Dr. Achweini Charmer

MAX. MARKS: 15

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- September 2016

B.Tech/ M.Tech 7th / 1st Semester

COURSE CODE: 10M11EC111

COURSE NAME: Advanced Communication System			
COURSE CREDITS: 03 MAX. TIME:			Hr
No	te: All	questions are compulsory. Carrying of mobile phone during examinations will be	
treated as case of unfair means.			
-			
1.	[2 ma	rks] A discrete PAM signal d(t) with symbol period T is modulated using CPM v	vith
	memo	ory. Answer following questions about modulated signal. (Choose one correct answer	r)
	a.	The modulated signal in the interval nT <t<(n+1)t have<="" td="" will=""><td></td></t<(n+1)t>	
		i) Discrete phase in t ii) continuous phase in t	1/
		iii) Independent phase in t iv) only accumulated phase from t <nt< td=""><td></td></nt<>	
	b.	The memory introduced in the modulation is realized by carrier signal having	
		i) Phase proportional to d(t) ii) Amplitude proportional to d(t)	1/
		iii) Phase proportional to $\int d(t)$ iv) Phase proportional to $4\pi Td(t)$	
	C.	In CPM modulation of input d(t), additional memory can be introduced by using	
		i) Full response CPM ii) Partial response CPM	1/2
		iii) Both full and partial iv) neither of two	
	d.	As compared to full response, the partial response CPM provides benefit in	
		i) Gradual change of carrier phase within t ii) Constant carrier phase within T	3
		iii) smoother phase change at symbol transitions iv) none of these	1/2
2.	[4½ m	narks] Short answers type questions (answer in maximum three 3 lines).	
	a.	What is the full form of GMSK, and what BT value is used in European Dig	ital
		cellular communications using GMSK?	1/2
	b.	Sketch phase trajectory of Binary CPFSK for input symbol b_n sequence $+1$, -1 , -1 ,	+1,
		-1, +1, +1, +1, -1, -1, +1. Assume constant modulation index h for each symbol.	1/2
	C.	What is MSK, and why is it called so?	1/2

- d. Why, as engineers, are we interested in calculating Power Spectral Density (PSD) of digitally modulated signals?
 e. Prove by formulation that QAM is a combination of PAM and PSK.
- g. Write the condition for orthogonality of two signals with frequencies f_1 and f_2 .

1

3. [2½ marks] Let a discrete PAM signal d(t) is created for an infinite series of symbols $\{b_n\}$ and pulse shaping g(t), where b_n can take values from $\pm 1, \pm 3, \pm 5, \ldots, \pm (M-1)$, and g(t) is the rectangular pulse of amplitude 1/2T and duration T. The PAM signal d(t) is used to modulate a carrier of frequency f_c using CP-FSK to obtain time-varying carrier phase $\Phi(t; b)$.

Plot signal space diagram of BPSK, QPSK, Octal PSK, and 8-QAM.

- a. Represent d(t) mathematically in terms of b_n and g(t).
- b. Prove by elaborating each step that the phase at time t (nT<t<(n+1)T) is given by $\Phi(t; b) = C_1 \sum_{k=-\infty}^{n-1} b_k + C_2 b_n (t-nT) \qquad \text{Where } C_1 \& C_2 \text{ are constants.}$
- 4. [6 marks] Consider a baseband discrete PAM system. Assume {a_n} is an Independent Identically Distributed random binary sequence where a_n takes value 0 and 1 equally likely, {b_n} is the output of a binary pre-coder with input {a_n}, and h_T(t) is a rectangular pulse shape defined as:

$$h_T(t) = \begin{cases} A & \text{for } t \in [0, T] \\ 0 & \text{otherwise} \end{cases}$$
 [Fourier transform $|H_T(f)| = ATsinc(fT)$]

where T is symbol duration. Let v(t) be the output discrete PAM signal with power spectral density (PSD) $S_v(f)$. Answer the following.

- a. For any band-pass signal s(t) which is a modulated version of the baseband signal v(t), prove that we only need to determine PSD of v(t) to evaluate PSD of s(t).
- b. Determine $S_v(f)$, for NRZ polar quaternary signaling. $2\frac{1}{2}$
- c. Determine $S_v(f)$, if the PAM signal is NRZI as shown below $2\frac{1}{2}$

-----END-----