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Foreword 
In order to properly integrate the work in a neat and intuitive 

fashion project implementation has been divided into three 

different sections. 

i. The first section (Ch 03) describes work on pipelines 

ii. The second section (Ch 04) describes the feature 

extraction and machine learning models based on 

GTZAN. 

iii. The third section (Ch 05, Ch 06) describes the 

preprocessing mathematics and model architecture of 

the proposed model. 

iv. Finally, the performance of proposed model is 

compared with models proposed in other research 

papers (Ch 07).  
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Chapter 1: 

Introduction 

Over the past decade significant improvements in accessibility and usability 

of machine learning technology (hardware and software) have led to their 

wide adoption of machine learning in various domains. Recently, a campaign 

spearheaded by Dr Andrew Ng, has highlighted the need the for proper 

management and delivery of data. A robust data centric system is required for 

the proper functioning of  machine learning.  

The project focuses on integrating a deep learning based music genre 

classification model with a ultra-reliable scalable low latency pipeline. The 

robust music genre classification system is designed to quickly give 

information of a given sound clip using only 10 seconds (in this project) or 30 

seconds (in most research). This project proposes a variety of different 

mathematical techniques for preprocessing the input audio signal and 

converting the audio signal into a Mel-scaled spectrogram. This spectrogram 

is then used as input for a custom deep learning model which outputs the genre 

of the model. The model proposed in this report output performs all other 

models by a margin.    



 

Problem Statement 

Over the past few years, the value of data driven and data centric machine 

learning models has increased significantly. Due to the data intensive nature 

of machine learning models, it is essential ensure data integrity and security 

while ensuring low latency. Data pipelines are designed to ensure the 

integrity, security, low latency and scalability. This project implements a 

scalable data pipeline as a microservice for transferring audio file from client 

to the processing server. 

Recent years have seen a significant growth in online music services and 

music databases. These services are dependent heavily on recommender 

systems for customer retention. Classifying music by genre is one of the most 

useful techniques used to solve this problem. One of the most reliable methods 

of music genre classification is based on the study of acoustic characteristic 

of a given music file. Most of the research in focuses on classification of clean 

noise free audio signal. The clean data does not properly reflect real life 

situation. To this end the model used in this project is trained on a specially 

designed “Noisy GTZAN”1. This project proposes a novel deep learning 

model and compares the result with previous research. The problem statement 

of the is: 

“To create a low latency, scalable data pipeline with a music genre 

classification model” 

  



 

The Dataset 

For audio input model to work properly in the real world, it is essential that 

the model be robust against noise. Therefore, a special noisy dataset needs to 

be created. 

1. The project uses the GTZAN dataset as a base. 

2. The GTZAN dataset is curated by the MARSYAS, an open-source 

framework for audio processing.  

3. The GTZAN dataset is the most widely used dataset for music genre 

classification.  

4. The dataset consists of audio clips of approximately 30 seconds each.  

5. Each audio clip represents one of ten different music genres. 

6. There are 100 audio clips per genre 

7. All the tracks are 22050Hz single channel 16 bit audio files encoded in 

.wav format 

The noise dataset consists of a few different types of noise. These are wind, 

mechanical, electrical feedback, white noise, factory and machine tools noise. 

Samples of these types of noise was collected from various open source 

projects. 

The final dataset dubbed Noisy GTZAN is created by overlaying the every 

audio clip GTZAN with the noise samples. The resulting dataset consists of 

390 to 400 audio clips per genre. It retains the 22050Hz frequency but uses 

32 bit encoding instead of 16 bit encoding. The clip size is also reduced to 10 

sec in the interest of storage.  



 

Chapter 2: 

Literature Survey 
Ketan Doshi has written a series of articles on applying various state of the art 

techniques on audio. He started with what is sound, how it can be represented 

in numbers and images. He gives brief introduction of spectrograms and Mel 

Spectrograms and why the latter one is better to represent audio data, what are 

the different hyperparameters, what are MFCC’s and how the data can be 

augmented. He also discussed various applications of deep learning in audio 

and human speech field. 

Nagesh Singh Chauhan in his article gives a brief introduction to audio data 

analysis and its application in our day-to-day life. He discussed various 

features that can be extracted from audio data, relevant to problems the one is 

trying to solve. He discussed various spectral features (frequency-

based features), which are obtained by converting the time-based signal into 

the frequency domain using the Fourier Transform, like fundamental 

frequency, spectral centroid, spectral flux, spectral density, spectral roll-

off, etc. 

An article on Devopidia discussed various categorization of features in detail. 

Categorization based on level of abstraction, temporal scope, musical aspect, 

signal domain. 

  



 

Martin F. McKinney and Jeroen Breebaart in their research paper titled 

“Features for Audio and Music Classification” evaluated 4 audio features in 

classifying 5 audio classes and 7 popular music genres namely 

i. low-level signal properties  

ii. MFCC  

iii. psychoacoustic features and  

iv. temporal envelope fluctuations.  

