major challenge. The present

study has, thus, focused on the reduction of the schedule length runtime and the minimization of

the energy consumption rate. To achieve these results, the present research has proposed an

algorithm. This algorithm is based on Artificial Bee Colony Optimization (ABC) optimization to

balance the load for load management in the Fog Computing environment.

1.4.2 Reducing Energy Consumption and Violation of SLA

In the past decade, there has been an exponential increase in the use of Cloud Computing. This

growth is being expected to increase even more in the coming years owing to an increasing number

of IoT devices. With an increase in usage, real-time jobs to be performed by CDCs are also

increasing. It is difficult for traditional data centers for performing in such a scenario due to

inadequate resource bandwidth. A solution to this aspect of Cloud Computing has been presented

to the world in the form of Fog Computing. Fog Computing is a complement of Cloud computing

that has extended the model of Cloud Computing to the network edge. This has led to the

development of a new variety of services and applications based on infrastructure. Fog Computing

is a transitional technology that lies between the IoT sensors or devices and CDCs. It provides

storage service, networking, and computing to enhance the cloud-based service offerings for its

sensors and devices. Owing an increase in so many aspects of Cloud Computing has led to an

increase in Energy Consumption. The reduction of energy consumption via Fog Computing has

surely been a challenge for the researchers. Resource allocation techniques for requests of the users

is the aspect on which the consumption of energy is dependent across fog servers. It enables

processing at the edge with the probability to communicate with the cloud.

1.4.3 Delay Aware Scheduling and Load Balancing: The Solution in a Four-Tier Architecture

Load Balancing and scheduling are the two significant aspects of Fog computing that prominently

influence the performance of an arrangement. Many researchers have been trying to come up with

a model that will be able to facilitate more efficient and effective task scheduling and Load

Balancing. Presently, numerous research exertions have been discovering the concept of

scheduling in Fog computing. These innovative challenges can be presented by a set of the Fog

node. Optimal workload allocation or dynamic Load Balancing is an additional significant issue in

7

the fog environment. However, the Fog node is not currently balanced. The previous approaches

presented by other researchers are lagging owing to aspects like Fog Node failures, resource

shortage, distributed, or centralized environment to name a few. To mitigate all such issues in the

previous researches, the present research has been focused on decreasing Energy consumption and

latency in the fog environment via both Load balancing and efficient task scheduling. To deal with

the issues of the scheduling of tasks and Load balancing found in the previous works, the present

research has proposed a four-tier architecture.

The Fog-computing environment consists of four separate physical Tiers, that tier 1, Tier 2, Tier 3,

and Tier 4.

 Tier 1, which is also known as the IoT-based Devices Tier, is the bottom tier where the

physical sensors IoT devices are present.

 Applications are segregated into HP and LP in Tier 2. For classification, we proposed the

Dual FLA, which considers the four parameters.

 The classified HP applications (tasks) by the router are transmitted to Tier 3, which is Fog-

Tier.

 In Tier 4, instead of using a distributed environment or central control, the researcher

proposed a new structure called artificial fractals. This proposed scheme is planned in the

scheduler. The request is sent to the neighboring Fog Node via an IoT device. In addition, to

achieve better allocation of requests, capacity, and current usage of every Fog Node is

updated periodically.

 When needed resources are absent, then the required resource request is sent to the cloud.

The projected system has validated by evaluating the performance metrics, mentioned below, on

the VSOT application:

 Response Time for a different number of tasks

 Scheduling time/length for Number of Tasks (Seconds)

 Load Balancing rate

 Delay

 Energy Consumption (KJ)

1.4.4 Task Allocation and Secure Deduplication- Assistance from Fog Computing

As an outcome of increasing IoT devices, the transmission of duplicate data over the Internet has

increased. This increase in transmission due to duplicate data has then increased the pressure on

8

the data center resources. The scenario of transmission of duplicate data causes the CS to delay the

services to be provided to users on time.

 1.5 Thesis Organization

The following sections are addressed in the present research to give a clear picture of the ways and

methods to secure delay aware scheduling and load balancing (DASLB) for deadline sensitive

applications in the Fog Computing environment.

Chapter 1 Introduction: The background of the study has been discussed in this chapter while

giving an overview of Fog computing. It further discusses the Problem Statement and contributions

of the study.

Chapter 2: Taxonomy on Large-scale data: This chapter provides an in-depth discussion on the

taxonomy of large-scale data created by devices based on it. The chapter discusses and analyzes

the work and research done by other researchers on techniques used in handling large-scale data,

data migration over the cloud, or fog based applications, and problem-related to the deadline

sensitive application.

Chapter 3: Fog Computing Environment- the State of Art for LB: This chapter presents

techniques for Load Balancing in a fog environment, problem-related for task scheduling and Load

Balancing, modeling of Load Balancing, research, and challenges for deadline sensitive

application.

Chapter 4: Framework for Scheduling Deadline Sensitive Applications on Fog Computing:

This chapter presents the literature review and system model for an efficient solution for Load

Balancing using optimization techniques, tackling SLA violation, and reducing consumption of

energy in the fog environment using Artificial Neural Network. Finally, at the end of the chapter

results and discussion has been presented.

Chapter 5: Fog Environment Issues of Load Balancing and Delay Aware Scheduling - A

Four-Tier Architecture Solution: This chapter presents the literature review followed by the

proposed system on four-tier architecture. This architecture has been designed to handle the Delay

Aware Scheduling and Load Balancing in a fog environment. Herein, system model, system design

and architecture, experimental setup, a simulation environment, and simulation tool on Delay

9

Aware Scheduling and Load Balancing in Fog Environment. Finally, results and discussions have

been presented.

Chapter 6: Task Allocation Using Fog Assistance and Secure Deduplication: The introduction,

state of art, system model, including system design and architecture, simulation environment

including simulation tool in Task Allocation using Fog Assistance and Secure Deduplication has

been presented here. Further, it consists of a case study on air pollution monitoring. Finally, results

and discussions have been presented.

Chapter 7: Conclusion and Future Directions: This chapter presents the conclusion and future

directions on secure Load balancing and Delay-Aware Scheduling in the Fog-computing

environment.

10

CHAPTER 2

A TAXONOMY ON LARGE SCALE DATA

2.1 Introduction

In times of increasing dependence on technology, now resolution in the field of communication

has taken place. This has been attributed to the fact that around two billion people globally

accessible information, multimedia, communicating through messages, audio and video calls, and

many other different aspects. Owing to this scenario, in the recent two decades, the numbers of

internet-based, technology-dependent smart gadgets have increased and are increasing with every

passing day [5]. This then gives birth to an innovation in the field of communication called the

youth, which facilitates the decision-making of smart gadgets [6].

With an increase in the utilization of IoT applications that enable real-time decision-making, there

has been a surging increase in the requirement of enormous handling power, information storage,

and high-speed broadband systems to stream data [5]. These requirements are now fulfilled by

Cloud Computing, which is now being complemented by Fog Computing. Cloud Computing and

Fog Computing provide the ability to handle large data streams thereby supporting a huge amount

of it based application [7] [8]. Cloud Computing provides a huge potential to IoT devices; some

challenges are to be faced by Cloud Computing when dealing with IoT devices. These challenges

include issues associated with latency, mobility support, lack of limited network bandwidth, and

awareness of the location. To handle these and some other challenges associated with Cloud

Computing, another technology are now available to support Cloud Computing in the form of “Fog

Computing”. Fog Computing uses an open application programming interface [9]. Instead of batch

processing, Fog Computing facilitates conducting real time-sensitive interaction along with some

mobility techniques. The architecture of Fog Computing has been presented below, wherein its

three layers have been described [10]:

i. Device layer: It consists of different smart devices that facilitate detecting feature data

physical objects. Further, the device layer shares the processing and storage information.

ii. Fog layer: It consists of network Fog Nodes like base stations, switches, routers, and

11

gateways. The transmission, storage of temporary data, and computation are facilitated with

these nodes. The latency-sensitive applications are supported by this layer

iii. Cloud layer: It consists of multiple storage devices and superior servers that provide

different application services. It supports extensive computation, analysis, and stores a lot

of information. The architecture of Fog Computing has been presented in Figure 2.1.

Figure 2.1: Fog Computing Architecture

A cloud-based application acts as a user of Fog computing, like data centers, switches, routers, and

smart gateways along with Fog Nodes, which is a cloud-based edge component. Fog Nodes (FN)

are resource-constrained devices that support computing, transmission protocol, capacity assets,

and portability. Fog Nodes fulfill the requirements of communication overheads, computer

applications, huge dissemination of scale, and constraint of latency.

Fog Computing facilitates Cloud Computing in providing communication among IoT devices and

Cloud Computing thereby improving the quality of services and reducing the traffic and

management load. While studying the aspects of Fog Computing, it is thus imperative to study

various techniques used in handling large-scale data, data migration over fog based on applications.

Before moving ahead with designing a system for fog environment for secure DASLB for deadline

sensitive applications, it is significant to understand the dimensions (big) aspects of it growing data.

Owing to this, the present chapter discusses the various techniques used in handling large-scale

data, data migration over clouds, or fog based applications, and problems associated with a deadline

12

sensitive application.

2.2 Techniques used in handling large scale data

A good amount of unstructured data is around floating globally, including the data, which are

untreatable manually or by simple applications. Aspect like the World Wide Web, business

services, applications and networks, and similar aspects produce data exponentially. This has been

attributed to the progress of influential storage and assembly tools. Planned awareness and

information cannot be gathered easily since this massive growth of data is neither understood

straightforwardly extracted automatically. These aspects caused the growth of data mining and data

science [11], which is a renowned subject that is omnipresent in the present age of information.

Currently, the amount of data being taken care of by systems has exceeded the ability of processing

systems of previous times [12]. The ascending of new technologies like Fog Computing along with

the decrease in hardware price is leading to the ever-increasing rate of information online. This

scenario presents a "Big" issue with the data analytics community. Hence, "Big Data" is stated as

a collection of large velocity, variety, and volume of data that needs speedy processing [13].

Distributed computing has been traditionally accepted by data-scientists before the introduction of

the Big Data initiation with the help of various regular and prolonged algorithms. The researcher

replaced their distributed versions to analyze the learning process. However, for most of the current

massive problems, nowadays a distributed approach becomes obligatory because architecture lot

is unable to handle such big issues. Numerous stages for processing done on a Large-scale have

tried to solve the issue associated with Big Data in the past decade [14]. These stages attempt to

reduce the difference in the distributed technologies to the typical user. Difficult schemes are

obligatory to generate and preserve these stages, which simplifies the custom of dispersed

computing. Further, platforms of a large amount of data also necessitate supplementary algorithms

that provide funding for related jobs, like big data pre-processing. Typical algorithms for those jobs

necessitate the re-designed if the author wants to study large-scale datasets.

MapReduce is the major outline that allowed the treating of large-scale datasets [15]. This

groundbreaking implement was envisioned to develop and create large data sets in a distributed

manner. By applying Map and Reduce, the employer is capable to take into consideration an

accessible and spread device short of upsetting the technical shades, like retrieval of failure, data

13

separating, or communication of job. Apache Hadoop [17], [18] appeared as the most standard

open-source application of MapReduce, preserving the above-mentioned characters. Owing to its

excessive admiration, both Hadoop and MapReduce are not intended to gauge. Apache Spark [19]

was presented as a substitute to Hadoop, skillful enough to execute speedy distributed computing

via in-memory primitives. This was achievable due to its capability of packing data into recall and

re-using it frequently, this implement incapacitates the issue of recitative and network processing

presented by MapReduce. Moreover, Spark is a general-purpose structure that permits to execute

of many distributed programming prototypes on it, for example, Hadoop) [20]. The spark is made

over a new abstraction module known as “Resilient Distributed Datasets” (RDDs). This

multipurpose module permits governing the perseverance and handling the segregating of data,

amid other characteristics.

Certain opponents to Apache Spark have also come into existence, particularly from the side of

streaming. Apache Storm is an open-source distributed instantaneous processing aspect, which

processes a gigantic number of tuples per second along with being fault-tolerant. Apache Flink [21]

is a current top-level Apache development being brought into existence for the processing of batch

data and distributed stream. Together substitutes attempt to mend the gap “Online” created because

of Spark, which takes into consideration a “mini-batch streaming processing” in place by a method

that involves clean streaming.

The superiority and performance of the information mined by data mining in different aspects are

subject to not only the framework and working on the approach but also relied on the

appropriateness and data quality. Sadly, destructive characters as missing values, noise,

unreliability, and redundant data, and massive magnitudes are samples and present encouraging the

data used to acquire and mine the information. It is a renowned fact that reduced data quality will

bring the process to inform proving to be of low quality. Therefore pre-processing of data [22] is a

chief and most important phase whose key objective is to get concluding data sets. Such data sets

take precise and valuable for additional algorithms for mining of data.

2.3 Data Migration overcloud or fog based on applications

Some studies [23], [24] presented the “Cloud Adoption Toolkit” as a methodology for

understanding the viability of cloud migration. The following aspect has been taken into

consideration:

14

1. Costs associated with cloud adoption

2. Risk management

3. Considering trade-offs amid risks of migration and benefits related to the cloud.

The author of the study [24] has observed and worked on the edge issue of viability and possibility.

The suggested cost modeling approach is advanced and based on the present costs, associated with

infrastructure, short of utilization. The author used the ability to control activity from the

approaches to power, avoid over-provisioning on the new cloud. The cost approximation tool

presented [25] was global as Plan for Cloud. The authors suggested exhibiting an application and

its essential substructure and organization to approximate the running costs associated with the

cloud.

A study conducted by [26] recommended a method for “enterprise applications” migration to the

cloud. Their key focus on representing the current system and installing a “cloud permitted”

version. The main jobs in this progression are also computerized. The distinguished strong suit of

[26] involves-

(1) Advanced automation

(2) The capacity to maintain organization or records in the form of data sets.

The Process designed by the REMICS project [27] backs heritage aspects migration to the” data

cloud model” which is schemes with an emphasis on cloud services architecture. It emphasizes the

re-design of the code, with related issues like testing, interoperability, and implementation.

The practice is stated by strategies to become features from applications of COBOL and produce

Java. Likewise, the ARTIST practice and outline [28] funds the migration of the heritage aspects

to the cloud combined with REMICS, this increases feasibility valuation and business process

alteration. The authors contend that when wandering to the cloud, these are natural and important

doings. Neither study looks freely at migration nor database modeling A model-based tool called

Clouding [29] mechanically monitors a system’s appropriateness for a cloud platform. It gets model

architecture through the source code, using a log file approach. Composed of a cloud-focused

environment approach, it makes it easier to understand whether the device is cloud-focused,

compliant, prepared, linked, or enhanced.

The CloudSim simulation platform is a long version of Cloud MIG, but the modules for exhibiting

15

and simulating are no different. This restricted coupling prevents their reprocessing in evaluating

cloud migration.

A study conducted by [30], [31], it was suggested a new process for moving the database to the

cloud from the current organization. It is based on difficult movements of databases where a

noteworthy amount of data presented and the parts of the software continue to work on in-house

software servers. The assets of this approach involve its stage of the element, the assessment with

huge systems based on real world (example-NovaERM and SimTechSWfMS), and the associated

“Cloud Data Migration” Tool [31]. This will facilitate different organizations to migrate their

databases. Other main approaches in the field of migration and database transformation include

"Minimal Schema Extraction"[62] and the business-based information discovery system.

The current method for mining KDM models via SQL takes into consideration a midway ASTM-

based model [10, 63]. The "Abstract Syntax Tree Metamodel" is an "ADM meta-model"[65] that

makes it easier to standardize the syntax tree that is constructed from the source. To achieve

advanced interoperability the meta-model is intended here. A change involving model-to-model

methodology is then executed on the ASTM model. That results in the KDM model being

developed. A midway model necessitates two alterations to be established and preserved.

In a study conducted by [32], it was suggested to mechanize methods to mine a data design via

source code of the software and summarize inheriting databases through the research services [33].

These will probably be of attention to businesses using legacy databases. To classify and mine the

statements of SQL it encompasses a static examination of a system's source code. These SQL

statements take into consideration to produce a design that individually involves the columns and

or tables. The drawback of this method though is that executing it is problematic. There are various

programming languages such as SQL alternatives and "database access libraries;" and to be precise,

to detain all the inquiries embedded in the code

On the other hand, DBL Modeler takes SQL dumps generated from database IDEs to ease this

difficulty and to sustenance a widespread variety of systems. These yields SQL in a typical output

arrangement regardless of in what way a systematic inquiries its database.

Apart from the researches discussed in the above section, many investigations, researchers examine

the arena of migration of cloud. Most particularly, [34] studied forty-three papers to recognize their

characteristics, compare, and research excellence. The researchers detected what the way devices

16

maintain cloud migration is not in abundance even with the amount of effort in the zone and

numerous researches stressing this problem.

• After a detailed review of the available publishing on fog computing, roughly more than

800 papers were classified based on their title and abstract and it was found that 39 percent

of papers were introduced. 21 percent were based on scheduling challenge, 18 percent

were based on security problems, 11 percent were based on the case study, 11 Percent

were concept articles. Figure 2.2 and Figure 2.3 shows the total no of research paper and

distribution of fog computing papers concerning the survey respectively.

• Based on the survey, scheduling, Energy Consumption, and security in fog computing

were found some of the main concerns.

Figure 2.2: Number of research papers

250

200

150

100
Article

Conference

50

0

2014 2015 2016

YEAR

2017 2018

N
U

M
B

E
R

 O
F

 R
E

S
E

A
R

C
H

P
A

P
E

R
S

17

Figure 2.3: Distribution of Fog computing papers concerning the survey.

2.4 Related work regarding Fog computing and scheduling

Usually, the fog-node was deployed in a fog environment to study data collected from IoT devices.

This segment addresses specific research issues in smart IoT applications like scheduling and load-

balancing (LB). In the fog, Bittencourt et al. [45] implemented a mobility-aware application

schedule, with three scheduling strategies invoked to affect mobility applications in the fog

environment. They are concurrent strategy, first come served (FCFS), and strategies to delay goals.

Yi et al., [82] proposed an energy-efficient schedule designed to minimize energy consumption

over heterogeneous IoT flow computing architecture. Rahbari et al. [111] developed a search-

optimized knapsack-based symbiotic organism schedule that is suitable for little traffic and little

latency networks. The simulated result indicated an 18 % enhance in energy use, 15 %cost of

execution, 1.17 % overall network use, and 5 percent lifetime of the sensors in schedule increases.

Madni et al., [86] suggested various heuristic methods for proficient cloud-based scheduling of

tasks. Consequently, the effective algorithm selection for task scheduling is complicated since the

algorithmic procedures are implemented in various assumptions. FCFS (First Come First Serve),

Minimum Completion Time (MCT), Minimum Execution Time (MET), is the most extensively

used task scheduling algorithms. Yin et al., [112] implemented task scheduling and resource

allocation, containers in fog networks intended primarily for smart developed applications, the

planned task scheduling, and resource redeployment schemes successfully minimize task delays

39%

11%
11%

21% 18%
Scheduling

Conceptual

Introductive

Case study

Security

18

and improve the productivity of tasks in fog nodes.[113],[114] different optimization technique

and survey of recent technology is proposed in recent research,

2.4.1 Related work on Load Balancing

Balancing of Load is a key factor that defines resource allocation efficiency and management

strategies. Deng et al., [110] tackled the issue of allocating workload that can be designed to reduce

power usage and service latency. Pham et al., [88] a cloud-fog environment, given a schedule of

tasks. In this work, a fog provider can take advantage of the relationship between their fog nodes

and leased cloud nodes to run user-friendly large-scale offloading applications efficiently. Because

of this, a heuristic-based algorithm with the main purpose of finding a compromise between the

costs of cloud resources is proposed.

19

CHAPTER 3

FOG COMPUTING ENVIRONMENT- STATE OF ART FOR

LOAD BALANCING

3.1 Techniques for Load balancing in fog environment

Balancing the load is a chief factor that recognizes resource distribution, performance, and

management strategies. The author of the study [35] stated that issues relating to loading balancing

come up with different applications and the program is parceled into smaller jobs, which are then

completed concurrently. The specific operation is to be conducted by them in the application of

distributed and parallel computer systems. The researcher recommended and load arrangement

formed with the help of genetic algorithms as a solution to the dynamic Load Balancing problem.

In a study conducted by [36], “Particle Swarm Optimization (PSO)” was taken into consideration

in VMs for the accomplishment of the load balancing. The author presented a discussion on the

situation where the reduction in the cost is done and not at the expense of the service quality and

maintaining the SLAs. A new suitability means were planned for the reduction in the cost and

examination of the server related load. Moving in the same direction, [37] for optimization of Load

balancing, employed swarm intelligence for Load balancing optimal. The author presents the issue

of optimization to be NP that is a difficult tissue and correspondingly sees into the under loaded

condition of VM if any. The author has proposed the scheme of load balancing for VMs by

optimizing the QoS service parameters and throughput. Further, [38] conducted a research where

the author presented a framework of Fog Computing using Cloud Atomization Technology. This

cloud atomization technology is used to modify physical nodes in VM nodes in increasing stages.

