Prof. K. Singh

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- JUNE -2016

B. Tech (CE) II Semester

COURSE CODE: 10B11MA201

MAX. MARKS: 35

COURSE NAME: MATHEMATICS-II

COURSE CREDITS: 04

MAX. TIME: 2 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. The use of any calculator is not permitted in the examination.

- 1. Show that $|z|^2$ is differentiable at z = 0 but not analytic there. [3]
- 2. Determine the analytic function f(z) = u + iv, where u = x(1 y). [3]
- 3. Integrate $\int_C (z + 2\overline{z}) dz$ from z = 0 to z = 1 + i along the curve

$$x = t, y = t^2, 0 \le t \le 1.$$
 [3]

- 4. Evaluate the contour integral $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle |z| = 3 ccw. [4]
- 5. Expand the function $f(z) = \frac{1}{(z+1)(z+3)}$ in the Laurent series valid for $0 < |z+1| < 2. \tag{4}$
- 6. Let $f(z) = \frac{z-1}{(z+1)^2(z-2)}$. Find the residue of f(z) at z=-1, and hence use residue theorem to evaluate $\int_C f(z) dz$, where C is the circle |z-i|=2 ccw. [4]
- 7. Evaluate the real integral $\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$. [4]
- 8. Solve the differential equation y'' + y = 2x in series $\sum_{n=0}^{\infty} c_n x^n$. [5]
- 9. For Legendre polynomials show that

$$\int_{-1}^{1} (1-x^2) P'_n(x) P'_m(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2n(n+1)}{(2n+1)} & \text{if } m = n \end{cases}$$
 [5]