They concluded for both audio and music classification temporal behaviour 

of features is important. 

George Tzanetakis and  Perry Cook in their research paper titled “Musical 

Genre Classification of Audio Signals” proposed 3 feature sets for 

representing rhythmic content, pitch content, and timbral texture (a thirty-

dimensional feature vector). They used different machine learning algorithms 

to evaluate the features. 

Michael I. Mandel and Daniel P.W. Ellis in their research paper titled “Song-

Level Features and Support Vector Machines for Music Classification” 

proposed calculating features over the entire length of song rather than short 

clips. They discussed Support Vector Machines and K-NNN classification 

with 3 different distance measures for both algorithms. 

Lonce Wyse in his research paper titled “Audio spectrogram representations 

for processing with Convolutional Neural Networks” explored different 

representation of audio data, focusing particularly on spectrogram for neural 

networks. 



 

Hareesh Bahuleyan in his research paper titled “Music Genre Classification 

using Machine Learning Techniques” compared two classes of models in 

music genre classification. The first one is to use different machine learning 

algorithms on various hand-crafted features (frequency and time domain). The 

second is to use convolutional neural network on different spectrograms 

(treating spectrograms as images). 

  



 

Table 
S.no Link 

Dataset 

1) http://marsyas.info/downloads/datasets.html 

Articles 

2) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-1-state-of-the-art-techniques-da1d3dff2504 

3) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-2-why-mel-spectrograms-perform-better-aad889a93505 

4) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-3-data-preparation-and-augmentation-24c6e1f6b52 

5) https://towardsdatascience.com/audio-deep-learning-made-simple-

sound-classification-step-by-step-cebc936bbe5 

6) https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-

learning-python-part-1.html 

7) https://devopedia.org/audio-feature-extraction 

Documentations 

8) https://librosa.org/doc/latest/index.html 

9) https://pypi.org/project/sounddevice/ 

Research Papers 

10) https://jscholarship.library.jhu.edu/handle/1774.2/22 

11) https://ieeexplore.ieee.org/abstract/document/1021072 

12) https://academiccommons.columbia.edu/doi/10.7916/D8QV3WWQ 

13) https://arxiv.org/abs/1706.09559 

14) https://arxiv.org/abs/1804.01149 
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Chapter 3: The Pipeline 

Parts of Pipeline 
 

Containerization 
Consider a simple node.js based application. In order to deploy this node.js 

based application, it need to be pushed on to a server running virtual machine, 

the virtual machine is required for access control, network and resource 

management, security etc. The host virtual machine requires its own operating 

system and a set of binaries and libraries. This significantly increases the size 

of the application. In order to scale the node.js application, multiple copies of 

the same virtual machine needs to be created. In addition to this, if the 

application is platform dependent, then it is likely that some changes will be 

required to ensure that the application runs properly on the servers. Some of 

these changes will have to made after deployment owing to limitation of the 

development platform. 

Image of resource comparison 

To deploy the same application using a container, first a container is initialized 

by creating an container image. A container image is created using a file that 

describes the container. This could be dockerfile for Docker containers or 

manifest channel in cloud foundry. A container-based deployment offers the 

following benefits: 

1. Containers are easier to deploy and manage using docker daemons or 

runtime engines (which replace hypervisors).  



 

2. Containers require significantly lower resources and have better 

security integration. 

3. Resources are shared between containers. 

4. Containers also allow easier integration of third part tools or new 

languages to containerized application. The third party application can 

simply be deployed as a standalone container and connected to other 

containers using internal network systems e.g. docker network etc. 

5. Due to their light weight, system independent nature, it was possible to 

run containers on local machines, this enabled developers to develop 

applications within the containers, thereby reducing the time of 

development. 

 

  



 

Apache ZooKeeper 
Zookeeper is an open source project which provides multiple features for 

distributed applications. It is an important system for maintain data across the 

cluster in a consistent manner.  

In a distributed system it is necessary to for every client to have a consistent 

picture of the following points: 

1. which node serves as master node 

2. task assigned to different workers 

3. list of workers currently available 

Therefore it is necessary for a distributed system to have an external system, 

like Zookeeper, which can manage the clusters in the distributed system. 

Zookeeper is an integral part of various different application including Kafka, 

HBase, HighAvailability Map Reduce etc. 

Zookeeper is designed to handle a wide variety of failure modes including 

master crashes and worker crashes. Zookeeper also has systems in place to 

detect network trouble, i.e. a situation where part of the network is not visible 

either due to fault with dynamic DNS or routing error or hardware errors etc. 

Zookeeper essentially provides distributed configuration management, has 

features that facilitate self-election/consensus building, coordination and 

locks.  

  



 

Zookeeper Architecture: 

The adjacent images shows the 

architecture of an application 

running in a cluster using the 

zookeeper client. Each cluster 

has a master node, this master 

node is set by Zookeeper. 