The author then considered a graph partitioning theory to create algorithms for Load balancing for

Fog Computing based on dynamic graph partitioning. The process of Load balancing has

proficiently organized system resources with the lessening of the ingesting of the node.

[39] that in an environment of Fog Computing introduced a well-systemized algorithm meant for

Load Balancing have stated it. In this meeting users’ requirements, maintenance of consistency

of data with reduced complications is done, surged throughput, utilization of the network, and

20

scheduling of tasks are done within the time limit.

3.2 Problems related to load balancing and scheduling of task

In FC, proper management of resources is important for better resource utilization. However, there

are many different types of challenges in FC as discussed below [40]-

 Dynamic and Fluctuating workloads:

Workload fluctuations occurs in fog computing. In two ways; pre-determined and post-determined.

A predetermined fluctuation situation is analyzed earlier and hence resource allocation is done

efficiently within an appropriate period.

 Ensuring efficient resource utilization:

In a post-planned scenario as per requirement resource allocation should be done directly this is

known as “auto-allocation”. For fog schedulers to be assured about the successful utilization of

resources to be efficient, the incoming workload should be resource allocated. For task allocation

to nearby processor, scheduling techniques need to be improved.

 Heterogeneous physical nodes in fog data centers:

Scheduling of tasks is done within the accessible nodes. These nodes are spread at the different

architecture and different locations, varied memory, different network performance, and power of

computation.

 Increased scheduling granularity than existing scheduling:

The size of issues of the problem of scheduling has grown from comfortable, informal scheduling

of the process with little movement of data to exhaustive VM scheduling and VM reallocation.

21

CHAPTER 4

FRAMEWORK FOR SCHEDULING DEADLINE SENSITIVE

APPLICATION ON FOG COMPUTING

The first objective of the present study is to design a framework for scheduling deadline sensitive

applications. This has been achieved in the study in two stages. In the first stage, an effective

solution has been designed for Load Balancing using optimization techniques. In the second phase,

a system has been designed to reduce the consumption of energy and SLA violation in Fog

Computing.

4.1 An Efficient Solution for Balancing load Using Optimization Technique

4.1.1 Introduction

The resource requirement in its applications is done using fog or Cloud Computing nodes.

Efficiency in achieving and using these resources is obtained by managing Load Balancing. Avoid

aspects that hinder the efficient utilization of resources like low load, bottlenecks, and overload via

efficient Load Balancing. During the execution of its applications in fog environments, load

balance is still a challenge. Thus, to tackle the issue, the present chapter of the research is dedicated

to finding an efficient solution for Load Balancing using an optimization technique.

4.1.2 Related Work

In a study conducted by [41], it was suggested that scheduling of tasks is extremely important for

the appropriate operation of a framework of the parallel processor. The author further in the study

inspected the elective paradigm based on a genetic algorithm. This paradigm was elected to fix the

issues related to scheduling avoiding the requirement to present any limited assumptions, which

are explicit to the problem, like the scenario while employing heuristics. Further, [35] stated that

issues relating to load balancing come up in different applications, and the program is parceled into

smaller jobs which are then be completed concurrently. The specific operation is to be conducted

by them in the application of distributed and parallel computer systems. The researcher suggested

22

a Load Balancing system of a vigorous nature produced via genetic algorithms to resolve the

vigorous Load Balancing issues.

In a study conducted by [36], PSO was taken into consideration in VMs for the accomplishment of

the Load Balancing. The author presented a discussion on the situation where the reduction in the

cost is done and not at the expense of the service quality and maintaining the SLA. A new suitability

means were planned for the reduction in the cost and examination of the server related load. Moving

in the same direction, [37] for optimization of Load balancing, employed swarm intelligence for

the optimization of load balancing. The researcher presents the issue of optimization to be NP that

is a hard problem and correspondingly sees into the under the loaded condition of VM if any. The

author has proposed the scheme of Load balancing for VMs by optimizing the QoS service

parameters and throughput. The research study conducted by [42], presented the suggestion of

effective allocation of resources.

In Fog Computing, efficient resource allocation (ERA) is applied to the expert of the cloud for

checking the projected method performance. The authors found that after the implementation of

this method, this mechanism might assign the resources in an improved way and superior to the

traditional algorithms via the transfer of data, complete reaction, and deployment of bandwidth.

Further, [38] conducted a research where the author presented a framework of Fog Computing

using Cloud Atomization Technology. This technology of Cloud Atomization Technology is used

for altering physical nodes in changing stages in VM nodes. [43] Examined the perfect allocation

of workload in the direction of intake of power and balanced delay. The authors found that Fog

computing improves Cloud computing performance. Further, a scheduling issue was presented by

[44] in the diverse staged configuration of fog and Cloud computing. The research presented that

scheduling systems intended to acclimate to diverse classes of application as per the requirement

of movable customers; the captivating benefit of both the Fog Computing and Cloud Computing

[45] did some analysis on the scheduling of service requests over Virtual Machines (VM). In this

scenario, a trade-off was held in reserve between the consumption of energy and the make span.

The author confirmed that in Fog Computing, the performance of the met heuristic method, which

authorized to delay the heterogeneity of resources. [46] Researched the new expertise in FC about

service, safety, and structural related difficulties. Fog computation classification was also delivered

grounded on the standard chief difficulties and features and investigation problems have been

planned. Table 4.1 shows the techniques used by the different researchers in the cloud /fog layer.

23

4.1 Summary of Different Aspects and Methods Utilized by Different Researchers

Sr.

No.
Researcher

Fog

Layer

(FL) /

Cloud

layer

(CL)

Parameters Techniques Limitation

1

(Pandey, Wu,

Guru, &Buyya,

2010)

CL

Load

Balancing,

Transmission

Cost

PSO
No latency issue is

covered

2 (Li, 2011) CL

Load

Balancing

and

minimizing

make span

Ant Colony

Optimization

Data reduction affect

performance

 3 (Zhao, 2009) CL
Task

scheduling

Genetic

Algorithm

(GA)

Limitation to few

policies

4 (Ge, 2010) CL Scheduling
Genetic

Algorithm

Reliable energy

resources are required

5 (Guo, 2012) CL
Optimal Time

& Cost

Multi-

objective-

Particle

Swarm

Optimization

(MOPSO)

VM limited data

centers

6 (Zhu, 2011) CL
Load

Balancing

Multi-agent

Genetic

Algorithm

Huge data is required

to train the system

7

(Netjinda,

Sirinaovakul,

&Achalakul,

2012)

CL Cost

Cost

optimization)

Particle

Swarm

Optimization

(PSO)

Reliable energy

resources are required

8 (Junwei, 2013) CL

Average Cost

& task

completion

time

Complement

ary of

multiple

objectives

Load need to be

balanced with latency

reduction

9 (Wan, 2018) FL

Load

balancing and

scheduling

Improved

(PSO)

algorithm

Fail for multitasking

10
(Bitam, Zeadally,

&Mellouk, 2018)
FL

Job

scheduling

Bees Swarm

optimization

Min. time needs to be

reduced

24

4.1.3 The issue to be addressed

Via an investigation conducted, all the above-mentioned limitations have been addressed in this

research work, as mentioned in subsequent sections. In the current objective, we deal with different

parameters: energy consumption, SLA violation, utilization of VM, Reduction of cost. In the

present study, it was found that the scheme of Load Balancing grounded on Fog Computing

comprises three phases, namely an assembly of data, the accurate choice, and relocation of data. In

phase one, the load balancer collects the evidence for the distribution of assignments and found if

there is an imbalance of load. In phase two, a choice to estimate the best conceivable data

distribution is made. In the final phase, communicated data from one overloaded node to another

under the loaded node. If the characteristics of nodes are not augmented then the communication

may be for the different node, which is overloaded. So, in Fog Computing, to decrease the

likelihood of unwelcome distribution, the idea of an optimization method with the balancing of the

load is utilized.

The proposed work model has a couple of points, which are considered on the VMs architecture.

They are listed as follows:-

a) The processing unit has three VMs with different cost values

b) The parent task will be executed first

c) The children will be ranked and they will be executed as per their ranking

d) The proposed model has to look for a balancing framework

4.1.4 Proposed System Model

The model proposed for presenting an efficient solution for Load Balancing using optimization

technique consists of certain aspects based on VMs architecture, have been enlisted below-

 There are different cost values associated with three VMs of the processing unit

 The task to be completed first is the parent task

 The execution of the children is done based on their ranking

 A balancing framework is the aim of achievement of the proposed system

The start time and end time of each process will be present. An allocation of VM with one job

cannot jump to another job without concluding the job. Parallel execution of jobs is allowed. The

ABC architecture is adopted for prioritization of the jobs. The sorting of the jobs is done via

connections in the graphs through ABC architecture. Here, firstly connections of high jobs are

25

executed if it lives up to the requirements of the ABC architecture. Balancing of the load is done

using ABC as shown in algorithm 1. Every task will have an end and a start beginning time wherein

FT is the finish time and ST is the start time. The algorithm above is based on the job priority order

of the allotted area. Cuckoo fittest [47] is presented to regularize the rank of jobs. If an egg is found

to be defective by a cuckoo, discard all its eggs. In this case, the brink is arbitrariness in the average

cost of an energy power job.

If an arbitrary disparity is an entire cost, it is prepared and the threshold is matched with a

dissimilarity Algorithm in table 4.2 shows load balancing using ABC Algorithm.

When a program is distributed across several processors, the job execution model consumes more

energy (Agarwal, Yadav, & Yadav, 2015). In an energy model, the following factors related to

energy consumption fitted with a mathematical model (He, Ren, Shi, & Fang, 2016):-

i. Energy is used to process the data and results.

ii. Energy used to transmit the data and energy required to maintain the communication so that a mobile

application’s split into-

a) Instructions to be executed

b) Input data used and Output data generated

c) Computing process

d) Transmission of data

The job that fulfills the requirements is prepared for its state; otherwise, it is positioned last. In the

specified situation, the procedure taken into consideration differs by single or double positions on

the job as the search of cuckoo has some arbitrariness associated with it. Table 4.2 shows Load

balancing using the ABC optimization technique.

26

Table 4.2: Load balancing using ABC

a) Engaged_Bee → Existing _Bee

b) Onlooker_ Bee →Judgment _Maker

1.Fxn situate (Load_ coasting, Jobs)

2. Initialize Load (L) = 0;

3. Initialize Priority Order(P.O) = [];

4. for

5. J == 1 ; Job

6. for

7. I==1 : High _Connection_ count

8. Load (L)= Load+ Load –costing (J.I) ;

9. End for

10. End for

11. Total L = L /(JOB * (High_ Connection-count));

12. P.O = (numel(Jobs));

13. FALSE_Food Source = FALSE;

14. FALSE_Food Source = FALSE;

15. for

16. 1<=0 :

Total No. Bee / High__Connection

𝑝𝑜𝑤𝑒𝑟_𝑁𝑜𝑑𝑒1

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 = ∑

𝐼=0

𝐸𝑛𝑒𝑟𝑔𝑦_𝑁𝑜𝑑𝑒 (𝑘)

𝐼

Employed Bee * random () < Load (L)*random())

17. If

18. If

19. FALSE_Food Source = TRUE ;

20. temp= (P.O)[last];

21. Adjust (P.O one position);

22. Else

23. End if

24. End for

25. STOP

27

Let 𝑃𝑐be the energy consumed for processing instruction in a task and Pt be the energy used for

transmission of data. Then choose to perform the task on fog, and then the energy consumption

is given by the following formula (Baccarelli, Cordeschi, Mei, Panella, Shojafar, &Stefa, 2016):

𝐸𝑐𝑙𝑜𝑢𝑑 = 𝑃𝑡 + 𝐷/𝐵 (4.1)

Where D is data in bytes to be processed and B is network bandwidth. Assume that the output

generated is D` then it is safely being assumed that D` is smaller than D. Now if the mobile

device/smart device performs the task than the energy consumed is:

𝐸𝑚𝑜𝑏𝑖𝑙𝑒 = 𝑃𝑐 ∗ 𝐼 + 𝑃𝑡 ∗ 𝐷/𝐵 (4.2)

Where, ‘I’, is the numerals of instructions for the execution of a task, then energy saved (Es) is:

 𝐸𝑠 = 𝑃𝑡 ∗ 𝐷/𝐵 − 𝑃𝑐 ∗ 𝐼 − 𝑃𝑡 ∗ 𝐷’/B (4.3)

 𝐸𝑠 = [𝑃𝑡 ∗ 𝐷/𝐵] − 𝑃𝑐 ∗ 𝐼 − [𝑃𝑡 ∗ (𝐷 ∗ 𝐾)] (4.4)

 Where K=D`/D and K are called the compression ratio.

 𝐸𝑠𝐵 = 𝑃𝑡𝐷(1 − 𝐾)–𝑃𝑐 ∗ 𝐼 (4.5)

Energy is saved if this equation is positive and only then it would be preferable to offload the

task (Puthal, Obaidat, Nanda, Prasad, Mohanty, &Zomaya, 2018). First, classification is done on

incoming requests as to whether it is CPU bound or input, output memory. The incoming request

follows one or the other algorithms and every algorithm further be classified into time,

logarithmic algorithm, a polynomial-time algorithm with an exponential time algorithm, etc. In

a CMOS integrated circuit such as a modern CPU, the power consumption is reduced by reducing

the frequency as given below (Byers, &Wetterwald, 2015)

𝑃 = 𝐶𝑓𝑉2 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (4.6)

Where ‘C’ is considered as the transistor gate capacitance, ‘f ‘is the frequency and ‘V’ is the

supply voltage and static denotes that it is not performing any operation. The voltage required

for normal and static operations is dependent on the frequency on which the circuit is being

clocked. This voltage may be reduced by reducing frequency. This will result in an important

reduction in power consumption by reducing voltage. It is pertinent to mention here that energy

is only being protected if the power consumption is reduced enough to run the workload, to cover

the extra time it takes to process at the lower frequency. Thus, it is a tradeoff between energy

saving and time-saving (Hong, Lillethun, Ramachandran, Ottenwälder, & Koldehofe, 2013). The

28

Energy E is given by Power*Time hence, E is proportional to V2.

EαV2(Vαf) (4.7)

Morally the job in the second position has to be scheduled for the process job in the third position.

This will involve some arbitrary processing price, which will then be applied from VM1 to VM2

and VM3. If a particular arbitrary cost is taken, say from 1 to 3, which are 15. This will then be

included in the total cost. Henceforth, the total cost would differ as presented in Table 4.3 and

Figure 4.3 showing the different costs associated with the job.

The structure of job 2 is presented below. Firstly, contemplate the second job:

1. For the execution of Job 2, their are3 options;

2. The aspects to be followed before the allocation of the job 2 any VM, subsequent must be

obliged

 The free slot has to be therefore VM to implement this request for the job;

 When compared with other available VMs, the cost should be least at the VM;

 Less EC is caused by reducing time consumption

The following architecture, explains the calculation (Figure 4.1 and 4.2). The execution cost is:

Figure 4.1: Assignment of VMs

Figure 4.2: Assignment of jobs to VMs

29

Table 4.3: Costing of VMs for different jobs

Job No.
Costs of Job at VM

VM1 VM2 VM3

1 2 4 6

2 4 3 2

3 1 4 2

4 2 1 4

5 3 1 6

6 4 1 3

7 13 11 12

8 5 6 7

9 11 2 6

10 6 1 4

The calculation is explained using the following architecture shown in Figure 4.1 and Table 1

shows the costing of different VMs.

The total cost of execution is:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠t= Ec + Tc (4.8)

Where:

𝐸𝐶 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡

𝑇𝐶 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐶𝑜𝑠𝑡

TC is applied in case the parent is implemented on some other VM. Job 1 has job 2 connected

before it. Thus, in a scenario where job1isexecutedonVM1 then other than VM1, VM2, and VM3

have to bear the transfer cost.

The model of the job has two situations that are single and multiple parent jobs. , Node 3 and

node 5 are the parents of node 8. The complete scenario has been depicted in figure 4.3.

 Figure 4.3: Multiple parent case

30

Multiple parents create a scenario wherein job 8 (figure 4.5) cannot be executed unless and until

both parent 3 and parent 5 are executed. In case, one of the two-parent nodes has competed for

the execution while the other parent node is in the process of execution, job 8 will wait. In the

present case, presumptuous that 3 are completed on VM2 while 5 is executed on VM1. The

structure of execution is presented in Figure 4.4. It shows that the fifth job is executed on VM2

while VM1 supports the execution of job 3. The graphs have been presented just for

demonstration aspects. The actual model might differ. Now, the presented model will run both

jobs 3 and 5 as job 8, which has two parents. The execution structure is shown in Figure 4.4.

Figure 4.4: Execution structure

4.1.5 Performance Parameter

The proposed algorithm has been presented in this section of the chapter. For the initial phase,

the researcher has considered 1000 jobs for the simulation phase, parameters of performance,

including SERVER, SLR, ECR, and EC. The proposed algorithm MATLAB. The description of

the algorithm has been presented below:

1. SLR: At all VMs, the SLR is the completion time of the accomplishment of the job

model. It is given by the SLR equation as below:

𝑆𝐿𝑅 = ∑ 𝐽𝑜𝑏𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑛
𝑘=0 (4.9)

Where,

𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑚𝑜𝑑𝑒𝑙.

2. SLVMR: In the case when jobs are executed at one VM only, it is the ratio of the SLR

to the time. It is given by the equation as below:

𝑆𝐿𝑉𝑀𝑅 =
𝑆𝐿𝑅

𝐽𝑜𝑏𝑡𝑖𝑚𝑒_𝑜𝑛𝑒𝑉𝑀
 (4.10)

31

1. EC: It is the total consumed energy to execute all the tasks.

2. ECR: If all tasks are executed at one VM, the following is the formula:

𝐸𝐶𝑅 = 𝐸𝐶/𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑢𝑠𝑚𝑒𝑑 𝑏𝑦 1 𝑣𝑚 (4.11)

Table 4.4: Model environment

Tool MATLAB

No. of Job Model 100

Max. No. of Jobs 1000

Simulation Area 1000* 1000 m2

The computational cost associated with selected queries depicted in Figure 4.5, has been

considered throughout the research. The setup for the simulation of the proposed model is as

follows in Table 4.4. Simulation implemented using MATLAB R2013a on a 64-bit machine

having a core 7 processor and 8GB of Memory. We assume the simulation area 1000*1000 m2

and a certain number of nodes are randomly distributed in the area. Every node is modeled as an

independent functional entity and moves randomly according to a random waypoint model.

These associated costs are attained with the uppermost arrangement of VM for the architecture

of ABC. The approximation of the population and generation of a number of the algorithm are

the most important features that should be turned all around to attain solutions that are optimal

at the time of optimization. The computation of SLR via the overall number of tasks has been

presented in Figure 4.6. 1000 jobs have been included in the computation. As presented, the red

line has presented the SLR results, DAG while the results of the proposed SLR by the blue line.

The proposed model establishes a vast alteration of almost 500 ms for the accomplishment of

1000 jobs. Decent SLR will yield a decent SLRVM ratio. A reduced amount of SLRVM

recognizes the development of the structure as the denominator is the time consumed at VM1,

which is most of the time more than the numerator. The total number of jobs owing to energy

computation is presented in Figure 4.7. For computation, 1000 jobs have been considered. As

presented, the orange line has presented the consumption of energy results, DAG while the results

of proposed consumption by the blue line.

32

Figure 4.5: Computational cost of sample queries

Figure 4.6: SLR (ms) for DAG and proposed

According to equation 4.11, the maximum energy consumed for the proposed model is 229 mJ

0

500

1000

1500

2000

2500

3000

10 100 500 1000

S
L

R
 i

n
 m

s

Total number of Jobs in job model

SLR

SLR Proposed SLR Dag

33

for 1000 tasks. In the DAG model, the high-energy consumption of 400 mJ was found in the

same count of jobs. Figure 4.8 shows the graphical representation of SLRVM proposed with

SLR, DAG, and ECRVM proposed with ECRVM, DAG. A comparative analysis has been shown

in the figure for the same. The comparison has been drawn for several jobs. As shown, X- jobs

are considered whereas the- axis defines the SLRVM and ECRVM computation.

