Data Warehousing

Project report submitted in partial fulfillment of the requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Kavya Nagpal (181269) Shreya Chaudhary (181279)

Under the supervision of

Prof.(Dr.) Ravindara Bhatt to

Department of Computer Science & Engineering and Information Technology Jaypee University of Information Technology Waknaghat, Solan-173234, Himachal Pradesh

Certificate

Candidate's Declaration

I hereby declare that the work presented in this report entitled "Data Warehousing" in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science and Engineering/Information Technology submitted in the department of Computer Science & Engineering and Information Technology, Jaypee University of Information Technology Waknaghat is an authentic record of my own work carried out over a period from August 2021 to December 2021 under the supervision of Prof.(Dr.) Ravindara Bhatt, Associate Professor, Department of Computer Science and Engineering. The matter embodied in the report has not been submitted for the award of any other degree or diploma.

Kavya Nagpal (181269) Shreya Chaudhary (181279)

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

ParterBly

(College Supervisor Signature) Supervisor Name: Ravindara Bhatt Designation: Associate Professor Department name: Computer Science and Information Technology Dated: 25th May, 2022

(Company Supervisor Signature) Supervisor Name: Alok Choudhary Designation: Manager Department name: BT, ZS Associates Dated: 25th May, 2022

ACKNOWLEDGEMENT

We are really grateful and wish our profound indebtedness to our project Supervisor Prof.(Dr.) Ravindara Bhatt, Associate Professor, Department of CSE Jaypee University of Information Technology, Wakhnaghat. Profound knowledge and proficiency of our supervisor in his field has helped us to carry out this project. His endless patience, scholarly guidance, continual encouragement, constant and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting them at all stages have made it possible to complete this project.

We would also generously welcome each one of those individuals who have helped us in making this project a win. In this unique situation, we might want to thank the various staff individuals, both educating and non-instructing, who have developed their convenient help and facilitated our undertaking.

Finally, We must acknowledge with due respect the constant support and patience of our parents.

Kavya Nagpal(181269) Shreya Chaudhary(181279)

Table of Contents

Tal	ole of Figuresv	7
Tal	ole of Graphsv	ii
Ab	stractv	viii
1	Introduction 1	-8
	1.1 Introduction	
	1.2 Problem Statement	
	1.3 Objectives	
	1.4 Methodology	
	1.4.1 Datasets and Inputs	
	1.4.2 Data Preprocessing	
	1.5 Organization	
2	Literature Survey 9	-10
3.	System Development 12	1-23
	3.1 Model Development	
	3.2 Tools and Technologies	
	3.2.1 Redshift and SQL	
	3.2.2 Tableau	
	3.2.3 Python	
	3.3 Proposed Approach	
4.	Performance Analysis 24	
5.	Results 24-	34
6	Conclusion 35-	.38

6.1 Conclusion

6.2 Improvements and Future Work

References

TABLE OF FIGURES

Figure

Name

Page No.

Figure 1	. Procedure	
Figure 2	.Data Flow4	
Figure 3	.Data Warehousing7	
Figure 4	.Importing Libraries11	l
Figure 5	.Importing Dataframes12	2
Figure 6	.DQM on Table 112	2
Figure 7	.DQM on Table 213	3
Figure 8	.DQM on Table 314	1
Figure 9	.DQM on Table 415	5
Figure 10	.DQM on Table 516	5
Figure 11	.DQM on Table 617	7
Figure 12	.DQM on Table 718	3
Figure 13	.DQM on Table 818	3
Figure 14	.DQM on Table 919)
Figure 15	.Reporting Table20	0
Figure 16	.Reporting Table2	1
Figure 17	.Case Study Approach23	3
Figure 18	.Performance Analysis2	4
Figure 19	.SQL Query2	5

Figure 20	SQL Query	.26
Figure 21	SQL Query	.26
Figure 22	SQL Query	.26
Figure 23	SQL Query	.27
Figure 24	SQL Query	.27
Figure 25	SQL Query	.28

TABLE OF GRAPHS

Graph	Name	Page No.
Graph 1	Sales Trends	29
Graph 2	Sales Trends	29
Graph 3	Market Share	
Graph 4	Market Share-Neuro	31
Graph 5	Market Share-Virology	
Graph 6		32
Graph 7		32
Graph 8		
Graph 9	Top 10 HCPs	34

ABSTRACT

Data warehousing is a data management system that is designed to enable and support business intelligence (BI) activities like analytics. Data repositories generally contain large historical data and are intended only for the purpose of questioning and analysis. Considered a core component of Business Intelligence(BI), a Data Warehouse(DW) is used for data analysis as well as reporting. DWs are centralized collections of integrated data from one or more different sources.

Data View, which is a graphic display of information and data, provides an accessible way to visualize and understand trending, external, and patterns in data by using visual features such as charts, graphs, and maps, data display tools. Data visualization makes data easier for the human brain to comprehend and retrieve information by translating information into a visual context, such as a map or graph. The main goal of data viewing is to make it easier to identify patterns, trends and external products in large data sets.

Chapter-1

INTRODUCTION

1.1 Introduction

• Pharma ABC was established in 1964 and is headquartered at New York

- Pharma ABC is well known for key innovations and always introduces drugs in new markets
- It has launched 25 drugs so far of which 7 are blockbusters
- ZS team worked closely with these internal teams to identify their reporting needs

As a next step, the client decided to seek our help in using the existing system to generate four reports and integrate them into the dashboard.

The pharmaceutical industry acquires, develops, manufactures, and markets drugs or drugs to be used as drugs to be given to patients (or to administer them), for the purpose of self-treatment, vaccination, or reduction of symptoms.

