Sr Shoute

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT MAKE UP EXAMINATION- 2016

B.Tech VI Semester

COURSE CODE: 10B11EC612

MAX. MARKS: 25

COURSE NAME: VLSI TECHNOLOGY AND APPLICATIONS

COURSE CREDITS: 04

MAX. TIME: 1 HR 30 MIN

Note: All questions are compulsory.

- 1. a) Drain terminal and gate terminal of an n- channel MOSFET are connected together. Voltage $V_{\rm in}$ is applied on gate terminal. For this configuration, derive relation between current and voltage.
 - b) Design depletion load nMOS inverter: $\mu_n C_{ox} = 30 \mu A V^2$, $V_{TO} = 0.8 V$ (enhancement-type), $V_{TO} = -2.8 V$ (depletion type), $\gamma = 0.38 V^{1/2}$, $2\phi = 0.0 V$, $V_{DD} = 5.0 V$. Determine the (W/L) ratios of both transistors such that: the static power dissipation for $V_{in} = V_{OH}$ is 250mW, assume $V_{OL} = V_{SB} = 0.3 V$.
- 2. a) Consider a MOSFET with $t_{ox} = 20$ nm, $\mu_{ex} = 30$ cm. V-s, $V_{th} = -0.8V$ and W/L = 10. Find the drain current when $V_G = 1.4V$, $V_S = 1.7V$ and $V_{ex} = -2.1V$. What is the effect of constant voltage scaling on the same current?
 - b) Calculate the threshold voltage V_{t0} for polysilicon gate n-channel MOS transistor parameters are: substrate doping density $N_A = 10^{16}/\text{cm}^3$, $N_I = 6.85 \times 10^{11} \text{cm}^{-3}$, gate oxide thickness = 500\AA , oxide interface fixed charge density = $4 \times 10^{10}/\text{cm}^2$ and gate work function = 0.55V.
- 3. a) Derive the transition point for depletion load n-MOS inverter.

- [3]
- b) Draw the small signal model and large signal model of a MOSFET. Also write the values of each parameter used in the model.

 [3]
- 4. Consider the following parameters for n- channel enhancement type MOSFET having abrupt graded junction profile. Substrate doping = 3×10^{12} mm⁻³, Sidewall (P+) doping = 2×10^{22} m⁻³, Source/Drain doping = 10^{19} cm⁻³, gate oxide thickness = 40 nm, junction depth= 1.2 μ m, length of drain = 9 μ m, width = 4 μ m. If drain voltage changes from 1.5 V to 4 V. Find average drain-substrate capacitance.