Figure 4.7: Energy Consumption (mJ)

Figure 4.8 SLRVM and ECRVM

0

100

200

300

400

500

10 100 500 1000E
n

er
g

y
 C

o
n

su
m

ed
 (

m
J

)

Total number of Jobs

Energy Consumption

Energy Consumption Proposed Energy Consumption Dag

0

0.5

1

1.5

2

2.5

3

3.5

4

SLRVM

Proposed

SLRVM DAG ECRVM

Proposed

ECRVM DAG

S
L

R
V

M
 -

E
C

R
V

M

JOBS

SLRVM - ECRVM

34

4.2 Reducing Consumption of Energy and SLA Violation via ANN

The proceeding section worked on the first phase of objective one that is to provide an efficient

solution for Load balancing using the optimization technique. To fulfill the first objective that is

to design a framework for scheduling deadline-sensitive applications, the second phase is also to

be proved which revolves around minimizing Energy Consumption and SLA violations in Fog

Computing using ANNs. The succeeding section will work on this aspect of the research.

4.2.1 Introduction

Fog computing is stated to be a platform of virtualized nature that provides computation, storage,

& networking services amongst end devices along with conservative data centers for CC.

However, these have not been entirely situated crossways the edge of the network [48]. The Fog

computing environment has state-of-art mechanisms of switches, proxy servers, routers,

networking, Base Stations (BS), and set up boxes that are situated at the neighboring closeness

of devices and sensors as presented in Figure 4.9. The mechanisms are presented in Figure 4.9,

having distinct computing, storage, and capability of networking that facilitate in sustenance the

implementation of service applications. The effective implementation of FC via consumption of

power, network traffic, service latency, and content sharing, and other such aspects [49]. The

idea of consumption of energy is relative to traditional with the use of properties related to data

centers. Similarly, associated cost inclines to be straight compared with energy ingesting. For

resolving the rigid nature of difficulty connected to the distribution of service, it requires

explanations that are suboptimal since they typically are inclined to be extremely efficient. Owing

to this, researchers have led to demonstrate numerous heuristic events for speaking this

experiment. Heuristic methods have been responsible for the issues about their greedy

characteristics; they incline to be typically stuck inside a local optimal and are incapable to move

in the direction of an appropriate explanation. Methods of the Meta-heuristic aspect are extremely

Well-organized since they incline to be not dependent on the problems [50]. Different methods

grounded on meta-heuristic methods are inclined to use a trade-off exploration and

randomization.

 Randomization has fetched around providing a temperately attired method for moving away

from a native to worldwide hunt. It is inclusive of increasing and solidifying the designs which

are meta-heuristic The system of broadening allow distinction for determining the world

35

examination at a worldwide stage by being able to generate various solutions while in specific

region intensification search for the optimum solution. Combining these features leads to

assuring the accomplishment of optimality at an international level [51]. Numerous systems are

considered to utilization for reducing energy ingesting inside a fog server, certain of them to

comprise facility based on the allocation of the virtual machine, consolidation, multiple-core

architecture-based, thermal-aware-based bio-inspired computation-based methods, and other

such aspects. Service-based issues of allocation necessitate policies related to scheduling for

diverse systems. Holding the ability to take advantage associated with mobile computing with

the storage of resources position at network edges has fetched considering. With the progression

of technology and the Internet, organizations all around the globe have estimated that increased

providers of cloud come up and present increasingly different purposes of numerous resources

and services. Nonetheless, the arrangement of data centers in clouds leads to a growing number

of computational devices being used every year, increasing the consumption of energy and

depraved pressure on the environment. The studies conducted previously have stressed the

reduction of interruptions of transmissions capable to take benefits of distributed abilities of

storage at network edges.

Figure 4.9: Fog Computing Environment

The architecture F-RAN has been presented to offer super low latency services. Alternative work

36

assessed the association of latency-driven jobs in computing the F-RAN networks where the node

of F-RAN offloads their job for totaling for the nearest load-free F-RAN nodes. Another research

emphasized refining the use of storage or computing across network edges by using Fog

computing for effectively dealing through a highly complicated multi-tier network architecture

through the means of heterogeneous node abilities and bendable network resources concerning;

Communication bandwidth, transmission power, and capacity of storage [52]. Figure 4.10

presents the fog system with an architecture based on three tiers that are IoT, cloud, or end-user

and fog layers.

4.2.2 Related Work

For the management of Energy Consumption in data centers, two main techniques are there

namely “VM consolidation technique” and “Dynamic Voltage and Frequency Scaling (DVFS)

technique”. The DVFS method vigorously regulates the operating frequency of the chip and

voltage based on the different requirements of the application program implemented on the chip

for computing power. This takes place to attain the determination of saving energy. The three

chief groups of DVFS approaches are inter-task [53] interval-based [54] – [56] and treats methods

[57]. Interval-based approaches alter the frequency of the processor by forecasting the prospect

of CPU usage, inter-task approaches allocate diverse jobs to diverse processor speeds, and intra-

task approaches have regulated the frequency of processor based on the program structures.

Though DVFS approaches develop the utilization of energy, the scope for optimization still

prevails.

The issue of consolidation of VM is an NP-hard problem [58]. Thus, the issue of VM

consolidation is many times articulated as a problem of optimization to find a way out which is

near optimal. The present VM consolidation methods are bifurcated into two groups that are

decision-making based on a statistical analysis of historical data and threshold-based heuristics.

The researchers of the study [59] presented a static threshold-based heuristic approach, wherein

the researcher fixed two thresholds for the prediction of the host state: an under loaded and

overloaded threshold. If the utilization of CPU is equivalent to or less than 10%, then the

migration of all the VMs should be facilitated to save power. In this scenario, a PM is under

loaded.

In case, the utilization of CPU is equivalent to or more than 90%, then the migration of some

37

VMs should be practiced so that the next time overloading be ignored. Herein, a PM is

overloaded. Many times, a static threshold approach is not appropriate because, CDCs, the

amount of work complex and is dynamic. Many pieces of research [60] – [62] recommended two

dynamic thresholds-based heuristic policies: “Inter Quartile Range” and “Median Absolute

Deviation”.

A neural network framework called PRACTISE [63] is used for forecasting the utilization of

resources. The researchers have found that when compared to the basic neural network model

and ARIMA [64], PRACTISE has superior precision in prediction. PRACTISE has also been

used to understand scheduling VM plan to provide for the highest requirements in other research

[65]. Prediction approaches based on the neural network are more complex and are frequently

taken into consideration for intermediate to extended-term prediction. Similarly, linear regression

[62] facilitates generating an assessed upcoming utilization of resources of a PM from analyzing

statistics of its historical resource consumption. It is frequently used for short-term estimate. A

“The research heightened linear regression” approach is used to estimate the forthcoming

capacity of job handling in [66]. Unlike other linear regression methods used for prediction, the

proposed robust model compensates the prediction and move towards over-prediction by the

accumulation of the fault straight or meandering to the estimation. In [67]the study presented an

optimization of the “ant colony meta-heuristic VM placement algorithm”, the study designed the

placement problem of VM as a “multidimensional bin packing “issue and marked VM placement

plan based on the assignment and the connected resource necessities.

4.2.3 The issue to be addressed

The deficiencies of Fog Computing present the positives of Cloud Computing which provides

admission to on-demand for resource computing, which Is physically terminated and chiefly

ascendable. Many researchers in the field of Fog Computing have already provided their research

based on scheduling techniques but many problems still prevail [68]. The Energy Consumption

rate is the first challenge. Owing to the instabilities in scheduling, the consumption of energy is

on the higher side. Figure 4.10 presents the SLA for Fog Computing. For checking the energy-

conscious job positioning, the approximation of the impression of energy for scheduling a

specific job on an accurate server is needed.

 The proposed method of FC helps the scheduling which is energy-aware and assets with ANN.

Its goal is to decrease the consumption of energy in the fog environment without degrading the

38

system performance and SLA violation. The task allocations are done to energy-aware nodes and

as per the task completeness constraints imposed by the users [69]. In the present research, the

researcher created an algorithm that was issued for the job list optimization by the consumption

of energy rate based on fitness function and combined with (Artificial Neural Network) ANN

that facilitates in categorizing the most appropriate host according to the needs of the jobs.

Figure 4.10: SLA in the fog Environment

4.2.4 Proposed Techniques

The method proposed in the present research Fog Computing environment permits, scheduling

which is energy-aware of the resources of the system and servers utilizing the idea of ANN along

with the altered varied objective scheduling method for the task. In the proposed system, it is

taken into consideration to reduce the consumption rate of energy without degrading the

performance of the system and a violation of the SLA. This will facilitate in discovering

practicable scheduling which improves a group of the objective function. Here, the MMJS

algorithm is taken into consideration for optimization of the list of jobs based on the consumption

rate of energy grounded on the function based on fitness and give back the optimized job_list and

host_list. Optimized job_list and host_list are beneficial for the distribution of jobs with reduced

consumption of energy and it behaves as if the input of ANN.ANN facilitates the categorization

39

of the finest host based on the necessities of the task and distributes them for decreasing the

greater options of consumption of energy and violation of SLA.

The neural system designed by the researcher has been established to have an exceptionally

accurate expectancy ability with reduced overhead to suit the distinctive real-time application,

which is applicable in the fog environment. The present algorithm, which is an amalgamation of

MMJS with ANN, facilitates discovering job distribution scenarios the fare optimal and

facilitates the progression of server regulation usage in Fog Computing scenarios by concluding

the unexploited servers. The neural system-generate before has been established to have a

remarkably detailed expectation ability with reduces the overhead to suit in exclusive on-going

situations. The application of the present neural network is for the sustenance of calculation as to

make appropriate decisions, and to make the procedure increasingly easy. Figure 4.11 presented

below shows the use of ANN in the distribution of jobs. The algorithms Table 4.5 & Tables 4.6

are present as follows:

Table 4.5: Multi-objective Job Scheduling (MMJS)

START

Input: Host List (HL), Job List (JL), and Deadline

JL.Sort_Decreasing_ Optimization ()

For

Each job in JL, List do

Min_Power←max

Allocated_ host<--null

If

The host has sufficient resource for Job

Power←estimate_power (H, J)

If

Power<man_power then

Propose Fitness (HL, Deadline, Job);

If it is fulfilled Fitness_Fxn

Optimized Host←host

End if

End if

Return; Optimized HL & JL

End (Fxn)

End for

40

Output: Optimized HL &JL

Table 4.6: MMJS using Artificial Neural Network (ANN)
START

Input: Optimized Host_ List (HL) and Job_ list(JL)

Use ANN to configure Parameters: Neurons (N): Epochs (E)

Performance parameters: Validation Points; MSE; Gradient; Mutation

Training Techniques: Levenberg Marquardt (Trainlm)

Data Division: Random

For

Each job and Host

Group (G) = Work categories according

to host ability

End

Initialized the ANN using Group & Training data

Set training parameters as needed, and train the system

Net = Train (Group, Jobs,)

Return;

Net as ANN Trained Job Allocation Structure

End (Fxn)

Output: Jobs Allocation

As VM is transported forth on attention to deal with the problems of the client in Fog Computing,

the neural network anticipates the upcoming load of requests on servers reliant on documented

notice.

Figure 4.11: ANN used for optimized allocation of jobs

41

4.2.5 Results and Discussions

The present section is focused on the outcomes attained later in the simulation of the proposed

method. For the execution, the researcher has measured ANN and MMJS algorithms. Throughout

the process of placement of jobs, the jobs are distributed to the appropriate host following the

resources based on ANN and MMJS. MMJS has a function that is multi-objective whose design is

taken to be the basis of the consumption rate of energy throughout the distribution of jobs in the

direction of hosts. Before this, the tasks are distributed to hosts based on the structure trained via

ANN. As per the observation, before the application of ANN and MMJS, consumption of energy

and violation of the SLA has reduced. Consumption of energy and violation of the SLA has been

processed using the formulas presented below: For simulation 100 jobs have been considering and

the simulation area is 1000*1000, simulation is done in MATLAB.

𝑛

 𝑆𝐿𝐴 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑆𝐿𝐴(ℎ𝑜𝑠𝑡, 𝑗𝑜𝑏𝑠) (4.2.1)

𝑖=1

Where,

n= Iteration number

Consumption of energy is Well-defined mathematically via:

𝑚 𝑙

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑ 𝑗𝑜𝑏𝑒 + ∑ ℎ𝑜𝑠𝑡𝑒 (4.2.2)

𝑖=1 𝑖=1

As presented in the equation above,

𝑗𝑜𝑏𝑒 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑗𝑜𝑏𝑠

ℎ𝑜𝑠𝑡𝑒=energy of hosts

Table 4.7 and Figure 4.12 presents the attained values of consuming energy in the Fog Computing

environment based on the job number calculated with & without the algorithm of classification

and optimization. The X-axis and Y-axis respectively present the jobs and value witnessed for

energy consumed by the resources.

From Figure 4.12, it is understandable that the job number is increasing the consumption of

42

energy values. 70.2mJ and 66.5 mJ respectively, are average values measured in the number of

jobs without and with the optimization algorithm.

Table 4.7: Energy Consumption Evaluation

No. of jobs EC(mJ) EC with MMJS and ANN

10 60 55

20 63 60

30 65 59

40 71 70

50 69 65

60 73 71

70 75 70

80 77 73

90 80 77

100 69 65

Table 4.7 and Figure 4.12 presents the attained values of consuming energy in the Fog computing

environment based on the job number calculated with & without the algorithm of classification

and optimization. The X-axis and Y-axis respectively present the jobs and value witnessed for

energy consumed by the resources. From Figure 4.12, it is understandable that the job number is

increasing the consumption of energy values. 70.2mJ and 66.5 mJ respectively, are average

values measured in the number of jobs without and with the optimization algorithm. Therefore,

it is witnessed that the consumption of energy value is reduced by 5.3mJ.

43

Figure 4.12: Comparison of Energy consumption (mJ) w.r.t the number of jobs
Table 4.8: SLA Violation evaluation

No.

of

Jobs

SLA

Violation

SLA violation with

MMJS and ANN

10 0.65 0.63

20 0.82 0.78

30 0.75 0.72

40 0.88 0.82

50 0.83 0.81

60 0.89 0.85

70 0.69 0.68

80 0.62 0.60

90 0.78 0.72

100 0.85 0.81

Figure 4.13: Comparison of SLA violation w.r.t the number of jobs

The above Table 4.8 and Figure 4.13 present the violation of SLA in Fog computing received for

a dissimilar number of jobs. In the figure above, the blue bar has presented SLA violation without

optimization technique and the red bar presents the violation of SLA values detected when ANN

44

and MMJS methods are focused on the system. 0.776 and 0.742 respectively, are the average

values witnessed for violation of SLA with and without optimization algorithms. Therefore, in

Fog computing a reduction of 3.9 % in SLA violation is observed when an optimization algorithm

is applied.

4.3 Summary

In Fog computing, problems of consumption of energy and violation of the SLA for job

scheduling have been practiced. However, several ways present for resource management for

data centers that are energy aware. The existing researches are focused on decreasing the

consumption of energy without taking into consideration the violation of the SLA. Owing to the

inconsistency in scheduling, the consumption of energy became more because of a lack of host

classifier.

 The present research has focused on scheduling of job & resources which are energy aware based

on the idea of artificial intelligence. Many jobs are considered for calculating the helpfulness of

the proposed system. 70.2mJ and 66.5 mJ respectively, are average values measured in the

number of jobs without and with the optimization algorithm. 0.776 and 0.742 respectively, are

the average values witnessed for violation of SLA with and without optimization algorithms.

Therefore, in FC, a reduction of 3.9 % in SLA violation is observed when an optimization

algorithm is applied. It has been established that the performance of the proposed work has led

to a reduction in energy consumption.

45

CHAPTER 5

FOG ENVIRONMENT ISSUES OF LOAD BALANCING AND

DELAY AWARE SCHEDULING - A FOUR-TIER

ARCHITECTURE SOLUTION

 5.1 Introduction

Nowadays, in both fog and cloud environments, quite a lot of studies are trying to dig into the idea

of scheduling [70]–[74]. User mobility and application classification are the key issues in

scheduling, which is presented by a group of nodes in Fog Computing. [75]. Load Balancing is the

main problem in Fog computing because users requesting network resources access is intended for

storage & process largely. The resource allocation in fog should consider the present pressure on

Fog Nodes; it also cites schedulers and resource managers towards selecting the appropriate Fog

Nodes meant for computing services [76]. Moreover, Fog Nodes in Fog Computing Networks vary

based on the rate of processing, input data, which causes the issue of load imbalance problem that

is few Fog Nodes, are burdened, and few remain idle. Such problems hardly reduce the functioning

of the entire fog environment [77]. Consequently, the important aspect associated with fog

environment includes issues related to the optimal allocation of workload or dynamic balancing of

load along with task scheduling. Hence, because of this, numerous graph partitioning and meta-

heuristic algorithms have been put forward [78], [79]. But then again, because of growing task

influx rates and mostly deployed figure of the number of Fog Nodes, the Fog Nodes is presently

imbalanced. To overwhelm the aforementioned issues, in this study we present the system

architecture of four-tier fog computing for both task scheduling and load balancing with reduced

energy consumption and delay.

 5.2 Related Work

Fog- Node is mainly used in the study of data, collected from the IoT devices within a fog

environment. Here the researcher will explain particular research challenges like Load Balancing

as well as task scheduling, within IoT applications. [80] In situated an energy-effective scheduling

46

scheme, which is to reduce the energy intake for IoT flows on the diverse form of FC architectures.

The SA, in-between edge nodes, and other similar aspects do not take into account the task

migration. All such things make the mechanism more complex. Further, periodic tasks are not taken

into account because of the tasks, which are a real-time take on the heterogeneous environment.

[81] Presented “knapsack-based scheduling” improved by search associated with the

interdependent organisms that are simulated via simulator iFogSim. It depicts enhancements in the

consumption of energy by 18%, the cost of execution by 15%, total usage of the network by 1.17%,

and the lifetime of the sensor by 5% within the scheduling. Network with low latency and traffic

is appropriate for scheduling based on Knapsack. [82] Proposed containers that are primarily made

for the application of smart manufacturing; these are also introduced for task scheduling as well as

for the allocation of resources within the fog network. Moreover, the allocation of resources and

scheduling of task plans efficiently lowers down the delays in the task. In FN, it also improves the

concurrency in many tasks. It needs an appropriate workable environment as Well as virtual

devices whenever a user makes a request. The terminal devices along with FN are unable to

calculate processing and are given high-grade computation, it happens if unloading of computation

tasks occurs. If in the FN rate of traffic network, utilization of resources is high then time for

execution of the task will also be high.

In the milieu of fog, [83] introduced application scheduling which was aware of mobility. As the

world is moving towards technological advancements, the need for computing of agile users

remains increasing. The architecture of FC follows a hierarchical process and decisions about

storage locations. These storage locations are dependent on the geo-locations of users and the

constraints of the application. There are three types’ strategies in the schedule that generated to

influence application; these are Delay Priorities Strategies, First Come First Serve (FCFS), and

Concurrent Strategy. However, there are many underlying problems of FC like ownership, cloudlet

placement, and business model. The authors of the study [84] suggested that the Cloud environment

introduced varied heuristic methods for the ideal scheduling of tasks within the environment of the

cloud. The suitable choice of an algorithm for scheduling of job is difficult as the methods

associated with algorithms are executed in different assumptions. Minimum Execution Time,

FCFS, MinMin algorithm, Minimum Completion Time, and Max-Min Suffrage have regularly

used task SAs. In the working of Management tactics and allocation of resources, LB plays a major

role. In fog aided cloud milieus, power utilization and balanced delay are the limitations within

47

optimum workload allotments.

A study by [85] suggested that the fixed workload allotment issues, it formulated aiming to reduce

the utilization of delay in service and power. Moving forward authors stated that if optimization is

done within centralized behavior, the total system might fail. Moreover, the essential exchange of

data and the extra cost of communication have not been examined appropriately. The research

conducted on the study [86] stated that within cloud-fog milieu have exhibited task scheduling. To

execute the major offloading applications, the fog provider overuses the association within its hired

cloud nodes and its FN. This leads to a heuristic algorithm that is put forward that aims to get the

stability within the cost of cloud resource and make span, but it doesn’t take into account limitations

of execution of the workflow and also the functioning of applications working.

In research conducted by [87], the researchers have used the scheduling of jobs, which are based

on our priority, where different components have been suggested. Since modules increase in

number, therefore, it lowers down the response time and the overall cost of computation. The SA

does not improve if threshold values (𝑇1,2) change dynamically. The researchers of the study [88]

introduced a unique architecture, which locally handled the user’s request. If the requirement of

additional resources comes up it is managed by multiple regions, not just by a region. The fog

Message module was essential to send off information related to the load of the fellow FN or

regions as stated by researchers. [39] That in an environment of FC introduced a well-systemized

algorithm meant for Load balancing have stated it. In this to meet users’ requirements maintenance

of consistency of data with reduced complications is done, surged throughput, utilization of

network, and scheduling of tasks are done within the time limit.

