JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

END TERM TEST

SUMMER SEMESTER - JUNE 2016

B.Tech- IV Semester

COURSE CODE: 10B11MA411

MAX. MARKS: 50

COURSE NAME: Probability Theory and Random Processes

COURSE CREDITS: 04

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Each question carries equal marks 5.

- 1. A conversation in a wireless ad-hoc network is severely disturbed by interference signals according to a Poisson process of rate $\lambda = 0.1$ per minute.
 - (i) What is the probability that no interference signals occur within the first two minutes of the conversation?
 - (ii) Find the probability for second interference signal will occur after three minutes of the conversation.
 - (iii) Find the probability for third interference signal will occur after five minutes of the conversation.
 - (iv) Given that the first two minutes are free of disturbing effects, what is the probability that in the next minute precisely 1 interfering signal disturbs the conversation?
- 2. The traffic on a one way street shown below may be satisfactorily described by a Poisson process with an average rate of arrival of 10 cars per minute. A driver is on a side street and is waiting to cross this main street. He will cross as soon as he finds a gap of 15 seconds.
 - (i) Determine the probability that a gap will be longer than 15 seconds.
 - (ii) What is the probability that the driver will cross at the fourth gap?
 - (iii) Determine the mean number of gaps he has to wait until crossing the main road.
 - (iv) What is the probability that he will cross within the first 4 gaps?
- 3. For given reliability function $R(t) = \frac{1}{(0.5 t+1)^2}$; $t \ge 0$. Find
 - (i) Failure density function
 - (ii) Hazard rate function
 - (iii) Mean time to failure (MTTF)
- 4. A block diagram representation of a system is shown below. Determine the overall system reliability.

5. Find E(X), V(X) and P(2 < X < 5) where M.G.F. of the Normal random variable X is $e^{2(t+1)^2-2}$.

- An automobile manufacturer introduces a new model that averages 27 miles per gallon in the city. A person who plans to purchase one of these new cars wrote the manufacturer for the details of the tests, and found out that the standard deviation is 4 miles per gallon. Assume that in-city mileage is approximately normally distributed.
 - What is the probability that the person will purchase a car that averages less than 23 miles per gallon for incity driving?
 - (ii) What is the probability that the person will purchase a car that averages between 23 and 29 miles per gallon for in-city driving?
- 7. Find the steady state probabilities for the given transition probability matrix

$$TPM = \begin{cases} s_1 & s_2 & s_3 \\ s_2 & 0.25 & 0.5 & 0.25 \\ 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \end{cases}$$

- Calculate 2-step transition probability $p_{CR}^{(2)} = P(X_3 = R | X_1 = C)$ for a Markov chain with state space S = C
 - (R C) and transition probability matrix $P = \begin{pmatrix} R & C \\ 0.4 & 0.6 \\ 0.25 & 0.75 \end{pmatrix}$
 - (i) Find $P(X_3 = R | X_1 = C, X_2 = R)$
 - (ii) Find $P(X_5 = R, X_3 = C, X_1 = C, X_2 = R)$, where given is $P(X_1 = C) = 0.5$
- 9. Consider the WSS Gaussian random process X(t) with the auto-correlation function $R_{xx}(\tau) = e^{-\tau^2}$. For the given $R_{xx}(\tau)$:
 - Find mean and variance of the random process X(t).
 - Further find the mean vector and covariance matrix for the random vector $\begin{bmatrix} X(4) \\ X(5) \end{bmatrix}$. (ii)
- 10. Find the power spectral density function for the WSS Gaussian random process X(t) with the auto-correlation function $R_{xx}(\tau) = 4 e^{-|\tau|}$.

Given Standard normal probabilities $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$

Z	0.0	0.5	1.0	1.5	2.0	2.5
$\Phi(z)$	0.5000	0.6915	0.8413	0.9332	0.9772	0.9938