Every client in the application 

is linked to the Zookeeper in order to facilitate independent communication 

with a Zookeeper ensemble. Since all the applications are dependent on ZK 

for proper functioning, therefore it is advisable to have more than one 

Zookeeper server. 

 

 

  

  

Figure 1: Architecture of application based on Zookeeper 



 

Apache Kafka 
Apache Kafka is a message queue system which is designed to be an 

asynchronous service to service communication system. It is designed to be 

used in microserver and serverless environments.  

 

Apache Kafka provides five core APIs which can be used for various different 

functionalities: 

1. Producer API: Publish streams of data to kafka clusters 

2. Consumer API: Consume streams of data from Kafka clusters 

3. Streams API: Transferring data from input to output stream 

4. Connect API: Connecters that manually pull data from predefined 

sources. 

5. Admin API: Admin control of Kafka topics, brokers, clusters etc 

 

This project uses the Producer and Consumer API to create data transfer 

pipeline.  

A dedicated data pipeline ensures the following: 

1. Data Consistency and Integrity: 

• For a data centric model integrity is paramount for data pipelines. 

• Properly configured pipelines are designed to minimize 

aberrations.  

• Various techniques such are checksums etc. are used to ensure 

integrity.  

2. Low Latency: 

• Systems deployed in defense, healthcare, fintech and in various 

other domains often operate in real time. 



 

• For such systems the ability to receive and transmit data at very 

low latency is paramount. 

• Pipelines can provide very low latency while ensuring integrity 

of data.  

3. High Security: 

• The data used for machine learning models is very sensitive. 

• High security features integrated into the pipeline are designed 

to prevent data leakage and data changes. 

4. Standard Integration 

• Pipelines are designed with well testes standard integrations. 

• This reduces the points of failures. 

5. Scalability: 

• With increase in load, it is possible to horizontally scale the 

pipeline 

  



 

Designing and Implementing the low 

latency pipeline 

 

The pipeline is composed of 4 essential modules. They are as follows: 

1. Kafka Producer: 

The Kafka Producer API is designed to connect nodes with kafka MQ 

clusters. This project implements the producer api using python 

programming language. First the input, either mp3 or wav, is read into 

memory using PyDub library. Next, the file is converted to 256-bit 

binaries packets and serialized. Finally, the packets thus produced are 

sent to Kafka cluster. 

2. Kafka Brokers: 

The Kafka brokers are a group of servers that run Kafka instances. 

These servers are managed by zookeeper at the backend and they are 

stored either at one location or are distributed across several regions. 

The messages received by Kafka brokers are stored in Kafka topics. 



 

These topics are divided into partitions. These partitions are essential 

for scalability and for backup. During configuration the duration of data 

persistence (temporary storage) can also be set, by default this value is 

3 days. This project deploys Kafka instance(s) and Zookeeper 

instance(s) as microservices on Docker®™ containers. This modular 

approach ensures horizontal scalability and independent functionality. 

3. Kafka Consumer: 

The Kafka consumer API is designed to consume messages from Kafka 

brokers. Each consumer instance has to “subscribe” to the topics that it 

wants to read of Kafka brokers. These messages are then set in order in 

real-time to the subscribed producers. The system maintains every 

consumer’s last read message’s index number. If the consumer fails it 

can start from the last read location.  

This project implements Kafka producer using Kafka client for Python. 

Packets of data are read from the brokers and reserialized. These are 

concatenated in memory as a binary sequence and then converted to 

and saved as wav or mp3. They audio file is then processed to reduce 

noise and finally a mel-spectrogram is sent to the model. 

4. Model: 

The model receives a Mel scaled spectrogram as input and outputs the 

genre of music file with 96% accuracy. 

 

 



 

Chapter 4: GTZAN 

Feature Extraction of GTZAN 
 

Chromogram 

Chromagram or chroma features capture melodic and harmonic 

characteristics of music. It is used for music whose pitches can be classified 

into 12 pitch classes. This generates 12 element array for a single audio file, 

representing energy of each pitch class. We calculated mean and variance of 

the values to represent the whole array as 2 features. 

librosa.feature.chroma_stft() function is used to calculate vector which takes 

audio file and sample rate as input. 

Root Mean Square Energy 

This feature indicates the loudness in 

the audio as energy can be used to 

represent loudness.  

librosa.feature.rms() function is used to 

calculate Root Mean Square Energy for 

each frame in audio file. It returns an 

array from which we calculated mean 

and variance of values to represent complete vector. 

  



 

Spectral Centroid 

Spectral Centroid used to calculate the frequency band where most of the 

energy is centred. This gives us the centre of mass of audio data. 

Mathematically it is the weighted mean of frequency bins: 

 

where f(k) is the frequency corresponding to bin k and S(k) is the spectral 

magnitude of frequency bin k. 

 

Figure 2: Spectral centroid distribution of an audio sample 

librosa.feature.spectral_centroid() function is used to calculate spectral 

centroid for each frame. It returns an array from which we calculated mean 

and variance of values to represent complete vector. 