Researchers in [89] introduced latency aware application component administration meant for fog

milieus. In the fog environment, the focus of this component is to confirm the QoS of applications

based on meeting deadlines of delivery of service and adjust resource utilization. A resource

scheduling module was introduced by [90] grounded on the mobility of users in FC. Execution

requests for IoT applications are redirected to centers of cloud data that are dispersed in the fog

layer throughout. The time of response has increased with the help of the rate of mobility of users.

In an environment of cloud, a research study [91] introduced the “Genetic Algorithm”. Both RC-

GA helped in increasing the consumption of power of resources as well as upsurges the execution

of tasks. Moving on it also, lowers down the errors that are random with the help of “wheel

48

selection of roulette” an operative of GA, but processing time increases for devices that are at a

long distance from the cloud. In Fog Computing for scheduling of task [92] proposed technique of

classification of data mining. The job is selected in a way that reduces the time of completion on

Fog nodes execution, as authors introduced the “I-Apriori algorithm”, as well as a set of rules of

the association, are produced. It lowers down both time of waiting and time of completion, but a

high overhead rate in the environment of fog is there. From ToI equipment to lowers down the

latency inflow of users was mainly contributed by in the environment of fog by work Load

balancing introduced by [93]. Therefore, to dodge the issues of congestion load in the middle of

FN are calculated. For an extended period, important tasks are kept waiting in this; hence, the

number in the arrival of the task regarding latency grows largely. To reduce all the above-stated

issues, the present study has focused on reducing the consumption of energy and latency.

 5.3 The issue to be addressed

The section here focuses on techniques of Load Balancing, task scheduling, and performance

metrics. First, the time of scheduling for the execution of the task of the user is defined. Pham et

al., [88] introduced quid pro quo problems in the cost of cloud and makespan when in such

environment scheduling of large scale application is done.“Cost-makespan aware scheduling

heuristic” is a SA that aims to obtain the steadiness between the utilization of cloud resources in

the execution of the application and working cost, which is fixed as, projected in this thesis, but it

is unsuitable for systems, which need to be executed on a very large scale. The utilization of time

in both Fog computing and cloud computing is increasing the consumption of time

5.3.1 Problem statement

In this section, we present the proposed problems based on task scheduling and load balancing

techniques with performance metrics. Firstly scheduling time for the user’s task execution is

described. Pham et al., [97] presented the tradeoff issue between the makespan and cloud cost

when scheduling large-scale applications in such an environment. Hence, this paper proposed a

scheduling algorithm called cost-makespan aware scheduling heuristic. The major objective is to

obtain the balance between the performance of mandatory cost and application execution for the

use of cloud resources, but it is not suitable for large-scale application (smart grid) since the huge

volume and ever-increasing service requests. Then an average energy consumption problem is

analyzed [94]. A DEBTS (Delay Energy Balanced Task Scheduling) is proposed to minimize the

49

overall energy consumption, which reduces service delay and jitter. Initially, fog node locations,

available fog node connections, traffic demands, and channel conditions are changed over time.

 The centralized controller has taken high-energy consumption and if it is failed, the whole network

leads to failure. Thirdly, the response time for several tasks execution is high. In [4], and [98]

response time is high when the number of tasks is increasing. In [94] bees life algorithm (BLA) is

proposed, which determines an optimal tradeoff between allocated memory and CPU execution

time for providing fog computing services for mobile users. This is because it does not consider

the dynamic arrival of new requests while other requests are being executed for the fog-computing

environment. In [38] graph partitioning is proposed to achieve less response time by load balancing

among fog nodes. Fourthly, delay at particular fog nodes for task execution or concerning the

number of arrived tasks is high [96], which leads to simple fog architecture. An improved non-

dominated sorting genetic algorithm II (NSGA-II) is proposed for fog clusters and nodes.

5.4Proposed System Model

DEBTS is introduced to reduce the total consumption of energy, which lowers down service delays.

Primarily, connections of FN, location of FN, the traffic demand, and conditions vary over some

time. The consumption of high energy is taken up by a centralized controller if failed it results in

the failure of the whole network, in [94], [95] with increment in several tasks, response time

increases. To determine the balance between assigned memory and time of execution of the CPU

of FC services of movable users “Bees life algorithm (BLA)” was introduced in [94]. Due to this

fact, frequent and changing requests arrival are not considered but rest are executed. In [90], to get

quicker response time between FN through LB was suggested to be done through Graph

Partitioning. Moreover, the execution of task lag in a node concerning tasks that arrive is high [96].

For FN and clusters, a better “Non-dominated Sorting Genetic Algorithm II (NSGA-II)” was

proposed.

5.4.1System model

In this section proposed fog computing architecture for task, scheduling and load balancing

techniques are described. The proposed model is depicted in figure 5.1; we consider a set of IoT

devices 𝑁 (𝑖 = 1…𝑛), and set of 𝐹 (𝑓𝑖 = 1…𝑛) fog nodes for the high-performing servers around

those IoT devices. From an IoT device, a cloud will be placed, this IoT device proposes many

services of a cloud application for the request of the user and that offers computing resources and

50

storage used for the processing of Fog Nodes. To carry out tasks, the group of Fog nodes is

clustered. The research motivation is shown in Table 5.1

Table 5.1: Major Research Motivations

Four-Tier Fog Architecture for Delay aware Task Scheduling and Load Balancing

Tiers Tier working nature Algorithm used

Tier-1 (IoT

devices)

Data acquisition -

Tier-2

(Routers)

Application/task

classification (high-

priority and low

priority)

Dual Fuzzy Logic Algorithm

Tier-3 (Fog

nodes)

Fog nodes clustering K-means++ clustering

Task scheduling Earliest Deadline First Scheduling

Load balancing

(current load of fog

nodes)

Artificial Neural Network

Tier-4

(Cloud)

Tasks which are

executed in longer

delay will consider it

Earliest Deadline First Scheduling Algorithm

A cloud will be located far from the IoT devices, which offer several cloud application services for

the user request and give computing resources and computation storage for the fog nodes. The IoT

devices can access the fog node via a router (wireless network) like Bluetooth or WiFi. Each user

request will be classified into high-priority tasks and low-priority tasks using a dual fuzzy logic

algorithm. The set of fog nodes (artificial fractals) are clustered to execute tasks. Each fog node

consists of three components: fog scheduler, load monitor, and communication component.

51

Figure 5.1: Proposed System Model

52

In Figure 5.1,

𝐻𝑃 = ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘𝑠 (𝑐𝑙𝑎𝑠𝑠 1)

𝐿𝑃 = 𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘𝑠 (𝑐𝑙𝑎𝑠𝑠 2)

Q1 and Q2 are the queues into which users' requests are divided with the help of a “dual fuzzy logic

controller algorithm.”

The message module, fog scheduler, and load monitor are three components of Fog Nodes. The

CDC (tier 4) makes the acceptance or rejection of the user task decision. Every Fog Nodes at the

fog. The scheduler plans tasks to achieve the target. The Load Monitor is used for monitoring load

in all Fog Nodes. The work states a before user delay, already accepted tasks should be performed.

Sometimes Fog Nodes is unable to execute the user task in a given time; this might indicate a lack

of resources of Fog Nodes to allot requests. The components of communication transfer its

activities once it detects Fog Nodes usage to head Fog Nodes also known as seed nodes. The tasks

given by the user cannot be executed if overloading occurs in Fog Nodes usage, in such a situation

a “heartbeat message” is generated by components of communication to seed nodes so that they

reallocate the tasks to the closest Fog Nodes. Algorithms and research used in this thesis are

explained in Table 5.1.

Tier-1: It is named “IoT Devices Tier” and it is present in the location of physical sensors. Here

workload and acquirement of data are rationed out to cloud or else to fog tier This Tier has “sensor

nodes” and “actuators” that are smart IoT devices. These devices grasp data that is geographically

spread and sends it to the router.

Tier-2: “Task Classification using Dual FLA”: scheduling of jobs is a significant subject in a fog-

based cloud environment. This is because, in fog and cloud environments, many numbers of jobs

are important to execute. For efficiency, an algorithm for task classification is used and the task is

first measured in terms of HP or LP. Tasks that are high in priority are difficult to meet the target

even that is given by the user, these tasks are real-time. Figure 5.1 shows the proposed system

model. Table 5.2 describes the set of fuzzy rules for task classification.

53

Table 5.2: Rules for Tasks Classification

𝐹𝐿𝐶1

Fuzz_ Inputs

Low= L

High=H

Fuzzy_Output

Low= L

High=H

𝑇𝑆 𝑇𝐴𝑇 𝑂1

L L H

H L L

H H L

L H H

𝐹𝐿𝐶2

Fuzzy_Inputs Fuzzy_Output

𝑚𝑖𝑛𝑇𝐸𝑇 𝑚𝑎𝑥𝑇𝐸𝑇 𝑂2

L L H

H L L

H H L

L H H

In a first fuzzy logic control (𝐹𝐿𝐶1) in Table 5.2, factors used

𝑇𝑆 − 𝑇𝑎𝑠𝑘 𝑠𝑖𝑧𝑒

𝑇𝐴𝑇 − 𝑇𝑎𝑠𝑘 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒

In the second Fuzzy Logic Control (𝐹𝐿𝐶2) in Table 5.2, factors used:

𝑚𝑖𝑛𝑇𝐸𝑇 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑚𝑎𝑥𝑇𝐸𝑇 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

Within all the tasks following tasks are important, these are the execution of the task, minimum

size task, time of arrival .O1 and O2 are the outputs as per FLC1 and FLC2. Figure 5.2 shows every

set of tasks allocated to every queue.

54

Figure 5.2: Task Classification and Scheduling in Fog Cluster

In an orthodox “FLA”, the calculative difficulty is more because of many “fuzzy rules”, the number

of requests which are coming does not get updated vigorously as well. Thus, the researcher has

suggested the “dual fuzzy logic controller” algorithm. The consumer job that has an HP is

performed before the job, which has low priority.

Tier-3: Task Scheduling and Load balancing:

Here we will throw some light on the process of scheduling HP jobs amid FN. Here, the researcher

suggests using a new framework in the fog tier in place of using a distributed environment or central

control like Artificial Fractals. This shall be discussed in detail in the sub-sections. Each cell

chooses a seed node to achieve communication among the cells (head for all other FN) to

communicate to the external of the nodes. Every FN has three constituents, which are maintained

namely Load Monitor, Fog Scheduler, and message module. The use of possessing these modules

on every node is to make it accountable for communicating, scheduling, and monitoring. In this

55

thesis, the EDF task scheduling arrangement is suggested in the scheduler. The researcher uses a

message module to transfer the associated load data to adjacent FN. The present usage prediction

for every node is completed by an ANN. Mobility of FN and user mobility is also observed through

assessing the User to FN distance and vice-versa at a time‘t’.

5.4.2 System Design and Architecture

FN clustering which uses K-means++ clustering algorithm-

This arrangement comprises 64 Fog Node as eight series of FN have been considered. These are

clustered applications of the algorithm of the K-Means ++ clustering algorithm. There are eight

nodes in each fractal and hence eight fractals are formed for 64 FN. The IoT device to the

neighboring FN. transmits a requirement. The seed node as per its priority level, deadline in the

FN, and available resources, governs the importance of the request. For this, current usage and

every FN capacity are periodically updated based on the time interval. To improve the message,

each fractal chooses a one-seed node (which is signified in red color). For the grouping of FNs into

the layout, adjacent FNs are assembled into a fractal. One configures the fractal scale effortlessly

& this framework facilitates informing the fog fractals because the FN constantly converse with

contiguous FN with lesser energy intake and high bandwidth. The FN distance is measured using

the “Euclidean-Distance” method.

Distance between the 2fog fractals (𝑎𝑖=1…𝑛) & (𝑏𝑖=1…𝑛) is calculated as:

 ‖𝑓(𝑎) − 𝑓(𝑏)‖ = √∑ 𝑓(𝑎𝑖) − 𝑓(𝑏𝑖)2𝑛

𝑖=1

 =√(𝑓(𝑎1) − 𝑓(𝑏1)2 + ⋯+ (𝑓(𝑎𝑛) − 𝑓(𝑏𝑛)2 (5.1)

The K-means++ suggested here is to select the cluster center through a new approach. Supposing,

X be the shortest distance to the nearest center from a point.

Steps in K-means++ Clustering are mentioned below:

1) Choose1cluster-center (𝐶1) arbitrary from 𝑅

2) Choose a new cluster-center 𝐶𝑖, selecting 𝑥∈𝑅 with a probability of 𝑋2 ∑ 𝑋2 𝑥∈𝑅

3) Do until 𝑘centers 𝐶 = {𝐶1, 𝐶2…𝐶𝑘}

4) From the group of cluster-center 𝐶𝑖, 𝑖∈ {1…𝑘}, use a “k-means” clustering algorithm

56

EDF based Task Scheduling

Jobs are planned with EDF. The fog fractals communicate with one another with the help of a

communication constituent, after combining the fog fractals. With a huge quantity of FN, the first

deadline job, which has a smaller job size, gets the maximum priority. In this research, the job level

of priority has been transformed and coped while in process, it means the job priority is altered at

the time of its execution. The former tactics offered [24] the “fixed priority scheduling” algorithm.

It was further found ineffective at implementing jobs. If two jobs have similar deadlines, then it

randomly selects any job. The algorithm I describe the ‘The task scheduling’ at Fog node.

ANN-based Load Balancing

Here the ANN algorithm achieves load balancing. Herein, the workload of all Fog Node is

disseminated equally by application of back Propagation (BP) Learning Algorithm. The suggested

back Propagation Algorithm is easy &operational; however, it will work on nodes if operative

training sets are accessible. Algorithm governs present requirements and consequently assigns

resources to the user job.

 If the Fog node surpasses the preset threshold, it will activate Load Balancing. In this study, the

researcher “presented an active “Load balancing threshold policy” centered on the Artificial

Neural Network. Artificial Neural Network is sent to the fog Node for calculating the existing

requirement of fog Node

The primary purpose of recommending this system is its easiness and simplicity to be used for any

prediction request. Therefore, in this study workload shared and jobs disseminated amid several

Fog Node are assured even when a single Fog node is either idle or overloaded. The main aim of

Load Balancing in fog calculating is to decrease the usage of energy. The recommended Artificial

Neural Network framework is divided into three layers. Table 5.3 shows the algorithm used in task

scheduling.

57

Table 5.3: Task scheduling using EDF

START

Input: Record of FOG _NODE (F→f (i=1…n)),

Existing User_Task (S)

For all f in F do

Start HP tasks from Fog_Scheduler at first

If
 f_i is available to process S∈ High_Priority

then

Do task execution

Repeat STEP III until finding the fitting FOG_NODE

Do task execution for High_Priority tasks

f_i is available to process S∈ Low_Priority then

Do task execution

Else

Total No. __ Bee = (J*Power_ Jobs);

for
Repeat STEP III until finding the fitting

FOG_NODE

Do task execution for all Low_Priority tasks

End if

Output: Tasks are scheduled to fog nodes and organization task execution

Current load Computation:

𝐿(𝑓𝑛) =
∑ 𝐴(𝑇𝑠)

𝑆
𝑠=1

𝑇
 (5.2)

𝐴𝑣𝑒𝐿
𝑖 =

(∑ [𝑅𝐸𝑇𝑗(𝑠)+𝐸𝑇(𝑆)]𝑁
𝑗=1)

𝑁
 (5.3)

Where 𝑆 represents the total number of tasks executed at each fog node, 𝐴(𝑇𝑠) represents the task size

and T represents the simulation time. The average load of each fractal can be computed by equation 5.3.

Where N represents the number of Fog Nodes present in fractal 𝑖, 𝑅𝐸𝑇𝑗is the remaining time for

presently executing the tasks, which are being administered by node 𝑗, and (𝑆) shows all the job

implementation time. The hidden layer calculates a weight value as per the Fog node’s present; the

output layer forecasts the balanced workload between ‘N’ Fog Nodes.

58

Dynamic Load Balancing policy: Threshold-based on 𝐴𝑣𝑒𝐿𝑖 is calculated as follows

𝐷𝐿𝐵𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐿 ∗ 𝐴𝑣𝑒𝐿

𝑖 (5.4)

Where,

L= constant multiplier

Because of the job’s (based on EDF) dynamic implementation and plotting of a job to the FN, brink

for and LB needs vigorous nature, because static value performs badly in the real-time

environment, which has controlled supply.

Tier-4: In Cloud Data Centers (CDCs), if fog fractals fail in the implementation of a job, to provide

request data packets to users, the CDC behaves like user requirements supervisor it helps in

applications demanded by users. If the cloud server performs badly for user requests, then it

transmits the communication to the whole CDC.

5.5 Experimental Setup

The researcher has developed a Fog Computing architecture thereafter compare it with other Fog

Computing environments. The Simulation Environment Design is presented in Table 5.4. One

simulation study for application namely, Video Surveillance/Object Tracking. It relies on a set of

intelligently distributed cameras that able to track movement. This Application is used for

experimental verification and validation

5.5.1 Simulation Model

The researcher used iFogSim for the execution of the proposed architecture as shown in Figure

5.3. The iFog Sim is selected because it can easily augment with well-established Cloud-Sim

Simulators. In our experiment, the system configuration is set with a schedule cycle of 100

milliseconds. There are 64 fog nodes considered for allocating computing resources to users. The

64 users send requests to the cloud concurrently and the data of each data request can be a range of

10000 kb – 20000 kb. The latency is considered for each task, which ranges from 10 – 100

milliseconds (as per the data volume). Figure 5.3 illustrates the iFogSim network topology. In this

59

work, we set up only one fog data center as the user base (UB1) and one datacenter (DC1) in the

cloud layer. The fog can select the nearest data center if there are no more processes in the fog

layer.

Table 5.4: Simulation Environment

Simulation tool iFogSim (CloudSim 3.0.3)

System

configurati

on

CPU Pentium (R) Dual-Core CPU E5700 @ 3.00 GHz

Topology type Fully connected

Memory 2.00GB

OS Windows 7 ultimate[x86] -64 bit processor

Language Java

Development kit JDK 1.8

IDE Netbeans 8.0

iFogSim

Entities

Number of fog

nodes

64 (8*8)

Number of users 64

Application

module

MIPS 1000

Memory 10Megabyte

Bandwidth 1000KBs

RAM

capacity

64GB

Fog node Storage

capacity

1Gigabyte

Bandwidth 10000KBS

Resource

cost

3.0

Memory

cost

0.05

Storage

cost

0.001

Proxy Server Delay 100ms (between proxy server – cloud)

Mobile devices Delay 1ms (between mobiles and the parent fog

device)

60

Figure 5.3: .iFogSim Network Topology

In the starting of the algorithm, the researcher described the creation of a Fog Device as presented below in

Table 5.5-

61

Table 5.5: Fog Node Design

1: START

2: Construct processor_list;

3: Construct hosts (Input, Virtual Machines, Cost per storage & OS);

4: Construct storage_list;

5: Set parameters of Upper _Bandwidth, Lower_

Bandwidth, Latency,

6: Request mapping to modules

7: End

100 ms is stipulated with system configuration in this experiment. The number of Fog Nodes taken

into account for assigning computing resources is 64 to handlers or users, hence 64 requests are

made to the cloud alongside.1000kb-2000kb is the range of data in every data request. 10-100 ms

per data volume is the range of latency in every task.” iFogSim network topology” is shown in

Figure 5.4. DC1and UB1 in the cloud uses only a single FN as illustrated in Figure 5.4. The closest

data center is picked up in fog in the absence of processes.

Figure 5.4: UB1 and DC1 in the region

Parameters Definition

Calculations and definitions for parameters are defined as-

a. Response Time: The total time it takes between the requests generated by the user until the

appearance of the response. It is the sum of the request time (𝑇𝑅) and behavior of the processing

time (𝑇𝐵𝑃). It is computed by:

𝑅𝑇 = 𝑇𝑅 + 𝑇𝐵𝑃 (5.5)

62

Where,

b. Scheduling Time:

Also known as, scheduling Length is among the important elements in resource allocation.

It defines start times for each task (𝑆𝑇𝐸) and simulation ending time (𝑆𝐸𝑇).

𝑆𝑇 = 𝑆𝑇𝐸 + 𝑆𝐸𝑇 (5.6)

c. Load Balancing Rate:

It is measured by the load distribution among fog nodes to reduce the congestion problem.

It can be estimated by each fog node's current workload and it can be mathematically written

as.

 𝐿 =
𝑁𝑇𝑠

𝑁𝐹𝑁𝑠
 (5.7)

where 𝑁𝑇𝑠 is the number of tasks and 𝑁𝐹𝑁𝑠 is the number of fog nodes.

d. Delay:

It is the time duration to execute the whole task assigned to the fog node. In our evaluation tests,

we estimated in milliseconds. It is computed by,

 𝑑 = 𝐶𝑇 − 𝑆𝑆𝑇 (5.8)

where 𝐶𝑇 represents the current time and 𝑆𝑆𝑇 represents the starting time of the simulation.

e. Energy Consumption:

It means the total energy consumed by the whole system. Energy consumption is usually measured

by any of the components of the system such as sensors, fog nodes, etc. Kilo Joule (KJ) measures

it. It is computed by, where 𝐶𝐸𝐶 is the current energy consumption, 𝐶𝑇 is the current time, 𝐿𝑈𝑇 is

the last energy value updated time.