The United States continued to be the world's largest drug market in 2019, with revenue close to billion. Database stores data aggregated from singular or multiple data sources which are remote for query and analysis. The information integrated into the database is stored as visual aids. Viewing is a visual relationship defined using real relationships stored on a website. Physical observation is the result of a study of the related algebraic condition that describes the visual correlation. By using these 2 body-generated observations, user requirements and questions can be answered quickly and information can be obtained either directly or calculated using these modified physical views. A problem which is also known as the viewing problem is a way to save the modified view to be updated with information about actual updates in relationships to remote data sources. There are many algorithms that are developed to solve the issue with viewing traditional data systems. In applications, questionnaires outlined by ideas and real relationships are stored on the same website. Web systems understand visual definitions and know what data is needed to distribute updates to ideas whereas in a DW, queries describing views and actual relationships can be stored on a separate location such as a website located on multiple sites.

required to update comments in the database. They can therefore only send real data updates or all updated relationships to the database. After getting insights like these, the data repository may find that it requires additional source data to review the view which is when it draws queries from other sources to request some other related additional source data. Some sources may review its data again before reviewing query requests in the data store. They will therefore send additional unrelated and incorrect data to the database, which will use it to calculate ideas. This condition is called a distributed maintenance anomaly. Solving the archive view problem is therefore much more complex.

1.2 Problem Statement

The data provided has to be analyzed, cleaned and visualized using a data visualization tool tableau.

The visualization requirements were as follows:

• Track market share of products

Solution centric approach to find out the market share of the product ,leveraged technology and visualization of the trend.

• Track sales of different products

Find out the TRx sales of the products

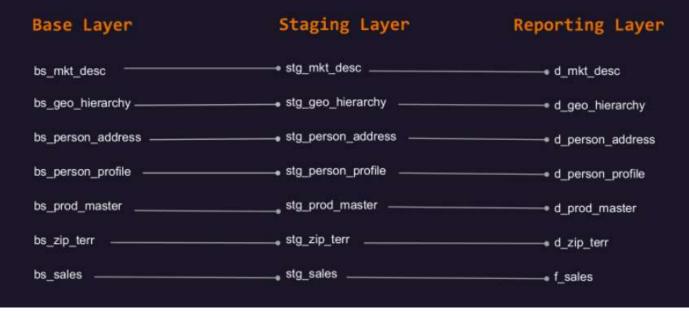
• Track top 5 territories in the market

Chart out the top 5 territories in the market

• Track top 10 HCPs in the market

Find out the top 10 HCPs based on the market from the reporting table

1.3 Objectives


- 1. Gathering data files containing raw data.
- 2. Loading the files into the database Redshift for data cleaning and modeling.
- 3. Apply DQM checks for data cleaning.
- 4. Make Staging layer of data and make facts, dimensions and reporting layers
- 5. Visualize data for the given problem statements using Tableau

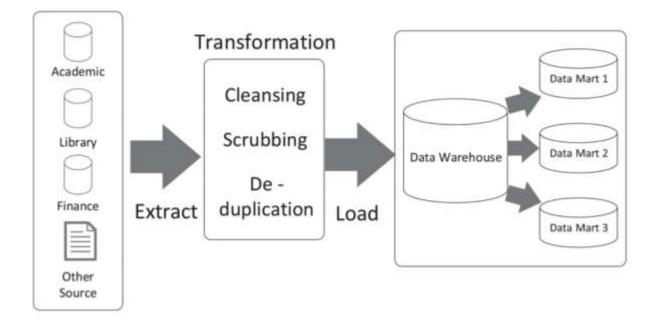
Procedure

Apply DQMs	Staging	Dimension s	Reporting	Dashboard
 Worked on base tables to clean the data. Applied DQM Checks 	 Staging the base table Made a Data Model Applied SQL functions to filter and modify the data in base tables 	 Made facts and dimension table for further analysis of the data 	 Joined dimension table and made a final reporting sales table by dropping the non-essential columns Analyzed the data on different parameters 	 Plotted the data against different parameters Visualized different case scenarios that we have Derived valuable insights

Figure 1

Data Flow Diagram

1.4 Methodology


The entire process was divided into 4 phases. Requirement gathering and data collection, data cleaning, data modeling and warehousing and data visualization.

1.4.1 Datasets and inputs

Data Source Name	Description
Geo_Hierar chy.txt	This file defines the relation between territories and their parent (mapping a territory to a district which is then mapped to a region)
Mkt_Desc.t xt	This file maps the market code to the market name.
Person_Ad dress.txt	This file provides the address and zip code of the prescriber.
Person_Pro file.txt	This file provides information about the specialty of a prescriber.
Prod_Mast er.txt	This file gives information about the client's as well as their competitor's products in the market.
Prod_Team .txt	This file gives information about which team is promoting which product.
Sales.txt	The file contains detailed information about the sales of the products segregated in terms of TRx, NRx divided in terms of the volume, units and dollar sales.
Zip_Terr.txt	This file contains the mapping between the different territories and the teams.

1.4.2 Data Preprocessing

- Data layer[Raw] -The main aim of this layer is to ingest raw data into the DW as quickly and as efficiently as possible. To do so, data should remain in its native format. We don't allow any transformations at this stage. With Raw, we can get back to a point in time, since the archive is maintained. No overriding is allowed, which means handling duplicates and different versions of the same data. Despite allowing the above, Raw still needs to be organized into folders. From our experience we advise customers to start with generic division: subject area/data source/object/year/month/day of ingestion/raw data. It is important to mention that end users shouldn't be granted access to this layer. The data here is not ready to be used, it requires a lot of knowledge in terms of appropriate and relevant consumption. Raw is quite similar to the well-known DWH staging.
- Data layer[Standardized] It is not necessary in most DW systems. If we anticipate that our Data Lake Architecture will grow fast, this is the right direction. The main objective of this layer is to improve performance in data transfer from Raw to Curated. Both daily transformations and on-demand loads are included. While in Raw, data is stored in its native format, in Standardized we choose the format that fits best for cleansing. The structure is the same as in the previous layer but it may be partitioned to lower grain if needed.
- Data layer[Cleansed] Here, data is transformed into data sets that are useful and consumable is to be stored in files or tables. The purpose of the data, as well as its structure at this stage is already known. You should expect cleansing and transformations before this layer. Also, denormalization and consolidation of different objects is common. Due to all of the above, this is the most complex part of the whole Data Lake solution. In regards to organizing your data, the structure is quite simple and straightforward. For example: Purpose/Type/Files. Usually, end users are granted access only to this layer.
- Data layer[Application] Here, data is sourced from Cleansed data layer and enforced with any needed business logic that the user might have specified. These might be surrogate keys shared among the application, row level security or anything else that is specific to the application consuming this layer. If any of your applications use machine learning models that are calculated on your Data Lake, you will also get them from here. The structure of the data will remain the same, as in Cleansed.
- Data layer[Sandbox] It is a somewhat optional layer, specifically meant for advanced analysts and data scientists related work. Here they can carry out their experiments when looking for patterns or correlations. Whenever you have an idea to enrich your data with any source from the Internet, Sandbox is the proper place for this.

