

A Low Latency Pipeline with Integrated
Music Genre Classifier

Major project report submitted in partial fulfilment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Aditya Shukla (181383)

Under the Supervision of

Prof (Dr.) Vivek Sehgal

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,
Waknaghat, 173234, Himachal Pradesh, INDIA

Foreword
In order to properly integrate the work in a neat and intuitive

fashion project implementation has been divided into three

different sections.

i. The first section (Ch 03) describes work on pipelines

ii. The second section (Ch 04) describes the feature

extraction and machine learning models based on

GTZAN.

iii. The third section (Ch 05, Ch 06) describes the

preprocessing mathematics and model architecture of

the proposed model.

iv. Finally, the performance of proposed model is

compared with models proposed in other research

papers (Ch 07).

Declaration
I certify that

1. The work contained in this report is original and has been done by

myself in the general supervision of my supervisor.

2. The work has not been submitted anywhere else for any project.

3. I have given due credit to the materials (data, theoretical analysis,

results) taken from other sources by citing them in the report and

giving their details in the references.

Supervised by:

Prof (Dr.) Vivek Sehgal

Professor and Head,

Department of Computer Science and Engineering,

Jaypee University of Information Technology

Submitted by:

Aditya Shukla

181383

Department of Computer Science and Engineering,

Jaypee University of Information Technology

Certificate
This is to certify that the work contained in this report entitled “A Low

Latency Pipeline with Integrated Music Genre Classification” submitted by

Aditya Shukla student of B.Tech (Semester VIII) Computer Science and

Engineering JUIT, Waknaghat is a bona fide work performed by him under

my supervision during the period February 2022 to May 2022 at Department

of Computer Science and Engineering, Jaypee University of Information

Technology, Waknaghat.

Prof (Dr.) Vivek Sehgal

Professor and Head,

Department of Computer Science and Engineering,

Jaypee University of Information Technology

Acknowledgement

We are highly indebted to Dr Sehgal for his guidance and constant supervision

as well as for providing necessary information regarding the project and also

for his support throughout the duration of the project.

We would like to express my gratitude towards my parents for their kind co-

operation and encouragement which helped me in the completion of this

project.

My (Aditya Shukla) thanks and appreciation also goes to the research scholars

working in the Lab, Department of CSE, IIT (BHU) who have willingly

helped me with the compute infrastructure required for this project.

Contents
Foreword.. i

Declaration ... ii

Certificate .. iii

Chapter 1: ... 1

Introduction ... 1

Problem Statement ... 2

The Dataset ... 3

Chapter 2: ... 4

Literature Survey .. 4

Table ... 7

Chapter 3: The Pipeline ... 8

Parts of Pipeline ... 8

Containerization ... 8

Apache ZooKeeper ... 10

Apache Kafka.. 12

Designing and Implementing the low latency pipeline ... 14

Chapter 4: GTZAN... 16

Feature Extraction of GTZAN ... 16

Description of Machine Learning Techniques Used ... 23

Results and Performance: .. 31

Chapter 5: GTZAN with Noise .. 33

Mathematical Preprocessing Techniques used for Noisy GTZAN .. 33

Discrete Fourier Transform ... 33

Fast Fourier Transform .. 35

Short Term Fourier Transform: .. 37

Spectrogram Representation of audio signals .. 38

Mel-scaled Spectrogram .. 39

Chapter 6: Transformers .. 41

Transformer Architecture .. 42

Input Embedding: .. 42

Positional Encoding: .. 42

Multi-Head Attention:.. 42

Developing a SOTA model capable of music genre classification in noisy environment: 46

Proposed SOTA Model Architecture: ... 47

Model Details for Noisy GTZAN ... 48

Proposed Model at a Glance: ... 51

Chapter 7: ... 52

Comparison with pre-existing research: ... 52

Future extension of the work: .. 53

Bibliography: .. 54

Chapter 1:

Introduction

Over the past decade significant improvements in accessibility and usability

of machine learning technology (hardware and software) have led to their

wide adoption of machine learning in various domains. Recently, a campaign

spearheaded by Dr Andrew Ng, has highlighted the need the for proper

management and delivery of data. A robust data centric system is required for

the proper functioning of machine learning.

The project focuses on integrating a deep learning based music genre

classification model with a ultra-reliable scalable low latency pipeline. The

robust music genre classification system is designed to quickly give

information of a given sound clip using only 10 seconds (in this project) or 30

seconds (in most research). This project proposes a variety of different

mathematical techniques for preprocessing the input audio signal and

converting the audio signal into a Mel-scaled spectrogram. This spectrogram

is then used as input for a custom deep learning model which outputs the genre

of the model. The model proposed in this report output performs all other

models by a margin.

Problem Statement

Over the past few years, the value of data driven and data centric machine

learning models has increased significantly. Due to the data intensive nature

of machine learning models, it is essential ensure data integrity and security

while ensuring low latency. Data pipelines are designed to ensure the

integrity, security, low latency and scalability. This project implements a

scalable data pipeline as a microservice for transferring audio file from client

to the processing server.

Recent years have seen a significant growth in online music services and

music databases. These services are dependent heavily on recommender

systems for customer retention. Classifying music by genre is one of the most

useful techniques used to solve this problem. One of the most reliable methods

of music genre classification is based on the study of acoustic characteristic

of a given music file. Most of the research in focuses on classification of clean

noise free audio signal. The clean data does not properly reflect real life

situation. To this end the model used in this project is trained on a specially

designed “Noisy GTZAN”1. This project proposes a novel deep learning

model and compares the result with previous research. The problem statement

of the is:

“To create a low latency, scalable data pipeline with a music genre

classification model”

The Dataset

For audio input model to work properly in the real world, it is essential that

the model be robust against noise. Therefore, a special noisy dataset needs to

be created.

