Boot. Arvind Kumas

JAYPEE UNIVERSITY OF INFORMATRION TECHNOLOGY, WAKNAGHAT END SEMESTER EXAMINATION-2015

B.Tech, IV Semester

COURSE CODE: 10B11CI411

MAX. MARKS: 45

COURSE NAME: Fundamentals of Algorithms

COURSE CREDITS: 04

MAX. TIME: 3 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

Section A

Marks[5x2=10]

- 1. If the DFS finishing time f[u] < f[v] for two vertices u and v in a directed graph G, and u and v are in the same DFS tree in the DFS forest, Determine the category of edge u->v.
- 2. Define NP Hard and NP Complete classes.
- 3. Prove that f(ax+by) = O(f(x) + f(y))
- 4. Let G be an undirected connected graph with distinct edge weight. Let *emax* be the edge with maximum weight and *emin* the edge with minimum weight. Then, No minimum spanning tree contains *emax*. True/False.
- 5. Why do you use dynamic programming?

Section B

Marks[5x3=15]

- 6. Consider the strings A = "papergraph". Extract the largest palindromic substring of A using dynamic programming.
- 7. Assume that you are given a chain of matrices < A1 A2 A3 A4 A5>, with dimensions 30×5 , 5×40 , 40×10 , 10×15 and 15×50 respectively. Compute the optimal number of multiplications required to calculate the chain product and also indicate what the optimal order of multiplication should be using parentheses.
- 8. Run Bellman-Ford's shortest-path algorithm on the following edge weighted directed graph with vertex P as the source.

- 9. A Directed Acyclic Graph (DAG) is a graph without any cycles. The Longest Path problem on a graph is concerned with computing the length of the longest simple path between each pair of vertices in that graph. Given a DAG D, argue that the Longest Path problem does satisfy the optimal substructure property demanded by dynamic programming. Derive a recurrence relation for this problem
- 10. You need to search for a given number in an n X n matrix in which every row and every column are sorted in increasing order. Can you design a O(n) algorithm for this problem? Express the algorithm in pseudocode.
- 11. Give an example where the greedy algorithm fails to optimize but can be solved correctly using dynamic programming. Write both the algorithms with complexity.
- 12. Consider a person X has a car, which can travel *n* km when petrol tank is full. There are *k* no. of petrol stations between two cities, Mumbai and Delhi. Write two algorithms one greedy and other dynamic programming to determine how to stop at fewer no. of stations.