1.5 Organization

- Security –Even though data lakes are not disclosed to a very wide audience, it is still pretty much important to consider this feature, especially during the initial phase and design. It is not the same as related information, which is armed with security measures. It is always better to be careful about this without ignoring future requirements.
- Governance Managing, monitoring, and listing of data is necessary from time to time to measure the performance and maintenance of our Data Lake.
- Metadata Metadata is the data about data, and is information about every scheme, every reload interval, any additional description of the purpose of the data, and description of how it is intended to be utilized.
- Stewardship depending on the size that is required by us, either a separate group is made or this responsibility is transferred to the owners (users), perhaps by using other metadata solutions.
- Master Data an important part of providing data that is completely ready to be used .

- Archive if there is another DWH related solution, the user might face some issues related to working with local storage. Data Lake is often used to store specific archive data from DWH.
- Offload if there are some other DWH related solutions, the user may want to use this site to deploy ETL processes / resources that can consume a lot of time, in your Data Lake, to make it cheaper and faster.
- Orchestration + ELT processes as we get data from the previous Layer we use the Filter for our last two layers i.e. the Sandbox and Application Layer. It is very much possible, that we may have to apply the changes and therefore we can either choose an orchestration tool that can do so, or some additional added on resources to use it.

CHAPTER-2

LITERATURE SURVEY

List of Research Papers and Journals

Title	A Study on Real-Time Detection Method of Lane and Vehicle for Lane Change Assistant System Using Vision System on Highway
Authors	VanQuangNguyen ,HeungsukKim, SeoChangJun, KwangsuckBoo
Year of Publication	February 2016
Web Link	https://doi.org/10.1016/j.jestch.2018.06.006

Title	Lane detection for driver assistance and intelligent vehicle applications. 2007 international symposium on communications and information technologies. 1291-1296
Authors	Craig D'Cruz, Ju Jia Zou
Year of Publication	March 2016
Link	https://ieeexplore.ieee.org/document/4392216

Title	CNN based lane detection with instance segmentation in edge-cloud computing
Authors	Wei Wang, Hui Lin ,Junshu Wang
Year of Publication	June 2020
Link	https://doi.org/10.1186/s13677-021-00267-1

Chapter-3

SYSTEM DEVELOPMENT

3.1 Model Development

The first layer that is the L0 layer/ Landing Layer:

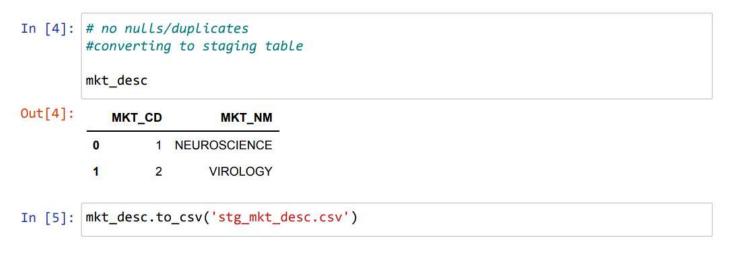
This is the layer in which the data is raw. It is the data which is brought in directly from the source or from the data lake. Nothing is done to the data in this layer. It is maintained in its original form.

The second layer that is the L1/ Staging layer

This is the layer in which we perform the pre dqm and dqm checks.

Importing the required libraries

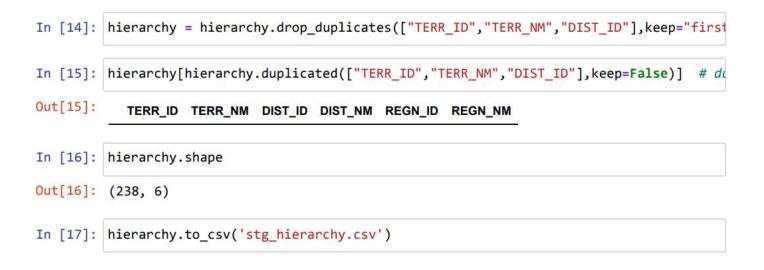
```
In [78]: import numpy as np
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import matplotlib.pyplot as plt
%matplotlib inline
```


Loading all the dataframes

```
In [23]: mkt_desc=pd.read_csv('bs_mkt_desc.txt',delimiter='\t')
geo_hierarchy=pd.read_csv('bs_geo_hierarchy.txt',delimiter='\t')
hierarchy=pd.read_csv('bs_person_profile.txt',delimiter='\t')
person_address_udp=pd.read_csv('bs_person_address_udp.txt',delimiter='\t')
prod_master=pd.read_csv('bs_prod_master.txt',delimiter='\t')
prod_team=pd.read_csv('bs_prod_team.txt',delimiter='\t')
sales=pd.read_csv('bs_sales.txt',delimiter='\t')
zip_terr=pd.read_csv('bs_zip_terr.txt',delimiter='\t')
```


Mkt_desc table has no nulls or duplicates and therefore it is pushed to the staging layer directly.

1. Mkt_desc



The geo hierarchy table had some empty rows for column Parent_ID which we filled as unassigned for data standardization.

9]: geo_	hierarchy.is	sna().any() #checking after	r filling	
9]: TERF	CODE	False			
TERF	R_NM	False			
TERF	ITORY_LEVEL	False			
PARE	NT_ID	False			
dtyp	be: bool				
0]: geo_	hierarchy[ge	eo_hierarc	hy['TERRITORY_LE	<pre>/EL']=='NATION']</pre>	
	TERR CODE	TERR_NM	TERRITORY_LEVEL	PARENT_ID	
0]:	-				

The hierarchy table had some duplicates which were dropped,

We dropped the gender and email columns in person_profile as they did not have any entry.

