JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Test-1 Examination-September 2016 B.Tech. 1st Semester (BT/BI)

Course Code: 16B1PH112	Max. Marks: 15
Course Name: Basic Engineering and Applied Physics	
Course Credit: 4	Max. Time: 1 Hr
Note: All questions are compulsory; carrying of mobile phones will be to means.	reated as the case of unfair
Q.1. Draw and explain the Jablonski diagram?	2
Q.2. Discuss the Stokes shift and mirror image rule?	1
Q.3. Differentiate between characteristic and Brehmsstrahlung radiation: Bragg's law?	s of X-rays? Derive the 2
Q.4. What is the significance of wave function and normalization condit	ion? 1
Q.5. What are the boundary conditions for particle in a box problem. Prove that $\psi(x) = A\sin kx + A\cos Bx$	
is the solution of $\frac{\partial \psi(x)^2}{\partial x^2} + k^2 x = 0$.	2
Q.6. Using Bragg's law determine the distance in \acute{A} between crystal planelectromagnetic radiation of frequency $3.32 \times 10^{17} \mathrm{s}^{-1}$ incident at a 40° at interference fringes assume n=1.	nes in an atomic solid if ngle creates constructive
Q.7. For which set of crystallographic planes will a first order diffraction peak occur at diffraction angle of 44.53° for FCC crystal when monochromatic radiation having a wavelength of 0.1542 nm is	
used. Given atomic radius is 0.1246 nm, where $a = \frac{4}{\sqrt{2}}r$.	
1	
Q.8. An electron has a speed of $2x10^4$ cm/sec accurate to 0.01%. With what fundamental accuracy can we locate the position of this electron? Given m= $9x10^{-28}$ m and h= $6.62x10^{-27}$ erg.sec.	
Q.9. Prove that the free electron cannot reside in the nucleus.	2
Q.10. The electron in the hydrogen atom may be thought of as confined to a nucleus of radius $7x10^{-11}$ meter. Calculate the minimum uncertainty in the momentum of the electron. Also calculate the minimum kinetic energy of the electron. Given m= $9x10^{-28}$ m and h= $6.62x10^{-27}$ erg. sec. 2	