  



 

Spectral Bandwidth 

Spectral bandwidth is the width of the band of light at one-half the peak 

maximum. Mathematically, it is the weighted mean of the distances of 

frequency bands from the Spectral Centroid. 

librosa.feature.spectral_bandwidth() is used to computes the order-p spectral 

bandwidth: 

 

where f(k) is the frequency of bin k, f(c) is spectral centroid, and S(k) is the 

spectral magnitude of frequency bin k. It is like a weighted standard deviation, 

when p = 2. It returns an array from which we calculated mean and variance 

of values to represent complete vector. 

 

  



 

Spectral Rolloff 

Spectral Rolloff represents the shape of the signal. It is calculated by the 

fraction of bins that are below a certain threshold defined by user, ex 85% of 

total spectrum power. 

librosa.feature.spectral_rolloff() is used to calculate the rolloff frequency for 

each frame in an audio file. It takes the audio data and sample rate as input. It 

returns an array from which we calculated mean and variance of values to 

represent complete vector. 

 

 

  



 

Zero Crossing Rate 

Zero Crossing Rate basically tells us the smoothness of signal. It is calculated 

by measuring the number of times signal crosses horizontal axis, or the 

number of times the signal becomes zero. Signal can change its value either 

from positive to negative or from negative to positive. 

librosa.zero_crossings() function is used to calculate the zero crossings rate. 

The entire audio length is divided into smaller frames and number of zero 

crossings is calculated in each frame. It returns an array from which we 

calculated mean and variance of number of zero crossings values to represent 

complete vector. 

  

There are total of 16 zero crossings in above representation. 

 

  



 

Harmony 

librosa.effects.harmonic() is used to extract the harmonic content from the 

audio data. It returns an array from which we calculated mean and variance of 

values to represent complete vector. 

Percussion 

librosa.effects.percussive() is used to extract the harmonic content from the 

audio data. It returns an array from which we calculated mean and variance of 

values to represent complete vector. 

Tempo 

Measured in beats per minute (BPM), tempo tells us the pace of the audio file. 

It is calculated by mean of the tempo across several frame of the audio file. 

librosa.beat.tempo() is used to calculate the tempo of an audio file. 

Mel-frequency cepstral coefficients 

One of the most useful type of features, they are widely used to represent the 

whole audio file. Mathematically, first the audio is broken into multiple 

overlapping frames, then the fourier transform is applied to the time signal 

representation of the audio to get the fourier spectrum. Then log is taken of 

the magnitude of the fourier spectrum, and after that cosine transformation is 

applied to get the spectrum of the log. This resulting spectrum is neither in 

time domain nor in the frequency domain since transformation in applied to 

fourier spectrum itself. This domain is specifically named as quefrency 

domain and the resultant spectrum is named as cepstrum. 

Therefore, Mel-frequency cepstral coefficients are just the coefficients that 

make up the mel-frequency cepstrum.  



 

librosa.feature.mfcc() is used calculate mfcc’s of an audio signal. It returns 20 

vectors. For each vector we calculate the mean and variance to generate to 

features. In this way 40 features are generated to represent the audio signal.  

 

  



 

Description of Machine Learning 
Techniques Used 

Naïve Bayes 

Naïve Bayes is a supervised classification algorithm based on bayes theorem. 

It uses concepts of conditional probability assuming each feature to be 

independent of other features and can be applied in both binary and multiclass 

classification. 

 

Without normalization Naïve bayes achieved an accuracy of 43.11%, and 

after normalization algorithm achieved an accuracy of 51.95% accuracy. 

K-Nearest Neighbourhood 

KNN is a supervised machine learning technique which can be used for both 

classification and regression. It does not assume anything about the dataset 

beforehand (non-parametric). K in KNN is a hyperparameter for which we 

have to try various values to find the best one. This algorithm predicts the 

value on the basis nearest neighbours. Different distance metrics can be used 



 

to calculate nearest neighbourhood, most commonly used is eucledian 

distance: 

 

Without normalization KNN algorithm achieved an accuracy of 29.36%, and 

after normalization, algorithm achieved an accuracy of 80.58% accuracy. 

 

Logistic Regression 

Logistic regression is a supervised machine learning algorithm which is used 

to predict the probability of a dependent, categorical target variable given one 

or more independent input variables. It can be applied to both binomial and 

multinomial classification problems. It uses sigmoid activation function for 

modelling. 

 

Cost function used by Logistic regression is: 



 

 

Without normalization Logistic regression algorithm achieved an accuracy of 

30.19%, and after normalization, algorithm achieved an accuracy of 69.77% 

accuracy. 

XGB Classifier 

XGB classifier is an advance implementation of gradient boosting algorithms 

using decision trees. It works on the principle of ensemble learning. It uses 

various regularization techniques to reduce overfitting and parallel computing 

to increase the speed. 

Without normalization XGB Classifier algorithm achieved an accuracy of 

90.29%, and after normalization, algorithm achieved an accuracy of 90.22% 

accuracy. 

