Prof Veeresh S. Gali

### JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **END-SEMESTER EXAMINATION (MAY-2015)** M. Tech. (II- SEM.)

COURSE CODE: 14M31CE212

COURSE NAME: Contaminant Transport

**COURSE CREDIT: 3** 

MAX. MARKS: 45

MAX. TIME: 3 HRS

Note: Attempt all Questions. Assume suitable data if required.

## Section A – $(10 \times 1.5 = 15 \text{ Marks})$

#### 1. Answer the following

- a) Mention different chromatography techniques used in the analysis of water and gas samples and their applications in environmental engineering
- b) Define "Piston Velocity"
- c) How do you estimate gas exchange coefficient in surface water bodies from measurable hydraulic attributes
- d) How ionic chemical species undergo sorption onto metal hydroxides through surface complexation
- e) Write a note on "Ion Exchangers"
- Differentiate between "Bioconcentration" and "Bioaccumulation"
- g) Define "Bioconcentration Factor"
- h) What site specific data are required for cleanup of contaminated sites
- What do you mean by "Retardation Factor"
- In a laboratory study, a certain fish species was observed to metabolize and/or excrete 2,4', 5trichlorinated biphenyl with a first order rate constant of 0.021/day. Estimate how long it will take for a contaminated fish, on being placed in clean water, to undergo depuration (cleansing of pollutants) if the initial biphenyl concentration in the fish exceeds regulatory standards by a factor of three.

# Section B – $(3 \times 5 = 15 \text{ Marks})$

What type of chemicals undergo photodegradation and how? 2. a)

[02 Marks]

b) What is the light intensity at 1-m depth in a lake, given an intensity of  $3000\mu E/(m^2.sec)$  just beneath the lake's surface and an extinction coefficient (base e) of 0.6/m? If an aquatic plant has a light compensation point (the light intensity at which respiration rate equals photosynthetic rate) of 150µE/(m<sup>2</sup>.sec), what is the maximum depth at which the plant may be expected to grow? [03 Marks]

- Define "Hydrolysis". What type of chemicals undergoes hydrolysis? Discuss with 3. a) [03 marks] reactions
  - An ester compound is spilled at an industrial site and runs into a pond where it accumulates b) to a concentration of approximately 20ppb. Assuming the water pH is 6 and hydrolysis is the only degradation process, estimate the half-life of the compound. Hydrolysis rate constant under: are

 $k_a = 1.4 \times 10^{-4} / (M.sec); k_b = 1.1 \times 10^{-7} / sec; k_b = 1.0 \times 10^{1} / (M.sec)$ [02 Marks]

- How does the physical conceptualization of air-water gas exchange of "Thin Film Model" 4. a) differ from that of "Surface Renewal Model". On what assumptions are these models based. [02 Marks]
  - Spilled benzene dissolves into a river flowing at an average velocity of 0.3m/sec. Will b) biodegradation significantly decrease the concentration of benzene in the river over a 20-mi [03 Marks] reach?

## Section $C - (2 \times 7.5 = 15 \text{ Marks})$

- 5. a) Derive an expression which relates retardation factor to bulk density and porosity [03 Marks]
  - What are the reasons for nonideality in retardation b)

[1.5 Marks]

The porous material of an aquifer has a bulk density of 2 g/cm<sup>3</sup> and contains 0.5% organic carbon. c) Estimate the retardation factor for the most commonly used pesticide, Atrazine. If the porosity of the aguifer is 0.24, the hydraulic conductivity is 10<sup>-3</sup> cm/sec, and the hydraulic gradient is 0.001, how fast will a plume of naphthalene advance in the aquifer? [03 Marks]

 $Log K_{oc} = 0.544 log K_{ow} + 1.377; log Kow = 2.68$ 

- Differentiate between the kinetics of bacterial growth in surface and subsurface environment. 6. a) [2.5 Marks]
  - What are the various approaches used for remediation of subsurface environment [2.5 Marks] b)
  - How do you enhance the rate of biodegradation in subsurface environment? Discuss the c) techniques used [2.5 Marks]