Majid

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2016

M.Tech (ECE) 2nd Semester

COURSE CODE: 10M11EC211	MAX. MARKS: 25
-------------------------	----------------

COURSE NAME: Advanced Digital Signal Processing

COURSE CREDITS: 03 MAX_TIME: 1.5 HR

Note: All questions are compulsory.

Carrying of mobile phone during examinations will be treated as case of unfair means.

Write your assumptions clearly, if it is required.

- 1. Consider a narrowband spatially propagating signal with a speed of propagation c. The signal impinges on an M=2 element ULA from an angle $\emptyset=0^o$ with spacing d between the elements. For illustration purposes, let the temporal content of the signal be a pulse [5 marks]
 - a. Let the time of arrival of the pulse at the first sensor be t = 0. At what time does the signal arrive at the second sensor?
 - b. Do any other angles Ø produce the same delay between the sensors? Why?
 - c. Suppose now that we only have single sensor. Can we determine the angle from which a signal impinges on this sensor?
- 2. An ARMA process has an autocorrelation $\{\gamma_{xx}(m)\}$ whose z-transform is given as

$$\Gamma_{xx}(z) = 9 \frac{\left(z - \frac{1}{3}\right)(z - 3)}{\left(z - \frac{1}{2}\right)(z - 2)}, \qquad \frac{1}{2} < |z| < 2$$

- a. Determine the filter H(z) for generating $\{x(n)\}$ from a white noise input sequence. Is H(z) unique? Explain.
- b. Determine a stable linear whitening filter for the sequence $\{x(n)\}$. [6 marks]
- 3. Fill in the blank spaces[3 Marks]
 - a. The spatial part of the processor is an aperture (or antenna) for the continuous space domain and an _____ for the discrete space domain.
 - b. The array configuration consists of two parts. The first part is the ______ of the individual elements and the second part is the ______.

4. Assume a uniform linear array given below where N is even.

Use the relationships

$$B_{\Psi}(\Psi) = 2Re[\mathbf{w}_1^H \mathbf{v}_{\Psi 1}(\Psi)]$$

to derive the beam pattern of a uniformly weighted uniform linear array i.e.

$$B_{\Psi}(\Psi) = \frac{1}{N} \left[\frac{\sin\left(\frac{N}{2}\Psi\right)}{\sin\left(\frac{\Psi}{2}\right)} \right] \qquad -\frac{2\pi d}{\lambda} \le \Psi \le \frac{2\pi d}{\lambda}$$

Where v_{ψ} is the array manifold vector, w_1 contains the first half elements of weighing vector w and $\Psi = \frac{2\pi}{\lambda} \cos(\theta) d$. [6 marks]

5. Let τ_{ij} is the time delay of arrival between the i^{th} and j^{th} element for a planar wave propagating along the unit vector \mathbf{a} . Assume \mathbf{r}_i and \mathbf{r}_j are the position vectors of the i^{th} and j^{th} element respectively, and c is the speed of propagation of the wave. Derive and express the τ_{ij} in terms of the position vectors of the elements.[5 Marks]