 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐶𝐸𝐶 + (𝐶𝑇 − 𝐿𝑈𝑇) (5.9)

5.6 Result and Discussion

5.6.1 Comparison Analysis

Starting, comparison of earlier approaches with introduced fog architecture is done as depicted in

table 5.6, and detailed description given ([97], [98], [94], [95], [96], [4], [99], [95], [71]).

Accordingly, a comparison has been done. We compare the performance of our proposed fog

63

architecture with previous approaches as shown in Table 5.6, for the most significant features

described in the theoretical phase. The previous approach is done in three-tier architecture; we have

taken different parameter to overcome the above-said issue. To provide a framework for load

balancing and energy consumption in four-tier architecture, then the performance metrics are taken

into consideration for comparison.

Table 5.6: Drawbacks of Previous Approaches

Researcher Main Feature Drawbacks

Bitam et al., [94] Allocated ample time for smartphone

users to provide memory and CPU

organization.

Does not recognize

diverse applications for

novel arrivals

Su et al., [96] NSGAII based algorithm for FG
 latency is high

Pham et al., [97] Systems of large size in a time-

constrained setting

 Not suitable for huge

size application

 Take high scheduling

time for execution

Ningning et al., [38] Graph partitioning for load balancing

between nodes in the fog

 Reaction time for task

execution is high

Yang et al., [98]
Reduces overall energy consumption and

does away with jitter and operation delays
 The centralized guideline

have improved energy

consumption

Xu et al., [4] • Distribution and control of the capital

in the fog system

 congestion on the network

Chen et al. [99]
Timer Load Balancing implemented to

plan properly.

• Introduce Scheduling for .NET remote

services.

 lead to high execution time

Topcuogluet al.

[95]

Heterogeneous Earliest Finish Time

(HEFT) is recommended for fast

scheduling and control of a critical

processor route

 Priority-conscious

scheduling

Wang et al. [71] Multi-population genetic algorithm

(MPGA) is proposed, considered for

load balancing and task scheduling

• High processing time

64

a. Comparison of Response Time

A measure of completion time of the request of the user starts from the initial response provided.

Comparison between response time and earlier approach with graph partitioning [95], and BLA

[94].

Figure 5.5: Comparison of Response Time

Response time working (Figure 5.5) is affected directly with increased requests and load

misbalancing of the load. Portioning of the graph and increased response time occurs because the

current FN load is not considered in the BLA [94] algorithm. Say there are many jobs with five

tasks each. To complete these 5 tasks 1750 milliseconds is required a reduction of 30% when

compared with graph partitioning and a reduction of 45% when compared with BLA. Comparison

of scheduling time

4500

4000

3500

3000

2500

2000

1500

1000

500

0

5 10 15 20 25 30

Number of tasks

BLA Graph partitioning Proposed

R
es

p
o

n
se

 t
im

e
(m

ill
is

ec
o

n
d

s)

65

Task scheduling issues hamper FC and these issues must be controlled by a decent to decrease the

time of execution of time. CMaS [32], against time scheduling are depicted in Figure 5.6.

Figure 5.6: Comparison of Scheduling Time

The simulation describes the effect of scheduling tasks with growing tasks in numbers. CMaS is

grounded upon the deadline of the task and is “cost makespan aware SA”. 18.72% times is

decreased in this algorithm. For that reason, the fog environment gives improved managing

network size when input data is in high numbers.

On a Fog Node, executed tasks are limited in number in the environment of fog. The rate of Load

balancing is reduced by linking the varied tasks of the user in a sole Fog Node. Figure 5.7 depicts

DRAM with rated Load balancing for the suggested fog environment. The work focuses on the

distribution of load throughout the network. However, the total number of jobs on the Fog Node

calculates load dissemination amid Fog Node. Job execution is organized effectively because of

the administration of the current load. For example, 5 jobs are kept at every Fog Node.

1600

1400

1200

1000

800

600

400

200

0

5 10 15 20 25 30

Number of tasks
CMaS Proposed

Sc
h

ed
u

lin
g

ti
m

e
(m

ill
is

ec
o

n
d

s)

66

Figure 5.7: Comparison of Load balancing Rate

a. Comparison of Load Balancing Rate

The earlier method is known as the “Dynamic Resource Allocation Method” amplified congestion

and led to overloading. However, our suggested fog framework calculates present use and takes

the help of a load monitor at every Fog Node. If a Fog Node raises its present load by its threshold

level (≤ 𝐿), a heartbeat communication is dispatched to the seed node so that it allocates existing

user requests to some other adjacent Fog Node.

b. Comparison in respect to Delay

Fog Computing must speak about the matter of decreasing the total delay and thus increasing

reliability along with scalability. In the suggested circumstance of fog architecture, consideration

delay is observed for the simulation and authorized for the earlier tactic called, NSGA-II [96].

Figure 5.8 shows the assessment of the delay along with the number of tasks.

50

45

40

35

30

25

20

15

10

5

0

5 10 15 20 25 30

Number of tasks
DRAM Proposed

Lo
ad

 B
al

an
ci

n
g

R
at

e
(%

)

67

Figure 5.8: Comparison of Delay Vs. Number of Tasks

The number of jobs from users ranges from 5 to 30 milliseconds and for every five jobs, there is a

200-millisecond delay in NSGA-II at the FN, but the recommended fog architecture reduces the

delay by 50% for the equal amount of jobs of the same size. Research also suggested complex fog

structure i.e. Artificial Fractal with systematized enormous bulk of data. Increasing the number of

jobs and job size also increases delays. Figure 5.9 shows the comparison delay in comparison with

the number of Fog node. 64 Fog Node is taken in this simulation arrangement. Fog nodes resources,

in the NSGA-II algorithm, are sensibly used, but Fog Node failure is a drawback in NSGA-II. The

graph (Figure 5.9) clearly shows that increasing the number of Fog Node and increases the delay

and it is more in NSGA-II, but the research, delay minutely differs on growing the number of Fog

Node.

8000

7000

6000

5000

4000

3000

2000

1000

0

NSGA-II Proposed

5 10 15 20 25 30

Number of tasks

D
el

ay
 (

m
ill

is
ec

o
n

d
s)

68

Figure 5.9: Comparison of Delay Vs. Number of FN

c. Comparison of Energy Consumption

For a comparison of Energy Consumption, the researchers measured the total energy taken for job

scheduling. However, an effective SA is essential to reduce Energy Consumption. Figure 5.10

shows the Energy Consumption comparison for DEBTS vs. Proposed. The researcher assessed

energy intake performance throughout job implementation and job scheduling. Figure 5.10 displays

the results gotten by EC with several jobs. The DEBTS raises the Energy Consumption for less

quantity of jobs as we use 11000000KJ (1.1×104𝑚𝑊), however, the recommended fog

environment uses 5500000KJ. It is because our suggested framework uses a new approach for job

scheduling and job implementation. Hence, in the research, FogNode’s artificial fractals and

present usage are suggested to increase their performance. Hence, it is decided that the

recommended research, four-tier fog architecture performed better than the earlier methods in term

of decreasing response time (45% & 30%) on comparing to Graph partitioning and BLA,

Scheduling time (18.72%) on comparing with CMaS[97], Load Balancing rate (45%) as compared

to DRAM Delay (50%) compared to NSGA-II [96], and EC as compare to DEBTS.

NSGA-II Proposed
18000

16000

14000

12000

10000

8000

6000

4000

2000

0

8 16 24 32 40 48 56 64

Number of fog nodes

D
el

ay
 (

m
ill

is
ec

o
n

d
s)

69

Figure 5.10: Comparison of Energy consumption

5.7Summary

Task scheduling and load balancing are the most significant factors of fog computing which greatly

impact the performance of a system. The previous approaches are suffered due to resource shortage,

fog node failures, type of environment (centralized or distributed), and so on.

To overwhelm the issues of previous works, we proposed novel four-tier architecture for task

scheduling and load balancing. Tier-1 organizes the number of IoT objects and the large volume

of data generated and transmitted concurrently. In tier-2, we classified the user applications into

high priority and low priority using a dual fuzzy logic algorithm. Then high-prioritized tasks are

forwarded to the fog tier. The fog nodes are clustered using the k-means++clustering algorithm.

The node with the least loaded, which is near to the user, has considered the priority for task

execution. The current load is predicted using an artificial neural network, and the earliest deadline

first scheduling algorithm is considered for task scheduling at fog nodes. The user request, which

is not executed by the fog node, is executed at the cloud tier. Finally, we evaluate the simulation

results for various performance metrics and proved our proposed fog architecture is outperformed

the previous approaches.

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
K

J)

DEBTS Proposed
80000

70000

60000

50000

40000

30000

20000

10000

0

5 10 15 20 25 30

Number of tasks

70

CHAPTER 6

TASK ALLOCATION USING FOG ASSISTANCE AND

SECURE DE-DUPLICATION

 6.1 Introduction

In current years, the number of devices connected to IoT is increasing. However, IoT devices sense

data and forward them to the respective data centers or end-users. Due to the growth rate of the

number of IoT devices, the number of duplicates data during sensing has increased, data

deduplication scheme is required in which the redundant or similar data is found out and eliminated.

This will improve the storage requirement of the data. IoT devices submit the replicate sensing data

that must be eliminated to store it to the cloud server. On the other hand, task allocation is

performed via fog computing for several IoT devices. It reduces latency, communication overhead,

and communication costs for IoT devices. We jointly consider these two issues in this research. In

the present chapter, job distribution and secure de-duplication have been designed that is the

elimination of redundant information in computer data for fog-enabled IIoT. In this chapter, the

distribution and protected data de-duplication in cluster-based Industrial IoT. This chapter is

focused on Fog Assisted Task Allocation and Secure De-duplication by using MOWO in Cluster-

based Industrial IoT (IIoT- Industrial Internet of Things) and 2FBO2, which is the third objective

of the present research, is to provide.

 6.2 Related Work

In [102] authors have suggested a multi-criteria centered decision-making tactic to accomplish job

distribution amongst numerous nodes, it is executed on the edge nodes. Here, in peer topology,

jobs executed at nodes in a native method are offered. The suggested decision-making structure

uses two decisions for ideal job distribution. Because of high latency, energy consumption is also

high. In [103] with the help of fog computing, spatial crowdsourcing supported job owners based

job distribution and data aggregation has been suggested. The server gathers sensed information

from people using mobiles. Collection of data is an explicit job and since it is extracting out

enormous spatial crowd sensing data, it has received major attention. To help the server in

71

allocating and collecting data in a restricted privacy fashion, FNs are positioned in various places.

Due to ineffective cryptography arrangements, there is a lack of privacy available to mobile users.

In [104], fog-computing technology based on IIoT (Industrial Internet of Things) was offered,

which was executed for the smart factory systems. Here, a “hierarchical fog servers” centered

placement was raised. In any system first, the “High priority” requests are scheduled as they are

based on urgent requirements. In addition, the workload assignment algorithm was taken into

consideration to divest a large number of FNs to higher fog tiers. The adaptive configuration of

Fog Nodes was applied in [105] over the IIoT atmosphere. It provides a lot of IoT facilities. It

enhances the performance of manufacturing organizations. The researcher suggested the

application of adaptive FNs configuration. However, these studies are not used for any real-time

claim.

In [106] Fog aided IIoT environment suggested smart resource partitioning. First, the authors have

used Zipf’s law to calculate the association amid computing control layer’s popularity rank from

the IIoT’sdata processing layer. The research was done to demonstrate effective accomplishment

concerning delay time, response time as well as response rate. This may lead to huge intricacy

because of the large amount of FNs, which were organically disseminated in the fog layer. In [107],

the researcher had suggested that latency in healthcare systems based on the IoT architecture can

be reduced by the hybrid method. In this method, packets were allocated to various virtual machine

processors, which are accessible to the gateway. To provide the right service to any request,

indexing is required.

In [108], researchers have suggested an indexing system that is energy-efficient over a fog

environment. The system was created for the IIoT environment to give the utmost suitable services

to end-users. This index was built on the ground of relationships among users. Here, multi-level

indexing was executed along with several indexing operations. This method does not suit the

dynamic IoT atmosphere as it has more latency. Just like indexing, recent researches do not focus

on security as well. It is crucial for fog enabled cloud environment. In [109], the researcher

suggested, which concentrated on creating communication over fog computing, confirming the

identity of numerous parties. In this research, the data from healthcare was encoded and uploaded

on CS. Time taken to encrypt and decrypt is more. Fog based security structure is employed with

intellectual traffic control system framework. This speaks about many security outbreaks such as

72

Sybil, Denial of Service, and in this computation, time is more.

In Fog based IoT atmosphere, energy proficient cluster-based routing is a crucial aspect that is

offered in [110]. The author presented a new P-SEP, which led to a reduction of 8% and 9% usage

of energy in FEAR and FECR, consecutively. In addition, 74% of network lifetime is augmented

to 83% and 74% in FEAR and FECR consecutively. Due to the selection of the node that has large

residual energy as CHs, the clustering process has become ineffective. The optimal allocation of

FNs is not executed correctly due to the random selection of neighboring fins. “Adaptive block

compressed sensing” was suggested in [111], it is established by implementing an additional

“sensor cloud data acquisition” technique in a fog environment. Adaptive block compressed

sensing is a method of compressing images, that was suggested in the WSN layer. The disadvantage

of this system is that it is very large and complex and hence it is not lightweight. Also due to virtual-

clusters creation in the WSN layer causes large energy consumption in fog-nodes. In [112], IIoT is

used along with fog enabled cloud framework and various sources produce a huge quantity of data

that was produced from various sources and for indexing such diverse data sources, an AVL tree

was created in a CS. This led to large query-processing charges and time-consuming to rebalance

the tree. To guarantee data privacy, K Nearest Neighbor or secure KNN was suggested however, it

is highly costly, thus hence time for data searching is more. In addition, KNN is unsuitable for

dense areas and treating huge quantities of data. Figure 6.1 shows the Fog assisted cloud of IIoT.

Industries

IIoT Sensors

Fog Nodes

Cloud Server

Figure 6.1 Fog assisted cloud of IIoT

73

6.3 System model

In this section, the researcher shows the system framework for the suggested job distribution and

secure de-duplication through FaCIIoT.The suggested structure for air pollution monitoring

comprises four layers (Figure 6.1). The description as follows: The main motivation of this

objective is based on research challenges underlying fog-enabled IIoT. IoT devices suffer from

large latency from the cloud server. Despite mobile crowd sensing, the cloud server does not

provide services to users on time. Therefore, our endeavor in this study is to design a task allocation

and secure deduplication for fog enabled IIoT, using the concept of novel secure and optimization

algorithms. Our proposed system architecture of air pollution monitoring in FaCIIoT estimate

several air pollutants such as 𝑁𝑂2,𝐶𝑂2,𝑆𝑂2,𝑂2,𝑃𝑀2,5,𝑃𝑀10,etc. In this paper, we presented task

allocation and secure data deduplication in cluster-based Industrial IoT. The main contributions of

this paper are summarized as follows:

 Firstly registers all IoT devices to the cloud server via trusted authority using Elliptic Curve

Cryptography (ECC) with Hybrid Multiplier

 Then we cluster similar IoT devices using the Multi-Objective Whale Optimization (MoWo)

algorithm based on node residual energy, node degree (no. of neighbor connections), and

distance between nodes.

 For secure data deduplication, SHA-3 is presented in which hash values are generated for the

verification of data deduplication. After hash generation, CH sends Duplicate Service Check

(DSC) and Duplicate Service Response (DSR). Then we select the optimal fog node from the

CH using the 2FBO2 (two fitness-based One-to-One Matching) algorithm.

 Before transmitted to the cloud server, data packets are encrypted using ECC HM private key.

Here packets are encrypted using the ECC HM algorithm and decrypted at the proxy server.

 The experimental results show that the proposed scheme is outperformed the previous works

based on the QoS metrics: average latency, energy consumption, user satisfaction, network

lifetime, and security strength.

74

 6.3.1 System Design and Architecture

The suggested structure framework for the processes is depicted in figure 6.2.

IoT Devices

layer

Fog Layer

Cloud Layer

Service Layer

Inter-Cluster

Communication

Intra-Cluster

Communication

Cluster Head Cluster Member

Spiral search

(WOA)
Cluster formation

SHA-3 Generation

DSC_Request

Clustering using

MoWo algorithm

Fog Node

Selection

Duplicate

checking

Data Encryption

Best Fog Nodes

Selection using

 2FBO (FAFSO)

Data confidentiality

DSC_Response

Storage Service

Data Security

 using ECC-HM

Merkle Hash Tree

Authentication and Search

query & display results
Query Given

Output Results

Registration

Trusted Authority

Fog nodes

Users

Proxy Servers

Best fog node

Figure 6.2: System Architecture

75

A small explanation of layers is presented in the following section-

 IoT devises layer

Here, all air pollutants present in the atmosphere are detected by the IoT Devices and by using

optimal FNs, this data is transferred to the CS for processing. Herein, sensors for notable air

polluting gas such as CO, VOC, SO2, PM, CO2, and NOx are considered.

A. Cluster Head Selection and Formation

a) At first, similar sensors are grouped according to three parameters: node residual energy, node

degree, and distance between nodes. Each cluster contains one CH and two or more cluster

members. In data transmission, sensors can communicate within one cluster, and CHs can

communicate via other CHs. The proposed MoWo clustering algorithm cluster sensors are based

on the fitness (optimum) value of three parameters. The whale optimization algorithm is the best

optimization algorithm, which outperforms PSO and ACO optimization algorithms. This

algorithm utilized multi-objective to solve the optimization problem for clustering. In MoWo, the

threshold value is optimized and it is considered for cluster formation. A general procedure for

WOA follows:

 Prey Encircling: This optimization algorithm is based on Humpback whales' behavior, which is

called Search Agents. Whales encircling the prey i.e. Optimal Agent. Here the problem is to

determine the best and current solutions that are available for the desired prey. When optimal

search agents are identified, all search agents update their positions towards the direction of the

optimal solution, which follows:

𝐷𝑅⃗⃗ ⃗⃗ ⃗ = |𝑐1⃗⃗ ⃗ × 𝑦′′⃗⃗⃗⃗ ⃗(𝑇) − 𝑦′⃗⃗ ⃗(𝑇)| (6.1)

𝑦′⃗⃗ ⃗(𝑇 + 1) = 𝑦′′⃗⃗⃗⃗ ⃗(𝑇) − 𝑐2⃗⃗ ⃗ × 𝐷𝑅⃗⃗ ⃗⃗ ⃗ (6.2)

Where 𝐷𝑅⃗⃗ ⃗⃗ ⃗ is the direction for the optimal solution, 𝑐1⃗⃗ ⃗ and 𝑐2⃗⃗ ⃗ are coefficient vectors, 𝑇 is the

iteration number, 𝑦′⃗⃗ ⃗(𝑇) and 𝑦′′⃗⃗⃗⃗ ⃗(𝑇) are the current and best position vector respectively. At the

end of each simulation, 𝑦′′⃗⃗⃗⃗ ⃗(𝑇) is updated to get an optimum solution. Also, 𝑐1⃗⃗ ⃗ and 𝑐2⃗⃗ ⃗ are

computed in the following way:

𝑐1⃗⃗ ⃗ = 2�⃗� 1 (6.3)

𝑐2⃗⃗ ⃗ = 2𝐴 × �⃗� 2 − 𝐴 (6.4)

76

Where �⃗� 1 is a random vector, which ranges from 0 and 1 and 𝐴 is a linear vector that is

minimized in each iteration, starting from 2 to 0.

b) Exploitation: It works based on the Bubble-Net Attacking method, which is used two-step

processes:

 Shrinking Encircling Approach: In this scheme, the value of 𝑐2⃗⃗ ⃗ is randomly selected between

-1 and 1. Hence, the search agent new position is determined at any plane (Between the agent’s

position and the position of the recent optimal agent)

 Spiral Position Update Approach: In this scheme, the distance between the search agent and

the optimal agent is computed. Then the spiral shape is imitated for Humpback whales shaped

movement, which is computed as follows:

𝑦′⃗⃗ ⃗(𝑇 + 1) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑒𝜔𝑟 . 𝑐𝑜𝑠(2𝜋𝑟) + 𝑦′′⃗⃗⃗⃗ ⃗ (6.5)

𝑦′⃗⃗ ⃗(𝑇 + 1) = {
𝑦′′⃗⃗⃗⃗ ⃗(𝑇) − 𝑐2⃗⃗ ⃗ × 𝐷𝑅⃗⃗ ⃗⃗ ⃗ 𝑖𝑓 𝑝 > 0.5

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑒𝜔𝑟 . 𝑐𝑜𝑠(2𝜋𝑟) + 𝑦′′⃗⃗⃗⃗ ⃗ 𝑖𝑓 𝑝 ≥ 0.5
 (6.6)

Where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the distance between 𝑦′′⃗⃗⃗⃗ ⃗(T) and 𝑦′⃗⃗ ⃗(𝑇), 𝜔 is the constant variable, 𝑟 is the

random number between -1 and 1 and 𝑝 is the random variable between 0 and 1. Besides, this

algorithm updates the search agent position by 50% level of probability to choose the shrinking

encircling approach and spiral approach which is defined in Eqn. 𝑦′⃗⃗ ⃗(𝑇 + 1).

c) Exploration: In this step, whales search for prey, and thus randomly chosen search agents will

act as the optimal search agent, which is followed by other search agents. The main purpose of

this step is to update other search agents based on their current positions. In addition, this uses a

random value between the range of -1 and 1. 𝑐2⃗⃗ ⃗ enables the search agents to search and travel far

away from the Reference Agent. This step can be written as:

𝐷𝑅⃗⃗ ⃗⃗ ⃗ = |𝑐1⃗⃗ ⃗ × 𝑦′⃗⃗ ⃗(𝑅𝑎𝑛𝑑) − 𝑦′⃗⃗ ⃗(𝑇)| (6.7)

𝑦′⃗⃗ ⃗(𝑇 + 1) = 𝑦′⃗⃗ ⃗(𝑅𝑎𝑛𝑑) − 𝑐2⃗⃗ ⃗ × 𝐷𝑅⃗⃗ ⃗⃗ ⃗ (6.8)

Where 𝑦′⃗⃗ ⃗(𝑅𝑎𝑛𝑑) is a random search agent, which is chosen between the set of populations.