1. The project uses the GTZAN dataset as a base.

2. The GTZAN dataset is curated by the MARSYAS, an open-source

framework for audio processing.

3. The GTZAN dataset is the most widely used dataset for music genre

classification.

4. The dataset consists of audio clips of approximately 30 seconds each.

5. Each audio clip represents one of ten different music genres.

6. There are 100 audio clips per genre

7. All the tracks are 22050Hz single channel 16 bit audio files encoded in

.wav format

The noise dataset consists of a few different types of noise. These are wind,

mechanical, electrical feedback, white noise, factory and machine tools noise.

Samples of these types of noise was collected from various open source

projects.

The final dataset dubbed Noisy GTZAN is created by overlaying the every

audio clip GTZAN with the noise samples. The resulting dataset consists of

390 to 400 audio clips per genre. It retains the 22050Hz frequency but uses

32 bit encoding instead of 16 bit encoding. The clip size is also reduced to 10

sec in the interest of storage.

Chapter 2:

Literature Survey
Ketan Doshi has written a series of articles on applying various state of the art

techniques on audio. He started with what is sound, how it can be represented

in numbers and images. He gives brief introduction of spectrograms and Mel

Spectrograms and why the latter one is better to represent audio data, what are

the different hyperparameters, what are MFCC’s and how the data can be

augmented. He also discussed various applications of deep learning in audio

and human speech field.

Nagesh Singh Chauhan in his article gives a brief introduction to audio data

analysis and its application in our day-to-day life. He discussed various

features that can be extracted from audio data, relevant to problems the one is

trying to solve. He discussed various spectral features (frequency-

based features), which are obtained by converting the time-based signal into

the frequency domain using the Fourier Transform, like fundamental

frequency, spectral centroid, spectral flux, spectral density, spectral roll-

off, etc.

An article on Devopidia discussed various categorization of features in detail.

Categorization based on level of abstraction, temporal scope, musical aspect,

signal domain.

Martin F. McKinney and Jeroen Breebaart in their research paper titled

“Features for Audio and Music Classification” evaluated 4 audio features in

classifying 5 audio classes and 7 popular music genres namely

i. low-level signal properties

ii. MFCC

iii. psychoacoustic features and

iv. temporal envelope fluctuations.

They concluded for both audio and music classification temporal behaviour

of features is important.

George Tzanetakis and Perry Cook in their research paper titled “Musical

Genre Classification of Audio Signals” proposed 3 feature sets for

representing rhythmic content, pitch content, and timbral texture (a thirty-

dimensional feature vector). They used different machine learning algorithms

to evaluate the features.

Michael I. Mandel and Daniel P.W. Ellis in their research paper titled “Song-

Level Features and Support Vector Machines for Music Classification”

proposed calculating features over the entire length of song rather than short

clips. They discussed Support Vector Machines and K-NNN classification

with 3 different distance measures for both algorithms.

Lonce Wyse in his research paper titled “Audio spectrogram representations

for processing with Convolutional Neural Networks” explored different

representation of audio data, focusing particularly on spectrogram for neural

networks.

Hareesh Bahuleyan in his research paper titled “Music Genre Classification

using Machine Learning Techniques” compared two classes of models in

music genre classification. The first one is to use different machine learning

algorithms on various hand-crafted features (frequency and time domain). The

second is to use convolutional neural network on different spectrograms

(treating spectrograms as images).

Table
S.no Link

Dataset

1) http://marsyas.info/downloads/datasets.html

Articles

2) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-1-state-of-the-art-techniques-da1d3dff2504

3) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-2-why-mel-spectrograms-perform-better-aad889a93505

4) https://towardsdatascience.com/audio-deep-learning-made-simple-

part-3-data-preparation-and-augmentation-24c6e1f6b52

5) https://towardsdatascience.com/audio-deep-learning-made-simple-

sound-classification-step-by-step-cebc936bbe5

6) https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-

learning-python-part-1.html

7) https://devopedia.org/audio-feature-extraction

Documentations

8) https://librosa.org/doc/latest/index.html

9) https://pypi.org/project/sounddevice/

Research Papers

10) https://jscholarship.library.jhu.edu/handle/1774.2/22

11) https://ieeexplore.ieee.org/abstract/document/1021072

12) https://academiccommons.columbia.edu/doi/10.7916/D8QV3WWQ

13) https://arxiv.org/abs/1706.09559

14) https://arxiv.org/abs/1804.01149

http://marsyas.info/downloads/datasets.html
https://towardsdatascience.com/audio-deep-learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504
https://towardsdatascience.com/audio-deep-learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-24c6e1f6b52
https://towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-24c6e1f6b52
https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5
https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5
https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-1.html
https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-1.html
https://devopedia.org/audio-feature-extraction
https://librosa.org/doc/latest/index.html
https://pypi.org/project/sounddevice/
https://jscholarship.library.jhu.edu/handle/1774.2/22
https://ieeexplore.ieee.org/abstract/document/1021072
https://academiccommons.columbia.edu/doi/10.7916/D8QV3WWQ
https://arxiv.org/abs/1706.09559
https://arxiv.org/abs/1804.01149

Chapter 3: The Pipeline

Parts of Pipeline

Containerization
Consider a simple node.js based application. In order to deploy this node.js

based application, it need to be pushed on to a server running virtual machine,

the virtual machine is required for access control, network and resource

management, security etc. The host virtual machine requires its own operating

system and a set of binaries and libraries. This significantly increases the size

of the application. In order to scale the node.js application, multiple copies of

the same virtual machine needs to be created. In addition to this, if the

application is platform dependent, then it is likely that some changes will be

required to ensure that the application runs properly on the servers. Some of

these changes will have to made after deployment owing to limitation of the

development platform.