Decision Trees 

Decision trees is a supervised machine learning algorithm which uses a tree 

like structure of decisions for predictive modelling. It also uses the concept of 

entropy and information gain as the basic building block of the algorithm. For 

calculating uncertainty, entropy is used as a metric and information is used to 

determine how to reduce the uncertainty.  

Each internal node represents the test on the variable, the branches in a 

decision tree represents the observation for an item or the result of the test and 

leaf nodes are used to represent the value of the target variable. Decision trees 



 

can be used for both regression analysis and classification analysis. If the 

target variable (represented by leaves) can take discrete values, it is a 

classification model and if the target variable can take continuous values, it is 

a regression model.  

Without normalization decision tree algorithm achieved an accuracy of 

64.78%, and after normalization, algorithm achieved an accuracy of 63.99% 

accuracy. 

 

 

 

Random Forest 

Random forest is a supervised machine learning algorithm based on ensemble 

learning. It uses many decision trees to solve various complex problems of 

classification as well as regression. The training process in this algorithm is 

based on bootstrap aggregating. The training data is divided and supplied to 

decision in trees in random order. In classification, majority voting system is 

followed to get final output and in regression we take the mean of the output 

of each decision to tree to get the final output.  



 

Without normalization random forest algorithm achieved an accuracy of 

81.34%, and after normalization, algorithm achieved an accuracy of 81.41% 

accuracy. There is no noticeable difference in accuracy after normalization.   

 

 

Stochastic Gradient Descent Classifier 

SGDClassifier uses Support vector Machines as a default classifier with 

stochastic gradient descent as an optimization technique. In normal gradient 

process, whole data is selected for training purpose in each iteration. With 

Stochastic gradient descent technique, a single data point from the whole data 

is selected randomly for training purpose in each iteration. This reduces 

computation time for very large dataset at cost of noisier path to reach the 

minima as compare to normal gradient descent process. 



 

 

Without normalization SGDClassifier algorithm achieved an accuracy of 

16.85%, and after normalization, algorithm achieved an accuracy of 65.53% 

accuracy. 

Support Vector Machines 

Support vector machines is a supervised machine learning algorithm mostly 

used for classification problems bur can also be used in regression problems. 

The target of the SVM algorithm is to find the best decision boundary or line 

between different classes in a n dimensional space, also known as hyperplane. 

The closest data points are known as support vectors, they act as the boundary 

of the hyperplane or support for the hyperplane. The hyperplane is selected 

such that the margin between the data points or support vectors between 2 

classes should be maximum. The dimension of the hyperplane depends on the 

number of the features in the dataset. 



 

 

The loss function to maximize the margin by SVM algorithm is known as 

hinge loss function. The first term in below loss function is regularized 

parameter and other one is loss function. 

 

Without normalization SVM algorithm achieved an accuracy of 28.99%, and 

after normalization, algorithm achieved an accuracy of 75.44% accuracy. 

  



 

Multilayer Perceptron Classifier 

MLPClassifier is a basic neural network (comes under supervised machine 

learning technique) which aims at learning a function which maps the input 

variables to the output variables. It can be used for both classification as well 

as regression problems. In logistic regression input directly maps to output 

using layer, but in case of MLPClassifier there can many hidden layers. This 

classifier can take a multiple number of parameters like, size of the hidden 

layer, activation function used, number of training iterations, optimizers, etc. 

 

 

 

Without normalization MLPClassifier algorithm achieved an accuracy of 

10.04%, and after normalization, algorithm achieved an accuracy of 67.73% 

accuracy. 

  



 

Results and Performance: 
The following graphs compare the train accuracies of various models 

 
Figure 3:Accuracies of different machine learning techniques without normalizing data 

 
Figure 4: Accuracies of different machine learning techniques after normalizing data 

  



 

XGBoost classifier achieved the highest accuracy of 90.224%. 

 

Confusion Matrix of XGBoost: 

 

Figure 5: Confusion matrix of the XGBoost model 

 

  



 

Chapter 5: GTZAN with Noise 

Mathematical Preprocessing Techniques 
used for Noisy GTZAN 

 

Discrete Fourier Transform 

The discrete Fourier transform is used to convert data vector to its sine and 

cosine components i.e. it is used to decompose a function which depends on 

space or time into functions depending on spatial or temporal frequency.  

