Dr. Veeresh Gali

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **END-SEMESTER EXAMINATION (May-2015)**

B.Tech ((VIII Sem.) / M. Tech. (II- SEM.)

COURSE CODE: 14M31CE216

MAX. MARKS: 45

COURSE NAME: Hazardous Waste Management

COURSE CREDIT: 3

MAX. TIME: 3 HRS

Note: Attempt all Questions. Assume suitable data if required.

Section $A - (9 \times 1 = 9 \text{ Marks})$

- 1. Answer the following:
- a) Name the oxidizing agents which are commonly used for hazardous waste management.
- b) How organically modified clay helps in stabilization of hazardous waste
- c) What are the similarities and differences among composting and soil pile treatment systems?
- d) In addition to biodegradation, what physical/chemical processes are involved in natural attenuation?
- e) Why are anaerobic biodegradation processes so important in monitored natural attenuation projects?
- f) Explain the difference between soil vapour extraction (SVE) and bioventing.
- g) Explain how biosparging systems can also encourage aerobic biological activity in the vadose zone.
- h) How are phytovolatilization and phytotransformation different from each other?
- i) Distinguish between "Macroencapsulation" and "Microencapsulation"

Section B - (13.5 Marks)

- 2. With the help of a neat figure, describe the functioning of a packed tower air stripper. What are the design considerations for a packed tower air stripper? [4.5 Marks]
- 3. a) Discuss the functional differences between air stripping and steam stripping. [02 Marks]
 - b) Mention three advantages and disadvantages of biological treatment of hazardous wastes with physical-chemical treatment [2.5 Marks]
- 4. Analyze the following reaction data and determine the order of reaction and rate constant

[4.5 Marks]

Time, min	0	12	24	36	48	60	
C, mg/L	7.5	5.25	3.68	2.48	1.73	1.13	

Section C (22.5 Marks)

5. 200 mL of a solution with a para-xylene concentration of 500mg/L is placed in each of six containers with activated carbon and shaken for 24hours. The samples are filtered and the concentration of p-xylene measured, yielding the following analyses: [05 Marks]

Container:	1	2	3	4	5	6
Carbon, g	24	20	16	12	8	4
p-xylene(mg/L)	10.7	14.6	23	29	48	107

- i) Determine the Freundlich constants K and n, and plot the isotherm.
- Using the above isotherm data, determine the amount of carbon required to treat 40,000 Litres/day of water contaminated with 500mg/L p-xylene. Assume a required effluent of 10mg/L and that the facility will operate at the same temperature and pH for which the isotherm was developed. Determine daily carbon usage for a batch reactor.
- 6. What do you mean by supercritical fluids? Describe the process in which contaminants are extracted from the contaminated stream into extraction fluid. [05 Marks]
- 7. a) Why are microbial communities important in biodegradation?

[2.0 Marks]

- b) Why in situ treatment processes are typically preferred for subsurface remediation over pump and treat processes? [2.0 Marks]
- 8. What are the three membrane processes used in HWM and discuss their modes of operation.

 What are their limitations in the treatment of hazardous waste? [05 Marks]
- 9. Describe how Portland cement can stabilize metallic wastes

[3.5 Marks]