Dr. Nation Bayy

JAYPEE UNIVERSITY OF INFORMATION TECNOLOGY, WAKNAGHAT

T-3 EXAMINATION (JUNE 2016)

B.Tech. 2nd Sem. (ECE/CSE/IT)

COURSE CODE: 10B11MA211

COURSE NAME: DISCRETE MATHEMATICS

Max Marks: 35

Max Time: 2 Hrs

COURSE CREDITS: 4

Note: Attempt all parts of a question at one place.

- 1. Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. How many functions are there from A to B? How many of these functions are one-one? How many of these functions are onto? (3 Marks)
- 2. Define a partition. Explain the concept of cross-partition by proving the necessary requirements. Also give an example in the support. (4 Marks)
- 3. (a) Consider $(D_{70}, |)$ under the relation of divisibility. Find atoms, join irreducible elements and complements of each and every element. (2 Marks)
 - (b) Give examples of isomorphic lattices and justify.

(2 Marks)

4. (a) Define the dual graph of a planar graph. If possible, find the dual graph of C_6 .

(2 Marks)

- (b) Express the algebraic expression $(2x-3y)(x+2y)^3$ by a rooted binary tree and write the preorder and postorder traversal. (2 Marks)
- 5. (a) If G has 21 edges, 3 vertices of degree 4 and remaining vertices are of degree 3, then find the number of vertices of G. (2 Marks)
 - (b) A tree T has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of degree 3. Determine the number of vertices and edges in T. (2 Marks)
- 6. Give an example of the following (if possible):

(4 Marks)

- (i) A finite field with 3 elements
 - (ii) A Finite integral domain
- (iii) A commutative ring without identity and without zero divisors
- (iv) A non-commutative ring with zero divisors
- (v) An unbounded lattice
- (vi) An unbounded complemented lattice
- (vii) A non-distributive lattice
- (viii) A lattice which is not a poset
- 7. Investigate whether the set G of all matrices of the form $\begin{bmatrix} a & a \\ a & a \end{bmatrix}$, where $a \in R^*$ (non zero reals), is a group under matrix multiplication. Also write the necessary and sufficient condition for a subset of a group to be a subgroup. (4 Marks)
- 8. (a) Define homomorphism of two groups. Also give an example of group homomorphism.

(2 Marks)

(b) Define Language of a Grammar. Find the Kleene closure of L, where $L = \{a, ab\}$.

(2 Marks)

9. Construct the state diagram for the finite state machine with the state table shown below and find the output string by the machine for the input string 101011 and 111001: (4 Marks)

F	Inputs	
States	0	1
q_0	q_1 , 0	q_0 , 1
q_1	q_{3} , 1	q_2 , 0
q_2	q_2 , 0	q_2 , 0
q_3	$q_{1}, 1$	q_3 , 1

END