Given a vector of data: 

[
 
 
 
 
𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

 
 
 
 

 

For each data point 𝑓𝑘 (above), we can compute a vector fourier coeff 

represented by 

[
 
 
 
 
 
𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

 
 
 
 
 

 

The formula for the kth vector frequency: 

𝑓𝑘 =  ∑ 𝑓𝑗𝑒
−

𝑖2𝜋𝑗𝑘
𝑛  

𝑛−1

𝑗=0

 



 

The formula to convert Fourier transform coeff back to data: 

𝑓𝑘 =  ∑ 𝑓𝑗𝑒
𝑖2𝜋𝑗𝑘

𝑛  

𝑛−1

𝑗=0

 

Observe that DFT can be represented as the product of a specific data point to 

an integral power of 𝜔𝑛; where 𝜔𝑛 is given by: 

𝑒−
2𝜋𝑖
𝑛  

Based on this observation DFT on a large vector dataset can be represented as 

a matrix multiplication system: 

 

[
 
 
 
 
 
𝑓0

𝑓1
𝑓2
⋮
𝑓𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
1 1 1           …           1
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𝑛−1

1
⋮
1

𝜔𝑛
2

⋮
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4         … 𝜔𝑛

2(𝑛−1)

⋮           ⋱           ⋮

𝜔𝑛
2(𝑛−1)

⋯ 𝜔𝑛
(𝑛−1)2

]
 
 
 
 
 

 

[
 
 
 
 
𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

 
 
 
 

 

Since the matrix consists of complex numbers, therefore the resulting  Fourier 

coefficients are complex valued. The magnitude of the kth coefficients gives 

the magnitude of the kth frequency sine and cosine waves and the phase values 

represent the phase between cosine and sine. 

  



 

Fast Fourier Transform 

It is one of the most widely used algorithm in use today. It is used for image 

compression, digital compression, high performance scientific computing etc. 

The FFT algorithm is the go to algorithm when trying to compute DFT. 

 DFT calculation is an order 𝑂(𝑛2) operation. This makes it a very 

computationally expensive computation especially when used in image 

processing or audio processing.  

The fast Fourier transform is a computationally efficient implementation of 

DFT that scales to very large dataset. It is an order 𝑛𝑙𝑜𝑔(𝑛) algorithm.  

This difference in complexity becomes significant for a ten second audio clip 

sampled at 44 kHz. In this case 𝑛 = 4.4 ∗ 105 then DFT will require 1011 

multiplications while FFT requires only 106 multiplications. 

 

Figure 6: Growth curve of different complexities 

 

FFTs are used for computing derivatives, denoising data, data analysis, image 

and audio compression etc.  



 

The FFT uses the a special technique which works for values of  n that are 

positive integral power of two. If n is a power of 2 then the FFT can be written 

as: 

𝑓 = 𝐹𝑛𝑓 = [
𝐼𝑛
2

−𝐷𝑛/2

𝐼𝑛/2 −𝐷𝑛/2

] [
𝐹𝑛

2
0

0 𝐹𝑛
2

] [
𝑓𝑒𝑣𝑒𝑛

𝑓𝑜𝑑𝑑
] 

𝑤ℎ𝑒𝑟𝑒 𝐷𝑛
2

= [

1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝜔
𝑛
2

] 

The aforementioned formula can be recursively repeated until a simple 2 by 2 

matrix is formed. The fast Fourier transform is based on this fundamental 

observation of symmetry.  

Even if n is not an whole power of 2, the matrix can be modified by simply 

adding zero padding.  

  



 

Short Term Fourier Transform: 

The Short-Term Fourier Transform is implemented using the fast Fourier 

transform. It was developed to adapt DFT to a specific window. In order to 

adapt DFT to specific windows, STFT uses convolution windows.  

Algorithm for STFT: 

i. Given a signal, we select a window of time. This window is then 

assumed to be a complete signal with attenuated edges. 

ii. Fourier transform of the windowed signal is calculated using FFT 

iii. The power spectrum of FFT output is calculated. 

iv. The power spectrum is inverted and colored such that the end result is 

a bar with 2 features: 

a. frequency represented by height 

b. Power represented by color 

A graph comprised of STFTs calculated by moving the window over  the 

entire em-wave gives a spectrogram. The STFT is used to analyse how the 

frequency content of a non-stationary signal changes over time.  

In order to compensate for the attenuation at the edges, a nonzero overlap 

length can be used in the window function. The magnitude squared of the stft 

yields the spectrogram representation of the power spectral density of the 

function. 

  



 

Spectrogram Representation of audio signals 

A spectrogram displays the strength of a signal over time at a waveforms 

various frequencies. Spectrogram can either be two dimensional with color 

representing the third dimension or it can be 3 dimensional with color 

representing the fourth dimension. 

A spectrogram is generated by dividing the audio signal into equal segments. 

Fast Fourier transform is applied on each segment. The spectrum is created by 

combining the processed output of each segment. 

The size of the spectrogram depends on the number of STFT outputs which 

depends on the size of the frame. Therefore, it is possible to define a 

spectrogram covering 10 hours with only 10 FFT frames. The drawback of 

skipping too many frames is that there are too many gaps between FFT 

analysis. This could lead to potential loss of useful information.   

Spectrograms are used in a wide variety of applications, these include: 

1. study of phonetics and speech synthesis 

2. spectrogram used with RNN for speech recognition 

3. USGS use spectrogram for seismic study 

4. Used for development of RF and microwave systems  

Figure 7: Spectrogram of words “nineteenth century” 



 

Mel-scaled Spectrogram 
The mel-scaled spectrogram is the most widely used spectrogram type for 

machine learning research in the audio domain. 