Image of resource comparison

To deploy the same application using a container, first a container is initialized

by creating an container image. A container image is created using a file that

describes the container. This could be dockerfile for Docker containers or

manifest channel in cloud foundry. A container-based deployment offers the

following benefits:

1. Containers are easier to deploy and manage using docker daemons or

runtime engines (which replace hypervisors).

2. Containers require significantly lower resources and have better

security integration.

3. Resources are shared between containers.

4. Containers also allow easier integration of third part tools or new

languages to containerized application. The third party application can

simply be deployed as a standalone container and connected to other

containers using internal network systems e.g. docker network etc.

5. Due to their light weight, system independent nature, it was possible to

run containers on local machines, this enabled developers to develop

applications within the containers, thereby reducing the time of

development.

Apache ZooKeeper
Zookeeper is an open source project which provides multiple features for

distributed applications. It is an important system for maintain data across the

cluster in a consistent manner.

In a distributed system it is necessary to for every client to have a consistent

picture of the following points:

1. which node serves as master node

2. task assigned to different workers

3. list of workers currently available

Therefore it is necessary for a distributed system to have an external system,

like Zookeeper, which can manage the clusters in the distributed system.

Zookeeper is an integral part of various different application including Kafka,

HBase, HighAvailability Map Reduce etc.

Zookeeper is designed to handle a wide variety of failure modes including

master crashes and worker crashes. Zookeeper also has systems in place to

detect network trouble, i.e. a situation where part of the network is not visible

either due to fault with dynamic DNS or routing error or hardware errors etc.

Zookeeper essentially provides distributed configuration management, has

features that facilitate self-election/consensus building, coordination and

locks.

Zookeeper Architecture:

The adjacent images shows the

architecture of an application

running in a cluster using the

zookeeper client. Each cluster

has a master node, this master

node is set by Zookeeper.

Every client in the application

is linked to the Zookeeper in order to facilitate independent communication

with a Zookeeper ensemble. Since all the applications are dependent on ZK

for proper functioning, therefore it is advisable to have more than one

Zookeeper server.

Figure 1: Architecture of application based on Zookeeper

Apache Kafka
Apache Kafka is a message queue system which is designed to be an

asynchronous service to service communication system. It is designed to be

used in microserver and serverless environments.

Apache Kafka provides five core APIs which can be used for various different

functionalities:

1. Producer API: Publish streams of data to kafka clusters

2. Consumer API: Consume streams of data from Kafka clusters

3. Streams API: Transferring data from input to output stream

4. Connect API: Connecters that manually pull data from predefined

sources.

5. Admin API: Admin control of Kafka topics, brokers, clusters etc

This project uses the Producer and Consumer API to create data transfer

pipeline.

A dedicated data pipeline ensures the following:

1. Data Consistency and Integrity:

• For a data centric model integrity is paramount for data pipelines.

• Properly configured pipelines are designed to minimize

aberrations.

• Various techniques such are checksums etc. are used to ensure

integrity.

2. Low Latency:

• Systems deployed in defense, healthcare, fintech and in various

other domains often operate in real time.

• For such systems the ability to receive and transmit data at very

low latency is paramount.

• Pipelines can provide very low latency while ensuring integrity

of data.

3. High Security:

• The data used for machine learning models is very sensitive.

• High security features integrated into the pipeline are designed

to prevent data leakage and data changes.

4. Standard Integration

• Pipelines are designed with well testes standard integrations.

• This reduces the points of failures.

5. Scalability:

• With increase in load, it is possible to horizontally scale the

pipeline

Designing and Implementing the low

latency pipeline

The pipeline is composed of 4 essential modules. They are as follows:

1. Kafka Producer:

The Kafka Producer API is designed to connect nodes with kafka MQ

clusters. This project implements the producer api using python

programming language. First the input, either mp3 or wav, is read into

memory using PyDub library. Next, the file is converted to 256-bit

binaries packets and serialized. Finally, the packets thus produced are

sent to Kafka cluster.

2. Kafka Brokers:

The Kafka brokers are a group of servers that run Kafka instances.

These servers are managed by zookeeper at the backend and they are

stored either at one location or are distributed across several regions.

The messages received by Kafka brokers are stored in Kafka topics.

These topics are divided into partitions. These partitions are essential

for scalability and for backup. During configuration the duration of data

persistence (temporary storage) can also be set, by default this value is

3 days. This project deploys Kafka instance(s) and Zookeeper

instance(s) as microservices on Docker®™ containers. This modular

approach ensures horizontal scalability and independent functionality.

3. Kafka Consumer:

The Kafka consumer API is designed to consume messages from Kafka

brokers. Each consumer instance has to “subscribe” to the topics that it

wants to read of Kafka brokers. These messages are then set in order in

real-time to the subscribed producers. The system maintains every

consumer’s last read message’s index number. If the consumer fails it

can start from the last read location.

This project implements Kafka producer using Kafka client for Python.

Packets of data are read from the brokers and reserialized. These are

concatenated in memory as a binary sequence and then converted to

and saved as wav or mp3. They audio file is then processed to reduce

noise and finally a mel-spectrogram is sent to the model.

4. Model:

The model receives a Mel scaled spectrogram as input and outputs the

genre of music file with 96% accuracy.

Chapter 4: GTZAN

Feature Extraction of GTZAN

Chromogram

Chromagram or chroma features capture melodic and harmonic

characteristics of music. It is used for music whose pitches can be classified

into 12 pitch classes. This generates 12 element array for a single audio file,

representing energy of each pitch class. We calculated mean and variance of

the values to represent the whole array as 2 features.

librosa.feature.chroma_stft() function is used to calculate vector which takes

audio file and sample rate as input.

