Dr Sanrahh Bansu

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Test -1, SEPT, EXAMINATION - 2016

B.Tech VIIth Semester

COURSE NAME: Industrial Enzymes

MAX.MARKS:15

COURSE CODE: 10B13BT832

MAX.TIME: 1 HR.

COURSE CREDITS: 03

Note: Carrying of mobile phones during examinations will be treated as a case of unfair means. Give all answers to the point.

1. The following graph represents which type of inhibition:

[1]

a)
I > Inhibitor.

2. Which enzyme will you use and why when the substrate is very costlier on the basis of following given data:

[1]

	K _M (M)	K _{cat} (sec	$K_{cat}/K_{M} (M^{-1}sec^{-1})$
E1	0.01	100	1×10^4
E2	0.01	1×10^4	1×10^{6}
E3	0.02	2×10^4	1×10^6
E4	0.1	1×10^6	1×10^{7}

- 3. What do you understand by Turnover Number and what is its significance?
- [2]
- 4. Differentiate between Enzyme and inorganic catalyst in tabulated format.
- [2]
- 5. Derive an equation for Eadie-Hofstee plot and explain its limitations and advantages over Lineweaver-Burk plot. [3]
- 6. What is activation energy of reaction? Explain activation energy concept using free energy diagram for an exergonic reaction in the absence and presence of an enzyme. [3]
- 7. What are the two major assumptions being made for the derivation of Michaelis-Menton (MM) equation? Derive MM equation. [1+2]