In [24]:	<pre>person_profile = p</pre>	erson_profile.drop(['GENDER' ,'EMAIL'] , axis =1)					
In [25]:	person_profile.columns						
Out[25]:	Index(['PERSON_COD 'PERSON_SPE dtype='objec						
In [26]:	person_profile.isn	a().any()					
Out[26]:	FIRST_NAME						
In [27]:	person_profile.dup	licated().sum()					
Out[27]:	0						
In [28]:	person_profile.to_	<pre>csv('stg_person_profile.csv')</pre>					

In [4]: person_address_udp=person_address_udp.drop(['ADDRESS_2'],axis=1)

- In [5]: person_address_udp.columns
- Out[5]: Index(['PERSON_CODE', 'ADDRESS_1', 'CITY', 'STATE', 'ZIP_CODE', 'PRI_ADDR'], dt
 ype='object')

In [7]: person_address_udp[person_address_udp['ZIP_CODE'] == 674]

Out[7]:		PERSON_CODE	ADDRESS_1	CITY	STATE	ZIP_CODE	PRI_ADDR
8	321	327	1 & 102 MANATI MEDICAL	MANATI	PR	674	Y
	1190	1167	1 CALLE MARGINAL	MANATI	PR	674	Y
	1605	1583	1 CALLE JOSE D CANDELA	MANATI	PR	674	Y
	1606	1584	1 CALLE JOSE D CANDELAS	MANATI	PR	674	Y
	1607	1585	1 CALLE JOSE D CANDELAS	MANATI	PR	674	Y
	<mark>160</mark> 8	1586	1 CALLE JOSE D CANDELAS MANATI MEDICAL PLAZA S	MANATI	PR	674	Y
	2005	1980	1 Calle Jose D Candelas	MANATI	NaN	674	Y
	13225	13235	1 TORRE MEDICA DR PEDR	MANATI	PR	674	Y
	13226	13236	1 TORRE MEDICA DR PEDRO BLANCO	MANATI	PR	674	Y

In [11]: #record where state was null is now filled with the correct state person_address_udp[person_address_udp['CITY']== 'MANATI']

Out[11]:		PERSON_CODE	ADDRESS_1	СІТҮ	STATE	ZIP_CODE	PRI_ADDR
-	321	327	1 & 102 MANATI MEDICAL	MANATI	PR	674	Y
	1190	1167	1 CALLE MARGINAL	MANATI	PR	674	Y
	1605	1583	1 CALLE JOSE D CANDELA	MANATI	PR	674	Y
	1606	1584	1 CALLE JOSE D CANDELAS	MANATI	PR	674	Y
	1607	1585	1 CALLE JOSE D CANDELAS	MANATI	PR	674	Y
	1608	1586	1 CALLE JOSE D CANDELAS MANATI MEDICAL PLAZA S	MANATI	PR	674	Y
	2005	1980	1 Calle Jose D Candelas	MANATI	PR	674	Y
	2585	2557	1 CALLE MARGINAL	MANATI	PR	957	Y
	13225	13235	1 TORRE MEDICA DR PEDR	MANATI	PR	674	Y
	13226	13236	1 TORRE MEDICA DR PEDRO BLANCO	MANATI	PR	674	Y
	44937	1030558	1 CALLE MARGINAL EXT	MANATI	PR	674	Y

In [12]: person_address_udp.to_csv('stg_person_address_udp.csv')

n [42]:	<pre>prod_master['PROD_COMP'] = prod_master['PROD_COMP'].fillna('N') prod_master['PROD_GEN'] = prod_master['PROD_GEN'].fillna('N') prod_master['PROD_CLIENT'] = prod_master['PROD_CLIENT'].fillna('N')</pre>					
[n [43]:	<pre>prod_master.isna().a</pre>	ny()				
Out[43]:	MARKET	False				
	IMS_PRD_ID	False				
	PRODUCT_NAME	False				
	IMS_STRENGTH_LEVEL	False				
	PRODUCT_CD	False				
	NDC	False				
	PROD_GEN	False				
	PROD_CLIENT	False				
	PROD_COMP	False				
	dtype: bool					
in [44]:	prod_master.to_csv('	<pre>stg_prod_master.csv')</pre>				

7. Product team

n [45]:			duplicate ample(3)	Ê.Ι		
ut[45]:	PI	ROD_CD	TEAM			
	8	1007	S			
	5	1001	S			
	1	1004	С			

8. Sales

In [47]: sales.columns Out[47]: Index(['PERSON', 'PRODUCT', 'MONTH 1 NRX', 'MONTH 2 NRX', 'MONTH 3 NRX', 'MONTH_4_NRX', 'MONTH_5_NRX', 'MONTH_6_NRX', 'MONTH_7_NRX', 'MONTH_8_NRX', 'MONTH_9_NRX', 'MONTH_10_NRX', 'MONTH_11_NRX', 'MONTH_12_NRX', 'MONTH_1_NRX_UNIT', 'MONTH_2_NRX_UNIT', 'MONTH 3_NRX_UNIT', 'MONTH 4_NRX_UNIT', 'MONTH 5_NRX_UNIT', 'MONTH_6_NRX_UNIT', 'MONTH_7_NRX_UNIT', 'MONTH_8_NRX_UNIT', 'MONTH_9_NRX_UNIT', 'MONTH_10_NRX_UNIT', 'MONTH_11_NRX_UNIT', 'MONTH_12_NRX_UNIT', 'MONTH_1_NRX_DOLLAR', 'MONTH_2_NRX_DOLLAR', 'MONTH_3_NRX_DOLLAR', 'MONTH_4_NRX_DOLLAR', 'MONTH_5_NRX_DOLLAR', 'MONTH_6_NRX_DOLLAR', 'MONTH_7_NRX_DOLLAR', 'MONTH_8_NRX_DOLLAR', 'MONTH_9_NRX_DOLLAR', 'MONTH_10_NRX_DOLLAR', 'MONTH_11_NRX_DOLLAR', 'MONTH_12_NRX_DOLLAR', 'MONTH_1_TRX', 'MONTH_2_TRX', 'MONTH_3_TRX', 'MONTH_4_TRX', 'MONTH_5_TRX', 'MONTH_6_TRX', 'MONTH_7_TRX', 'MONTH 8_TRX', 'MONTH_9_TRX', 'MONTH_10_TRX', 'MONTH_11_TRX', 'MONTH 12 TRX', 'MONTH 1 TRX UNIT', 'MONTH 2 TRX UNIT', 'MONTH_3_TRX_UNIT', 'MONTH_4_TRX_UNIT', 'MONTH_5_TRX_UNIT', 'MONTH_6_TRX_UNIT', 'MONTH_7_TRX_UNIT', 'MONTH_8_TRX_UNIT', 'MONTH_9_TRX_UNIT', 'MONTH_10_TRX_UNIT', 'MONTH_11_TRX_UNIT' 'MONTH_12_TRX_UNIT', 'MONTH_1_TRX_DOLLAR', 'MONTH_2_TRX_DOLLAR', MONTH A TOY DOLLAD MONTH 2 TOY DOLLAD! MONTH F THY DOLLAR! In [48]: col = sales.columns[2:] In [49]: col = list(col)

