DECRYPT MASTER

Major project report submitted in partial fulfilment of the requirement for the degree of
Bachelor of Technology

in
Computer Science and Engineering

By
Nikhil Naresh (181430)
Miguel Kundal (181204)

UNDER THE SUPERVISON OF
Dr. Kapil Sharma

(Department of Computer Science & Engineering and Information Technology)

\NFO
oF¥ R, ZI
I\ ‘\\

>

E (G XXX
=)

Wl
()
Juit
o=

T SHITaEw:

4
@
2
A
™
(@]
=
=
S
S
&
*

Jaypee University of Information Technology,

Waknaghat, 173234, Himachal Pradesh, INDIA

- TABLE OF CONTENT

CONTENT PAGE NO.

I B 1=Yo] P21 =1 i [0 o DO R 1
R O] 1} {07 (= 2
8 R A ¥ot g 1oLV [=To [0 4 T=T g | SN 4

N 151 4 oY 11 [0 1 [0] o TR 5

B O] o] 1101 {1/ T PP 6
1Y, [=1 1 g oo (o] (o]0 | P 7

o o T o
U
=
o
=2
3
3
%)
—+
QD
-
9
3
@
>
o
o

V1. System DevelopmMeNt.....ceu i ieeieeueeeeieneneneneneenenencacaioeneneieneienee 10

DeVElOPMENT. . eeiiiiiiiiiieiieieereieennecenecsnnnsceecssnnnssanessnnnesireeannne s LD
VN (0101 11 010074 @10 o [T PP 17
FIOW CRAT L. .. ccreer e eeeeeee e ceeerrsen s eeeeeee e cneecesse s sesssneen s snseecsse s seesnnnnssnsss D2

VI, Performance ANAlYSIS cuveeeeeeeeeereeereeeeneeeneeeeeeaceceeseseseseienssmnnns 23

® a0 o p

A, ODSEIVALION. e eueeeeeeenrrreeeessseesssesccssssreessaseesssssssssssssoosssssseessssassssssssnns 23

D. Black BoX TeSting....cccccernurennreeeremmsneesncssnnsesnsssnsonsssnsonssiisonsssnsencldd
AV | 1 IR 03 o 11 o] o OO 30

IX. Code SnapsShotsociceuiiieieieiiieiiieiereneeeeenieneneeeeenecacncnsenns 32

X,

XI.

RO B ENCES .+ v teeereeeeeereeeeees eseesosesessessssssssssnsns ooseeseressrosssssassossensssssnees

APPENAICES. ccrerrreeennrarossensorosssnsssassressassssnssanessssssnosssssssosssssosossassssssss

o1

52

DECLARATION

We hereby declare that; this project has been done by our group under the supervision of
Dr. Kapil Sharma, Jaypee University of Information Technology. We also declare that
neither this project nor any part of this project has been submitted elsewhere for award of
any degree or diploma.

Supervised by:

Dr. Kapil Sharma

Assistant Professor

(Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology)

Submitted by:

Nikhil Naresh (181430)

Miguel Kundal (181204)

(Computer Science & Engineering Department
Jaypee University of Information Technology)

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Decrypt
Master” in partial fulfilment of the requirements for the award of the degree of B. Tech in
Computer Science and Engineering and submitted to the Department of Computer Science and
Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of
work carried out by “Nikhil Naresh (181430), Miguel Kundal (181204)” during the period from
July 2021- Dec 2021 & Jan 2022 - June 2022 under the supervision of Dr. Kapil Sharma,
Department of Computer Science and Engineering, Jaypee University of Information Technology,
Waknaghat.

Submitted by:

Nikhil Naresh (181430)

Miguel Kundal (181204)

Computer Science & Engineering Department
Jaypee University of Information Technology

(The above statement made is correct to the best of my knowledge.)

Supervised by:

Dr. Kapil Sharma

Assistant Professor (SG)

(Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology)

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for His divine blessing
makes us possible to complete the project work successfully.

We are really grateful and wish my profound my indebtedness to Supervisor
Dr. Kapil Sharma,

Assistant Professor (SG),

(Department of CSE Jaypee University of Information Technology)

Deep Knowledge & keen interest of my supervisor in the field of “Information Security” to carry
out this project. His endless patience, scholarly guidance, continual encouragement, constant and
energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and
correcting them at all stage have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Kapil Sharma, Department of CSE, for
his kind help to finish this project.