Root Mean Square Energy

This feature indicates the loudness in

the audio as energy can be used to

represent loudness.

librosa.feature.rms() function is used to

calculate Root Mean Square Energy for

each frame in audio file. It returns an

array from which we calculated mean

and variance of values to represent complete vector.

Spectral Centroid

Spectral Centroid used to calculate the frequency band where most of the

energy is centred. This gives us the centre of mass of audio data.

Mathematically it is the weighted mean of frequency bins:

where f(k) is the frequency corresponding to bin k and S(k) is the spectral

magnitude of frequency bin k.

Figure 2: Spectral centroid distribution of an audio sample

librosa.feature.spectral_centroid() function is used to calculate spectral

centroid for each frame. It returns an array from which we calculated mean

and variance of values to represent complete vector.

Spectral Bandwidth

Spectral bandwidth is the width of the band of light at one-half the peak

maximum. Mathematically, it is the weighted mean of the distances of

frequency bands from the Spectral Centroid.

librosa.feature.spectral_bandwidth() is used to computes the order-p spectral

bandwidth:

where f(k) is the frequency of bin k, f(c) is spectral centroid, and S(k) is the

spectral magnitude of frequency bin k. It is like a weighted standard deviation,

when p = 2. It returns an array from which we calculated mean and variance

of values to represent complete vector.

Spectral Rolloff

Spectral Rolloff represents the shape of the signal. It is calculated by the

fraction of bins that are below a certain threshold defined by user, ex 85% of

total spectrum power.

librosa.feature.spectral_rolloff() is used to calculate the rolloff frequency for

each frame in an audio file. It takes the audio data and sample rate as input. It

returns an array from which we calculated mean and variance of values to

represent complete vector.

Zero Crossing Rate

Zero Crossing Rate basically tells us the smoothness of signal. It is calculated

by measuring the number of times signal crosses horizontal axis, or the

number of times the signal becomes zero. Signal can change its value either

from positive to negative or from negative to positive.

librosa.zero_crossings() function is used to calculate the zero crossings rate.

The entire audio length is divided into smaller frames and number of zero

crossings is calculated in each frame. It returns an array from which we

calculated mean and variance of number of zero crossings values to represent

complete vector.

There are total of 16 zero crossings in above representation.

Harmony

librosa.effects.harmonic() is used to extract the harmonic content from the

audio data. It returns an array from which we calculated mean and variance of

values to represent complete vector.

Percussion

librosa.effects.percussive() is used to extract the harmonic content from the

audio data. It returns an array from which we calculated mean and variance of

values to represent complete vector.

Tempo

Measured in beats per minute (BPM), tempo tells us the pace of the audio file.

It is calculated by mean of the tempo across several frame of the audio file.

librosa.beat.tempo() is used to calculate the tempo of an audio file.

Mel-frequency cepstral coefficients

One of the most useful type of features, they are widely used to represent the

whole audio file. Mathematically, first the audio is broken into multiple

overlapping frames, then the fourier transform is applied to the time signal

representation of the audio to get the fourier spectrum. Then log is taken of

the magnitude of the fourier spectrum, and after that cosine transformation is

applied to get the spectrum of the log. This resulting spectrum is neither in

time domain nor in the frequency domain since transformation in applied to

fourier spectrum itself. This domain is specifically named as quefrency

domain and the resultant spectrum is named as cepstrum.

Therefore, Mel-frequency cepstral coefficients are just the coefficients that

make up the mel-frequency cepstrum.

librosa.feature.mfcc() is used calculate mfcc’s of an audio signal. It returns 20

vectors. For each vector we calculate the mean and variance to generate to

features. In this way 40 features are generated to represent the audio signal.

Description of Machine Learning
Techniques Used

Naïve Bayes

Naïve Bayes is a supervised classification algorithm based on bayes theorem.

It uses concepts of conditional probability assuming each feature to be

independent of other features and can be applied in both binary and multiclass

classification.

Without normalization Naïve bayes achieved an accuracy of 43.11%, and

after normalization algorithm achieved an accuracy of 51.95% accuracy.

K-Nearest Neighbourhood

KNN is a supervised machine learning technique which can be used for both

classification and regression. It does not assume anything about the dataset

beforehand (non-parametric). K in KNN is a hyperparameter for which we

have to try various values to find the best one. This algorithm predicts the

value on the basis nearest neighbours. Different distance metrics can be used

to calculate nearest neighbourhood, most commonly used is eucledian

distance:

Without normalization KNN algorithm achieved an accuracy of 29.36%, and

after normalization, algorithm achieved an accuracy of 80.58% accuracy.

Logistic Regression

Logistic regression is a supervised machine learning algorithm which is used

to predict the probability of a dependent, categorical target variable given one

or more independent input variables. It can be applied to both binomial and

multinomial classification problems. It uses sigmoid activation function for

modelling.

Cost function used by Logistic regression is:

Without normalization Logistic regression algorithm achieved an accuracy of

30.19%, and after normalization, algorithm achieved an accuracy of 69.77%

accuracy.

XGB Classifier

XGB classifier is an advance implementation of gradient boosting algorithms

using decision trees. It works on the principle of ensemble learning. It uses

various regularization techniques to reduce overfitting and parallel computing

to increase the speed.

Without normalization XGB Classifier algorithm achieved an accuracy of

90.29%, and after normalization, algorithm achieved an accuracy of 90.22%

accuracy.

Decision Trees

Decision trees is a supervised machine learning algorithm which uses a tree

like structure of decisions for predictive modelling. It also uses the concept of

entropy and information gain as the basic building block of the algorithm. For

calculating uncertainty, entropy is used as a metric and information is used to

determine how to reduce the uncertainty.