Figure 14

The third Layer is the L2 layer where we modify our data according to the user requirements

Our user requirements are as follows:

• Track market share of products

Solution centric approach to find out the market share of the product ,leveraged technology and visualization of the trend.

• Track sales of different products

Find out the TRx sales of the products

• Track top 5 territories in the market

Chart out the top 5 territories in the market

• Track top 10 HCPs in the market

Find out the top 10 HCPs based on the market from the reporting table

	ales = ales.h		ead_csv(')	stg_	sales	.csv',1	Index_0	co1=[0])					
	PERS	ON	PRODUCT	TRX	MON	TH TRX		TRX_DOLLAR	NRX	NRX		NRX	DOLLAR
0	11	923	1010101030	172		1	3607	17200	38	7	79 <mark>.1</mark> 82		3800
1	11	931	1010101031	475		1	9958	47500	123	25	63.880		12300
2	11	935	1010101032	183		1	3840	18300	48	9	96. <mark>0</mark> 73		4800
4													÷
								DOLLAR'],axi		RD II	D'},in	plac	e=True)
sa		ename	(columns=					DOLLAR'],axi		RD_II	D'},in	plac	e=True)
sa	ales.n	ename	(columns=	-{ ' PE	RSON'	:'PERSC	DN_CD',	and All the All the All the	IMS_P				e=True) NRX_DO
sa	ales.n ales.h PERS	ename ead(3	(columns=) D IMS_PR	-{ ' PE D_ID	RSON'	:'PERSC	DN_CD'	,'PRODUCT':' JNIT TRX_DOL	IMS_P		NRX_U		
sa sa	ales.n ales.h PERS	ename ead(3 SON_C	(columns=) D IMS_PR 23 101010	{ ' PE D_ID 1030	RSON' TRX	: 'PERSC	DN_CD', TRX_U	,'PRODUCT':' JNIT TRX_DOL 3607 1	IMS_P	NRX	NRX_U	JNIT .182	
sa sa	ales.n ales.h PERS	ename ead(3 SON_C 1192	(columns=) D IMS_PR 23 101010 31 101010	•{ 'PE D_ID 1030 1031	rson' Trx 172	: 'PERSC MONTH	DN_CD'; TRX_L 3 9	, 'PRODUCT': ' JNIT TRX_DOL 3607 1 2958 4	IMS_P LAR 7200	NRX 38	NRX_U 779. 2563.	JNIT .182	NRX_DO

Figure 15

Next we have the reporting table which will be used for data visualization.

	1	ADDRESS	517416 non-nul	
	2	CITY	517416 non-nul	.1 object
	3	STATE	517416 non-nul	
	4	ZIP_CD	517416 non-nul	1 float64
	5	PRI_ADDR	517416 non-nul	.1 object
	6	FIRST_NAME	517416 non-nul	.1 object
	7	LAST_NAME	517416 non-nul	1 object
	8	PREFFERED_NAME	517416 non-nul	1 object
	9	PERSON_SPECIALTY	517416 non-nul	.l object
	10	IMS_PRD_ID	518400 non-nul	1 int64
	11	TRX	518400 non-nul	.1 int64
	12	MONTH	518400 non-nul	l int64
	13	TRX_UNIT	518400 non-nul	.1 int64
	14	TRX_DOLLAR	518400 non-nul	l int64
	15	NRX	518400 non-nul	l int64
	16	NRX UNIT	518400 non-nul	l float64
	17	NRX DOLLAR	518400 non-nul	
		PROD_CD	518400 non-nul	
	19		518400 non-nul	l object
	20		518400 non-nul	
	21	PROD_NM	518400 non-nul	
		IMS_STRENGTH_LEVEL		
		NDC	518400 non-nul	
		PROD_GEN	518400 non-nul	
		PROD_CLIENT	518400 non-nul	
		PROD_COMP	518400 non-nul	
		TERR_CD	517296 non-nul	
		TERR_NM	517296 non-nul	
		DISTID	517296 non-nul	
		DIST_NM	517296 non-nul	
		REGN_ID	517296 non-nul	A Design of the second s
		REGN NM	517296 non-nul	
	dtyp	es: float64(2), int6 ry usage: 134.5+ MB		
In [62]:	df3.	to_csv('rpt_reportin	<pre>g_table.csv')</pre>	
T- [C2].	C			
IN [63]:	таст	_table = dt3[[PERSU 'TRX_UNIT', 'TRX		D_ID', 'PROD_CD','TERR_CD','ZIP_CD','MKT_CU H']]
In [64]:	fact	table.to csv('f sal	AS CSV')	

3.2 Tools and Techologies

3.2.1 Redshift and SQL

Amazon Redshift is a data storage product that is part of Amazon Web Services' main platform. It is built on technology from the big data-compliant data company ParAccel, to handle large data sets and migration. MySQL Workbench combines management, SQL development, architecture, website design, and storage in an integrated, single development MySQL database system. It is a visual DB designing tool.

3.2.2 Tableau

Tableau Software is a data visualization software company which is based in America. Business Intelligence is the main domain on which the company is based on. The founding year of the was 2003 and it has its headquarters based in Washington, Seattle. The Company was acquired by another Business intelligence Company Salesforce in the year 2019. Data Visualizations and interactive dashboards can be made efficiently with Tableau and helps businesses understand data and take key decisions on its basis .

3.2.3 PYTHON

Python is an interpreted, high level, general-purpose programming language. Python is very easy to read and understand hence it is used widely. It has libraries such as Numpy ,Pandas and Pyspark which are capable of handling Big Data.

