Brof. Sund Bhooston

## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

## TEST -1 EXAMINATION- September 2016

B. Tech 5<sup>th</sup> Semester (ECE)

COURSE CODE: 10B11EC513

MAX. MARKS: 15

COURSE NAME: Electromagnetic Engineering

**COURSE CREDITS: 4** 

MAX. TIME: 1Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. (a) Given vectors  $A = a_x + 3a_z$  and  $B = 5a_x + 2a_y 6a_z$ , determine a unit vector parallel to 3A+B.
  - (b) Let  $A = \alpha a_x + 3a_y 2a_z$  and  $B = 4a_x + \beta a_y + 8a_z$ , determine the relation between  $\alpha$  and  $\beta$  if vector B is perpendicular to vector A.
- 2. (a) A vector field is given by  $A = 3xy a_x + 3yz a_y + 3zx a_z$ , compute its curl vector.
  - (b) Find the normal and tangential component at the point ( $\rho = 2$ ,  $\phi = 1^r$ , z = 1) on the cylinder  $\rho = 2$ , given vector  $\mathbf{A} = \sin\phi \, a_\rho + \cos z \, a_\phi + \rho \, a_z$ .
- 3. Given the vector field,  $H = \rho z \cos \phi a_{\rho} + e^{-2} \sin \frac{\phi}{2} a_{\phi} + \rho^2 a_z$ . At point  $(1, \frac{\pi}{3}, 0)$ , Find.
  - (i) H.  $a_x$  (iii)  $H \times a_\theta$  (iii) The vector component of H normal to surface  $\rho = 1$ .
- 4. Let  $A = (x^2 + y^2) a_x + 2xy a_y$ , evaluate  $\int A \cdot dl$  along the curve as shown in fig.



5. Calculate the charge density everywhere due to the given electric flux density.

$$D = 4\rho \sin\phi \, a_\rho + 2\rho \cos\phi \, a_\phi + 2z^2 \, a_z \, c / m^2$$