JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- JUNE -2016

Ph.D

COURSE CODE: 13M1WEC132

MAX. MARKS: 35

COURSE NAME: Mathematical Techniques for Engineering

COURSE CREDITS: 03

MAX. TIME: 2 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Each question carrier five marks.

- 1. Give the properties of probability density function and cumulative distribution function. The joint probability density function of the random variables X and Y is given by $f_{XY} = Ce^{-(ax+by)}u(x)u(y)$ where a, b and C are constants. Find the value of C. Find $P(X \le 1, Y \le 1)$. Specify whether the random variables are independent or not. u(t) is a unit step function of t.
- 2. Find the values of b and c for which the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & b \\ 0 & b & c \end{bmatrix}$ has $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ as an eigen vector. For these values of b and c calculate the Eigen values and the matrix A.
- 3. A periodic function f(t), of period 2π , is defined within the period $-\pi < t < \pi$ by $f(t) = \begin{cases} 0 & (-\pi < t < 0) \\ 1 & (0 < t < \pi) \end{cases}$. Using the Fourier series coefficients of f(t), together with Parseval's theorem, show that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \pi^2/8$
- 4. Solve the difference equation $y_{k+2} + 2y_k = 0$, $k \ge 0$ given that $y_0 = 1$ and $y_1 = \sqrt{2}$.
- 5. Obtain the inverse Laplace transform of $\frac{s-3}{(s-1)^2(s-2)}$
- 6. What do you mean by Ergodic random process? Obtain the relationship between the power spectral density and auto correlation function.
- 7. Define the following briefly.
 - a. Conditional probability.
 - b. Orthogonality and orthonormality.
 - c. Linear dependence and linear independence.
 - d. Region of convergence for Laplace transform.
 - e. Conditions for the existence of Fourier series expansion.