Consider two samples, each containing two notes. 

1. Sample 1: C2(65 Hz) – C4(262 HZ) 

2. Sample 2: G6(1568 Hz) – A6(1760 HZ) 

Mathematically speaking the audio notes in both samples are 202 Hz apart. 

However when we listen to sample 1, there is a significant difference in the 

between the notes whereas in sample 2 the notes sound similar.  

This experiment demonstrates that the human audio pitch perception is non-

linear i.e. humans perceive frequency logarithmically. 

The Mel-scaled is a log scale in which equal distances on the scale have same 

“perpetual” distance. It is based on the following empirically determined 

formula: 

𝑚 = 2595 ⋅ log (1 +
𝑓

500
) 

𝑓 = 700 (10
𝑚

2595 − 1) 

In order to generate convert frequency to Mel-scale, the first step is to select 

the number of Mel bands. On the basis of these bands a Mel filter bank is 

generated. This Mel filter bank is then applied to spectrogram. 

The number of Mel bands varies from problem to problem and therefore has 

to be empirically determined. 



 

Fig.: 

Graph of Mel filter banks 

Algorithm for generating Mel spectrogram: 

i. Divide audio into segments 

ii. Extract STFT 

iii. Convert amplitude to DBs 

iv. Convert frequency to Mel scale 

v. Combine to generate Mel spectrogram 

  



 

Chapter 6: Transformers 
Transformers were proposed in the 2017 paper Attention is All You Need by 

a team from Google Brain lead by A. Vaswani. At the time, the authors 

intended to use it exclusively for natural language processing.  

 

A recent paper An Image is Worth 16x16 Words: Transformers for Image 

Recognition at Scale builds on the success of transformers in NLP domain 

and proposes their use in place of Convolutional Neural Networks. 

 

The paper suggests that transformer can capture sequential and contextual 

data which is not possible when using a convolution network. Although 

there are works that show that a combination of CNNs and RNNs (simple, 

GRU, LSTM) may sometimes be able to capture this information, RNN 

create a performance bottleneck due to their limited parallelizability.  

 

Since the model relies on spectrograms for classification, it was theorised 

that the addition of sequential and contextual data would improve model 

performance by making it more stable and making the train test performance 

similar. 

 

  



 

Transformer Architecture 

Input Embedding: 

• It is a lookup table containing learned vector representation of each 

word. 

• Each input word maps to a vector with continuous values to represent 

that word. 

Positional Encoding: 

• This is used to encode data about the relative position of every part of 

the sequence. 

• For every odd time step a vector is created using the following 

function 

• For every even time step a vector based on the following function is 

generated 

Multi-Head Attention: 

In the encoder sequence, multi-head attention applies a specific attention 

mechanism called self-attention. 

 

Self-attention learns the relevance/dependence of an input sequence to other 

sequences. 



 

 

Consider the following input sequence: 

 

Based on the adjacent sequence the model might learn that this pattern 

resembles a question and 'are' is paired with 'you'. 

Self-Attention: 

In order to achieve self-attention, the input is feed to three distinct fully 

connected layers that generate query-key-value vectors. 

 

This concept is derived from retrieval systems and can be understood with 

the following example. 

Consider a search request: 

Query: The search itself is the query 

Key: Each query is mapped against a set of keys. 

Value: These keys will be associated to (result) candidates which are 

termed values 

 

How are you



 

Implementation of Query, Key and Values: 

1. The query and key vectors undergo a dot product matrix 

multiplication to create a score matrix. 

2. The score matrix determines how much focus should a word be but on 

other words. 

3. Each word will have a score that corresponds to other words in the 

time step. 

 

In multi-head attention the query, keys and values are split and go through 

the self-attention process. Each self-attention is called a head and the output 

of each head is concatenated into a vector. 

The concatenated vector is fed to a linear layer to generate outfit. In theory 

each head should learn something different thereby giving the encoder 

model more representation tower. 

Residual Connection, layer normalization and 

feedforward: 

• The outbid of multi head attention is added to the input to form a 

residual connection [for same the reason]. 

• This goes through a layer normalization before being fed to a Point 

Wise Feed Forward network for further process. 

• The PWFF network are a couple of linear layers with ReLU in 

between. 

• The output of PWFF is again added to the input and normalized. 



 

Function of every step: 

• The residual connections help the network train by allowing gradients 

to flow through the networks directly. 

• The layer normalizations are used to stabling the network which 

results in substantial training time reduction. 

• The PWFF layer are used to further from the attention output to get a 

richer representation. 

  



 

Developing a SOTA model capable of 
music genre classification in noisy 

environment: 
 

Music genre classification is a challenging task due to it variety. Various 

methods of classification have been proposed over the years. Recent research 

has focused on two different approaches: 

1. The use of feature engineering and feature extraction to represent the 

major features in a tabular format and using classical machine learning 

tools on it. 

