JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION, JUNE-2016

M.Tech. (Structural Engineering) II Semester, B.Tech. (Civil) VIII Semester

COURSE CODE: 12M1WCE213

MAX. MARKS: 35

COURSE NAME: Earthquake Resistant Design of Structures

COURSE CREDITS: 3

MAX. TIME: 2 HRS

Note: All questions are compulsory. Assume the missing data, if any.

Marks are indicated against questions.

Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Discuss the role of horizontal band in improving seismic behaviours of brick masonry. Also discuss design and reinforcement detailing of lintel band as per IS-recommendations.
- 2. Why beam-column joints are so important in seismic design? Discuss earthquake behaviour and reinforcement detailing of such joints using sketches.
- 3. What is a shear wall? What are the advantages of using it in seismic design? Discuss ductile design and architectural aspects of shear wall. Show typical detailing of shear wall with boundary elements.
- 4. Calculate storey shear force at each storey due to all modes using response spectrum analysis for the building (Fig. 1) without considering effect of infill walls. (15)
- 5. Calculate the modified K matrix if infill walls are considered in the calculation of shear force.

				Fig.	1							
1.	Type of structure	Multi-storey rigid jointed plane frame (Spe resisting frame)	cial RC moment	~ '6'	_							
2.	Seismic zone	IV (Table 2, IS 1893 (Part 1): 2002)										
3.	Number of stories	Four, (G+3)										
4.	Floor height	3.5 m										
5	Infili wall	250 mm thick including plaster in longitudinal and 150 mm in transverse direction										
6.	Imposed load	3.5 kN/m ²										
7.	Materials	Concrete (M 20) and Reinforcement (Fe415)										
8.	Size of columns	250 mm × 450 mm										
9.	Size of beams	250 mm × 400 mm in longitudinal and 250 mm × 350 mm in transverse direction										
10.	Depth of slab	100 mm thick		-0.0328		0.0808	-0.0397]					
11.	Specific weight of RCC	25 kN/m ³	(A) (A A A A A)	-0.0608	0.0644	-0.0540	0.0690					
12,	Specific weight of infill	20 kN/m ³	$\{\Phi\}=\{\Phi_1\ \Phi_2\ \Phi_3\ \Phi_4\}=$	-0.0798	-0.0273	0.0448	-0.0799					
13.	Type of soil	Rock		-0.0872	-0.0865	0.0839	0.0696					
14.	Response spectra	As per IS 1893 (Part 1): 2002		L 0.00.2	0.0000	0.00059	0.0030]					
15.	Time history	Compatible to IS 1893 (Part 1): 2002 spec for 5% damping	tra at rocky site									

$E_f =$	Elastic	modulus	of frame	material =	22360	N/m^2

 E_m = Elastic modulus of masonry wall = 13,800 N/m²

t =Thickness of infill wall = 250 mm

h = Height of infill wall = 3.5 m

I = Length of infill wall = 5.0 m

$$T = \begin{bmatrix} 0.6977 & 0 & 0 & 0 \\ 0 & 0.2450 & 0 & 0 \\ 0 & 0 & 0.1636 & 0 \\ 0 & 0 & 0 & 0.1383 \end{bmatrix} s$$