Each internal node represents the test on the variable, the branches in a

decision tree represents the observation for an item or the result of the test and

leaf nodes are used to represent the value of the target variable. Decision trees

can be used for both regression analysis and classification analysis. If the

target variable (represented by leaves) can take discrete values, it is a

classification model and if the target variable can take continuous values, it is

a regression model.

Without normalization decision tree algorithm achieved an accuracy of

64.78%, and after normalization, algorithm achieved an accuracy of 63.99%

accuracy.

Random Forest

Random forest is a supervised machine learning algorithm based on ensemble

learning. It uses many decision trees to solve various complex problems of

classification as well as regression. The training process in this algorithm is

based on bootstrap aggregating. The training data is divided and supplied to

decision in trees in random order. In classification, majority voting system is

followed to get final output and in regression we take the mean of the output

of each decision to tree to get the final output.

Without normalization random forest algorithm achieved an accuracy of

81.34%, and after normalization, algorithm achieved an accuracy of 81.41%

accuracy. There is no noticeable difference in accuracy after normalization.

Stochastic Gradient Descent Classifier

SGDClassifier uses Support vector Machines as a default classifier with

stochastic gradient descent as an optimization technique. In normal gradient

process, whole data is selected for training purpose in each iteration. With

Stochastic gradient descent technique, a single data point from the whole data

is selected randomly for training purpose in each iteration. This reduces

computation time for very large dataset at cost of noisier path to reach the

minima as compare to normal gradient descent process.

Without normalization SGDClassifier algorithm achieved an accuracy of

16.85%, and after normalization, algorithm achieved an accuracy of 65.53%

accuracy.

Support Vector Machines

Support vector machines is a supervised machine learning algorithm mostly

used for classification problems bur can also be used in regression problems.

The target of the SVM algorithm is to find the best decision boundary or line

between different classes in a n dimensional space, also known as hyperplane.

The closest data points are known as support vectors, they act as the boundary

of the hyperplane or support for the hyperplane. The hyperplane is selected

such that the margin between the data points or support vectors between 2

classes should be maximum. The dimension of the hyperplane depends on the

number of the features in the dataset.

The loss function to maximize the margin by SVM algorithm is known as

hinge loss function. The first term in below loss function is regularized

parameter and other one is loss function.

Without normalization SVM algorithm achieved an accuracy of 28.99%, and

after normalization, algorithm achieved an accuracy of 75.44% accuracy.

Multilayer Perceptron Classifier

MLPClassifier is a basic neural network (comes under supervised machine

learning technique) which aims at learning a function which maps the input

variables to the output variables. It can be used for both classification as well

as regression problems. In logistic regression input directly maps to output

using layer, but in case of MLPClassifier there can many hidden layers. This

classifier can take a multiple number of parameters like, size of the hidden

layer, activation function used, number of training iterations, optimizers, etc.

Without normalization MLPClassifier algorithm achieved an accuracy of

10.04%, and after normalization, algorithm achieved an accuracy of 67.73%

accuracy.

Results and Performance:
The following graphs compare the train accuracies of various models

Figure 3:Accuracies of different machine learning techniques without normalizing data

Figure 4: Accuracies of different machine learning techniques after normalizing data

XGBoost classifier achieved the highest accuracy of 90.224%.

Confusion Matrix of XGBoost:

Figure 5: Confusion matrix of the XGBoost model

Chapter 5: GTZAN with Noise

Mathematical Preprocessing Techniques
used for Noisy GTZAN

Discrete Fourier Transform

The discrete Fourier transform is used to convert data vector to its sine and

cosine components i.e. it is used to decompose a function which depends on

space or time into functions depending on spatial or temporal frequency.

Given a vector of data:

[

𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

For each data point 𝑓𝑘 (above), we can compute a vector fourier coeff

represented by

[

𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

The formula for the kth vector frequency:

𝑓𝑘 = ∑ 𝑓𝑗𝑒
−

𝑖2𝜋𝑗𝑘
𝑛

𝑛−1

𝑗=0

The formula to convert Fourier transform coeff back to data:

𝑓𝑘 = ∑ 𝑓𝑗𝑒
𝑖2𝜋𝑗𝑘

𝑛

𝑛−1

𝑗=0

Observe that DFT can be represented as the product of a specific data point to

an integral power of 𝜔𝑛; where 𝜔𝑛 is given by:

𝑒−
2𝜋𝑖
𝑛

Based on this observation DFT on a large vector dataset can be represented as

a matrix multiplication system:

[

𝑓0

𝑓1
𝑓2
⋮
𝑓𝑛]

=

[

1 1 1 … 1
1 𝜔𝑛 𝜔𝑛

2 … 𝜔𝑛
𝑛−1

1
⋮
1

𝜔𝑛
2

⋮
𝜔𝑛

𝑛−1

𝜔𝑛
4 … 𝜔𝑛

2(𝑛−1)

⋮ ⋱ ⋮

𝜔𝑛
2(𝑛−1)

⋯ 𝜔𝑛
(𝑛−1)2

]

[

𝑓0
𝑓1
𝑓2
⋮
𝑓𝑛]

Since the matrix consists of complex numbers, therefore the resulting Fourier

coefficients are complex valued. The magnitude of the kth coefficients gives

the magnitude of the kth frequency sine and cosine waves and the phase values

represent the phase between cosine and sine.

Fast Fourier Transform

It is one of the most widely used algorithm in use today. It is used for image

compression, digital compression, high performance scientific computing etc.

The FFT algorithm is the go to algorithm when trying to compute DFT.

 DFT calculation is an order 𝑂(𝑛2) operation. This makes it a very

computationally expensive computation especially when used in image

processing or audio processing.

