Dr. T. R. Singh

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT B.Tech. BI and BT (Semester VIII), Test 2 (April 2016)

Course Code: 15B1WBI834	Max. Marks: 25
Course Name: Computational Molecular Evolution	
Course Credit: 3	Max. Time: 1:30 Hrs
Attempt all questions. Carrying of mobile phones will be treated	as the case of unfair means.
Q.1. What is exon shuffling? What are various phases of exon sh significance.	(4)
Q.2. What are nested genes? How these are related to overlappin example.	g genes? Explain with an (3)
Q.3. What are important criteria to solve the mystery of genome code evolution and base composition factors in detail w.r.t. genome	
Q.4. What is C-value? Explain its usage for genome level analysis	(2)
Q.5. Explain the role of introns in gene's overall evolution with	a case study. (4)
Q.6. Discuss three specific theories of genome evolution with an	example of each. (4)
Q.7. Discuss introns evolution through early and late theories wit	h detailed examples of each. (4)