Dr Rajiv

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **MAKEUP EXAMINATION-2016**

B.Tech. 3rd Sem.

COURSE CODE: 10B11EC301

MAX. MARKS:25

COURSE NAME: Signals and Systems

COURSE CREDITS: 04

MAX.TIME: 1Hr 30Min

Note: All the questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

Qu.-1: (a) Check, whether the following systems are causal and stable:

(i)
$$y(t) = \int_{-\infty}^{2t} x(\tau)d\tau$$
 (ii) $y(t) = \frac{dx(t)}{dt}$

(ii)
$$y(t) = \frac{dx(t)}{dt}$$

(b) Suppose that

$$x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & otherwise \end{cases} \text{ and } h(t) = x(t/\alpha) \text{ where } 0 < \alpha = <1$$

Determine and sketch y(t) = x(t) * h(t)

[3+3=6]

Qu.-2: (a) Suppose x(n) is a periodic signal with period N. Show that the Fourier series coefficients of the periodic signal

$$g(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - kT)$$

are periodic with period N.

(b) Suppose that x(t) is a periodic signal with period T and Fourier series coefficients ak with period N. Show that there must exist a periodic sequence g[n] such that

$$g(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - kT/N)$$
[3+3=6]

Qu-3: Consider the Fourier transform pair

$$e^{-|t|} \leftrightarrow \frac{2}{1+\omega^2}$$

- (a) Find $te^{-|t|}$
- (b) Use the result of (a), along with duality property, to determine the Fourier transform of $\frac{24t}{(1+t^2)^2}$ [4+4=8]

Qu-4: The Fourier transform of a particular signal is

$$X(e^{j\omega}) = \sum_{k=0}^{3} \frac{(\frac{1}{2})^k}{1 - \frac{1}{4}e^{-j(\omega - \frac{\pi}{2k})}}$$

It can be shown that

$$\mathbf{x}(n) = g[n]q[n]$$

where g[n] is of the form $\alpha^n u[n]$ and q[n] is a periodic signal with period N

- (a) Determine the value of α
- (b) Determine the value of N.
- (c) Is x[n] real?

[2+2+1=5]