77

Fitness Computation using MoWo

The importance of clustering is to minimize the end-to-end delay between sensors during data

transmission and also improve the stability of clusters.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = {max _𝑛𝑅𝐸 , max _𝑛𝐷 , min _𝑛𝑑−𝑛} (6.9)

The sensor node with high𝑛𝑅𝐸, 𝑛𝐷 and less 𝑛𝑑−𝑛 is selected as CH and cluster members are

connected to CH according to their values of 𝑛𝑅𝐸, 𝑛𝐷 and 𝑛𝑑−𝑛. The cluster formation is based

on the fitness function, which is named𝑓𝑖𝑡𝑛𝑒𝑠𝑠.

This function is used to given join requests to nodes other than CH. It depends upon certain

criteria that are given below:

 CH_Node_Degree: An IoT device 𝐷𝑖 would join a 𝐶𝐻𝑗, which contains higher 𝑛𝐷 than any

other CH present in the coverage. Hence, it is expressed as

𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑖, 𝐶𝐻𝑗) ∝
1

𝑛𝐷(𝐶𝐻𝑗)
 (6.10)

 CH_Residual Energy: An IoT device 𝐷𝑖 would join a𝐶𝐻𝑗, which contains higher 𝑛𝑅𝐸 than any

other CH present in the coverage. Hence, it is expressed as

𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑖, 𝐶𝐻𝑗) ∝ 𝑛𝑅𝐸(𝐶𝐻𝑗) (6.11)

 Distance from IoT device to CH: IoT devices are resource-constrained, which consume less

amount of energy. However, a node with a minimum distance to CH will consume small energy.

Hence, it is expressed as:

𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑖, 𝐶𝐻𝑗) ∝
1

𝑑(𝐷𝑖,𝐶𝐻𝑗)
 (6.12)

The aforementioned equations are combined to get the final 𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠 and therefore it can be

written as:

 𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑖, 𝐶𝐻𝑗) ∝
𝑛𝑅𝐸(𝐶𝐻𝑗)

𝑑(𝐷𝑖,𝐶𝐻𝑗)×𝑛𝐷(𝐶𝐻𝑗)
 (6.13)

 𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑖, 𝐶𝐻𝑗) = 𝜏 ×
𝑛𝑅𝐸(𝐶𝐻𝑗)

𝑑(𝐷𝑖,𝐶𝐻𝑗)×𝑛𝐷(𝐶𝐻𝑗)
 (6.14)

Where 𝜏 is a constant value (𝜏 =1). Eqn(14) is used in cluster formation, which is based on the

device 𝐶𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠 and CH sends join requests to nodes having the highest weight value. The

algorithm for CH selection and formation is depicted in the following. The related algorithm is

presented below in Table 6.1:

78

Table 6.1: Algorithm for Clustering using MoWo

STEP I BEGIN

STEP 2

START (NTIALIZATION)

 2.1 Initialize: Search Agent

 Assign: Random Vector

2.2 Initialize (c_1) , (c_2) , 〖 MAX 〗 _iterations&A ,

 2.3End (INTIALIZATION)

STEP 3 START (EVALUATION)

 3.1 Calculate fitness value using (6.9)

 3.2 An optimal agent (CH) is setting the best search agent

 3.3 End (EVALUATION)

STEP 4 START (UPDATE)

 4.1 Update Parameter :

 4.2 Update Parameter :(c_1) , (c_2) , A ,R_1, r&p

 4.3 Execute : Exploration & exploitation to

the Search agents

4.4Adjust Threshold

STEP 5 Continue step 3 and 4

 Until reach max. Iterations

STEP 6 Reiterate 2 & 5 until we get the best_Solution

STEP 7 END

comprises of multiple cluster members and CH. In data broadcast, sensors interconnect within

one-cluster and similarly, CH connects to other Cluster Heads. The Whale Optimization

Algorithm (WOA) is the best algorithm for optimization. WOA. WOA with multi-objective

(MOWO) is utilized to handle the clustering optimization issue. The augmented threshold value

is used by MOWO for the Clustering process is dynamic, but we have not encouraged the

frequent clustering process. Therefore, it considers the new arrival of requests and assigns the

computing resources.

B. ECC based Hybrid Multiplier

 Initially, the cryptography algorithm is used for data packets encryption, which relatively less

time-consuming process and highly efficient for organizes real-time data processing. In this

work, we proposed an ECC-HM algorithm is proposed for packet encryption. ECC-based HM

79

performs than conventional ECC. In conventional ECC, multiplication is very slow and requires

many computational resources since, in conventional ECC, multiplication is frequently used.

One of the advantages of our proposed ECC based HM speeds up and more favorable for large

numbers. This ECC based HM algorithm follows the procedure of two Vedic Sutras such as

Nikhilam, UrdhvaTirakbhyam as well as Karastuba. These are used to perform unique

multiplication for large size of numbers. In ECC elliptic curves are divided into two fields:

Prime Field and Binary Field and these representations are followed:

 Prime field: Elliptic curve of this field is written by

𝑌2% 𝑃 = (𝑋3 + 𝐴𝑋 + 𝐵)%𝑃 (6.15)

Where 𝐴 and 𝐵 are the parameters, 𝑋 and 𝑌 are the curve points.

 Binary field: Elliptic curve of this field is written by

𝑌2 + 𝑋𝑌 = (𝑋3 + 𝐴𝑋2 + 𝐵) (6.16)

Both prime and binary fields are optimal for the field of secure system designs, which outperforms

in terms of speed, but the binary field-based elliptic curve has given a better performance without

consideration of Carrying and Modular Reduction. The mapping process of the data packet to

elliptic curve points ensures data confidentiality. The ECC based HM encryption invokes several

scalar/double multiplications and modulo consumes more power and area. Therefore, the delay

increases gradually and the computations are minimized using multiplication, which consumes less

resource and utilized to offer maximum frequency and speed. Let us take an example of the

Karastuba Hybrid Multiplier for Binary Field (163bits) and Prime Field (192bits). . For example,

consider multiplier in Figure 6.3.

80

Figure 6.3: Karastuba Hybrid Multiplier (A) 160bits and (B) 192bits

 Secure De-duplication

Presently, SHA-3 has become a significant algorithm for data duplication verification. After the

nodes are authorized to TA for CH selection and the formation of the cluster, SHA-3 is utilized to

jumble combined data of CH for the data duplication verification. The integrity of data is

maintained while transferring the data packets from the fog-nodes to the CS. The input of the data

packet of SHA-3 is of random lengths &the output is consists of hashed values or digested

messages. Consider Table 6.2 for hash generation.

Table 6.2: Properties of SHA-3

SHA3(512bits)

Parameters Variants

Block size (bits) 576

Capacity 1024

Word size (bits) 64

Rounds 24

Operations AND, OR, Rot, and Not

Security strength 256

Output size (bits) 512

81

After hash generation, DSC_request is sent by GH to an adjacent and quality FN. FN then confirms

if this data packet has been collected or not. If packets are stocked in momentary storage of FNs,

the DSC_response will be sent immediately. After that, the files are stored in CH through FNs.

 Fog Layer

In the Fog layer, CH selects the node, which is nearest to the FN by using 2FBO2, it uses the process

of the Fast Artificial Fish Swarm Optimization (FASWO) algorithm. This algorithm is has taken

its inspiration from the collective movement of fish and their different behaviors. The primary

usage of FASWO is because of its tolerance parameter setting, global searchability, and good

robustness. This algorithm is a prolonged form of AFSA. In orthodox AFSA, the speed with which

determines the finest solution is a difficult job, and therefore here, the speed improves by

suggesting FASWO. The overall behavior of AFSA is as given: af_prey, af_swarm, af_follow, and

af_move. To increase the speed of AFSA to get improved results quickly: The research takes into

consideration two features given below:

Brownian motion:

It is centered around the “normal distribution” and it’s defined through a real-valued stochastic

process.

Levy Flight:

It is centered on the “random walk procedure”

Fitness Computation using FASWO

The primary metrics used for job distribution are Task Length & Processing Delay. In many

previous works, authors had selected only above-mentioned metrics for selecting the fog-node,

however, none had considered the characteristics of FNs. In this study, selecting the idle FN is

grounded on two fitness values calculated as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐹1 = {min_𝑇𝐿, min _𝑇𝑃𝐷} (6.17)

82

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐹2 = {max _𝑁𝑅𝐸, min _𝑁𝑑 (𝐹𝑁
𝑖,𝐶𝐻𝑗)

} (6.18)

Hence the sum of two fitness functions (2FBO2) is calculated as:

𝐹 = ∑ 𝐹1 + 𝐹2 (6.19)

Table 6.3: Best Fog node selection using FASWO

I BEGIN

2 START (INITIALIZATION)

2.1 Initialize 𝐴𝐹_𝑡𝑜𝑡𝑎𝑙,𝐴𝐹_𝑠𝑡𝑒𝑝,𝐴𝐹_𝑑𝑒𝑙𝑡𝑎,𝐴𝐹_𝑣𝑖𝑠𝑢𝑎𝑙,𝐴𝐹_𝑏𝑒𝑠𝑡
2.2 Initialize:𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒, Try_Number

2.3 End(INITIALIZATION)

3 START (EVALUATION)

 Calculate fitness_AF using (6.19)

 Fix the best AF is a finest_solution (Best Fog_Node)

 End (EVALUATION)

4 START (UPDATE)

4.1 Update Parameter: AFs → 𝐴𝐹_best

5 Continue Step 2
Until reach max. Iterations

6 if not ;
end the process;

and return_output

7 END

The algorithm shown above is using FAFSWO for 2FBO2, which shows for the job given by

the device 𝐶𝐻𝑗, how the idle fog-node is selected for its execution Best fog node selection is

done using the algorithm shown in table 6.3.

 Cloud Layer

83

CSs are positioned after the Proxy server. For cataloging the data communicated by various IoT

devices, the researcher provided a “Merkle hash-tree” (MHT). The Proxy-server provides the

primary node installed amid the CS and FN. The data searching and data storage and recovery are

placed based on the user query in the proxy server. The new MHT index technique is the basis of

the operation of the proxy server. It is useful to decrease the calculative and communication

overheads among proxy servers and IoT devices. As mentioned above, data communicated by

various IoT devices will also be cataloged from the Root-node towards all leaves of internal-nodes.

The MHT internal-nodes are symbolized as i and j which are left and right index trees respectively.

The mathematical model for MHT follows:

𝑀= 𝑅𝐻 (𝐼𝑛 (𝑖) ∗ 𝐿 (𝑗)) (6.20)

Where i=1,2,…n-1,j=1,2,…j-1, L is the leaves of the internal node, In is the internal node and RH

is the root node.

Figure 6.4 shows the graphic depiction for “Merkle hash tree”,

Query Results

IoT Remote User

Merkle Hash Tree

(Indexing)

Root Node

Internal Node 1 Internal Node 2

Leaf Node 1 Leaf Node 2 Leaf Node 3 Leaf Node 4

Tree Structure

Proxy Server Search with query

Figure 6.4: Merle Hash Tree for Indexing

84

 Services Layer

IIoT data are recovered here post confirmation of the user’s certification. If a user has

registered successfully in TA, then the searching outcome is given for users. To increase

the speed of searching, in this study the researcher creates a searchable index with the help

of MHT.

 6.4 Experimental Results and Discussion

Here, covers the simulation of the above-mentioned System Model shown in table 6.4.

Subsequently, the performance of the above-mentioned proposed schemes is discussed by using

numerous metrics.

 6.4.1 Simulation environment

The simulation of the suggested system is executed using iFogSim. It is a Java-based, open-source

network simulator. iFogSim’s works to simulate the surrounding that consists of a vast amount of

IoT devices and FN. The simulation topology in figure 6.5

Proxy server

Proxy server

Fog node 1

Fog node 2

Fog node 1

Fog node 3

Fog node 4Cloud server

Cluster Member

Cluster Head

Figure 6.5 Simulation topology

85

Table 6.4: Simulation Settings

Simulation tool iFogSim (CloudSim 3.0.3)

System configuration

CPU Pentium (R) Dual-Core CPU E5700 @ 3.00 GHz

Topology type Fully connected

Memory 4.00GB

OS Windows 7 ultimate[x86] -64 bit processor

Language Java

Development kit JDK 1.8

IDE Netbeans 8.0

iFogSim Configuration

of fog nodes 5

of IoT devices 20

Application

module

MIPS 1000

Memory 10Megabyte

Bandwidth 1000KBs

RAM capacity 10

Fog node

Storage capacity 1Gigabyte

MIPS 2800

RAM (GB) 4

Bandwidth Uplink 10000

Downlink 10000

Resource cost 3.0

Memory cost 0.05

Storage cost 0.001

Proxy Server

Delay 100ms (between proxy server –

cloud)

MIPS 2800

RAM (GB) 4

Bandwidth Uplink 10000

Downlink 10000

Cloud Server

Delay 1000ms and longer (between

devices)

MIPS 44800

RAM (GB) 40

Bandwidth Uplink 100

Downlink 10000

IoT Devices

Delay 1ms (between IoT sensors to fog

devices)

MIPS 1500

RAM (GB) 2

Bandwidth Uplink 10000

Downlink 10000

MoWo

Chosen

Optimization

Parameters

Population size 𝐼 50

𝑀𝐴𝑋𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 500

Spiral constant 𝜔 1.5

Distance parameter 𝛼 0.3

Energy parameter 𝛽 0.3

Density parameter 𝛾 0.3

FASWO

Chosen

Optimization

Parameters

AF_total 20

AF_visual 2.5

AF_step, AF_delta 0.7, and 8

Try number 50

86

 6.4.2 Case Study

The proposed scheme is tested over the Air Pollution Monitoring application. As presently a lot of

businesses and automobiles are present closer to the city and they emit a large number of air toxins,

there occurs an issue of data redundancy and hence the need to observe and govern the data

duplicity which is transferred over the fog network. Repetition is taking place currently in many

areas, which causes poor QoS and leads to stark issues in CSs. Air Pollution is injurious to the

people's health as well as to the environment, hence it must be tackled for the people and the

environment benefit.

However, presently Air Pollution monitoring is stimulated and major jobs are executed in IIoT

which are fog enabled. Sensors are installed in this IIoT platform to monitor pollution in the air.

Consider Figure 6.4. In this research work, air pollutants are categorized in the 3 classes as

mentioned below:

 Primary air pollutants.

 Secondary air pollutants:

 Others

Table 6.5 presents a list of IoT sensors used here for measuring air pollution in industrial area.

Functionalities of each sensor are illustrated.

Table 6.5: Sensors and Functionalities

Sensor type Functionality

MQ-135 gas sensor For measuring air quality

MQ-2 gas sensor To detect CO, Alcohol, Smoke/Propane, H2, LPG, and CH4

MQ-7 gas sensor Detecting CO, and suited sensing concentrations CO in the air

MQ-3 gas sensor Detects Benzine, Hexane, CO, Alcohol

Buzzer sensor For giving an alarm to inform about Unhealthy Air or Exceeding

chemical values on each sensor

LM-35 sensor For measuring temperature inputs

MiCS 4514 For measuring NO2 and CO

MiCS 2614 For measuring O3

DHT11 For measuring Humidity and Temperature

87

 6.5 Result and Discussion

 6.5.1 Evaluation measures

 Average latency, user satisfaction, network lifetime, network lifetime, energy consumption, and

security strength are mainly concerned with the combination of IoT, fog, and cloud computing

paradigms. The definition of these important measures can be following.

(i). Average Latency: It is the time required to respond to the user’s given request at a time. The

average latency is defined as the sum of time taken to process all requests given by the IoT device.

It is written by:

Al= (min+max)⁄2 (6.21)

Where Al is the average latency and its unit is milliseconds (ms). It is computed at a minimum and

maximum amount of time. The minimum time is zero and the maximum time is the time required

for processing a single request.

(ii). User Satisfaction: It is a metric that finds how well a service response, from the fog/cloud will

satisfy the user’s requirement. It is not the same for users with requests for specific services. Hence,

it differs based on the user’s service request, arrival time and distance to the fog/cloud servers. It

is written by:

𝑈𝑠 = 𝑆𝑅𝑇 + 𝑆𝐼𝑇 + 𝑆𝑄 (6.22)

Where 𝑈𝑠 is user satisfaction, 𝑆𝑅𝑇 is the service response time, 𝑆𝐼𝑇 is the service-initiated time,

and 𝑆𝑄 is the service quality.

(iii). Network Lifetime: It reflects the performance of the entire designed architecture. These

metrics are affected by heavy energy consumption at both IoT and fog nodes. It is the time duration

of how long the network will active for sensing, data collection, and transmission. It is written by:

collection and transmission. It is written by:

𝑁𝐿𝑇 = ∑ 𝐵𝑖/𝐶𝑖
𝑛
𝑖=1 (6.23)

Where 𝑁𝐿𝑇is the network lifetime, ∑ 𝐵𝑖
𝑛
𝑖=1 is the life of device I, and 𝐶𝑖 is the coverage of device i.

(iv). Energy Consumption: It is defined as the amount of energy consumed at IoT devices to collect

information and making communications to other devices. Energy consumption for IoT device to

transmit the 1-bit message at distance D is computed as:

𝜀𝑇𝑋(𝐿, 𝐷) = 𝐸𝑇𝑋−𝐸𝑙𝑒𝑐(𝐿) + 𝐸𝑇𝑋−𝐴𝑀𝑃(𝐿, 𝐷) (6.24)

Where 𝜀𝑇𝑋(𝐿, 𝐷) is the energy consumption for message transmission at size L with distance D

(v). Security Strength: It is essential to analyze the designed system for task allocation and

88

deduplication. It ensures user satisfaction and is supported for massive data storage at cloud

servers. It is computed by the following.

𝑆𝑠𝑡 = 𝐾𝑠 + 𝑀𝑠 + 𝐸𝑡 + 𝐷𝑡 (6.25)

Where 𝑆𝑠𝑡 = is the security strength, Ks is the key size, Ms is the message size, Et is the encryption

time, and Dt is the decryption time.

6.5.2 Comparative Analysis

As earlier mentioned, different performance evaluation measures are evaluated and compared with

four previous works, namely, task allocation and secure deduplication (TA & SD), fog-based

energy-efficient routing protocol (FEER), adaptive block compression sensing (ABCS), and secure

data storage and searching in IIoT (SDSS-IIoT).

 Average Latency

Some of the IIoT applications such as fire accidents, healthcare, and air pollution require very

severe constraints in latency i.e. 10’s of ms. When enabling data collection and processing features

include clustering and classification of data at the device layer or fog layer, we can reduce the

latency. Figure 6.6 shows the performance of the average latency concerning the number of IoT

devices.

The fog layer lies in the cloud layer is to minimize the latency. However, previous mechanisms

(TA&SD, FEER, ABCS) were required a large amount of time for processing data sensed by

different IoT devices. The average latency for twenty IoT devices for the proposed scheme is 2.7ms

which is minimum than previous works such as TA&SD, FEER, and ABCS for 8.9ms, 10.54ms,

and 11.54ms, respectively. When compared to FEER and ABCS, TA&SD requires minimum

average latency due to avoiding redundant copies in the fog layer. Mathematical computations of

these three works are more and processing time for data transmission, and collection is large. We

proposed 2FBO2 for optimum fog node selection. It take less waiting time for data transmission.