We would also generously welcome each one of those individuals who have helped me straight
forwardly or in a roundabout way in making this project a win. In this unique situation, we want
to thank the various staff individuals, both educating and non-instructing, which have developed
their convenient help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and patience of my parents.

Nikhil Naresh (181430)

Miguel Kundal (181204)

(Computer Science & Engineering Department
Jaypee University of Information Technology)

1. Introduction

1.1 Introduction

It has evolved into an integrated layer of protection for all digital transformation activities,
which are now collectively known as digital business. As the core of modern security
systems, cryptography is used to secure transactions and communications, safeguard
personally identifiable information (PIl) and other private data, verify identity, prevent
document tampering, and develop server trust. Cryptography is one of the most important
approaches used by organizations to protect the systems that store their most precious asset
- data — whether it is in transit or at rest. Data includes personally identifiable information
(P11), employee PII, intellectual property, corporate strategies, and any other private
information. Since a result, cryptography is critical infrastructure, as sensitive data security
increasingly relies on cryptographic solutions.

When sensitive data is wrapped in the invisible layers that make up cryptography, it
becomes unreadable and unmodifiable, preventing bad actors from committing crimes.
Algorithms, keys, libraries, and certificates are the basic parts that keep the cryptographic
levels safe, as stated here:

To safeguard sensitive information, cryptographic keys are used in conjunction with
cryptographic algorithms. To be effective, cryptographic keys must have an adequate key
length as determined by the National Institute of Standards and Technology (NIST), and
private keys must be kept secret. Cryptography becomes obsolete when insecure keys are
utilized or secret keys are revealed.

Digital Certificates are used to preserve trust between connected digital components. To
eliminate security breaches, digital certificates must be appropriately managed to ensure
the usage of compliance algorithms and key lengths, as well as being renewed prior to
expiration. Massive system disruptions or data breaches might result from non-compliant
or concealed certificates.

1.2 Problem Statement

¢ In modern day cryptography we use different available encoding schemes to encrypt
a text.

e Asingle encoding scheme encryption can be easily handled but problem arises when
multiple encoding schemes are faced/ unknown encoding schemes are encountered.

o It will be very difficult for a cryptographer to deal with such encrypted text.

e A tool which can decode multiple encoding scheme and at the same time identify
the base encoding scheme will help the cryptographer in decoding any text he wants!

1.3 Objectives
e Our main objective is to reduce time consumed by decoding the encoded
text for the Cryptographer.

e In detail is to make a unique tool that can decode any alphanumeric

encoding schemes.

e This tool will be also available as a library in python to use decryption

and encryption any time.

e This tool will accept single user input, multiple use inputs, single

encoded bases as well as multi-encoded base.
e This tool will also predict the encoding scheme of our encrypted text

1.4 Methodology

e This tool will be written in python with help of various libraries and packages.

e Encoding schemes of different bases are integrated together to work according the
encrypted text.

e Encrypted text will be scanned for encoding schemes and decrypted text will be
produced as soon as encoding scheme is identified.

e In case of multiple scheme this tool has a magic mode, which will decode the text
with help of multiple decoding schemes.

2. Literature Review

e \Wojciech Mula, Daniel Lemire, “Base64 encoding and decoding at almost the spee
d of a memory copy”.

Base64 code consists of 64 ASCII characters, which include all 26 letters (upper and lower case
), all ten digits, and two extra characters ('+' and '/). Each of these 64 letters represents a 6-
bit unsigned integer value between 0 and 255.
We show how, on modern Intel processors, we can encode and decode base64 data at nearly the
same speed as a memory copy (memcpy), despite the fact that the data in the first-
level (L1) cache does not fit.

e Kenang Eko Prasetyo, Tito Waluyo Purboyo and Randy Erfa Saputra, “A Survey
on Data Compression and Cryptographic Algorithms”.
Data security and confidentiality are significant concerns for every organization, whether it is a
business, an institution, or a government agency, as well as for individuals. Especially if the info

6

rmation is kept on a computer network that is linked to the internet or a public network. The abi
lity of an organization to gather and communicate information in a timely and accurate manner
will have a substantial influence. In this study, we will use a sort of encryption to define the mes
sage/data delivery security system, with the goal of ensuring data or message secrecy. So that pe
ople who aren't qualified can't see or read the information we send out. We'll employ one of the
m here, which is a technique of security system that uses the Cryptographic algorithm, because
many security systems are used by organizations and individuals.
e S. Josefsson, “The Basel6, Base32, and Base64 Data Encodings”