Case Study Approach

Data Flow Model	Loading Flat Files	Staging Layer	Facts & Dimensions	Reporting Table and Tableau
Creating Data flow model having L0,L1 and L2 layers.	Connected JupyterHub to S3. Importing raw data into Jupyter from S3.	Applying DQM checks on raw data. (Staging Layer)	Applying required operations to create dimensions and facts table. (Reporting Layer) Exported updated data to S3.	Created reporting table and exported it to S3 using Jupyter.
Designed the data flow of each layer in a detailed manner by reviewing all the tables.		Exported updated data to S3.	Created Schema in SQL workbench and uploaded tables using Jupyter. Solved SQL questions.	Imported reporting table in tableau and created dashboard using required operations.

CHAPTER-4

PERFORMANCE ANALYSIS

Execution Times:

SQL server: CPU time = 424 ms

Elapsed time = 2300 ms.

It is therefore seen that we have a fairly accurate measure of how long it took for the query to execute and run and also how long it took to get parsed as well as compiled. The CPU time is a measure of how much CPU is used while the elapsed time tells how long it takes the query for overall execution.

All Sql queries are optimized.

Tableau performance Analysis

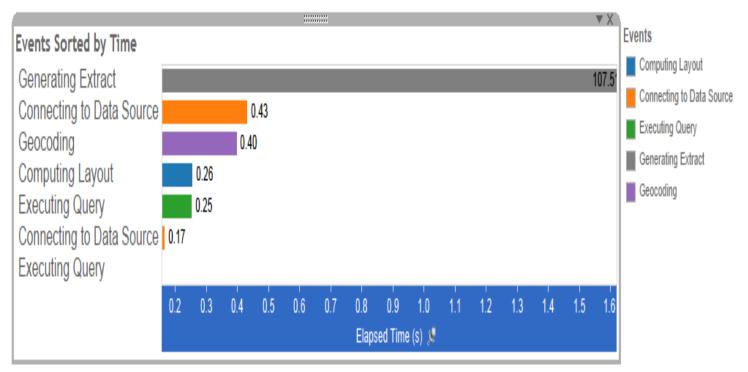


Figure 18

CHAPTER-5

RESULTS

SQl Analysis of Data

Find out the Top 10 Districts based on Sales from last year:

select dg.dist_nm, sum((fs.nrx_dollar + cast(fs.trx_dollar as float))) as sales from d_geography_007 as dg JOIN f_sales_007 as fs ON dg.terr_code = fs.terr_cd group by dg.dist_nm order by sales desc limit 10;

dist_nm	sales
Mid Atlantic-Specialty	3966218000
Southeast-Specialty	3771354000
Unassigned	3745939200
West-Specialty	3445267200
Central-Specialty	3336288000
Northeast-Specialty	1672813600
Denver	1525666000
Los Angeles	1211762400
Mid South	1129211200
Houston	819064000

Figure 19

Find out the Sales trend of the products for last 4 quarters:

quarter_id	sales
Q1	4268566000
Q2	4271253000
elect quarter_id, sum((nrx_doll	ar + cast(trx_dollar as float))) as Sales
<pre>from rpt_sales_group7</pre>	
roup by quarter id;	

Calculate YTD and QTD sales for all the products in USA:

select sum(sales) as YTD_Sales
from rpt_sales_group7
where quarter_id = 'Q1';

ytd_sales 4268566000

select sum(sales) as QTD_Sales
from rpt_sales_group7
where month id between 1 and 3;

qtd_sales
4268566000

Figure 21

Calculate the sales of a product by specialty type:

select ndc, person_specialty, sum((nrx_dollar + cast(trx_dollar as float))) as p_sales
from rpt_sales_group7
group by person_specialty, ndc
order by p_sales desc;

ndc	person_specialty	p_sales
BRUFEN	IM	187626000
ATRIPXEN	IM	186293600
KOMBIGYLZIN	IM	176298400
PERFORCIN	IM	172811400
CLOPIGEL	IM	162334800
VIMOXEX	IM	161972200
XOPENEX	FM	158325400
ATRIPXEN	FM	144428400
PROXEN	FM	141283200
KOMBIGYLZIN	FM	139444000
CLOPIGEL	FM	139321600
PERFORCIN	FM	138395600
FORADIL	FM	138043200
VIMOXEX	FM	137050200
DISPRINEX	FM	134611600
SEREVENT	FM	122099400
BRUFEN	FM	120527400
SARADONIL	FM	117816800
CLOPIGEL	OBG	109861600
KOMBIGYLZIN	PD	107185400
SARADONIL	OBG	104213600
FORADIL	PD	103759000
PROXEN	PD	103499800
XOPENEX	OBG	103471400
BRUFEN	PD	103470800
XOPENEX	PD	101569800
ATRIPXEN	OBG	100705800
SARADONIL	PD	100544600
PROXEN	OBG	100317200
CLOPIGEL	PD	98860000
FORADIL	OBG	98127800
VIMOXEX	OBG	98048000

Calculate the Market share of the products:

select ndc,

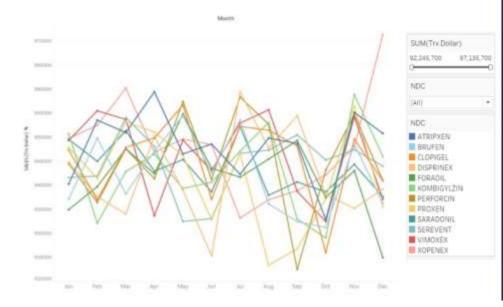
cast([sum(nrx_dollar + cast(trx_dollar as float))/(select sum(nrx_dollar + cast(trx_dollar as float)) from rpt_sales_007))*100 as varchar(10))+*%* as Market_Share from rpt_sales_007

group by adc;

ndc	market_share
VIMOXEX	8.36290453%
SARADONIL	8.31890780%
ATRIPXEN	8.40675360%
XOPENEX	8.33042408%
FORADIL	8.34282867%
SEREVENT	8.32158794%
KOMBIGYLZIN	8.31960625%
CLOPIGEL	8.34395487%
BRUFEN	8.28891178%
PROXEN	8.30486020%
PERFORCIN	8.32660251%
DISPRINEX	8.33265773%