Also, we proposed SHA-3 (512bits) for hash generation, which eliminates duplicate data in the fog

layer.

89

Figure 6.6: Average latency vs. No. of devices

User Satisfaction

As mentioned above, User satisfaction governs the quality of service provided to the user and

depends on the thoughtfulness of QoS parameters. The user satisfaction performance of the

proposed work in comparison to earlier work for several IoT devices is shown in Figure 6.7.

Figure 6.7: User satisfaction vs. No. of devices

From the results, it is found that the average user satisfaction of the proposed system is 0.5 in-

comparison to 0.21 and 0.17 for TA&SD and SDSS-IIoT respectively. Hence, the proposed system

pleases users with faster response times and better quality of service. Indexing is an essential

component of data communication services used by IoT users, which also ensures that data is stored

in a particular order and its accurate retrieval. The user satisfaction in TA&SD is low due to

0

2

4

6

8

10

12

14

16

18

20

22

24

0 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

L
at

en
cy

 (
m

s)

Number of IoT Devices

TA&SD

FEER

ABCS

Proposed

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

U
se

r
S

at
is

fa
ct

io
n

Number of IoT Devices

TA&SD

SDSS-IIoT

Proposed

90

inappropriate management of CSs resulting in an extra delay in user services execution and in-fact

many times, service provided to users is inappropriate. In this research work, better user satisfaction

is achieved by the system with the application of the Merkle hash- tree along with the selection of

idle FNs for the execution of user service.

Network lifetime
In this study, the research assessed the network lifetime for evaluation. Figure 6.8 shows the

comparison of various systems on network lifetime performance concerning the number of IoT

devices.

Figure 6.8 Network lifetime vs. the number of devices

From the results as mention in the Figure 6.8 graph, it is observed that the average network lifetime

for the proposed system is the 50s, which is higher than previous works that are 29.54s and 40.72s

for TA&SD and FEER respectively. In FEER, though network scalability is enhanced, latency in

the network is diminished and network traffic is lessened, however, it has less network lifetime due

to the routing of tasks among fog-nodes. In contrast, TA&SD holds a few network lifetime, which

is mainly because of selecting poor FNs. Here researchers did not focus on selecting idle FNs at

IoT devices. Generally, IoT devices and FNs are resource-constrained. The suggested system

increases the network lifetime in-addition to decreases the energy consumption rate.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

N
et

w
o

rk
 L

if
et

im
e

(s
)

Number of IoT Devices

TA&SD

FEER

Proposed

91

Energy Consumption:
The high-energy consumption issue is addressed by suggesting energy-effective jobs e.g.

clustering. Figure 6.9 demonstrates a comparison of energy consumption by the proposed system

and various earlier systems concerning the number of devices. From the results in the graphs,

According to the graph, it is observed that the average energy consumption in the suggested system

is 0.26J, which is much lesser than the usual consumption of energy in TA&SD and FEER, which

are 1.5J and 1.21J respectively. This is achieved by the selection of the best FN for the execution

of the task and energy-efficient cluster formation. In contrast, in earlier systems, enormous energy

is consumed in calculations required for the transfer of packets from sensors to the fog-nodes.

Figure 6.9: Energy Consumption vs. the number of devices

Further,

𝑇𝐴&𝑆= 1.5 𝐽
𝐹𝐸𝐸= 1.21 𝐽

The suggested system framework uses less energy via the best Fog node selection and cluster

formation.

Security Strength

Investigation of security for any real-time application is important, particularly in air pollution

monitoring in IIoT. Security strength is computed based on several metrics such as key size,

message size, encryption, and decryption time. We compare the proposed scheme with some

previous works based on key size (in bits) starting from 64bits to 2048 bits. When key size

increases, security strength may increases or decreases. Our proposed scheme has attained better

security strength, which is depicted in Table 6.5, whereas previous works such as TA&SD and

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J)

Number of IoT Devices

TA&SD

FEER

Proposed

92

SDSS-IIoT was attained less security strength due to ineffective security algorithms of Security

Strength depends upon various metrics such as message size, key size & decryption, and time

required for encryption. The performance of various systems including the proposed system for

Security Strength concerning Key Size is shown in Figure 6.10 and table 6.5, concerning Message

Size is shown in Figure 6.11 concerning Encryption Time is shown in Figure 6.12 and similarly,

concerning Decryption Time is shown in Figure 6.13. Figure 6.11 shows the performance of the

security strength concerning message size (bits). The average security strength for the proposed

scheme is 0.61, which is higher than previous works such as TA&SD, SDSS-IIoT since they

obtained 0.341, and 0.358, respectively. We proposed ECC-HM, which is a lightweight

cryptographic algorithm, which gives high-security strength when message size increases. It

consumes a minimal amount of time for encryption and decryption. Table 6.7 and Table 6.8 shows

the performance of security strength with respect to the time of encryption and decryption.

Pseudorandom function and secure KNN algorithm are not lightweight cryptography and thus it

takes high processing time.

Figure 6.10: Security strength vs. key size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000

S
ec

u
ri

ty
 S

tr
en

g
th

Key Size

TA&SD

SDSS-IIoT

Proposed

93

Figure 6.11 Security strength vs. message size

Table 6.6: Security Strength For Proposed Vs. Previous Works

Key size Security Strength

TA & SD SDSS IIoT Proposed

64bits 0.1 0.15 0.2

128bits 0.2 0.3 0.4

512bits 0.3 0.4 0.6

1024bits 0.4 0.6 0.8

2048bits 0.5 0.7 1.0

Average 0.25 0.358 0.5

This research presented ECC-HM cryptographic algorithm, which is not only light in computation

due to which encryption/decryption time is significantly reduced, but it also ensures that security

strength remains high with an increase in the size of the message. In contrast, researchers in [39] had

used a weak BLS Pseudorandom Function for security.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

S
ec

u
ri

ty
 S

tr
en

g
th

Message Size (bits)

TA&SD

SDSS-IIoT

Proposed

94

Figure 6.12: Security strength vs. encryption time

Figure 6.13: Security strength vs. decryption time

Table 6.7: Security Strength for the Proposed Vs. Previous Works with respect to encryption time

Encryption Time Security Strength

TA&SD SDSS IIoT Proposed

400ms 0.12 0.08 0.25

800ms 0.32 0.12 0.45

1200ms 0.4 0.25 0.65

1600ms 0.65 0.35 0.85

2000ms 0.8 0.55 1

Average 0.381 0.225 0.533

0

0.2

0.4

0.6

0.8

1

0 400 800 1200 1600 2000

S
ec

u
ri

ty
 S

tr
en

g
th

Encryption Time (ms)

TA&SD SDSS-IIoT

Proposed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000

S
ec

u
ri

ty
 S

tr
en

g
th

Decryption Time (ms)

TA&SD

SDSS-IIoT

Proposed

95

Table 6.8: The Proposed Vs. Previous Works- Security Strength with respect to decryption time

Decryption Time Security Strength

TA&SD SDSS IIoT Proposed

400ms 0.06 0.04 0.02

800ms 0.16 0.06 0.03

1200ms 0.2 0.12 0.08

1600ms 0.35 0.15 0.011

2000ms 0.4 0.55 0.012

Average 0.195 0.153 0.0255

Table 6.4 for different key sizes and Figure 6.11, it is observed that the suggested system has achieved

an average security strength of 0.61, while earlier works - TA&SD and SDSS-IIoT had 0.341 and

0.358 respectively. The greater security strength in the proposed system in-comparison to earlier

systems is attained by the elimination of unproductive security algorithms. The proposed system

outperformed the earlier systems in all other metrics of Security Strength, which are Encryption Time

and Decryption Time as summarized in Table 6.7 and Table 6.8 respectively as mentioned above. It

can be inferred that the suggested system is performing better.

6.6 Summary

Air pollution is one of the major problems in the industrial sector in which deduplication is the critical

factor to minimize storage capacity and latency of cloud server and fog nodes, respectively. The main

purpose of this application consideration is that today air pollutants range exceeds its threshold range.

Therefore, it causes severe health issues for people. To overwhelm this issue, we designed this paper

over the Fog assisted Cloud environment for IIoT, which is carried out by two processes, namely

Task Allocation and Secure Deduplication. For task allocation from IoT devices to fog nodes, we

selected optimal CH, which generates a hash using aggregated data using SHA-3. After SHA-3,

DSC_request is sent to optimal fog node, which process request and send DSC_response message to

CH. To reduce latency for data transmission, we determined optimum fog nodes using the 2FBO2

(FASWO) algorithm. A proxy server is deployed between the cloud servers and fog nodes, which is

employed to build a searchable index for searching users by the given query (data retrieval). Index

construction is based on the Merkle hash tree. To achieve data confidentiality, we proposed a security

algorithm called ECC based HM algorithm for data encryption. Finally, simulation is conducted to

implement the proposed as well as previous works comparison in terms of average latency, user

satisfaction, energy consumption, network lifetime, and security strength. Our proposed scheme has

proved that it is outperforming previous works.

96

CHAPTER 7

CONCLUSION

7.1 Conclusion

Scheduling and Energy consumption is a crucial aspect of Fog Computing, which has a significant

impact on system performance. The current study's main aim is to reduce energy consumption and

to optimize the load. For this, we have implemented an ABC optimization algorithm for load

supervision and stabilization, to attain a lesser consumption of energy rate and decreased runtime

length of the task. The proposed algorithm not only stabilizes the fog-computing load but also

improvises the whole framework performance. A recurring framework considered sends a

maximum of 1000 jobs and at least 10 jobs. The fitness function is formulated to attain the primary

objective of reducing loads on VM. To execute the VMs tasks, an implementation system with

initiation time and execution time is offered. The ABC Algorithm is used to rank the connected

components based on the total energy consumed and finish time for the execution of whole tasks.

New limits of Schedule Length of VM-Ratio (SLVMR) for the proposed framework are obtained

which is not deliberated in previous studies. SLR at one VM, which is utilized the smallest time

frame is compared with SLR of the proposed algorithm. In addition to the above, the performance

of the proposed algorithm is evaluated by using ECR and ECRVM as well.

The performance results from the proposed framework are compared with the DAG structure. The

comparative outcome analysis revealed that the proposed model has superior performance of both

SLRVM & ECRVM concerning the regular DAG Model. It was found that the most SLRVM of

the proposed model is 28, while it is 88 for DAG Model. In addition, the highest value of ECRVM

of the proposed task model is 43, while it is 7 for DAG Model. Similarly, the proposed model

considerably outperformed DAG Model in all other assessments because of the standardized ABC

algorithm application in the proposed model. The proposed work has further futuristic scope by

application of dynamic machine learning algorithms and open load management.

97

In this study, a matter of energy usage and SLA violation for task planning in fog computing have

been spoken. However, many explanations are available for energy-conscious resource managing

in fog computing for data centers however, the present studies emphasize decreasing energy usage

without bearing in mind the SLA violation. Due to the discrepancy in planning, energy usage was

more because of the deficiency of the host classifier. This study deals with task scheduling and

resources energy awareness resources in fog computing conceptualized centered on artificial

intelligence. ANN systems & MMFS have been used for reducing the SLA violation and energy

usage in the suggested structure. MMFS is required for enhancing the tasks according to the energy

ingestion rate based on several objective fitness functions. ANN is required for categorizing the

finest host based on task requests and has assigned them consequently for decreasing energy

consumption rates and SLA violations. Various tasks are occupied for computing the efficiency of

the suggested task. The average value calculated for energy usage through the number of tasks with

and without optimization algorithms 66.5 MJ and 70.2mJ correspondingly, and the average values

perceived for SLA violation without and with optimization, algorithms are 0.742 and 0.776. It has

been determined that the performance of the suggested job through SLA violation and energy

consumption has been decreased.

Load balancing and task scheduling are important features, which critically influence the

performance of the structure. The prior methods suffered because of node failures, environment

type (for example distributed or centralized), resource shortage, and so on. To get a better of the

problems of prior works, the present research has suggested a four-tier structure for load balancing

and task scheduling.

The researcher has conducted this research to provide task allocation, which is fog-assisted,

clustering of IIoT data based on MOWO, and further secure data de-duplication by using 2FBO2.

This has been shown through two procedures, namely job Distribution, and Protected

Deduplication. For job distribution to FNs from IoT devices, the researcher designated optimal CH

that produces a hash with the help of gathered data. To decrease latency for data communication,

the research proposed to recognized idle FNs by using an advanced 2FBO2 (FAFSWO) algorithm.

The Merkel hash-tree is used to store data in an index structure. To ensure the privacy of data, the

researcher suggested a safety algorithm for data encryption called ECC based HM algorithm.

98

Lastly, simulation is showed to execute the suggested as well as prior job comparison due to user

satisfaction, average latency to name a few. The suggested system has demonstrated that it is

performing better than prior jobs.

7.2 Future Work

This study has unlocked an extensive possibility for future studies. The way forward for future

work shall be based on the application of Artificial Intelligence in the optimization method, which

may further reduce the energy consumption rate and provide a resolution to fog computing overload

issues. Further, it is suggested to implement other data handling techniques in search of better data

de-duplication algorithms in fog computing systems. This is to achieve any further additional

decreases in process delay and overall dependency. Edge AI (Artificial Intelligence) and services,

which is a new paradigm, can be used as future work, as it embedded Artificial intelligence locally

or near the source of streaming data. While interacting with an IoT enabled equipment, the data

from the sensors or similar IoT devices need to be analyzed and processed in milliseconds, without

having to send them to an offshore cloud location. It will provide low latency for onsite data

processing, real-time analytics, and machine learning in the smallest compute footprint. It will not

only improves the latency but also improves security. The potential of Fog Computing in 5G-

enabled Edge AI environments extends way beyond the automotive industry, bringing the benefits

of AI at the edge to all manner of enterprise, vertical market, smart cities, smart vehicle, etc.

99

BIBLIOGRAPHY

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet

of things,” in MCC ’12: Proceedings of of the MCC workshop on Mobile cloud computing,

pp. 13–16, 2012.

[2] Z. Wen, R. Yang, P. Garraghan, P., T. Lin, J. Xu, and M. Rovatsos, “Fog orchestration for

the Internet of things services,” IEEE Internet Computing”., vol. 21, no. 2, pp. 16–24, 2017.

[3] S. N. Gollaprolu Harish, B. Harish, and M. Shaik, “A Review on Fog Computing and its

Applications,” Int. J. Innov. Technol. Explore. Eng., vol. 8, no. 6, pp. 358-369, 2019.

[4] X. Xu., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., & Liu, A. X.,”.Dynamic resource

allocation for load balancing in fog environment”. Wireless Communications and Mobile

Computing, pp. 1–15, 2018.

[5] A. Al-fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things : A Survey on Enabling Internet of Things : A Survey on Enabling Technologies,

Protocols, and Applications”, IEEE communications surveys & tutorials vol.17, no. 4, pp.

2347–2376, 2015.

[6] P. Suresh, J. V. Daniel, and R. H. Aswathy, “A state of the art review on the Internet of

Things (IoT) History, Technology and fields of deployment,” International conference on

science engineering and management research (ICSEMR), pp. 1-8, 2014.

[7] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, investments, and challenges

for enterprises,” Bus. Horiz., vol. 58, no. 4, pp. 431–440, 2015.

[8] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A literature

review”. Journal of Computer and Communications, vol 3, pp. 164–173.

[9] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research Opportunities,” IEEE

Internet Things J., vol. 3, no. 6, pp. 854–864, 2016.

[10] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key

technologies, applications, and open issues,” J. Netw. Comput. Appl., vol. 98, pp. 27–42,

2017.

[11] X. Wu, X. Zhu, G. Wu, and W. Ding,” Data mining with big data”, IEEE transactions on

knowledge and data engineering”, vol. 26, no. 1, pp. 97–107, 2014.

[12] W. Jiafu, “Fog computing for energy-aware load balancing and scheduling in smart factory."

100

 IEEE Transactions on Industrial Informatics, vol. 14,pp. 4548-4556,2018.

[13] A.Fernández, del Río, S., López, V., Bawakid, A., del Jesus, M. J., Benítez, J. M., & Herrera,

F. (2014). “Big Data with Cloud Computing: an insight on the computing environment,

MapReduce, and programming frameworks”. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery. vol. 4, no. 5, pp. 380–409, 2014.

[14] D. J and G. S., “Mapreduce: Simplified data processing on large clusters,” in OSDI ’04: 6th

Symposium on Operating Systems Design and Implementation, pp. 137–150, 2004.

[15] Apache Hadoop, “Apache Hadoop,” Apache Hadoop, 2020. [Online].

Available: http://hadoop.apache.org/.

[16] J. Lin, “Mapreduce is good enough? if all you have is a hammer, throw away everything

that’s not a nail,” Big Data, vol. 1, no. 1, pp. 28–37, 2013.

[17] G. Wu, W. Bao, X. Zhu, Xi. Zhang, “A General Cross-Layer Cloud Scheduling, Framework

for Multiple IoT Computer Tasks”, Sensors, vol. 18, pp. 1-20, 2018.

[18] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing.” in Proceedings of the 9th USENIX Conference on Networked Systems

Design and Implementation. pp. 15–28, 2012.

[19] Apache Flink, “Apache Flink — Stateful Computations over Data Streams,” Apache Flink.

[Online]. Available: https://flink.apache.org/.

[20] S.Mahendra, B. Gawali, S. K. Shinde, “Task Scheduling and Resource Allocation in Cloud

Computing using a Heuristics Approach”, Journal of Cloud Computing: Advances, Systems,

and Applications, vol. 7, issue.4, pp. 1-16, 2018.

[21] Z. Liu , J. Zhang, Y. Li, L. Bai, J.Yuefeng Ji,” Joint Jobs Scheduling and Lightpath

Provisioning in Fog Computing Micro Datacenter Networks”, Journal of Optical

Communications and Networking, Vol. 10, Issue.7, pp. B152-B163, 2018.

[22] A. Khajeh-Hosseini, D. Greenwood, J. Smith, and I. Sommerville, “The Cloud Adoption

Toolkit: Supporting Cloud Adoption Decisions in the Enterprise.” Softw. Pract. Exp., vol.

42, no. 4, pp. 447–465, 2015.

[23] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud migration: A case study of

migrating an enterprise IT system to IaaS,” in 3rd International Conference on Cloud

Computing, pp. 450–457, 2010.

[24] T. BInz, U. Breitenbücher, O. Kopp, and F. Leymann, “Migration of enterprise applications

http://hadoop.apache.org/
https://flink.apache.org/

101

to the cloud,” IT-Inf Techno, vol. 56, no. 3, pp. 106–111., 2014.

[25] P. Mohagheghi and T. Sæther, “Software engineering challenges for migration to the service

cloud paradigm: Ongoing work in the REMICS project,” in IEEE World Congress on

Services (SERVICE), pp. 507–514, 2011.

[26] G. Menychtas A, Konstanteli K, Alonso J, Orue-Echevarria L, Gorroñogoitia J, Kousiouris,

“Software modernization and cloudification using the ARTIST migration methodology and

framework,” Scalable Comput. Pract. Exp., vol. 15, no. 2, pp. 131–152, 2014.

[27] S. Frey and W. Hasselbring, “Model-based migration of legacy software systems into the

cloud: The CloudMIG approach,” Softwaretechnik-Trends, vol. 30, no. 2, pp. 155–158.,

2010.

[28] S. Strauch, V. Andrikopoulos, D. Karastoyanova, and K. Vukojevic-Haupt, “Migrating e-

Science Applications to the Cloud: Methodology and Evaluation. Cloud Computing with E-

science Applications”, Boca Raton.: Taylor & Francis, pp. 89-114, 2014.

[29] R. Pérez-Castillo, I. de Guzmán, I. Caballero, and M. Piattini, “Software modernization by

recovering web services from legacy databases,” J. Softw. Evol. Process, vol. 25, no. 5, pp.

507–533, 2013.

[30] M. Gholami, F. Daneshgar, G. Low, and G. Beydoun, “Cloud migration process—a survey,

evaluation framework, and open challenges,” J. Syst. Softw., vol. 120, pp. 31–69, 2016.

[31] A. Y. Zomaya and Y. H. Teh, “Observations on using genetic algorithms for dynamic load-

balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 9, pp. 899–911, 2011.

[32] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based

heuristic for scheduling workflow applications in cloud computing environments,” 24th

IEEE international conference on Advanced information networking and applications

(AINA), pp. 400–407, 2010.

[33] P. V. Krishna, “Honey bee behavior inspired load balancing of tasks in cloud computing

environments,” Appl. Soft Comput., vol. 13, no. 5, pp. 2292–2303, 2013.

[34] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog computing dynamic load balancing

mechanism based on graph repartitioning,” China Commun., vol. 13, no. 3, pp. 156–164,

2016.

