D/ Shout

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- JUNE 2016

B.Tech VI Semester

COURSE CODE: 10B11EC612

MAX. MARKS: 35

COURSE NAME: VLSI TECHNOLOGY AND APPLICATIONS

COURSE CREDITS: 04

MAX. TIME 2 HRS

Note: All questions are compulsory.

1. a) Find the midpoint voltage for the circuit shown in Fig 1

- b) A CMOS NOR gate is designed using nMOS with a value of k_n and pMOS by k_p . MOS aspect ratios are 6 and 8 respectively. Find the value of $V_{\rm IH}$ in terms of $V_{\rm out}$ for the case of simultaneous switching if $V_{\rm DD} = 3.3 \, \text{V}$, $V_{\rm Tn} = 0.65 \, \text{V}$, $V_{\rm Tp} = -0.80 \, \text{V}$, $k_n = 150 \, \mu \text{A/V}^2$,
- 2. Consider the circuit diagram given in Fig 2.
 - a) Determine the logic function F. Find the equivalent nMOS inverter circuit for simultaneous switching of all input of Fig 2, assuming that $(W/L)_n = 12$ for all *n*-mos transistor. [2]
 - b) The inverter is biased at 5V. The threshold voltages are $V_{TOD} = 1V$, $V_{TOL} = 2V$, $K_n' = 25\mu A/V^2$, $\gamma = 0.4 V^{1/2}$, $|2\phi_f| = 0.5 V$. Design the inverter such that maximum power dissipation is 400 μ W for output voltage is 0.4V. Assume Pull up network as Saturated Load Inverter.

- 3. a) A p-channel transistor for which $|V_{th}| = 1.2 \text{V}$ and $|V_A| = 40 \text{V}$ operates in saturation with $|V_{GS}| = 2 \text{V}$ and $|V_{DS}| = 5 \text{V}$, and $i_D = 5 \text{mA}$. Find the corresponding signed values for V_{SG} , V_{SD} , λ , k_p (W/L). [0.5 + 0.5 + 0.5 + 1 = 2.5]
 - b) A particular enhancement MOSFET for which $V_{th} = 0.8$ V and k_n ` (W/L) = 0.1mA/V² is to be operated in the saturation region. If I_d is to be 0.2 mA, find the minimum required V_{DS} .
 - c) For an *n*-mOS transistor for which $V_{th} = 1V$, operating with V_{GS} in the range of 1.25V to 5V, what is the largest value of V_{DS} for which the channel remains continuous? [1]
- 4. In the inverter circuit, what is meant by $Z_{P.U.}$ and $Z_{P.D.}$? What are pass transistors? Derive Z_{pu} to Z_{pd} ratio for an nMOS inverter driven through one or more series pass transistors.

[1+1+3=5]

5. Explain the different steps of fabrication of n - depletion type IGFET.

[5]

- 6. Consider the following parameters for n- channel enhancement type MOSFET having linearly graded junction profile. Substrate doping = 3×10^{12} cm⁻³, Source/Drain doping = 1×10^{19} cm⁻³, Sidewall (P+) doping = 2×10^{22} m⁻³, gate exide thickness = 40 nm, junction depth= 1.2 μ m, length of drain = 10 μ m, width = 5 μ m gate drain overlap length= 0.25 μ m, m_{sw} = 0.5. Both the source and drain diffusion regions are surrounded by P+ channel stop implant. If drain voltage changes from 2.5 V to 5 μ 1 indedrain substrate diffusion capacitance. [5]
- 7. Draw the stick diagram of Sun Function of Full Adder using CMOS logic.

[2+3=5]