JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

END TERM TEST- JULY -2016

B.TECH-SUMMER SEMESTER

COURSE CODE: 10B11EC301

MAX. MARKS: 50

COURSE NAME: SIGNALS AND SYSTEMS

COURSE CREDITS: 04

MAX. TIME: 2 HRS

[5]

[5]

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- Q1. (a) Sate and prove the convolution in time domain property of continuous-time Fourier transform (CTFT). [5]
 - (b) Sate and prove the differentiation in frequency domain property of discrete-time Fourier transform (DTFT). [5]
- Q2. Consider the Fourier transform pair $e^{-|t|} \stackrel{F}{\leftrightarrow} \frac{2}{1+\omega^2}$. Determine the Fourier transform of (a) $x(t) = te^{-|t|}$, (b) $x(t) = \frac{4t}{(1+t^2)^2}$ [5-5]
- Q3. Determine the Laplace transform, the associated ROC and pole-zero plot for each of the following signals:
 - (a) $x(t) = e^{-4t}u(t) + e^{-5t}(\sin 5t)u(t)$
 - (b) $x(t) = te^{-|t|}$ [5+5]
- Q4. (a) Explain various properties of ROC of z-transform. [5]
 - (b) Let $y[n] = \left(\frac{1}{9}\right)^n u(n)$. Determine two distinct signals such that each signal has a z-transform X(z) which satisfies both of the following conditions:
 - (i) $\frac{[X(z)+X(-z)]}{2} = Y(z^2)$
 - (ii) X(z) has only one pole and only one zero in the z -plane.
- Q5. (a) Prove the sampling theorem.
 - (b) Describe the following:
 - (i) Nyquist rate, under-sampling and over-sampling
 - (ii) Types of practical sampling [3+2]