Figure 24

Top 10 performing physicians in last 1 year based on sales:


```
select person_code, preferred_name, sum((nrx_dollar + cast(trx_dollar as float))) as Sales
from rpt_sales_group7
group by person_code, preferred_name
order by Sales desc
limit 10
```

person_code	preferred_name	sales 🔻
1256479	KATHLEEN WILLIAMS	2697800
1751946	MICHAEL A CORBIN	2673800
1619474	MARTIN B TANNER	2635200
1894863	RANDY B ROSS	2625800
4616889	ZOLLMAN KOMMOR	2618200
1344829	LEE YOSOWITZ	2603000
1907170	RICHARD FROEB	2602200
1948095	ROBERT CLENDENIN	2600000
1212783	JOSEPH LOEFFLER	2590400
2393087	VICTOR BRESSLER	2565400

Figure 25

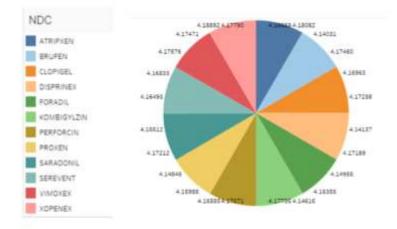
Tableau Analysis of Data.

Sales Trends for Products

Chart insight:

 This chart depicts the total monthly sales trends of all the products.

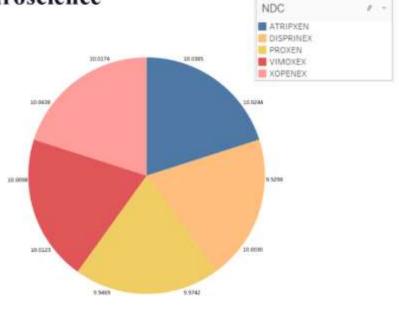
Graph 1


Sales Trends for Products

Contraction of the second	NDC 1	Month
NDC	47818(03)	NL034,800 34,880,500 34,864,100 94,847,000 91,779,400 95,078,80
BRUFEN	BRUPEN	91,710,000 93,817,700 94,255,300 91,353,500 93,113,500 91,616,800
CLOPIGEL DISPRINEX	cloresti.	94,734,800 94,786,000 94,981,000 98,321,500 94,815,700 92,587,100 94,959,900
FORADIL KOMBIGYLZIN	DISTRICT	94,444,500 95,754,500 92,522,200 96,945,600 95,795,000 93,915,50
PERFORCIN	FORADIL	83,843,800 54,237,200 94,165,600 94,542,000 94,300,700 52,450,50
PROXEN SARADONIL	VOMBIO/S	13,207,600 34,281,100 34,080,900 34,705,100 32,900,700 35,584,400
SEREVENT VIMOXEX	PERMIT	54.446.600 94.756.000 94.115.600 54.125.400 82.045.700 94.310.900
XOPENEX	PEDIDN	94.126.600 M.411.400 N2.353.000 N1.715.200 N1.647.20
	34442(79)	34.497.800 34.198.400 34.801.600 95.217.100 93.808.400 34.454.000
	SERVERY	94,109,000 93,244,000 93,303,600 96,246,000 94,525,600 9
	UNDER	54,525,620 91,562,500 54,507,000 54,300,500 91,870,000 91,242,500 95,422,800
	STREET	94.970,900 94.882,600 94.842,600 82.214.800 94.821,700 97,135.70
		Jan Feb Mar Apr May Jun Jul Aug Sep Oct New Dec

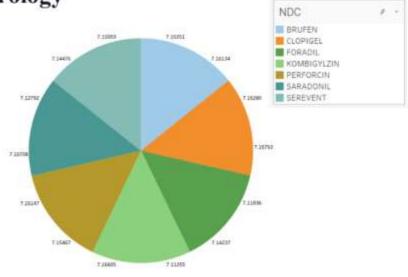
Graph 2

- This chart depicts the total sales of all the products.
- The top product is 'XOPENEX 350mg'.


Market share of each Product

- This chart depicts the market share of each product.
- The product with highest market share is 'ATRIPXEN 350mg'.
- The product with lowest market share is 'PROXEN 350mg'.

Market share of each Product in Neuroscience



Graph 4

Chart insight:

- This chart depicts the market share of each product in the neuroscience market.
- The product with highest market share is 'XOPENEX 350mg' with a market share of 10.04%.
- The product with lowest market share is 'DISPRINEX 350mg' with a market share of 9.93%.

Market share of each Product in Virology

- This chart depicts the market share of each product in the virology market.
- The product with highest market share is 'CLOPIGEL 500mg' with 7.16% market share.
- The product with lowest market share is 'BRUFEN 350mg' with 7.10% market share.

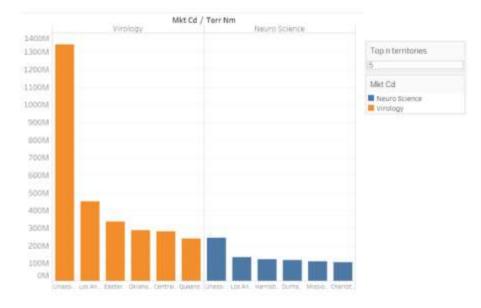
Graph 5

Top 5 Territories

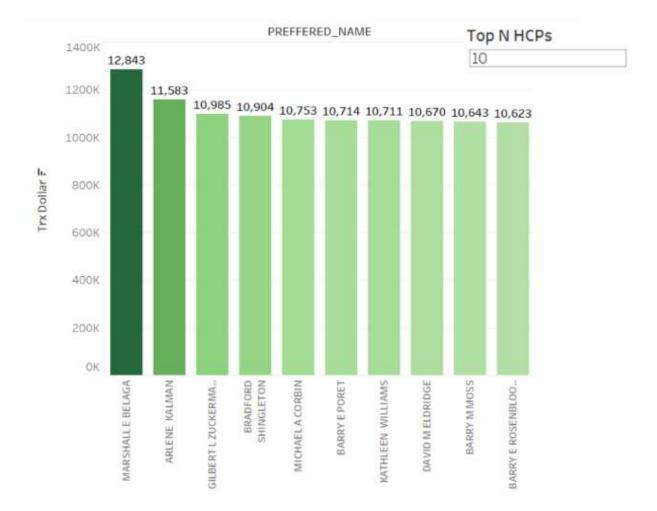
Graph 6

Chart insight:

- This chart depicts the top 5 territories in the entire market.
- The market share is decided basis sales which is decided basis(TRX Dollar)
- The territory with highest sales is Los Angles South, CA


Top 5 Territories

	Marth												
	2104	TIMIN IN	[interest]	miner	11101100	TRANSPORT OF	analy i	and the second	1121110	(or unit	titi ten	TRACT	Theorem 1
Terr Nm	111A	4	1	1	÷.	E.	Diam'r	đ.	1	3	8	8	1
Central, PA Eastern North Carolin	22004	The second	1	×	The state	ł	2	AR	2.13	100	T IN	11.00	ž
Los Angeles South, CA Oklahoma, OK San Francisco, CA		Chester.	and the	100,000	list on	1.11	-	100	(other	(DEER)	11140	100.150	in the
Top N Territories	104	Ĩ	1			Ľ		1		Ľ	2	1	
5	-	Int and	10000	and the	11 IV 1000	month.	NAME AND	00100	10110210	10000	and the second	PLANE 14	11,200
	204	*	12	2			2	2		1	N	1	E.
	200-	The second	antes 1	a minut	mun	STATES.	M.ST.M	15 Jack on	antes.	10,000	matters	NUMBER OF	And in case of
	1.000	1	Test	100	24	idea (-	14	14	Eng	Ter.	100	14


Top 5 Territories

- This chart depicts the top 5 territories for each market.
- The market share is decided basis sales which is decided basis(TRX Dollar)

Graph 8

Top 10 HCPs

Graph 9

CHAPTER-6

CONCLUSION

6.1 Conclusion

- The top product is 'XOPENEX 350mg'.
- The analyzed product with the highest market share is 'ATRIPXEN 350mg'.
- The analyzed product with lowest market share is 'PROXEN 350mg'.
- The analyzed product with the highest market share is 'XOPENEX 350mg' with a market share of 10.04%.
- The analyzed product with lowest market share is 'DISPRINEX 350mg' with a market share of 9.93%.
- The product with the highest market share is 'CLOPIGEL 500mg' with 7.16% market share.
- The product with lowest market share is 'BRUFEN 350mg' with 7.10% market share.
- The market share is decided basis sales which is decided basis(TRX Dollar)
- The territory with highest sales is Los Angles South, CA

6.2 Improvements and future work

Areas with scopes of Improvement:

Implementation of Recomputation which is self maintainable

Advantages :

- The warehouse viewing functions are completely separated from the OLTP functions.
- A discounted source will not block the process of adjusting the view of the warehouse.

Disadvantages:

- It is complex to implement
- Data is duplicated in the database.
- We need added data storage to get duplicate data.
- We are required to transfer data from sources to data storage.
- We need to utilize and maintain data transfer processes.

Implementation of Incremental Maintenance which is self maintainable

Advantages :

- The tasks of archiving the view of the database are completely separated from the activities of the OLTP.
- A discounted source will not block the process of adjusting the view of the warehouse.
- In extreme cases, the number of lines reached to maintain the view is very low.

Disadvantages:

- It is complex to implement.
- Data is duplicated in the database.
- You need additional data storage to get duplicate data.
- We are required to transfer data from sources to data storage.
- We need to utilize and maintain data transfer processes.

All methods of adjusting the view of the warehouse can be divided into mainly four categories. They are:

- self-sustaining,
- not self-sustaining revenge
- increasing self-sustaining, and
- not self-sustaining care.

Both retrieval methods and self-care methods completely separate the functions of data repositioning functions and OLTP functions. Therefore, the correction functions will not use local data sources. These functions only use DW resources. The warehouse viewing process may continue to work in case remote data sources are not available. However, little or all of the source data is duplicated in the database in order to process the archive view. This duplicated data takes up a lot of space. Therefore we have data transfer processes which can be used to transfer data from remote data sources to our particular data warehouse. Designing, implementing and maintaining all this is time consuming. However, these are decisions, most large companies should take if they want to differentiate their data repository functions with their OLTP services. Both self-regulation and non-self-regulation have a common disability. Since remote data sources should have to process queries from a website that uses its limited resources, this will therefore make the OLTP system to slow down.

In case the data source is not available, It will not be able to respond to queries sent from the site in desired time span. It will prevent the process of adjusting the view of the warehouse. The ever-expanding source of care has its drawbacks. To avoid an anomaly problem, the viewing process should be carefully designed.

The data repository may issue more compensation questions if multiple updates occur in data sources.

The two methods, both of them also have some common advantages:

As there is no copy of data stored on the website, no data transfer process should be used and maintained. There is no additional storage space for duplicate data. Both approaches are good for small to medium-sized companies with their slightly busy OLTP platform programs. In all four categories, additional care is best given the space used in the database and the number of lines reached to distribute the update to the intended view generated in the database.

In future work we plan to develop automated data input fields and create pipelines that will make the process more efficient. ZS has some technologies like CCF, that are available on AWS, AZURE annd many such platform that make the data visualization processes for big data a lot more easier. We therefore plan to learn these technologies in the coming time.

REFERENCES

Meister, J., Rohde, M., Appelrath, H. and Kamp, V., 2003. Data-Warehousing im Gesundheitswesen (Data Warehousing in Health Care). *it - Information Technology*, 45(4), pp.179-185.

Christensen, J., 2017. Effective Data Visualization: The Right Chart for the Right Data, and Data Visualization: A Handbook For Data Driven Design. *Technology*/*Architecture* + *Design*, 1(2), pp.242-243.

Singh, S. and Dwivedi, D., 2020. Data Mining: Dirty Data and Data Cleaning. SSRN Electronic Journal,.

Kunnavil, R., 2018. Healthcare Data Utilization for the Betterment of Mankind - An Overview of Big Data Concept in Healthcare. *International Journal of Healthcare Education & amp; Medical Informatics*, 05(02), pp.14-17.

Hussain, A. and Roy, A., 2016. The emerging era of Big Data Analytics. *Big Data Analytics*, 1(1).