The fast Fourier transform is a computationally efficient implementation of

DFT that scales to very large dataset. It is an order 𝑛𝑙𝑜𝑔(𝑛) algorithm.

This difference in complexity becomes significant for a ten second audio clip

sampled at 44 kHz. In this case 𝑛 = 4.4 ∗ 105 then DFT will require 1011

multiplications while FFT requires only 106 multiplications.

Figure 6: Growth curve of different complexities

FFTs are used for computing derivatives, denoising data, data analysis, image

and audio compression etc.

The FFT uses the a special technique which works for values of n that are

positive integral power of two. If n is a power of 2 then the FFT can be written

as:

𝑓 = 𝐹𝑛𝑓 = [
𝐼𝑛
2

−𝐷𝑛/2

𝐼𝑛/2 −𝐷𝑛/2

] [
𝐹𝑛

2
0

0 𝐹𝑛
2

] [
𝑓𝑒𝑣𝑒𝑛

𝑓𝑜𝑑𝑑
]

𝑤ℎ𝑒𝑟𝑒 𝐷𝑛
2

= [

1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝜔
𝑛
2

]

The aforementioned formula can be recursively repeated until a simple 2 by 2

matrix is formed. The fast Fourier transform is based on this fundamental

observation of symmetry.

Even if n is not an whole power of 2, the matrix can be modified by simply

adding zero padding.

Short Term Fourier Transform:

The Short-Term Fourier Transform is implemented using the fast Fourier

transform. It was developed to adapt DFT to a specific window. In order to

adapt DFT to specific windows, STFT uses convolution windows.

Algorithm for STFT:

i. Given a signal, we select a window of time. This window is then

assumed to be a complete signal with attenuated edges.

ii. Fourier transform of the windowed signal is calculated using FFT

iii. The power spectrum of FFT output is calculated.

iv. The power spectrum is inverted and colored such that the end result is

a bar with 2 features:

a. frequency represented by height

b. Power represented by color

A graph comprised of STFTs calculated by moving the window over the

entire em-wave gives a spectrogram. The STFT is used to analyse how the

frequency content of a non-stationary signal changes over time.

In order to compensate for the attenuation at the edges, a nonzero overlap

length can be used in the window function. The magnitude squared of the stft

yields the spectrogram representation of the power spectral density of the

function.

Spectrogram Representation of audio signals

A spectrogram displays the strength of a signal over time at a waveforms

various frequencies. Spectrogram can either be two dimensional with color

representing the third dimension or it can be 3 dimensional with color

representing the fourth dimension.

A spectrogram is generated by dividing the audio signal into equal segments.

Fast Fourier transform is applied on each segment. The spectrum is created by

combining the processed output of each segment.

The size of the spectrogram depends on the number of STFT outputs which

depends on the size of the frame. Therefore, it is possible to define a

spectrogram covering 10 hours with only 10 FFT frames. The drawback of

skipping too many frames is that there are too many gaps between FFT

analysis. This could lead to potential loss of useful information.

Spectrograms are used in a wide variety of applications, these include:

1. study of phonetics and speech synthesis

2. spectrogram used with RNN for speech recognition

3. USGS use spectrogram for seismic study

4. Used for development of RF and microwave systems

Figure 7: Spectrogram of words “nineteenth century”

Mel-scaled Spectrogram
The mel-scaled spectrogram is the most widely used spectrogram type for

machine learning research in the audio domain.

Consider two samples, each containing two notes.

1. Sample 1: C2(65 Hz) – C4(262 HZ)

2. Sample 2: G6(1568 Hz) – A6(1760 HZ)

Mathematically speaking the audio notes in both samples are 202 Hz apart.

However when we listen to sample 1, there is a significant difference in the

between the notes whereas in sample 2 the notes sound similar.

This experiment demonstrates that the human audio pitch perception is non-

linear i.e. humans perceive frequency logarithmically.

The Mel-scaled is a log scale in which equal distances on the scale have same

“perpetual” distance. It is based on the following empirically determined

formula:

𝑚 = 2595 ⋅ log (1 +
𝑓

500
)

𝑓 = 700 (10
𝑚

2595 − 1)

In order to generate convert frequency to Mel-scale, the first step is to select

the number of Mel bands. On the basis of these bands a Mel filter bank is

generated. This Mel filter bank is then applied to spectrogram.

The number of Mel bands varies from problem to problem and therefore has

to be empirically determined.

Fig.:

Graph of Mel filter banks

Algorithm for generating Mel spectrogram:

i. Divide audio into segments

ii. Extract STFT

iii. Convert amplitude to DBs

iv. Convert frequency to Mel scale

v. Combine to generate Mel spectrogram

Chapter 6: Transformers
Transformers were proposed in the 2017 paper Attention is All You Need by

a team from Google Brain lead by A. Vaswani. At the time, the authors

intended to use it exclusively for natural language processing.

A recent paper An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale builds on the success of transformers in NLP domain

and proposes their use in place of Convolutional Neural Networks.

The paper suggests that transformer can capture sequential and contextual

data which is not possible when using a convolution network. Although

there are works that show that a combination of CNNs and RNNs (simple,

GRU, LSTM) may sometimes be able to capture this information, RNN

create a performance bottleneck due to their limited parallelizability.

Since the model relies on spectrograms for classification, it was theorised

that the addition of sequential and contextual data would improve model

performance by making it more stable and making the train test performance

similar.

Transformer Architecture

Input Embedding:

• It is a lookup table containing learned vector representation of each

word.

• Each input word maps to a vector with continuous values to represent

that word.

Positional Encoding:

• This is used to encode data about the relative position of every part of

the sequence.