[35] M. Verma, N. Bhardwaj, and A. K. Yadav, “Real-Time Efficient Scheduling Algorithm for

Load Balancing in Fog Computing Environment,” Int. J. Inf. Technol. Comput. Sci., vol. 14,

102

pp. 1–10, 2016.

[36] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of fog computing and its

security issues. Concurrency and Computation,” vol. 28, no. 10, pp. 2991–3005, 2016.

[37] A. Y. Zomaya, C. Ward, and B. Macey, “Genetic scheduling for parallel processor systems:

Comparative studies and performance issues,” IEEE Trans. Parallel Distrib. Syst., vol. 10,

no. 8, pp. 795–812, 1999.

[38] S. Agarwal, S. Yadav, and A. K. Yadav, “An architecture for elastic resource allocation in

fog computing,” Int. J. Comput. Sci. Commun., vol. 6, no. 2, pp. 201–207, 2016.

[39] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in fog-

cloud computing toward balanced delay and power consumption,” IEEE Internet Things J.,

vol. 3, no. 6, pp. 1171–1181, 2016.

[40] L. F. Bittencourt, D.-M. J., R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware

application scheduling in fog computing,” IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35,

2017.

[41] S. K. Mishra, D. Putha, J. J. Rodrigues, B. Sahoo, and E. Dutkiewicz, “Sustainable Service

Allocation using Metaheuristic Technique in Fog Server for Industrial Applications,” IEEE

Trans. Ind. Informatics, vol. 14, no. 10, pp. 4497–4506, 2018.

[42] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey, and future

directions,” in the Internet of everything, Singapore: Springer, pp. 103–130,2018.

[43] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, “Secure

and Sustainable Load Balancing of Edge Data Centers in Fog Computing,” IEEE Commun.

Mag., vol. 56, no. 5, pp. 60–65, 2018.

[44] C.Chen, Y.Hao Chang, C.Chieh Yang, K. Lee, “Switching Supports for Stateful Object

Remoting on Network Processors”, Journal of Supercomputing, vol. 40, Issue.3, pp. 281-

298, 2007.

[45] X. Q. Redowan Mahmud, Kotagiri Ramamohanarao, Rajkumar Buyya, “Latency-aware

Application Module Management for Fog Computing Environments”, ACM Transactions

on Embedded Computing Systems, vol. 9, no. 4, pp. 1-21.2018.

[46] Pham and E. N. Huh, “Towards task scheduling in a cloud-fog computing system.” in 18th

Asia-Pacific network operations and management symposium, pp. 1–4, 2016.

103

[47] X. Masip-Bruin, E. Marín-Tordera, A. Alonso, and J. Garcia, “Fog-to-cloud computing

(F2C): The key technology enabler for dependable e-health services deployment,” in 2016

Mediterranean ad hoc networking workshop (Med-Hoc-Net), pp. 1–5, 2016.

[48] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may help to save

energy in cloud computing,” IEEE J. Sel. Areas Commun., vol. 34, no. 5, pp. 1728– 1739,

2016.

[49] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in

International Conference on Wireless Algorithms, Systems, and Applications, pp. 685–695,

2015.

[50] K. Flautner, S. Reinhardt, and T. Mudge, “‘Automatic performance setting for dynamic

voltage scaling,” Wirel. Netw., vol. 8, no. 5, pp. 507–520, 2002.

[51] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rub, “Thermal

response to DVFS: Analysis with an Intel Pentium M,” Int. Symp. Low Power Electron.

Des., vol. 7, pp. 219–224, 2007.

[52] C.-M. Wu, R.-S. Chang and H.-Y. Chan, “A green energy-efficient scheduling algorithm

using the DVFS technique for cloud datacenters,” Futur. Gener. Comput. Syst., vol. 37, pp.

141–147, 2017.

[53] A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scaling in processor

sharing system,” in IEEE International Conference on Computer Communications, 2009,

pp. 2007–2015, 2009.

[54] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-time systems,” in

Proceedings of the 37th Annual Design Automation Conference, pp. 806–809, 2000.

[55] E. Feller, C. Morin, and A. Esnault, “‘A case for fully decentralized dynamic VM

consolidationinclouds,” in International Conference on Cloud Computing Science and

Technology, pp. 26–33,2012.

[56] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of fog computing and its

security issues”, Concurrency and Computation: Practice and Experience”, vol. 28, no. 10,

pp. 2991–3005, 2016.

[57] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of virtual machines

in cloud data centers,” Concurr. Comput. Pract. Exp., vol. 24, no. 13, pp. 1397–1420, 2012.

104

[58] A. Beloglazov, J. Abawajy, and R. Buyya, “‘Energy-aware resource allocation heuristic

for efficient management of data centers for cloud computing,” Futur. Gener. Comput. Syst.,

vol. 28, no. 5, pp. 755–768, 2012.

[59] J. Xue, F. Yan, R. Birke, L. Y. Chen, T. Scherer, and E. Smirni, “PRACTISE: Robust

prediction of data center time series,” in 11th International Conference on Network and

Service Management, pp. 126–134, 2015.

[60] D. Grimes, “Robust Server Consolidation: Coping with Peak Demand Underestimation,” in

IEEE 24th International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, pp. 271–276, 2016.

[61] F. Farahnakian, P. Liljeberg, and J. Plosila, “LiRCUP: Linear regression-based CPU usage

prediction algorithm for live migration of virtual machines in data centers,” in 46th

Euromicro Conference on Software Engineering and Advanced Applications, pp. 357–364,

2013.

[62] B. Guenter, N. Jain, and C. Williams, “‘Managing cost performance and reliability tradeoffs

for energy-aware server provisioning,” in Proceeding IEEE INFOCOM, pp. 1332–1340,

2011.

[63] HF Sheikh, I Ahmad, Z Wang, S Ranka, “An overview and classification of thermal-aware

scheduling techniques for multi-core processing systems”, Sustainable Computing:

Informatics and Systems, vol. 2, issue. 3, pp.151-169.

[64] E. Feller, L. Rilling, and C. Morin, “‘Energy-aware ant colony based workload placement

in clouds,” in 12th IEEE/ACM International Conference on Grid Computing, pp. 26–33,

2011.

[65] HF Sheikh, I Ahmad, D Fan, “An EvolutionaryTechnique for Performance-Energy-

Temperature Optimized Scheduling of Parallel Tasks on Multi-Core Processors”, IEEE

Transactions on Parallel and Distributed Systems (TPDS), vol.27, issue.3, pp. 668-681,

2016.

[66] M.Aazam, Zeadally, S., & K. A Harras,” Deploying Fog Computing in Industrial Internet of

Things and Industry 4.0”, IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp.

4674-4682, 2018.

[67] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications, and issues,” in

In Proceedings of the 2015 workshop on mobile big data, vol. 5, pp. 37–42, 2015.

105

[68] G. Wu, W. Bao, X. Zhu, and X. Zhang, “A General Cross-Layer Cloud Scheduling

Framework for Multiple IoT Computer Tasks,” Sensors, vol. 18, pp. 1–20, 2018.

[69] J.Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog Computing for Energy-aware

Load Balancing and Scheduling in Smart Factory,” IEEE Trans. Ind. Informatics, pp. 1–9,

vol 23,2018.

[70] M. B.Gawali and S. K. Shinde, “Task Scheduling and Resource Allocation in Cloud

Computing using a Heuristics Approach,” J. Cloud Comput. Adv. Syst. Appl., vol. 7, no. 4,

pp. 1–16, 2018.

[71] Q. Liu, Y. Wei, S.Leng, and Y. Chen, “Task Scheduling in Fog Enabled Internet of Things

for Smart Cities,” in 17th IEEE International Conference on Communication Technology,

2017, pp. 975-980.

[72] Z. Liu, J. Zhang, Y. Li, L. Bai, and Y. Ji, “Joint Jobs Scheduling and Lightpath Provisioning

in Fog Computing Micro Datacenter Networks,” J. Opt. Commun. Netw., vol. 10, no. 7,

2018.

[73] S. E.Kafhali and K. Salah, “Efficient and dynamic scaling of fog nodes for IoT devices,” J.

Super Comput., vol 60, pp. 1–24, 2017.

[74] X. Xu et al., “Dynamic Resource Allocation for Load Balancing in Fog Environment,”

Wirel. Commun. Mob. Comput. Hindawi, pp. 1–16, 2018.

[75] H. Xiao, Z. Zhang, and Z. Zhou, “GWS- A Collaborative Load-Balancing Algorithm for

Internet-of-Things,” Sensors, vol. 18, pp. 1–17, 2018.

[76] M. U. Sharif, N.Javaid, M. J. Ali, W. A. Gilani, A.Sadam, and M. H.Ashraf, “Optimized

Resource Allocation in Fog-Cloud Environment using Insert Select,” in 21st International

Conference on Network-based Information Systems, pp. 611-623,2018.

[77] Y. Liu, K.A. Hassan, M. Karlsson, O. Weister, S. Ghong, “Active Plant Wall for Green

Indoor Climate based on Cloud and Internet of Things”, IEEE Access, vol. 6, pp. 33631-

33644, 2018.

[78] F.Caramés, T.M., P.Suárez-Albela, M., & M.A. Díaz,” A Fog Computing Based Cyber-

Physical System for the Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard”,

Sensors, vol. 18, no. 6, pp. 1-26.

[79] A.L. Clements, W.G. Griswold, J.E. Johnson, M.M. Herting, J. Thorson, A.C. Oxandale,

M. Hannigan, “Low-Cost Air Quality Monitoring Tools: From Research to Practice (A

106

Workshop Summary), Sensors, vol. 27, no. 11, pp. 1-20, 2017.

[80] Z. Liu, & Li, S.,” Sensor-cloud data acquisition based on fog computation and adaptive

block compressed sensing”, International Journal of Distributed Sensor Networks, vol. 14.

Issue. 9, 2018.

[81] D. Rahbari and M.Nickray, “Scheduling of Fog Networks with Optimized Knapsack

Symbiotic Organisms Search,” in Proceeding of the 21st Conference of Fruct. Association,

2018.

[82] L. Yin and J. Luo, “Task scheduling and Resource Allocation in Fog Computing based on

Containers for Smart Manufacturing,” IEEE Trans. Ind. Informatics, pp. 1–9, 2018.

[83] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility- Aware

Application Scheduling in Fog Computing,” IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35,

2017.

[84] H. H.Madni, M. S. A.Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J. Usman,

“Performance Comparison of Heuristic Algorithms for Task Scheduling in IaaS Cloud

Computing Environment,” PLoS One, pp. 1–26, 2017.

[85] R. Deng, R. Lu, C. Lai, T. H. Luan, and H.Liang, “Optimal Workload Allocation in Fog-

Cloud Computing Towards Balanced Delay and Power Consumption,” IEEE Internet

Things, pp. 1–11, 2016.

[86] X. Q. Pham and E. Huh, “Towards Task Scheduling in a Cloud-Fog Computing System,” in

The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1-

4. IEEE, 2016.

[87] T. Choudhari, M. Moh, and T. Moh, “Prioritized Task Scheduling in Fog Computing,” in

ACMSE Conference Transactions Proceedings, pp 1-8, 2018.

[88] T. D. Dang and D. Hoang, “FBRC: Optimization of Task Scheduling in Fog based Region

and Cloud,” IEEE Trust., pp. 1109-1114, 2017.

[89] R. Mahmud, K.Ramamohanarao, and R.Buyya, “Latency- aware Application Module

Management for Fog Computing Environments,” ACM Trans. Embed. Comput. Syst., vol.

9, no. 4, pp. 1–21, 2010.

[90] H. A. Manis, F. O. Oladipo, and E. Ariwa, “User mobility and resource scheduling and

Management in fog computing to support IoT devices,” in The Seventh International

Conference on Innovative Computing Technology, pp. 11-21 2017.

107

[91] N. Zhang, X. Yang, M. Zhang, Y. Sun, and K. Long, “A Genetic Algorithm-based Task

Scheduling for Resource Crowd-Funding Model,” Int. J. Commun. Syst., vol. 31, pp. 1–10,

2018.

[92] L. Liu, D. Qi, N. Zhou, and Y. Wu, “A Task Scheduling Algorithm based on Classification

Mining in Fog Computing Environment,” Wirel. Commun. Mob. Comput., pp. 1–12, 2018.

[93] Q. Fan and N. Ansari, “Towards Workload Balancing in Fog Computing Empowered IoT,”

IEEE Trans. Netw. Sci. Eng., pp. 1–11, 2018.

[94] S. Bitam, S. Zeadally, and A. Mellouk, “Fog Computing Job Scheduling Optimization based

on Bees Swarm,” Enterprise Information Systems, 12(4), pp. 373-379, 2018.

[95] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog Computing Dynamic Load

Balancing Mechanism Based on Graph Repartitioning,” China Commun., pp. 156–164,

2016.

[96] Y. Su, F. Lin, and H. Xu, “Multi-Objective Optimization of Resource Scheduling in Fog

Computing using an Improved NSGA-II,” Wirel. Pers. Commun., pp. 1–17, 2017.

[97] X. Pham, N. D. Man, N. D.T.Tri, N. Q. Thai, and E. Huh, “Cost and Performance Effective

Approach for Task Scheduling based on Collaboration between Cloud and Fog Computing,”

Int. J. Distrib. Sens. Networks, vol. 13, pp. 1–16, 2017.

[98] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, “DEBTS: Delay Energy

Balanced Task Scheduling in Homogeneous Fog Networks,” IEEE Internet Things J., pp.

1–11, 2018.

[99] C.K. Chen, Y.-H. Chang, C.-C. Yang, and J.-K. Lee, “Switching Supports for Stateful

Object Remoting on Network Processors,” J. Supercomput., vol. 40, no. 3, pp. 281–298,

2007.

[100] H. Topcuoglu and S. Hariri, “Min-You Wu, Performance Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing,” IEEE Trans. Parallel Distrib. Syst., vol.

13, no. 3, pp. 260–274, 2002.

[101] T. Wang, Z. Liu, Y. Chen, and Y. Xu, “Load balancing task scheduling based on genetic

algorithm in cloud computing,” in IEEE 12th International Conference on Dependable,

Autonomic and Secure Computing, pp. 146-152, 2014.

[102] T. Khalid, A. N. Khan, M. Ali, A. Adeel, ur R. Khan, and J. A., Shuja, “A fog-based security

framework for intelligent traffic light control system,” Multimed. Tools Appl., 2018.

108

[103] H.-Q. Wu, L. Wang, and G. Xue, “Privacy-aware task allocation and data aggregation in

fog-assisted spatial crowdsourcing”, IEEE Transactions on Network Science and

Engineering, vol7 issue 1, pp.589-602.

[104] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial IoT Data scheduling based on

Hierarchical Fog Computing”, Industrial IoT data scheduling based on hierarchical fog

computing: A key for enabling smart factory. IEEE Transactions on Industrial

Informatics, 14(10), 4590-4602, 2018.

[105] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive Fog Configuration for the Industrial Internet

of Things,” IEEE Transactions on Industrial Informatics”, 14(10), 4656-4664. vol. 1, no. 1,

2018.

[106] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, "Service popularity-based smart-resources

partitioning for fog computing-enabled industrial Internet of Things." IEEE Transactions on

Industrial Informatics Issue 14, vol no. 10, pp.4702-4711, 2018.

[107] S. Shukla, M. F. Hassan, L. T. Jung, and A. Awang, “Architecture for Latency Reduction in

Healthcare Internet-of-Things Using Reinforcement Learning and Fuzzy Based Fog

Computing,” Recent Trends Data Sci. Soft Comput., pp. 372–383, 2018.

[108] Miao, Dejun, et al. "An efficient indexing model for the fog layer of industrial internet of

things." IEEE Transactions on Industrial Informatics vol 14 issue.10, pp. 4487-4496.,2018.

[109] J. Shen, H. Yang, A. Wang, T. Zhou, and C. Wang, “Lightweight authentication and matrix-

based key agreement scheme for healthcare in fog computing,” Peer-to-Peer Netw.Appl.,

pp.1123-129,2018.

[110] Z. Liu and S. Li, “Sensor-cloud data acquisition based on fog computation and adaptive

block compressed sensing,” Int. J. Distrib. Sens. Networks, vol. 14, no. 9, 2018.

[111] J. Fu, Y. Liu, H.-C. Chao, B. Bhargava, and Z. Zhang, “Secure Data Storage and Searching

for Industrial IoT by Integrating Fog Computing and Cloud Computing.” IEEE Trans. Ind.

Informatics, vol. 1, no. 1, 2018.

[112] B. Bathiya, S. Srivastava, and B. Mishra, “Air pollution monitoring using a wireless sensor

network”. IEEE international WIE conference on electrical and computer engineering, pp.

112-117,2016

[113] H, Wang, Liu, T., Kim, B. G., Lin, C. W., Shiraishi, S., Xie, J., & Han, Z. “ Architectural

Design Alternatives based on Cloud/Edge/Fog Computing for Connected Vehicles”. IEEE

109

Communications Surveys & Tutorials, 2020.

[D.O.I 10.1109/COMST.2020.3020854]

[114] J Bellendorf., & Mann, Z. Á. (2020). “Classification of optimization problems in fog

computing”, Future Generation Computer Systems, 107, 158-176.

.

https://doi.org/10.1109/COMST.2020.3020854

110

LIST OF PUBLICATIONS

Journal

1. Sharma, S., &Saini, H. (2019). A novel four-tier architecture for delay aware scheduling

and load balancing in fog environment. Sustainable Computing: Informatics and Systems,

24, 100355.[[Major indexing: Science Citation Index Expanded, Scopus)

[https://doi.org/10.1016/j.suscom.2019.100355]

2. Sharma, S., &Saini, H. (2020). Fog assisted task allocation and secure deduplication using

2FBO2 and MoWo in cluster-based industrial IoT (IIoT). Computer Communications,

152, 187-199.[Major indexing: indexing: Science Citation Index Expanded, Scopus]

[https://doi.org/10.1016/j.comcom.2020.01.042]

3. Sharma, S., &Saini, H. (2019). Efficient Solution for Load Balancing in Fog Computing

Utilizing Artificial Bee Colony. International Journal of Ambient Computing and

Intelligence (IJACI), 10(4), 60-77.[Major indexing: SCOPUS, Emerging Sources Citation

Index (ESCI)]

4. Sharma, S., Sharma, A., &Saini, H. (2019).Advanced Network Security Analysis (ANSA)

in Big Data Technology. International Journal of Innovative Technology and Exploring

Engineering. Volume 8, Issue 10. pp.2634-2640. [Major indexing: SCOPUS,]

5. Sharma, S. and Saini, H., “Minimizing Energy Consumption and SLA Violation in Fog

Computing Using Artificial Neural Network”, International Journal of Sensors, Wireless

Communications, and Control (2020) 10: 1. [Major indexing: SCOPUS}

[https://doi.org/10.2174/2210327910666200206155949]

Conferences:

1. Sharma, S., Rathee, G., & Saini, H. (2018, December). Big data analytics for crop

prediction model using an optimization technique. In 2018 Fifth International Conference

on Parallel, Distributed, and Grid Computing (PDGC) (pp. 760-764). IEEE.

2. Presented a Technical paper entitled, “Big data analytics for crop prediction model using

optimization technique”, Accepted in Futuristic Trends in Network and Communication

Technologies (FTNCT2018).

111

3. Presented a paper entitled "BDA for crop prediction using GWO optimization” in the Fifth

international conference on parallel distributed and grid computing (PGDC-2018) held in

JUIT Waknaghat.

4. Presented a paper entitled " Agricultural data Clustering using FAO Heuristics" in the

International conference on computational and automation engineering (ICCAI-2018) held

at AMITY University Noida,7-9 Feb 2018

5. Presented a paper entitled “Advance Network security analysis using big data technology”

in an International conference on advance in science and technology held at Swami

Keshavand and Institute of Technology and Management Jaipur on 4,5 May 2018.

Other Conferences

 Presented a paper entitled “Big Data Analytic for Crop Prediction in Indian Scenario Using

FAO Heuristic” Organized by HP Science Congress held at IIT Mandi (22-23 Oct 2018).

 Presented a paper entitled “Big data analysis for crop prediction: A case study of Solan

District of Himachal Pradesh’ at 2nd HP Science Congress held at Hotel Peterhoff, Shimla.

(20 - 21 Nov 2017).

 Presented a paper entitled “Big Data Analytics for Agriculture data set in Indian Scenario”

in International conference on advance in science and technology held at Swami Keshavand

Institute of Technology and Management, Jaipur (4-5 May 2018).

Work under submission:

 Sharma, S. and Saini, H “ Framework for deadline sensitive application using

Conventional Neural Network”, In Journal of Computing (JOC) [Minor Revision]

Signature of Scholar

(Shivi Sharma)

	front pages. (1).pdf
	THESIS.pdf

