JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT END SEMESTER EXAMINATION MAY JUNE - 2016

M.Tech. II Semester (EC)

COURSE CODE: 10M11EC213

MAX. MARKS: 35

COURSE NAME: INFORMATION AND CODING THEORY

COURSE CREDITS: 03

MAX. TIME: 2. HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. All parts of a question must be answered in one place.

- 1a. Prove that Huffman coding is optimum.
- b. Is $I(XY;Z) \ge I(X;Z)$ always true? If yes, prove it.
- 2a. Explain how to determine if a channel is symmetric.
- b. If $f(\alpha)$ is a convex \cap function of α , where α is a probability vector state and prove the sufficiency requirements for an α to maximize $f(\alpha)$.
- Prove that an (n,k) block code must have $d_{min} \le n$. Prove that if d_{min} is odd, then all $(d_{min} 1)/2$ bit error patterns can be corrected.
- b. Given the parity check code described by $x_1 = g_{1,n}$ with $g_{1,1} = g_{2,2} = g_{3,3} = g_{2,4} = g_{3,4} = g_{1,5}$ = $g_{3,5} = g_{1,6} = g_{2,6} = 1$ and all other g = 0 construct the generator matrix. Given the message word 101 write the code word.
- 4a. Define and explain a field.
- b. Prove the unique factorization theorem for polynomials over a field.
- 5a. For a GF (2^5) find the ractors of $D^4 1$. Prove the process required.
- b. Prove that every orlois Field must contain a unique subfield of prime order.
- c. Describe how to get the generator polynomial for BCH codes.
- 6a. Consider a field GF (2^4) modulo the polynomial $D^4 + D + 1$. List the elements of this field in terms of d and in terms of polynomials g(t). Show that $D^4 + D + 1$ is the minimal polynomial
- b. Daw a circuit for multiplying $\alpha(t)$ with $\beta(t)$.
- 7a. Explain with a block diagram, convolution coding. In a (3, 2, 1) the outputs are given by $x_j = m_j$, $x_j' = m_j + m_{j-1} + m_{j-3}$ and $x_j'' = m_j + m_{j+2}$. Draw the state diagram for this coder.
- b. Describe and discus Viterbi Decoding for convolution codes.