2. The use of deep learning either on the audio data directly or on a simple 

spectrogram generated by the audio data. 

This project proposes the use of Mel-scaled spectrogram with a new 

application specific neural network designed for the purpose of music genre 

classification. 

The audio data is first preprocessed using highly compute and memory 

efficient mathematical algorithm, next a Mel-scaled spectrogram is generated 

and stored as image. This image is then sent on to the model for analysis. 

The model development process is empirical and therefore, in the interest of 

time, only the model selected on the basis of accuracy, bias and compute 

efficiency is described in the project report. 

 

  



 

Proposed SOTA Model Architecture: 

 

 



 

Model Details for Noisy GTZAN 
Adam Optimization: 

1. Adaptive Moment Estimation (Adam) is a method for computation of 

parameter wise adaptive learning rates. 

2. Adam optimizer uses a combination of exponentially decaying average 

of the past gradients and past squared gradient.  

3. The formula for exponentially decaying average of the past gradients 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

4. The formula for exponentially decaying average of past squared 

gradients 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

5. In the formulae mentioned above 𝑚𝑡 and 𝑣𝑡  represent the first mean 

and the uncentered variance. 

6. Research has demonstrated that 𝑚𝑡 and 𝑣𝑡  have bias towards zero if 

they are initialized as a zero vector. This is specially significant when 

the decay rates are small i.e. in the initial phase. 

7. The researcher proposed bias correction by computing the first and 

second moment estimates: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡  ;  𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 

8. Adam is one of the most useful and versatile optimization 

algorithms to date.  



 

Categorical Cross-entropy: 

The loss function plays an essential role in machine learning. It acts as an 

objective function for the optimization algorithm used for determining 

optimal weights and biases for a model. 

The most commonly used loss function for multi-class classification is 

categorical cross-entropy. The categorical cross-entropy comes from the field 

of information theory and is based on the principle of entropy and distance 

between probability distributions. 

The cross entropy loss function is given by the following function: 

𝐿𝑜𝑠𝑠𝐶𝐸 = − ∑ 𝑃𝑖 log(𝑞𝑖)

#(𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

𝑖=1

 

For the cross entropy function to work properly, the sum of output (𝑞𝑖) should 

sum up to exactly 1. This can be ensured by using a SoftMax layer after the 

value. 

Demonstration of cross entropy: 

Let 𝑎⃗ represent output of a model and let 𝑧 represent the ground truth labels, 

then: 

[

0.2
1.5
0.1
0.4

]

𝑎⃗

→  
[

0.147
0.540
0.133
0.180

]

𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝑒𝑑

 𝑎𝑛𝑑 
[

0
0
1
0

]

𝑧

 

Then the cross entropy is calculated as: 



 

𝐿 = −0 × log(0.147) − 0 × log(0.540) − 0 × log(0.133)

− 0 × log(0.180) ≈ 2.9  

The difference between standard categorical cross entropy and sparse 

categorical cross entropy is the format in which the ground truth labels are 

passed to the function. 

In case of categorical cross entropy, the ground truth labels are one hot 

encoded. For example in case of three class classification the expected format 

would be [1,0,0], [0,1,0] 𝑎𝑛𝑑 [0,0,1]. 

In case of sparse categorical cross entropy, the ground truth labels are integers. 

For example in case of three class classification the expected format would be 

[1], [2] 𝑎𝑛𝑑 [3]. 

In the interest of memory, this project uses sparse categorical cross-entropy. 

  



 

Proposed Model at a Glance: 
Total params: 1,404,202 

Trainable params: 1,404,202 

Optimizer: Adam 

Loss: Sparse Categorical cross-entropy 

Model Training accuracy: 99.91% 

Model Test accuracy (700 unseen balanced examples): 96.66 % 

  



 

Chapter 7: 

Comparison with pre-existing research: 
The model outperforms all pre-exiting works (with and without noise) to the 

best of author’s knowledge. This improvement in performance can be 

attributed to the use of mathematical techniques used for preprocessing and 

the development of a custom model. 

The following is a table comparing the results of the model performance with 

previously known results: 

Studies 

(Result on a variety of different datasets) 

Validation accuracy, % 

Tzanetakis and Cook 79.5 

Li and Tzanetakis 74.0 

Holzapfel and Stylianou 63.5 

Shin et al. 84.5 

Elbir and Aydin 66.0 

Proposed Transformer models (train 95%) 94.0 

Model Proposed in this project on noisy data 95.6 

Table 1: Model Performance Comparison Table 

 

  



 

Future extension of the work: 
The current project is two be used a proof of concept. The pipeline can have 

tighter integration with the model. For this, a lot of development on the servers 

need to be done. While the performance of the model is already significantly 

better than all the existing systems, it can be optimized for ASICs using 

quantization and other such techniques. In addition to this the complexity can 

be increase by increasing the amount of information given by the model and 

adding a built-in recommender system. Finally, there is scope for an end-to-

end model which can perform the mathematical pre-processing in a more 

efficient manner. 
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