Prof. Dr. S.V. Bhoashan

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT END TERM TEST

SUMMER SEMESTER - JUNE 2016

B.Tech/ IV Semester

COURSE CODE: 10B11EC413

MAX. MARKS: 50

COURSE CODE. TODITECTIS

COURSE NAME: ANALOG COMMUNICATION

COURSE CREDITS: 3

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. With the help of suitable diagram explain the working of Foster-Seeley discriminator. [10 Marks]
- 2. Explain the working of a superheterodyne receiver in detail. [10 Marks].
- 3. State Sampling Theorem and derive an expression for the same. [8 Marks]
- 4. Design an Armstrong indirect FM modulator to generate an FM carrier with a carrier frequency of 96 MHz and $\Delta f = 20 \text{ kHz}$. A narrow band FM generator with $f_c = 200 \text{kHz}$ and adjustable Δf in the range of 9 to 10 MHz is available. The stock room also has an oscillator with adjustable frequency in the range of 9 to 10 MHz. There is a bandpass filter with any centre frequency and only frequency doublers are available. [10 Marks]
- 5. With the help of suitable diagrams explain PPM and PWM. [6 Marks]
- 6. If we pass a WSS random process X(t) with autocorrelation function

$$R_X(\tau) = \delta(\tau)$$

through a bandpass filter with characteristics

$$H(\omega) = \begin{cases} 1e^{j\omega} & \omega_a \le \omega \le \omega_a - 2\pi B \\ 1e^{-j\omega} & -(\omega_a + 2\pi B) \le \omega \le -\omega_a \\ 0 & \text{otherwise} \end{cases}$$

Find the average output power. [6 Marks]
