Dr Raliesh Boyej

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT SUMMER SEMESTER – END TERM TEST (JULY 2016)

COURSE CODE: 10B11MA211

MAX. MARKS: 50

COURSE NAME: DISCRETE MATHEMATICS

COURSE CREDITS: 4

MAX. TIME: 2 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Use of Calculator is not allowed. Attempt the questions section wise in a sequence. Questions 1 to 8 are of 5 marks each and 9^{th} question is of 10 marks.

- 1. Using generating function, solve the recurrence relation $a_k = 7a_{k-1} 10a_{k-2}$; $k \ge 2$, with initial conditions $a_0 = 1$ and $a_1 = 8$.
- 2. Using mathematical induction, show that $1 + \frac{1}{4} + \frac{1}{9} + ... + \frac{1}{n^2} \le 2 \frac{1}{n}$; $\forall n \in set \ of \ natural \ numbers$.
- 3. Define a r-regular graph with an example. Prove that if a graph of order (number of vertices) 3n, $(n \ge 1)$ has equal number of vertices of degrees n-1, n and n+1, then n is even.

4. Using

adjacency matrix, find the path matrix of the following directed graph:

- 5. State Kuratowski's theorem. What are Kuratowski's graphs? Using theorem, investigate the planarity of the above undirected graph.
- 6. Define a spanning tree. A certain tree T with 21 vertices has only vertices of degree 1, 3, 5 and 6. If T has exactly 15 end vertices and 1 vertex of degree 6, how many vertices of T have degree 5?

- 7. Define a bounded, complemented and distributive lattice. Also give examples of non-distributive lattices.
- 8. What is the Kleene closure of a language? Find the language of the following grammar:

G = (V, T, S, P), where $V = \{S, W, a, b, c\}$, $T = \{a, b, c\}$, $S = \{S\}$, $P = \{S \rightarrow aW, W \rightarrow bbW, W \rightarrow c\}$.

- 9. Give an example if possible:
 - (a) Hamiltonian Graph with 5 vertices.
 - (b) Eulerian graph but not Hamiltonian.
 - (c) Two isomorphic graphs
 - (d) Two homeomorphic graphs.
 - (e) A Poset
 - (f) Bounded Lattice
 - (g) Group but not an abelian group
 - (h) Field with two elements.
 - (i) A Group with 4 elements.
 - (i) Complete bipartite graph which is a tree.