• For every odd time step a vector is created using the following

function

• For every even time step a vector based on the following function is

generated

Multi-Head Attention:

In the encoder sequence, multi-head attention applies a specific attention

mechanism called self-attention.

Self-attention learns the relevance/dependence of an input sequence to other

sequences.

Consider the following input sequence:

Based on the adjacent sequence the model might learn that this pattern

resembles a question and 'are' is paired with 'you'.

Self-Attention:

In order to achieve self-attention, the input is feed to three distinct fully

connected layers that generate query-key-value vectors.

This concept is derived from retrieval systems and can be understood with

the following example.

Consider a search request:

Query: The search itself is the query

Key: Each query is mapped against a set of keys.

Value: These keys will be associated to (result) candidates which are

termed values

How are you

Implementation of Query, Key and Values:

1. The query and key vectors undergo a dot product matrix

multiplication to create a score matrix.

2. The score matrix determines how much focus should a word be but on

other words.

3. Each word will have a score that corresponds to other words in the

time step.

In multi-head attention the query, keys and values are split and go through

the self-attention process. Each self-attention is called a head and the output

of each head is concatenated into a vector.

The concatenated vector is fed to a linear layer to generate outfit. In theory

each head should learn something different thereby giving the encoder

model more representation tower.

Residual Connection, layer normalization and

feedforward:

• The outbid of multi head attention is added to the input to form a

residual connection [for same the reason].

• This goes through a layer normalization before being fed to a Point

Wise Feed Forward network for further process.

• The PWFF network are a couple of linear layers with ReLU in

between.

• The output of PWFF is again added to the input and normalized.

Function of every step:

• The residual connections help the network train by allowing gradients

to flow through the networks directly.

• The layer normalizations are used to stabling the network which

results in substantial training time reduction.

• The PWFF layer are used to further from the attention output to get a

richer representation.

Developing a SOTA model capable of
music genre classification in noisy

environment:

Music genre classification is a challenging task due to it variety. Various

methods of classification have been proposed over the years. Recent research

has focused on two different approaches:

1. The use of feature engineering and feature extraction to represent the

major features in a tabular format and using classical machine learning

tools on it.

2. The use of deep learning either on the audio data directly or on a simple

spectrogram generated by the audio data.

This project proposes the use of Mel-scaled spectrogram with a new

application specific neural network designed for the purpose of music genre

classification.

The audio data is first preprocessed using highly compute and memory

efficient mathematical algorithm, next a Mel-scaled spectrogram is generated

and stored as image. This image is then sent on to the model for analysis.

The model development process is empirical and therefore, in the interest of

time, only the model selected on the basis of accuracy, bias and compute

efficiency is described in the project report.

Proposed SOTA Model Architecture:

Model Details for Noisy GTZAN
Adam Optimization:

1. Adaptive Moment Estimation (Adam) is a method for computation of

parameter wise adaptive learning rates.

2. Adam optimizer uses a combination of exponentially decaying average

of the past gradients and past squared gradient.

3. The formula for exponentially decaying average of the past gradients

𝑚𝑡 = β1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

4. The formula for exponentially decaying average of past squared

gradients

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

5. In the formulae mentioned above 𝑚𝑡 and 𝑣𝑡 represent the first mean

and the uncentered variance.

6. Research has demonstrated that 𝑚𝑡 and 𝑣𝑡 have bias towards zero if

they are initialized as a zero vector. This is specially significant when

the decay rates are small i.e. in the initial phase.

7. The researcher proposed bias correction by computing the first and

second moment estimates:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 ; 𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡

8. Adam is one of the most useful and versatile optimization

algorithms to date.

Categorical Cross-entropy:

The loss function plays an essential role in machine learning. It acts as an

objective function for the optimization algorithm used for determining

optimal weights and biases for a model.

The most commonly used loss function for multi-class classification is

categorical cross-entropy. The categorical cross-entropy comes from the field

of information theory and is based on the principle of entropy and distance

between probability distributions.

The cross entropy loss function is given by the following function:

𝐿𝑜𝑠𝑠𝐶𝐸 = − ∑ 𝑃𝑖 log(𝑞𝑖)

#(𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

𝑖=1

For the cross entropy function to work properly, the sum of output (𝑞𝑖) should

sum up to exactly 1. This can be ensured by using a SoftMax layer after the

value.

Demonstration of cross entropy:

Let 𝑎⃗ represent output of a model and let 𝑧 represent the ground truth labels,

then:

[

0.2
1.5
0.1
0.4

]

𝑎⃗

→
[

0.147
0.540
0.133
0.180

]

𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝑒𝑑

 𝑎𝑛𝑑
[

0
0
1
0

]

𝑧

Then the cross entropy is calculated as:

𝐿 = −0 × log(0.147) − 0 × log(0.540) − 0 × log(0.133)

− 0 × log(0.180) ≈ 2.9

The difference between standard categorical cross entropy and sparse

categorical cross entropy is the format in which the ground truth labels are

passed to the function.

In case of categorical cross entropy, the ground truth labels are one hot

encoded. For example in case of three class classification the expected format

would be [1,0,0], [0,1,0] 𝑎𝑛𝑑 [0,0,1].

In case of sparse categorical cross entropy, the ground truth labels are integers.

For example in case of three class classification the expected format would be

[1], [2] 𝑎𝑛𝑑 [3].

In the interest of memory, this project uses sparse categorical cross-entropy.

Proposed Model at a Glance:
Total params: 1,404,202

Trainable params: 1,404,202

Optimizer: Adam

Loss: Sparse Categorical cross-entropy

Model Training accuracy: 99.91%

Model Test accuracy (700 unseen balanced examples): 96.66 %

Chapter 7:

Comparison with pre-existing research:
The model outperforms all pre-exiting works (with and without noise) to the

best of author’s knowledge. This improvement in performance can be

attributed to the use of mathematical techniques used for preprocessing and

the development of a custom model.