This document covers the base 64, base 32, and base 16 encoding algorithms. Line feeds, paddi
ng, and non-
alphabet characters in encoded data, as well as encoding alphabets and canonical encodings, are
all covered.
The Base 32 encoding is designed to represent arbitrary octet sequences in a case-
insensitive but not always human-readable format. A 33-character subset of US-
ASCII is used, allowing for the expression of 5 bits per printed character.
The typical case-
insensitive hex encoding is Base 16 encoding, also known as "basel6" or "hex." A 16-
character subset of US-
ASCII is used, allowing for the representation of four bits per printed character.
e Mohammad A. Ahmad, Imad Fakhri Al Shaikhli, Hanady Mohammad Ahmad,” P
rotection of the Texts Using Base64 and MD5”.
Encryption is a mathematical and computer-
based process. Cryptography is a set of techniques and tactics for turning data into an un
readable and incomprehensible format for anyone who does not have the authority to rea
d or write on it. The basic purpose of encrypting data and information is to protect it w
hile protecting privacy. A base64 encryption strategy is presented in this work, which is
a collection of encoding schemes that convert binary data into a sequence of ASCII code
s. In addition, the Base64-encrypted file is hashed using the MD5 hash method.

3. System Development
a. Design:

Cipher text/Encryptedtext

Predictiono
encoding
schemes

0

Base16 ,Base32 ,Base36 ,Base58 ,Base62 ,Base64 ,Base64Url ,Base85,Ascii85 ,Base91
,Base92 ,Base100

Decryptionbegin
with identified
encoding

(The following flow chart explains the design of our algorithm which explains working of the tool)

Step 1: First cipher text is scanned by the tool

Step 2: Encoding scheme is predicted from the cipher text
Step 3: In case of multiple encoding, magic mode is executed
Step 4: Decryption begins with identified encoding schemes
Step 5: Decryption ends

b. Model:

Decryption of an encoding scheme:
As an example, working methodology of base64 and base 36 encryption is explained:

Base 64

This scheme breaks the binary data into 6-bit segments of 3 bytes and represent those characters
into ASCII standard. It does that in essentially two steps.

* The binary string must first be broken down into 6-bit units. To maintain the integrity
of the sentence, Base64 is limited to using only 6 bits (which is 266 = 64 characters).
The 64 characters (hence the name Base64) are 10 numerals, 26 lowercase characters,
26 capital characters, as well as the Plus sign (+) and the Forward Slash (/). The Equal
sign (=) is the 65th character, which is known as a pad. When the last segment of binary

data

does not contain

Value Char Value Char Value Char
0 A 16 Q 32 g

B 17 R 33 h

2 C 18 S 34 i
3 D 19 F 35 j
4 E 20 U 36 k
5 F 21 \"4 37 |
6 G 22 w 38 m
7 H 3 X 39 n
8 I 24) ¢ 40 o
9 J 25 z 41 P
10 K 26 a 42 q
" g 27 b 43 r
12 M 28 c 44 s
13 N 29 d 45 t
14 o] 30 E 46 u
15 P 31 f 47

all

SIX

Value Char

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Fig 1 Baseb4 characlers lahle

w

x

W O N OO & WN < ON K

bits,

this

character

IS

used.

Hows many of <7

=2

[o)

{ Delete twa last

Delete four
last bit Dits

Group binary in 8-bils
form

I
Tonvert to ASCIl
characlars

(By a flowchart we can easily explain the base 64 encryption)

Base 36
This encoding scheme base consists of 36 alphabetical characters including the 26 letters
of the alphabet and the 10 digits. Any number can be converted to base 36, and any word

can be converted to base 10.

10

https://www.dcode.fr/base-n-convert

M

xample: Decode the message 5271%9s.,

B2T198 = 11 % 36% + 10 x 362428 » 361 4+ 14 % 36" 50 [11,10,2
&,14] inbase 36 and 11=8, 10=A, 28=5, 14=E. The plain message
is BASE .

c. Development:
The development of this project happened in 6 states as shown in below flowchart:

{ Black box testing J—‘

4,

Testing various
encoding scheme

<Pecryption of the cipher text

Designing &
Modelling

Testing of multi-encoding

schemes
i.e.. The Magic Mode

Testing of
single-encoding
schemes

5.

> Packages imported in our tool:

1. Platform:

The Platform module is used to retrieve as much possible information about the
platform on which the program is being currently executed
2. argparse

This module argparse help us to create the program in a command line environment
that improves our interaction. This module automatically generates help and usage
messages and it issues error in case of wrong argument.

3. json

Python comes with a built-in package called json for encoding and
decoding JSON data

4. coloroma

A simple cross-platform API for printing colored text from Python

11

5.termcolor

A python module for ANSII Color formatting for output in the terminal.

simple cross-platform APl to print colored terminal text from Python
applications

6.pathlib

Pathlib module provides various classes that represent file system.

» Important Functions used in our tool:

1. def decode base (self, encoded base):

This is one of the main functions of our tool since it predicts the heuristics of our cipher text
and decode the encoding scheme.

2. def decode from file (self, file):

def decode_from_file(self, file):

print{colored(’f-] Decoding Sase LData From *, ‘cvan’) + colored{file, |vellow’))

whether file exists
iley.is file():
error{ ‘File does not exist.)
quit()

This function helps to decode an encrypted text present in a file.

3. def magic mode (self, encoded base):
def magic_mode(selif, encoded base):

‘wagic wode) tries to decode multi-encoded bases of any pattern
Lo

iteration = @
resylt = Mone

oding_pattern =
start time = time.time()

d. Algorithm/Code:
1. Packages/important functions

BaseCrack:
ef __init

if self.quit after fail:
quit{)

ed("\nf -] The Encodin “heme Is 7, ‘blue’) +
d ing_type[x], reen’)

2. Decode from file function

13

if self.im
print_1lir

def decode_from_file(scif, file):

ed{ -] Decoding fase Data From ~, ‘cvan’) + ed(file, Tvellow ™))

enf{file)
ing
in input_fil
g if the line/b

trip()
‘\nf-J Enc tase: 7, ‘wellow)+str{line))

print line

3. Magic mode function

14

def magic_mode(sel

o

‘magic mode()” tries to decode multi-encoded bases of any pattern

o

while True:
if se

b
‘green’))
ed("\nf{<<’, ‘red)+

and the cu

‘green”) d{iteration, "blue'}))

in{map(] .
("\nf -] Encoding ; d{pattern, “blue’}))

{"\nf-] Magic De i : Y, ‘green’) +

4. Decode from image function

15

def decede from_imagefscif, ima

P

for base in split_tar
if lenfbase) < 3 2: continue

for b
if

it’]

t_path = load_config["tesseragct path "][‘64bit’]

5. Banner of the tool

16

banner(}:
banner =

L

print{ red(banner, ‘red)+colored("\n\t\tpython basecrack.py -A [FOR HELE]\n', ‘green’))

banner()

main{):

i ‘store_true’)
om image with (tion or EXIF dato.”)

etection m . starme_true’)
EXIF data detection mode. (default)’, ac
tput’, help='Generate g wordlist/output with the d

on="store_true’)
d bases, enter filenawe as the value. ')

1
- -0

, ‘green’) +

ut+ ‘\n’, ‘blue”)

decodes b encodings from file if argument is given
else it gecepts g single encoded base frow user

L

e. Flow chart:

17

< Selected Mode for Decryption >

4. Performance Analysis

After carefully designing, modelling our tool, we achieved our final objectives.
Decrypt Master works just fine, it decodes single encoded base, multi-encoded

18

base and base from a text file.
Observation

Snaps of the tool after various types of input and output:
. Base64 encoded text:

Encrypted text:
YnJlaA==bXkgbmFtZSBpcyBqZWZm DVKR dTi#LtimlILer;17G2PVOmvwQBMQ6

Decrypted text:

[33m[>] Enter Encoded Base: «[@m¥nJlaA==bXkebmFtZSBpcyBgZWim DVKR™ dTi#ltimlLer; I7G2PYImyvQBmQ6

(base) C:\Usershnares\basecracks

2. Base58 encoded text:

Encrypted text:

Decrypted text:

19

[33m[>] Enter Encoded Base: «[OmA7Spepd8ivhIJAGP3PMEShRPAMThHMIR:iwCmNigqdsLXdsohlhzmbeVATs1RDiZE

(base) C:\Users\nares\basecrack>

3. Base91 encoded text:
Encrypted text:

Decrypted text:

[33m[>] Enter Encoded Base: <[@m slc=@[alCEF9pEuiys (gp@}AheZ<iCcO;9M;mki, <d, r1Ta&kKFEIXB

{baze) C:\Users\nares\basecrack>

4. Base32 encoded text:

Encrypted text:

Decrypted text:

[33m[>] Enter Encoded Base: «[OmKNWLA33UNAQGY2LLMUQGESLUORSXELBAQB2IY3BAP FXXKID INYQGY2 L LMUQGA3 ZANS 2G0ZLS

. Base85 encoded text:

Encrypted text:

Decrypted text:

[33m[>] Enter Encoded Base: «[@m;f-GkFD)e5Bkgo&allcd7ATB=EE-5u5+F.mJ+DG™OCh [Zr+Du™* tDF 7 (EW

6. Basel6 encoded text:

Encrypted text:

Decrypted text:

mailto:e5Bkq9&@Wcd7ATB=EE-5u5+F.mJ+DG%5e9Ch[Zr+Du*?DffZ(EW

[33n[>] Enter Encoded Base: «[om 206275747465722C2

7. Multiple Encoded text (Magic Mode)
Encrypted text:

Decrypted text 1:

22

mailto:Fp@nNG6ef%3c,*TFE]IT%5ezdINAb9EVbp,e%3cu=O6nN)/u+MTnU;Fo#VvQ&cK;mLZI
mailto:Fp@nNG6ef%3c,*TFE]IT%5ezdINAb9EVbp,e%3cu=O6nN)/u+MTnU;Fo#VvQ&cK;mLZI
mailto:Fp@nNG6ef%3c,*TFE]IT%5ezdINAb9EVbp,e%3cu=O6nN)/u+MTnU;Fo#VvQ&cK;mLZI

«[33m[>] Enter Encoded Base: «[@mIX(Fp@nhGoef<,*TFE]IT zdINADOEYbD, e<u=06nN} fu+MTnU; Forwkek s mLZT# Ibdook<Of{ME+eY¥ooekbpTkTa . 9YPUBUC=pl 9BhSMEKKTISH2k: 8. _u/6F2BulndPZ20#7NHNP3 g H1Zu><* [Ny+T8

[-] Heuristic Found Encoding To Be:

{baze) C:\Users\naresibasecrackypython basecrack.py --magic

[-] Heuristic Found Encoding To Be:

[-] Heuristic Found Encoding To Be:

[-] Heuristic Found Encoding To Be:

[-] Heuristic Found Encoding To Be:

[-] Heuristic Found Encoding To Be:

you know the rules and so do 1

8. From a text file:
Encrypted text:

_'| new - Notepad O pd

File Edit Format VYiew Help
536D6F6F74682UﬁC696B652062’?5747465722CZO’?U’?SG(

Decrypted text:

{base) C:\Users\naresibasecrack>python basecrack.py -f new.txt -o output-wordlist.txt

ne

[-] Encoded Base: 536D6F6F7468 9BBE520627574746572202070756C6020796F7520696E206C696B65206E6F206F 7468657204

output-wordlist. txt

Black-Box Testing

Black-box testing is an essential part of our performance analysis since
it will help us find loop holes in our tool and will help us improve its functionality as well
as features.

TEST CASE EXPECTED OUTCOME STATUS
OUTCOME OBSERVED

24

Base64,91 Base64 Base64 Fail
encryption
Base91l Base91l Base91l Pass
encryption
00000 Error Error Pass
Base36 Base36 Base36 Pass
encryption
Xxxx000000 Not valid Not valid Pass
Base64,85,91 Base64 ,85,91 Base64 ,85,91 Pass
encryption

5. Conclusion
e Modern computing technology has made it practical to use far more complex encryption
algorithms that are harder to “break” by cryptanalysts.
e In parallel, cryptanalysts have adopted and developed this technology to improve their
ability to break cryptosystems

e Security has become a top priority for everyone in I.T these days.

e A report from the Gartner forecasts worldwide security predicts that the total cost for
information security and risk management will exceeded $150 billion.

Our tool Decrypt master has been successful in term of achieving its functional
and non- functional requirements.

By this tool it would be easier for any cryptographer to decode any base encoding
ciphered text.

There are still a lot of methods that we can use to secure our data encryption is one
aspect of security technology that ever IT enthusiast should understand.

5. Code Snapshots
o Base 92

25

import math

def base92 ord(val):
num = ord{val)
if val == "1
return @

elif ord('#') <= num and num <= ord(" '}:
return num - ord{('#"') + 1

elif ord('a"') <= num and num <= ord("}"'):
return num - ord('a") + 62

else:
raise ValueError('val is not a base92 character')

base92 decode (bstr):
bitstr = "'

resstr v

if bstr == "~':

return

for 1 in range(len(bstr) // 2):
x = base92_ord(bstr[2¥i])*91 + base92_ord(bstr[2*i+l])
bitstr += '{:013b}"'.format(x)
while 8 <= len(bitstr):
resstr += chr(int(bitstr[©:8], 2))

if len(bstr) % 2 == 1:
x = base92 ord(bstr[-1])
bitstr += '{:06b}"'.format(x)
while 8 <= len(bitstr):
resstr += chr(int{bitstr[0:8], 2))
bitstr = bitstr[8:]
return resstr

decode = base92 decode
bo92decode = base92 decode

e Base chain

import anybase32

import base3é

import baseS8

import bases2

import bases4

import base91l

import src.base92 as base92
import pybaselee

from termcolor import colored

class DecodeBase:

def __init_ (self, encoded_base, api_call=False, image_mode=False):

self. = encoded_base
self. False

self. False

self. False

self. =[]

self. []

self. = api call

self. = image mode

def decode(self):
self.decode_base()

27

def contains_replacement_char{self, res):

“contains_replacement _char()’ checks whether the decoded base
contains an unknown unicode, ie: invalid character.
these are replaced with ‘replacement character',
which is '@"' and 'U+FFFD' in unicode and
also checks for unicode chars after "127°.
if u'\ufffd' in res: return True
else:

count = @

for char in res:

if ord(char) > 127: count += 1
return True if count > @ else False

process_decode (self, decode_string, scheme):

“process_decode ()" stores the result if the encoding is valid
after checks from “contains_replacement char()’ and

prints the output if it isn't an API call

encoding_type = self.
results = self.

if len(decode string) < 3: return

if nnt <alf containe renlarement charidecnde atringoh:

28

if not self.contains_replacement_char(decode string):

if scheme == 'Basef4' and '://' not in decode_string:
self. = True

if self. and (scheme == 'Base64URL"'):
return

encoding type.append(scheme)
results.append{decode_string)

if not self.
if self.
print(
colored('\n[-] Attempting Base: ', 'yellow') +
colored(self. > red')

print(
colored('\n[>] Decoding as {}: '.format(scheme), 'blusg
colored(decode string, 'green')

def decode_base(self):

29

def decode_base(self):
encoded_base = self.
process_decode = self.

try:
process_decode (
baseét4.blédecode (encoded base, casefold=False).decode('utf-8', ‘replace'),
'Basels’

)

except Exception as _: pass

try:
process_decode(
base64.b32decode
encoded_base, casefold=False, map@l=None
Y.decode('utf-8", 'replace'),
'Base32’

)

self, = True
except Exception as _: pass

process_decode(
base36.dumps (int(encoded base)),
'Base36’

)

except Exception as _: pass

try:
process_decode
base58.b58decode (encoded base.encode()).decode("utf-8', ‘'replace’),
'Baseb8’

)

except Exception as _: pass

try:
process_decode(
basee2.decodebytes(encoded_base).decode('utf-8"', 'replace'),
'Bases2’
)

except Exception as _: pass

e Decrypt _main
import os
import re
import sys
import time
import platform
import json
import argparse
from colorama import init
from termcolor import colored
from pathlib import Path

from src.base_chain import DecodeBase

from src.messages import push_error, print_line_separator

class BaseCrack:
def _init_ (self, output=None, magic_mode_call=False, quit_after_fail=True):
self. = output

self. = False

self. magic_mode_call
self. False

self. quit_after_fail

31

encoding_type, results = DecodeBase(
encoded _base,
api_call = self.
image_mode = self.

).decode ()

if not results and not self.
if not self.
push_error('Not a valid encoding.')

if self.
quit()

for x in range(len(results)):
if not self.
print(
colored('\n[-] The Encoding Scheme Is ", 'blue') +

colored(encoding_type[x], 'green')

32

else:
return results[x].strip(), encoding_type[x]

if self. and results:
print_line_separator()
else:
push_error("Found no valid base encoded strings.")

decode_from_file(self, file):

“decode_from file() ™ fetches the set of base encodings from the input file
and passes it to 'decode_base()' function to decode it all

print{colored('[-] Decoding Base Data From ', ‘cyan') + colored(file, ‘yellow'})

if not Path(file).is file():
push_error('File does not exist.')
quit()

with open(file) as input_file:

for line in input file:
for line in input_file:

if len(line) > 1:
line = line.strip()

print{colored('\n[-] Encoded Base: ', 'wyellow')+str(line))

if self.

self.magic_mode(line)

else:
self.decode base(line)

print_line_separator()

def decode(self, encoded base):

APT FUNCTION

the “decode()” function returns a tuple
with the structure:
('"DECODED_STRING', 'ENCODING SCHEME')
For example:
>> from basecrack import BaseCrack
>> BaseCrack().decode (" 'c3BhZ2hldHRp")
('spaghetti', 'Base64')

>> BaseCrack().decode('c3BhZ2h1dHRp")
("spaghetti', 'Bases4')

result[@] is the decoded string
result[1] is the encoding scheme

self. = True

return self.decode_base(encoded base)

magic_mode (self, encoded base):

"magic_mode()” tries to decode multi-encoded bases of any pattern
iteration = @

result = None

encoding_pattern = []

start_time = time.time()

while True:
if self.decode(encoded_base) is not None:
iteration += 1
result = self.decode(encoded_base)
decoded_string = result[e]

print(colored('\n[-] Iteration: ', 'green')+colored(iteration, 'blue'))
print(colored('\n[-] Heuristic Found Encoding To Be: ', 'yellow')+colored{encoding
print(colored('\n[-] Decoding as {}: '.format{encoding_scheme), 'blue')+colored(ded
print(colored('\n{{<<"', 'red')+colored('="*70, 'yellow')+colored(">>}}"', 'red'))

encoded_base = decoded_string
else:
break

if result is not None:
end_time = time.time()

print(colored('\n[-] Total Iterations: ', 'green')+colored(iteration, 'blue’))

pattern = ' -> '.Jjoin{map(str, encoding_pattern))

print({colored('\n[-] Encoding Pattern: ', 'green')+colored(pattern, 'blue'))

print(
colored('\n[-] Magic Decode Finished With Result: *, ‘green') +
colored(decoded_string, 'yellow', attrs=['bold'])

open(self. , 'a').write(decoded_string+'\n')
completion_time = str{end_time-start_time)[:6]

print{
colored(‘\n[-] Finished in ', ‘green') +
colored(completion_time, 'cyan', attrs=['bold']) +
colored(' seconds\n', ‘green’)

)

else:
quit(colored('\n[!] Not a valid encoding.\n', 'red"'))

decode_from_image(self, image, mode):

“decode_from_image()” AKA "lame_steganography_challenge solving_automated()" has two modes:
- OCR Detection Mode: dectects base encodings in images
- EXIF Data Mode: detects base encodings in an image's EXIF data

self. = True

if not Path(image).is_file():
push_error('File does not exist.')
quit()

if mode == 'exif":
import exifread

read_image = open(image, 'rb')
exif_tags = exifread.process_file(read_image)

for tag in exif_tags:
split_tag = str(exif_tags[tag]).split(' ')

for base in split_tag:
if len(base) < 3 or "\\x' in base: continue

for base in base.splitlines():
if self.

self.magic_mode (base)
else:

self.decode_base(base)
elif mode == ‘ocr':
import cv2, pytesseract

if platform.system() == 'Windows':
load_config = json.loads(open(‘config.json', 'r').read())

if len(load_config) > @:

if len(load_config) > @:
if sys. > 2%%33:

tesseract_path = load _config['tesseract_path']['32bit']
else:

tesseract_path = load _config['tesseract_path']['64bit']

pytesseract. 5 = r"{}'.format(tesseract_path)

read_image = cv2.imread(image)
get_text = pytesseract.image_to_string(read_image)
strings_from_img = str{get_text).replace(' ', '")

base = re.sub('[*A-Za-z0-9+/=@]"', "', strings_from_img)

if self. ¢ self.magic_mode(base)
else: self.decode_base(base)

def banner():
banner =

Banner Decrypt Master & Decode from image functions

36

def banner():
banner =

print{colored{banner, ‘'yellow')+colored('\n\t\tpython basecrack.py -h [FOR HELP]\n', 'green'))

main():
banner()

parser = argparse.ArgumentParser()

parser.add_argument('-b', '--base', help="Decode a single encoded base from argument.")
parser.add_argument('-f', '--file', help="Decode multiple encoded bases from a file.")
parser.add_argument{'-m', '--magic', help="Decode multi-encoded bases in one shot.', action='store_tru
parser.add_argument('-i', '--image', help='Decode base encodings from image with OCR detection or EXIF
parser.add_argument('-c', '--ocr', help="OCR detection mode.', action='store_true')
parser.add_argument('-e', '--exif', help="EXIF data detection mode. (default)', action="store_true')
parser.add argument('-o', '--output', help='Generate a wordlist/output with the decoded bases, enter f
args = parser.parse_args()

if args.

if args.
print(
colored('\n[>] ', 'yellow') +
colored('Enabled Wordlist Generator Mode :: '
colored{args. +'\n', 'blue')

decodes base encodings from file if argument is given
else it accepts a single encoded base from user

if args.
if args.
BaseCrack(
output=args. N
magic_mode_call=True
).decode_from file(str(args.)
else:
BaseCrack (output=args.).decode_from file(str(args.)

elif args.
print(colored('[-] Encoded Base: ', 'yellow')+colored(str(args.), 'red'))

if args.
BaseCrack() .magic_mode (str(args. »

se:
BaseCrack (output=args.).decode_from_file(str{args.

elif args.
print{colored{'[-] Encoded Base: ', 'yellow')+colored(str(args.

if args.

BaseCrack().magic_mode {str{args. N
else:

BaseCrack() .decode_base (str(args.)

elif args.
print{colored('[-] Input Image: ', ‘'yellow')+colored(str{args.

if args.
mode =
elif args.
mode = 'exif'

else:
mode = 'exif'

if args.
BaseCrack(
output=args. » magic_mode_call=True, quit_after_fail=False
) .decode_from_image (str(args.), mode)

output=args. » magic_mode_call=True, quit_atter_tail=False
).decode_from image (str(args.), mode)
else:
BaseCrack(
quit_after_fail=False
).decode_from_image (str(args.), mode)

else:
if sys. >= (3, 9):
encoded_base input(colored('[>] Enter Encoded Base: ', 'yellow'))
else:

encoded_base raw_input(colored('[>] Enter Encoded Base: ', 'yellow'))

if args.

BaseCrack().magic_mode (encoded_base)
else:

BaseCrack().decode_base (encoded_base)

if args.

print(
colored("\n[-] Output Generated Successfully > ', ‘green') +
colored(args. +'\n", 'yellow')

6. References

1. Wojciech Mula, Daniel Lemire, “Base64 encoding and decoding at almost the speed of a
memory copy”.

38

2. Kenang Eko Prasetyo, Tito Waluyo Purboyo and Randy Erfa Saputra, “A Survey on
Data Compression and Cryptographic Algorithms”. International Journal of Applied
Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017)

3. S. Josefsson, “The Basel6, Base32, and Base64 Data Encodings”. The Internet Society
(2003)

4. Mohammad A. Ahmad, Imad Fakhri Al Shaikhli, Hanady Mohammad Ahmad, ”
Protection of the Texts Using Base64 and MD5”. Journal of Advanced Computer Science
and Technology Research 2 (2012) 22-34

Appendices
e AsanA.P.l

import the BaseCrack class from basecrack.py

from basecrack import BaseCrack

calling the apl function decode() with the encoded base
result = BaseCrack().decode('c3BhZ2hldHRp ')

printing the output
result is tuple where:
result[@] = DECODED STRING
result[1] = ENCODING SCHEME

print('‘Decoded String: {}'.format{result[@]})
I
L

print('Encoding Scheme:

1' _format{result[1]})

7. Plagiarism Report

39

181430

CRIGINALITY REPORT
2T« 17« 2% 154%
SIMILARITY INDEX INTERNET SOURCES ~ PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (OMLY SELECTED SOURCE PRINTED)

4%
* www.coursehero.com
Internet Source
Exclude quotes on Exclude matches < 14 words

Exclude bibliography ©n