The following is a table comparing the results of the model performance with

previously known results:

Studies

(Result on a variety of different datasets)

Validation accuracy, %

Tzanetakis and Cook 79.5

Li and Tzanetakis 74.0

Holzapfel and Stylianou 63.5

Shin et al. 84.5

Elbir and Aydin 66.0

Proposed Transformer models (train 95%) 94.0

Model Proposed in this project on noisy data 95.6

Table 1: Model Performance Comparison Table

Future extension of the work:
The current project is two be used a proof of concept. The pipeline can have

tighter integration with the model. For this, a lot of development on the servers

need to be done. While the performance of the model is already significantly

better than all the existing systems, it can be optimized for ASICs using

quantization and other such techniques. In addition to this the complexity can

be increase by increasing the amount of information given by the model and

adding a built-in recommender system. Finally, there is scope for an end-to-

end model which can perform the mathematical pre-processing in a more

efficient manner.

Bibliography:

1. Tzanetakis, G., Cook, P.: ‘Musical genre classification of audio

signal’, IEEE Trans. Speech Audio Process., 2002, 10, (3), pp. 293–

302 (https://doi/org/10.1109/TSA.2002.800560)

2. Mandel, Michael I., and Daniel PW Ellis. "Song-level features and

support vector machines for music classification." (2005): 594-599.

3. Wyse, Lonce. "Audio spectrogram representations for processing

with convolutional neural networks." arXiv preprint

arXiv:1706.09559 (2017).

4. Bahuleyan, Hareesh. "Music genre classification using machine

learning techniques." arXiv preprint arXiv:1804.01149 (2018).

5. Convolutional Neural Network Benchmarks:

https://github.com/jcjohnson/cnn-benchmarks

6. Balci, B., Saadati, D., & Shiferaw, D. (2017). Handwritten Text

Recognition using Deep Learning.

http://cs231n.stanford.edu/reports/2017/pdfs/810.pdf

7. Carbune, V., Gonnet, P., Deselaers, T., Rowley, H. A., Daryin, A.,

Calvo, M., … Gervais, P. (2020, January 24). Fast Multi-language

LSTM-based Online Handwriting Recognition. arXiv.org.

https://arxiv.org/abs/1902.10525.

8. Harris, C., Millman, S., Gommers, P., Cournapeau, E., Taylor, J.,

Berg, N., Kern, R., Picus, S., Kerkwijk, M., Haldane, J., Wiebe, P.,

Gérard-Marchant, K., Reddy, T., Weckesser, H., & Gohlke, T.

(2020). Array programming with NumPy. Nature, 585, 357–362.

https://doi/org/10.1109/TSA.2002.800560
https://github.com/jcjohnson/cnn-benchmarks
http://cs231n.stanford.edu/reports/2017/pdfs/810.pdf

9. John D. Hunter. Matplotlib: A 2D Graphics Environment,

Computing in Science & Engineering, 9, 90-95

(2007), DOI:10.1109/MCSE.2007.55 (publisher link)

10. Wes McKinney. Data Structures for Statistical Computing in

Python, Proceedings of the 9th Python in Science Conference, 51-

56 (2010)

11. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017).

Automatic differentiation in PyTorch.

12. Bahuleyan, Hareesh. "Music genre classification using machine

learning techniques." arXiv preprint arXiv:1804.01149 (2018).

13. Ignatius Moses Setiadi D.R., Satriya Rahardwika D., Rachmawanto

E.H., Atika Sari C., Irawan C., Kusumaningrum D.P., Nuri, Trusthi

S.L. Comparison of SVM, KNN, and NB Classifier for Genre

Music Classification based on Metadata

14. Li T, Ogihara M, Li Q. A Comparative study on content-based

music genre classification. In: Proceedings of the 26th annual

international ACM SI-GIR conference on research and development

in information retrieval. Toronto: ACM Press; 2003. p. 282–9.

15. Antonio Jose Homsi Goulart, Rodrigo Capobianco Guido, Carlos

Dias Maciel, Exploring different approaches for music genre

classification, Egyptian Informatics Journal

(https://doi.org/10.1016/j.eij.2012.03.001)

https://doi.org/10.1109/MCSE.2007.55
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.eij.2012.03.001

	Foreword
	Declaration
	Certificate
	Chapter 1:
	Introduction
	Problem Statement
	The Dataset

	Chapter 2:
	Literature Survey
	Table

	Chapter 3: The Pipeline
	Parts of Pipeline
	Containerization
	Apache ZooKeeper
	Apache Kafka

	Designing and Implementing the low latency pipeline

	Chapter 4: GTZAN
	Feature Extraction of GTZAN
	Description of Machine Learning Techniques Used
	Results and Performance:

	Chapter 5: GTZAN with Noise
	Mathematical Preprocessing Techniques used for Noisy GTZAN
	Discrete Fourier Transform
	Fast Fourier Transform
	Short Term Fourier Transform:
	Spectrogram Representation of audio signals
	Mel-scaled Spectrogram

	Chapter 6: Transformers
	Transformer Architecture
	Input Embedding:
	Positional Encoding:
	Multi-Head Attention:
	Self-Attention:
	Implementation of Query, Key and Values:
	Residual Connection, layer normalization and feedforward:
	Function of every step:

	Developing a SOTA model capable of music genre classification in noisy environment:
	Proposed SOTA Model Architecture:
	Model Details for Noisy GTZAN
	Proposed Model at a Glance:

	Chapter 7:
	Comparison with pre-existing research:
	Future extension of the work:

	Bibliography:

