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ABSTRACT 
 

At the present age, recommendation systems have become very imperative and have been 

extensively used in the present world to know the customers’ opinions. Opinion mining has 

become an important tool for any industry to understand their user sentiments, current trends 

and user responsiveness towards their products and services. Recommendations help users 

decide whether the products and services are worth their money and time. There are various 

applications of the recommendation systems. The availability of all the reviews of the movie 

can be considered to help the users make their decisions by not making their time go futile 

reading and viewing all the ratings and the reviews. Movie-rating applications and websites 

are frequently used by the experts and the commentators to post comments and rate the films 

according to their perspectives which help the other viewers decide and recognise if the 

movie is worth watching or not. Different e-commerce websites help the customers decide 

what to buy. Hence, the task of comprehending if a movie is to be recommended to user or 

not can be fully converted and automated using the algorithms as the machine or the system 

learns through training and testing the data. By this project, we aim to rate the reviews using 

user based and item based collaborative filtering and content-based filtering. Using different 

features to get recommendation of the movies that are best suited for a particular user. 
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Chapter 01: INTRODUCTION 

 

1.1 Introduction 

Recommendation systems play a vital role for several online websites, applications 

and e-commerce services, like social-network, recommendation of items and entities like 

movies, music and articles. People in today’s world have a pool of choices to choose from. 

It can be the choices of movies, songs, books etc. Also there has been an information 

explosion in the past few years. There has been a gradual increase in the amount of available 

digital information, electronic data in recent years. This information explosion makes it hard 

for people to manage their time. In order to help the people to come up with the humongous 

number of choices, recommendation systems have been developed and have been put to 

work. Recommendation systems can help the people know what is right by making available 

the things they will like easily based upon their preferences and likings. Performance of 

recommendation systems have a significant influence on the success of the commercial 

companies and industries on the basis of revenue generation and their customer satisfaction. 

Recommendation systems are distinct from other types of expert systems because these 

integrate an expert's subject knowledge with the customer’s or the user's preferences to filter 

out the available data and information for a particular user. 

 Machine learning is a critical component for a recommendation system. It is a method for 

giving computers intelligence by simulating how the human brain works. It has been 

extensively used in the data mining and knowledge discovery fields. The two very basic 

approaches used to create the recommendation systems are the content-based filtering 

technique and the collaborative filtering technique. 

 Content-based and Collaborative filtering-based approaches are the basic approaches for 

Recommendation systems [11]. Collaborative filtering makes recommendations based on 

user and item similarity measurements. The algorithm suggests things that are popular 

among people in comparable groups. It is determined by the user's preference profile and 

the item description.  

In Content based Filtering technique, keywords are employed in addition to the user's profile 

to highlight the user's preferred likes and dislikes. In other words, the content-based filtering 
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algorithm recommends goods that are similar to ones that were previously loved. It looks at 

previously rated things and suggests the best match.  

The aim is to determine whether the textual information generated by the users convey their 

positive(good), negative(bad) or neutral opinions. It has various approaches including the 

lexicon and machine learning techniques. The reviews have to be categorised in positive, 

negative and neutral categories. Using content based and collaborative filtering methods 

like user-based and item-based filtering, recommendations can be done. These techniques 

help in building the recommender systems based on the likings and disliking of the similar 

users.  

In this project we used various approaches to build different types of recommendation 

systems. Recommendation based on scores, overviews and genres were the major areas to 

work on. With the help of abundant data available we were able to build models that can 

recommend movies to the user based on which category of recommendation users want.  

 

1.2 Problem Statement 

 

Due to the excessive availability of the data and information on the internet, 

developments in customization, growing internet connectivity, and evolving technology, 

recommendation systems are effective in generating great suggestions. Sentiment analysis 

helps in devising the textual information in positive, negative and neutral categories.  

The areas of Machine learning and Data Mining and these techniques have made several 

advancements in this domain. Many research studies have been conducted in the discipline 

of opinion mining and sentiment analysis using collaborative filtering and content based. 

The main focus of this project was to build an integrated system that can recommend movies 

which user is mostly likely to watch or choose for themselves. 

 

1.3 Objective 

Objectives of the project:  

• To build a model using various collaborative algorithms which gives the highest 

accuracy in recommending the users based on the similar users’ interests.  

• To build a model using various content similarity algorithms which gives the highest 

accuracy in recommending the users based on the similar users’ interests.  
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1.4 Methodology 

For building the model, amazon dataset has been used. The dataset was present in 

.txt format has to be converted into 2-dimensional data. For this python language has been 

put into use. This dataset contains around 45000 different movies with 24 features. Dataset 

included some different genres for different movies which needed to be separated and 

cleaned. Individual genre for each movie was found and better clean dataset was formed by 

the team. 

Sequences would be created out of the dataset and the processed input sequences are to be 

fed to the model. After fine tuning the model, the performance and computational metrics 

are checked. The content-based and collaborative filtering-based methodologies such as 

item-based and user-based methods are then applied to the processed dataset and the 

accuracy values are checked. 

 

1.5 Technical Requirements 

• Python IDLE 

• Libraries including Scikit learn, Pandas, Numpy, Transformer, BERT model. 
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Chapter 02: LITERATURE SURVEY 

 

2.1 Literature Survey 

The internet in today’s world has been overflowing with the enormous amount of textual 

form of data which is growing rapidly every minute. It has become very difficult to extract 

the exact information about a particular entity. As the Internet has grown in popularity, the 

need for individualized information systems has grown as well. The humongous amount of 

data has passed the limits of human capacity to search, organise and categorise it. In the past 

few years, there has been an evolution of the process of opinion gathering of the customers 

and the users. There are several websites, applications and even social media platforms 

which are gathering their users’ reviews, likings and disliking. Different reviews contain 

different expressions, views and emotions which are hard to be categorised manually.  

 

Sentiment Analysis helps in undercovering the reviews, opinions and other subjectivities of 

the users. It primarily uses the Machine learning techniques and the Natural Language 

Processing, NLP techniques to unveil the attitudes of the users on a particular subject by 

recognizing and categorising the textual patterns from the text available. Many researches 

and studies have been conducted in this field. Successful applications of these systems can 

help in the high revenue achievements for the companies. These are also helpful in 

increasing the satisfaction level of the customer base of different platforms. In recent years, 

recommender systems have grown in popularity and are now employed in a variety of online 

applications. Recommender Systems are the software systems that give users with 

recommendations based on their needs. 

 

Content-based recommendation systems look at a set of documents and/or descriptions of 

items that have been previously evaluated by a user and build a model or profile of that 

person's interests based on the features of the objects that have been rated. A user's profile 

is a structured representation of their interests that is used to recommend new items to them. 

The main idea underlying the recommendation process is to match the properties of a 

content item to the qualities of a user profile. The end result is a relevance score that 

represents the user's level of interest in the item. When a profile accurately reflects user 

preferences, the information access process becomes substantially more efficient. 
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Collaborative Filtering approaches play a crucial part in the recommendation process, and 

as a result, Collaborative Filtering is the most often used methodology which is used to 

construct recommender systems now-a-days. In this method, each active user receives a 

suggestion or recommendation based on the preferences, disliking or likings of other users 

who have already rated any item or product similarly to the current user. Several researchers 

have conducted their studies on such recommendation systems and have proposed some 

models using various algorithms and methodologies.  

 

Andrea Chiorrini et al. [1] carried out a study on the BERT model for both sentiment 

analysis and emotion recognition of Twitter data. They have compared the cased and 

uncased BERT  

model for the twitter dataset and have got 90% accuracy for cased BERT and the uncased 

Bert has given the accuracy of 89%.  

 

In the research conducted by Manish Munikar et al. [2] sentiment classification has been 

done using the BERT model and sentiment labels have been provided to the review text. 

After evaluation accuracy given by RNN on Stanford Sentiment Treebank (SST) is 86.1 and 

accuracy provided by the LSTM is 84.9% 

 

The study performed by Bing Liu et al. [3] shows the usage of the BERT model as their 

base model and the post-training algorithm on the dataset of Amazon laptop reviews. 

Accuracy given by the proposed model has been achieved as 78.07%.  

Kuat Yessenov [4] has developed an experimental model for improving the efficacy of the 

machine learning techniques in the field of sentiment analysis and has used technique like 

Naive Bayes, Bagging algorithms, Maximum-Entropy, and K-Means clustering with 

highest accuracy of 75% using the Maximum entropy and  Naive Bayes algorithm with 45% 

accuracy. 

M.Govindarajan [5] has proposed a hybrid model of naive bayes and genetic algorithm for 

the sentiment analysis of movie reviews. When individually applied, Naive bayes achieved 

91.1% and Genetic algorithm achieved 91.25% accuracy. The hybrid system made the 

optimum use of the classifiers and performed 93.8% accurate. 
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V.K. Singh et al. [6] have done aspect level sentiment analysis for the movie reviews and 

experimented with various linguistic feature selection, aggregation, and weighing systems. 

SWN has given 78% accuracy while the Alchemy API has achieved 77% accuracy on the 

manually created moderate sized dataset. 

B. Lakshmi Devi et al. [7] have also conducted the sentiment analysis study on movie 

reviews using two classifiers. Data set used in the model is a set of 500 IMDB movie reviews 

with half positive and half negative reviews. Naive Bayes and Decision trees have been used 

with the highest accuracy of 92.3% of naive bayes in the model. 

 Al-Rubaiee et al. [8] used two types of sentiment classification: polarity classification and 

rating classification. They used SVM, MNB, and BNB machine learning algorithms in their 

project. The accuracy of sentiment polarity classification was 90 percent, but there was still 

room for improvement in the second form, rating classification, where the accuracy was just 

50% which is quite low in this case. 

 

For sentiment analysis, deep learning has been frequently employed. Socher et al. [9] 

introduced a 91% accurate RNN (Recurrent neural network) based solution that is trained 

on a sentiment treebank and has greatly improved sentence-level sentiment analysis on 

English datasets. Sarah Al Humoud [10] utilised an LSTM CNN model with two 

imbalanced classes (positive and negative) among four types of ASTD: objective, subjective 

positive, subjective negative, and subjective mixed form. The model shows good levels of 

accuracy and precision using CNN. 

 

Juan M Fernandez et al. [19] has examined the two very basic and traditional 

recommendation systems which are based on content based filtering and collaborative 

filtering. Due to several drawbacks and disadvantages in both the systems like the early rater 

problem, limited content analysis, the gray sheep problem, no recommendation for the 

unanticipated items, cold-start issue, over specialization problem, new user problem and the 

sparsity problem, they built a new system using two approaches based on the Bayesian 

network and collaborative filtering. The newly proposed system is highly efficient for the 

problem and gives probability distributions, helpful to make inferences from them. The 

proposed model of the recommendation system was tested on a pre-processed database, and 

its effectiveness has been compared and contrasted with the existing methods and was 
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proven in on-line experiments. Vladimir-Nicolae Dinu et al. [20] designed a Movie 

Recommender, in this system the movies are recommended by the model through the 

information that is available about the user.  Several features present in the model contains 

the psychological profile of the user, the watching history of the users, the information 

including scores of the movies based on other websites. They are completely based on 

aggregated similarity calculation. This is the combination of content and collaborative 

filtering which removes the data particular to a specific user. 

 

Geetha G et al. [21] proposed a model based on a hybrid approach. With the application of 

basic k-means clustering, collaborative and content-based filtering approaches, they have 

made a model which allows a user to choose or make his choices from a pre provided set of 

features and then recommend a movie list based on the aggregated or cumulative weight of 

different attributes. This clearly depicts the use of Pearson’s correlation function in their 

model. James Salter et al. [24] proposed a cinema-based recommendation model that 

automatically generates recommendations for a random sample of 200 users using the 

combination of both the collaborative-based filtering and content-based filtering 

algorithms.  This system generates a list of movies showing at the particular cinemas and 

extracts out the matching films from the complete record of the recommendations being 

generated. The dataset contained 100,000 film ratings by 943 users. This model makes 

output in the form of coverage of predictions I.e. Catalogue coverage, prediction coverage, 

standard coverage. 

 

All the studies have been compared and comprehended. The table below depicts the 

comparison of the accuracy values of the different research studies done in the same field 

using Naive Bayes, RNN, BERT and other algorithms. 

Table 1: Comparison of the different approaches on Recommender System. 

Author  Algorithms Accuracy 

 Manish Munikar RNN 86.1% 

 
LSTM 84.9% 

 R Socher RNN 91%  

 
KNN 83% 

B. Lakshmi Devi  Naive Bayes 92.3% 
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M.Govindarajan  Genetic Algorithm 91.25% 

 
Naive Bayes 91.1% 

 
Hybrid approach 93.8% 

Bing Liu BERT 78.07% 

Kuat Yessenov Maximum entropy 75% 

 
Naive Bayes 45% 

Andrea Chiorrini  Cased BERT 90% 

 
Uncased BERT 89% 

Eyrun A. 
 

SVM 

 

78% 

 
 

K-Means Clustering 

 

83.7% 

Poonam B. Thorat 
 

KNN 

 

78.7% 

 
 

SVM 

 

83% 
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Chapter 03: SYSTEM DEVELOPMENT 

 

3.1 Algorithms 

3.1.1 Collaborative Filtering 

Collaborative filtering is one of the most used techniques in making 

recommendation systems. This technique of filtering, takes up the similarities between the 

users and the items at the same time and then it makes the recommendations [12][14]. A 

collaborative filtering model can recommend an item to a user, say user ‘A’ based on the 

interests, likings and disliking of a similar user, say user ‘B’. This method makes 

recommendations by analysing correlations between users. Collaborative filtering needs the 

data or the historic information about the users regarding any entity like movies, music, 

products or services. There are two types of Collaborative Filtering techniques with a 

principal purpose of approximating target user’s rating or review for the target entity, these 

techniques include User-based collaborative filtering (UbCF) and Item-based collaborative 

filtering (IbCF). 

Table 2: Collaborative Filtering User-Movie Table 

User Movie1  Movie2 Movie3 Movie4 

User1 5 4  5 

User2 4  3  

User3  1  2 

User4 1 2   

 

In this scenario, we can see that User 1 and User 2 give the movie nearly identical ratings, 

so we can conclude that Movie 3 will be averagely liked by User 1, but Movie 4 will be a 

good recommendation to User 2. We can also see that there are users who have opposing 

preferences, such as User 1 and User 3.Because User 3 and User 4 share a same interest in 

the film, we can predict that Movie 4 would be despised by User 4.This is Collaborative 

Filtering; we recommend users the items which are liked by the users of similar interest 

domain. 

Collaborative Filtering models are considered models with significant accuracy 

among the basic fundamental recommender system models which generally use the target 

user-item interactional information such as reviews and ratings. There have been many 

efforts in the domain of recommender systems where the collaborative filtering methods are 
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combined with content-based filtering techniques to make a hybrid approach for the 

recommender systems [13]. In this method, surveys of similar users need to be done. This 

method has the tables of the users with different items and entities rated by them which they 

choose or like. Based on the similarities of the preferences, anticipations can be made of 

what the user might like, based on the likes, dislikes and the preferences of the similar users 

to the target user. The list in this method is then filtered and are matched accordingly to the 

users who used the similar items for comparison, suggestions and recommendations. The 

highest score will then be recommended to the target user. 

There are several problems in Collaborative Filtering: 

1. Sparseness that occurs due to the unavailability of the data or the sparsity of the 

rating values in the dataset. 

2. Scalability issue. 

3. Cold-Start problem that is it does not work with cold-start or new users because the 

dot product will be all 0s and hence it cannot recommend anything. 

3.1.2 Content Based Filtering  

A Content-Based Recommender system is entirely based on the information gathered 

directly from the ratings given by the users or intuitively the search phrases. Based on the 

data, a user profile is created, which is subsequently utilised to provide suggestions or 

recommendations to the user. The engine grows increasingly accurate and precise when the 

user provides new information or acts on the recommendations. The three main aspects of 

Content Based Filtering technique are User Profile, Item Profile, and Utility Matrix.  

In the User Profile, vectors are made that define the user's preferences and likings. A single 

user profile is created using the utility matrix, which depicts the relationship between the 

person and the item. The closest conclusion that can be made based on this data is that a 

user favours a mix of those items. 

The performers, director, release year, and genre are the most significant qualities of a film 

when converted into an item. We may also put the IMDB (Internet Movie Database) rating 

in the Item Profile. The Utility Matrix represents the user's preference for certain items. In 

the data obtained from the user, the utility matrix is utilised to find a link between the items 

that the user loves and those that he or she hates. Each user-item pair is assigned a numerical 
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number known as the degree of preference. We then develop a user matrix using the required 

elements to assess their preference connection. 

Table 3: Content-Based Filtering User-Movie Table 

User Movie1 Movie2 Movie3  

User1 3  1 

User2 2 4  

 

Because we don't always receive complete information from the user, some of the columns 

in the matrix are empty with no value in them, and the goal of any recommendation system 

isn't to fill all of the columns which are there with no values, but to suggest or recommend 

a movie to the user that he or she would love. Based on this data, our recommender 

algorithm would not recommend Movie 3 to User 2 because their ratings in Movie 1 were 

nearly identical, and User 1 provided the lowest rating in Movie 3, making it highly probable 

that User 2 will detest it as well. 

Recommending Items to User Based on Content: 

Method1: 

The cosine distance between the item's and the user's vectors can be used to establish the 

item's preference for the user. Consider a movie with a huge positive proportion of actors 

that the user likes and only a few actors that the user dislikes. As a result, the angle will be 

near to 0 and the cosine distance between the vectors will be tinyIf the cosine distance is 

big, it indicates that the user likes the movie; otherwise, we prefer to avoid the item from 

the suggestion. 

 

Method2: 

We may use a classification technique in recommendation systems as well, such as using 

the Decision Tree to determine if a user wants to watch a movie or not, and applying a 

condition at each level to refine our suggestion. 

 

Apart from that, we employed various regression algorithms described in the methodologies 

and techniques portion of Chapter 4. 
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Chapter 04: PERFORMANCE ANALYSIS 

 

4.1 Dataset  

 The dataset used in this model has been gathered by Kaggle. This dataset contains 

around 45000 different movies with 24 features which are mentioned below in the table. 

These features include some important feature that we will be using for our project work 

and also some new features will be derived from already existing feature with data pre-

processing. 

Table 4: List of all the features in dataset. 

adult belongs_to_collection budget genres 

homepage id imdb_id original_language 

original_title overview popularity poster_path 

production_companies production_countries release_date revenue 

runtime spoken_languages status tagline 

title video vote_average vote_count 

 

4.2 Analysis 

Analysing which feature plays what role in the dataset we can perform some data 

analytics techniques on the dataset to help us understand our data more. To start with we  

will let us plot a graph of most popular movies and top big budget movies. We will use the 

popularity, budget column from the dataset. 

Figure 1: High Popularity Movies 
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Above graph showed us how different movies were ranked on the basis of their popularity 

index in the database. Top 10 highly ranked movies on the basis of the popularity were 

shown in the graph.  

Figure 2: High Budget Movies 

 

 Here in the above graph, we saw which movies were high budgeted and now let us see 

which movies had the highest revenue and does any of the high budgeted movie made their 

way in top 10 highest revenue movies.  

Figure 3: High Revenue Movies 
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By comparing both the graphs we can see that no high budgeted movies made to the top 

10 for highest revenued movies.  

Movies can also be liked or dislike on the basis of their length, in today’s cinematic world 

most viewers prefer short length movies as they can have more content consumed in less 

time. So, we also have a graph that represents the runtime of top 10 movies with highest and 

lowest runtime.  

Figure 4: High Runtime Movies 

 

Figure 5: Low Runtime Movies 
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Now let us see how these movies varies with their orginal language i.e. how much 

percentage of movies were originally made in which langague and which language has the 

leading number of movies.  

 

Figure 6: Language Classification of Movies 

From the pie chart above we can se that most of the movies were made in “English” followed 

by “French” as the second highest language for movie makes.  

 

4.3 Methods and Techniques 

 

In this model we make three recommendation models first one based on the movie 

score which is calculated according to the IMBD formula, second one based on the content-

based filtering of the overview of the movie and found the similarity based on the same and 

third we again used content-based filtering approach with the genres of the movies. But 

before moving on to creating a model for recommendation we need to pre-process our 
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dataset so that it will be clean and used properly. For this we removed all the null values 

from the dataset so that it wont cause any  

4.3.1 Data pre-processing 

The raw dataset of reviews gathered from IMDb was initially in the form of a plain 

.text file. We have used the python code to convert the whole dataset into 2-dimensional 

data. After processing the raw dataset, we filtered the only values we needed for our project. 

We also did separate data pre-processing for each specific model we needed without 

compromising the original integrity of the dataset. This dataset contained very detailed 

information of every movie that is mentioned in it. 

 

4.3.2 Model 1: Score based recommendation model 

In this model we tried a different approach for recommending movies to the user by 

taking the movie score for reference. User will use this model as a feature where the model 

will be provided with vote_average and vote_count for any particular movie and in return 

get the output score of the movies that match the particular score. To calculate the score we 

use the formula provided by IMDb (Internet Movie Database). 

𝑠𝑐𝑜𝑟𝑒 =  (𝑣/(𝑣 + 𝑚)  ∗  𝑅)  +  (𝑚/(𝑚 + 𝑣) ∗  𝐶) 

where, 

𝑣 : vote_count of the movie 

𝑅 : vote_average of the movie 

𝑚 : 90% quantile of the vote_average 

𝐶 : mean of the vote_count 

Figure 7: Sorted Score by top 10 movies. 
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We chose quartile 90 because we want movies with more than 90% of votes to be included 

in the list, i.e. movies with more votes should be included. Now comes the part when we 

rate our movies based on their score to see which ones rank higher. The top 10 movies are 

shown in Figure 7.  

 

After we have calculated scores for all the movies, we use it as our output vector and use v

ote_average and vote_count as input vector. A pictorial diagram is also present to explain t

he process.  

Figure 8: Flow Chart of Model 1. 
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To achieve the best results, we used four machine learning regression algorithm and 

compared them to have use the best one. The algorithms we used were Linear Regression, 

Decision Tree, Lasso Regression, Random Forest Regressor.  

 

4.3.2.1 Linear Regression 

For supervised learning, linear regression is a machine learning method. Linear 

regression is a technique for predicting a dependent variable (goal) from an independent 

variable (s). As a result, this regression approach determines if a dependent variable and the 

other independent variables have a linear connection. As a result, this algorithm's name is 

Linear Regression. 

The independent variable is on the X-axis, while output is on the Y-axis in the diagram 

below.  

Figure 9: Linear Regression Graph 

The regression line is the model's best fit line. And finding the greatest fit line is the major 

goal of this method. 

Pros: 

• Linear Regression algorithm is quite easy when it comes to the implementation. 

• Also, linear regression is less complex than other techniques 
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• Linear Regression can lead to the problem of overfitting but it can be avoided using 

some techniques and methods like dimensionality reduction, regularization 

techniques, cross-validation etc. 

Cons: 

• If there is the presence of the outliers, the performance can be affected very badly. 

• This algorithm assumes a linear relationship between the variables for almost all the 

problems. Therefore, it is not advised to use linear regression technique for practical 

problems. 

4.3.2.2 Decision Tree 

 The decision tree models may be used with any data that has both numerical and 

categorical properties. Non-linear interactions between features and the goal variable are 

well captured by decision trees. Because decision trees resemble human thought patterns, 

understanding the data is simple. 

Figure 10: Decision Tree representation 

So, in a nutshell, a decision tree is basically a tree in which each node of the tree represents 

a feature, each branch of the tree depicts a decision, and each leaf of the tree portrays an 

outcome or an output which is generally a numerical value for regression cases. 

Pros: 

• Decision tree algorithm is very easy to understand and interpret visually as well. 



 

20 

• Working with numerical and categorical data is quite easy in the algorithm. 

• This algorithm does not have any need for the pre-processing of the data like making 

dummy variables etc. 

Cons: 

• When built to its maximum height, it can lead to overfitting. 

• Due to the creation of the tree structure, if there is any change in the data point, it 

can cause a big change in the whole structure of the tree. 

4.3.2.3 Lasso Regression 

LASSO is short for Least Absolute Selection Shrinkage Operator. A limitation on 

traits or parameters is defined as shrinkage. The approach works by identifying and 

imposing a constraint on model features that causes regression coefficients for some 

variables to drop toward zero. The model excludes variables having a regression coefficient 

of zero. So, lasso regression analysis is essentially a shrinkage and variable selection 

approach that aids in determining the most significant predictors. 

Pros: 

• Unlike decision trees, lasso tends to avoid overfitting. 

Cons: 

• From a set of correlated features or attributes, LASSO will choose just one feature. 

• In this, the selected features can be highly biased. 

4.3.2.4 Random Forest 

 Random Forests are a collection of decision trees that work together. It's a 

classification and regression algorithm based on Supervised Learning. Multiple decision 

trees are used to process the input data. Random forest starts executing by making a 

completely different number of decision trees at the time of training and making the  
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output class that is the mode of the classes (for classification) or mean or average prediction 

for regression use-cases of the individual trees. 

Figure 11: Random Forest diagram 

 

Pros: 

• For non-linear relationships and less complex problems, it works very well. 

• Random forest is easy to understand and comprehend. 

Cons: 

• Due to some reasons, it can be prone to the case of overfitting. 

• To obtain greater performance, larger random forest ensembles must be used, which 

slows down their pace and requires more memory. 

  

After applying these five algorithms to our movies data we compared the results of all the 

algorithm in order to find the best of all. To compare these algorithms, we considered 

performance metrices like accuracy, recall, precision, fscore and ROC curve. The results 

are briefly discussed in section 4.2.3 Results and Analysis. With the help of the results we 

achieved we can determine which algorithm will be best suited to be used in the final model 

of our recommendation system.   

 

 

 



 

22 

4.3.3 Model 2: Content Based filtering based on Movie Overview 

 

 In content-based filtering we use the features of the movie or any item to determi

ne its similarity with the other items present in the dataset. A pictorial diagram is also pres

ent to explain the process.  

 

 

 

Figure 12: Flow Chart of Model 2 
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This similarity can be based on any feature of the item in this case say overview. To find th

e similarity of the movies based on their overview we used some NLP (Natural Language P

rocessing) methods. To begin with we made a database that only contained movie name an

d overview. After that we defined a TF-IDF vectorizer object and removed all the English s

top words such as ‘the’, ‘a’ etc. Then we replace all the NaN with an empty string. After re

placing and pre-processing the overviews of the movies we constructed the required TF-ID

F matrix by fitting and transforming the data. The matrix that we constructed was a sparse 

matrix of class float type with elements stored in Compressed Sparse Row format. After th

is we computed the cosine similarity of TF-IDF matrix.  

A get_recommendation function was made which returned the the top 10 similar movies of 

the input movie. To get recommendation get the pairwise similarity scores of all movies wi

th in 

put movie, sort the movies based on the similarity scores and get the scores of the 10 most 

similar movies. 

Figure 13: Output function for top 10 recommended movies for model 2 

 

These top 10 recommendations are only based on the overview of the movies. These movies 

are similar according to their overviews. 
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4.3.4 Model 3: Content Based filtering based on Movie Genres 

 In content-based filtering we use the features of the movie or any item to determi

ne its similarity with the other items present in the dataset. In this model we selected the ge

nres feature of the movies to find the similarity of the movies. A pictorial diagram is also p

resent to explain the process.  

Figure 14: Flow Chart of Model 3 
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A particular movie can be of one single or multiple genres which will help us to determine 

how much similar it is to other movies. As discussed in Model 2 here also we create a 

separate dataset that contained movies and their genres marked as 0 if the movies don’t 

belong to that particular genre and 1 if movie is of that genre. After pre-processing we had 

about 20 different genres in our dataset.  

We computed cosine similarity of the genres of the movies and similarly as in Model 2 we 

created a get_recommendation function which gave an output of top 10 similar movies 

according to the genres of the input movie. An example of which is shown in the figure 

below. 

Figure 15: Output function for top 10 recommended movies for model 2 

 

All these different models can be improved further more if we include more features and 

integrate these models. For now, we have only focused on analysing how different features 

can get us different types of recommendation.  

 

4.4 Result and Analysis 

In this section we will discuss the results of our all the models that we created and also 

discuss the possibility of integrating all these models. Firstly, we will look into the 

performance metrices of model 1.  
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4.4.1 

Mean Squared Error (MSE) : 

The MSE is a measure of how near a fitted line is to data points. Take the vertical distance 

between each data point and the matching y value on the curve fit and square the value. 

MSE, or Mean Squared Error, is a commonly used regression error statistic. It's also an 

important loss function for algorithms that use the least squares framework to fit or optimise 

regression situations. The practise of decreasing the mean squared error between expected 

and anticipated values is known as "least squares." 

𝑀𝑆𝐸 = 1/𝑁 ∗ 𝑠𝑢𝑚𝑓𝑜𝑟𝑖𝑡𝑜𝑁(𝑦_𝑖– 𝑦h𝑎𝑡_𝑖)^2 

Here yi is the i'th anticipated value in the dataset and yhat_i is the i'th forecast value. The 

sign is eliminated when the difference between these two values is squared, resulting in a 

positive error value.  

As a result of the squaring, large errors are also exaggerated or exacerbated. The squared 

positive error is proportional to the difference between the anticipated and expected 

numbers. 

4.4.2 Root mean squared error (RMSE) 

The square root of the mean square error is all it is. Because it uses the same units as the 

amount represented on the vertical axis, this statistic is perhaps the easiest to understand. 

The Root Mean Squared Error (RMSE) is a mean squared error variation. The square root 

of the error is determined, suggesting that the RMSE units are the same as the anticipated 

target value's original units. 

The RMSE can be computed using the following formula: 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡(1 / 𝑁 ∗ 𝑠𝑢𝑚 𝑓𝑜𝑟 𝑖 𝑡𝑜 𝑁 (𝑦_𝑖 – 𝑦h𝑎𝑡_𝑖)^2) 

Where y i is the dataset's i'th anticipated value, yhat i is the predicted value, and sqrt() is the 

square root function. In terms of the MSE, the RMSE may be rephrased as: 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡(𝑀𝑆𝐸) 
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The RMSE is a better indicator of goodness of fit than a correlation coefficient since it can 

be easily translated into measurement units. The RMSE can be compared to the variance in 

measurements of a typical point. For a good fit, the two should be similar. 

4.4.3 Mean absolute error (MAE) 

The Mean Absolute Error, or MAE, is a popular statistic because, like the RMSE, the error 

score's units match the expected target value's units. Unlike the RMSE, changes in MAE are 

linear and so visible. In other words, MSE and RMSE penalise larger errors more severely 

than smaller errors, inflating or magnifying the mean error score. Because the erroneous 

number is squared, this occurs. The MAE does not give different types of errors more or 

less weight; instead, the scores rise in a linear fashion as the error grows.The MAE does not 

give different types of errors more or less weight; instead, the scores rise in a linear fashion 

as the error grows. As the name implies, the MAE score is calculated as the average of 

absolute error values. Absolute, or abs(), is a predefined mathematical function that makes 

a number positive in nature. As a result of it, while the difference between an expected and 

projected number might be positive or negative, it must be positive when calculating the 

Mean absolute error. 

The MAE may be determined using the following formula: 

𝑀𝐴𝐸 = 1/𝑁 ∗ 𝑠𝑢𝑚𝑓𝑜𝑟𝑖𝑡𝑜𝑁𝑎𝑏𝑠(𝑦_𝑖– 𝑦h𝑎𝑡_𝑖) 

The i'th anticipated value in the dataset is y i, the i'th forecast value is yhat i, and the absolute 

function is abs().  

The table and graph also include these performance metrics and their values. 

Table 5: Performance metrices for model 1 

Algorithm Accuracy 

(%) 

MSE (%) RMSE (%) MAE (%) 

Linear Regression 95.62 1.73 13.14 9.37 

Decision Tree 91.59 3.32 18.21 15.25 

Lasso Regression 92.28 3.04 17.45 13.2 

Random Forest Regressor 94.84 3.04 17.45 13.2 
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From the above table we can say that Linear Regression performance was the best among 

all the algorithms we used followed by Random Forest Regressor. Linear Regression 

provides an accuracy of 95.6% with Mean Squared Error, Root Mean Squared Error, Mean 

Absolute Error as 1.73%, 13.14% and 9.37% respectively. We also have a graphical 

representation of our results to understand it in a better way.  

Figure 16: Accuracy graph for model 1 algorithms. 

Figure 17: Root Mean Squared Error and Mean Absolute Error for model 1. 
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Figure 18: Mean Square Error for model 1. 

 

 

Figure 19: Mean Square Error graph for Linear Regression. 
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Figure 20: Mean Absolute Error graph for Linear Regression. 

Figure 21: Mean Square Error graph for Decision Tree Regressor. 
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Figure 22: Mean Absolute Error graph for Decision Tree Regressor. 

Figure 23: Mean Square Error graph for Lasso Regression 
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Figure 24: Mean Absolute Error graph for Lasso Regression 

Figure 25: Mean Square Error graph for Random Forest Regressor 
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Figure 26: Mean Absolute Error graph for Random Forest Regressor  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

Chapter 05: CONCLUSIONS  

 

5.1 Conclusion 

After creating three different models for recommending movies to the user we 

observed that every feature of the movies plays a very significant and different roles in the 

recommendation of the movie. Where as our model 1 which used some regression algorithm 

to determine the best scored movie for the user displayed some very promising result using 

Linear Regression algorithm which gave us accuracy of 95.62%, at the same our model 2 

and model 3 which used feature similarity with the content-based filtering algorithm to 

recommend the best suited movie for the user. Combined all the models provided very 

promising results for the recommendation system. 

The modelling was done by using Python 3.8 and its necessary libraries. Code was 

performed by all the team members on their respective systems. More complex and 

advanced algorithms would be helpful in evaluating the performance of the model at a 

significant rate.  

    

5.2 Application 

 There are several applications of the recommendation systems. Nowadays, there is 

a plethora of data that has been gathered on the web worldwide. Such huge levels of the 

textual information available are very necessary for the e-commerce platforms and other 

companies as well. This data is used for recommending entities to their users. Many 

applications like amazon, Netflix, and other social networking websites use 

recommendation systems. High accuracy levels for the predictions give high revenue 

generation for all these companies. Although this model will require a proper production 

and development, also to say an extensive level of testing before using it in real life, 

improvement can be done to make that possible. 

 

5.3 Future Work 

Till now we have used content-based filtering and some regression algorithm for the 

model and that has given quite high accuracy. In the future we are looking forward to 

evaluating the dataset using a different number of NLP algorithms to significantly improve 

the accuracy of the model by analysing the reviews and other important features of the 
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dataset. We would also try to train it using a much larger dataset having larger number of 

reviews, more textual subjectivities and more features 

To get the optimum accuracy and precision of the model we will train the dataset on different 

machine learning and deep learning algorithms or hybridise algorithms. The less availability 

of the large data is also a barrier in this project. Using the various types of recommendation 

algorithms, we tend to make it a product website and deploy it as a working project.  
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Appendix 

 

Calculate score for movies 

m = metadata['vote_count'].quantile(0.90) 

C = metadata['vote_average'].mean() 

def weighted_rating(x, m=m, C=C): 

    v = x['vote_count'] 

    R = x['vote_average'] 

    print(v,R,m,C) 

    # Calculation based on the IMDB formula 

    return (v/(v+m) * R) + (m/(m+v) * C) 

# Define a new feature 'score' and calculate its value with 

`weighted_rating()` 

q_movies['score'] = q_movies.apply(weighted_rating, axis=1) 

#Sort movies based on score calculated above 

q_movies = q_movies.sort_values('score', ascending=False) 

#Print the top 15 movies 

q_movies[['title', 'vote_count', 'vote_average', 'score']].head(20) 

 

Linear Regression 

import numpy as np 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

X_new = q_movies_new[['vote_count', 'vote_average']] 

Y_new = q_movies_new[['score']] 

X_train, X_test, y_train, y_test = train_test_split(X_new, Y_new, 

test_size=0.33) 

model = LinearRegression() 

model.fit(X_train,y_train) 

acc = model.score(X_test, y_test) 

Y_pred = model.predict(X_test) 

MSE = mean_squared_error(y_test, Y_pred) 

RMSE = mean_squared_error(y_test, Y_pred, squared=False) 

MAE = mean_absolute_error(y_test, Y_pred) 

 

Decision Tree Regressor 

from sklearn.tree import DecisionTreeRegressor 

regr = DecisionTreeRegressor(max_depth=3) 
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regr.fit(X_train, y_train) 

scoreacc = regr.score(X_test,y_test) 

Y_pred = regr.predict(X_test) 

MSE = mean_squared_error(y_test, Y_pred) 

RMSE = mean_squared_error(y_test, Y_pred, squared=False) 

MAE = mean_absolute_error(y_test, Y_pred) 

 

Lasso Regression  

from sklearn import linear_model 

lassoReg = linear_model.Lasso(alpha=0.1) 

lassoReg.fit(X_train,y_train) 

scorelasso = lassoReg.score(X_test,y_test) 

Y_pred = regr.predict(X_test) 

MSE = mean_squared_error(y_test, Y_pred) 

RMSE = mean_squared_error(y_test, Y_pred, squared=False) 

MAE = mean_absolute_error(y_test, Y_pred) 

 

Random Forest Regressor  

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import make_regression 

X, y = make_regression(n_features=4, n_informative=2, random_state=0, 

shuffle=False) 

rfr = RandomForestRegressor(max_depth=3) 

rfr.fit(X_train, y_train) 

accrf = rfr.score(X_test,y_test) 

print(rfr.score(X_test,y_test)) 

Y_pred = rfr.predict(X_test) 

MSE = mean_squared_error(y_test, Y_pred) 

RMSE = mean_squared_error(y_test, Y_pred, squared=False) 

MAE = mean_absolute_error(y_test, Y_pred) 

 

Creating TF-IDF matrix of overviews 

#Import TfIdfVectorizer from scikit-learn 

from sklearn.feature_extraction.text import TfidfVectorizer 

#Define a TF-IDF Vectorizer Object. Remove all english stop words such as 

'the', 'a' 

tfidf = TfidfVectorizer(stop_words='english') 

#Replace NaN with an empty string 

q_movies['overview'] = q_movies['overview'].fillna('') 

#Construct the required TF-IDF matrix by fitting and transforming the data 

tfidf_matrix = tfidf.fit_transform(q_movies['overview']) 
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#Output the shape of tfidf_matrix 

tfidf_matrix.shape 

 

Creating Cosine Similarity Table for TF-IDF matrix 

from sklearn.metrics.pairwise import linear_kernel 

# Compute the cosine similarity matrix 

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) 

 

Creating get_recommendation function for Movie overviews 

indices=pd.Series(q_movies.index,index=q_movies['title']).drop_duplicate

s() 

def get_recommendations(title, cosine_sim=cosine_sim): 

    # Get the index of the movie that matches the title 

    idx = indices[title] 

    # Get the pairwsie similarity scores of all movies with that movie 

    sim_scores = list(enumerate(cosine_sim[idx])) 

    # Sort the movies based on the similarity scores 

    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) 

    # Get the scores of the 10 most similar movies 

    sim_scores = sim_scores[1:11] 

    # Get the movie indices 

    movie_indices = [i[0] for i in sim_scores] 

    # Return the top 10 most similar movies 

    return metadata['title'].iloc[movie_indices] 

 

Creating find_genres function 

cmn_list=[] 

def find_genres(text): 

    matches = re.finditer('name', text) 

    matches_positions = [match.start() for match in matches] 

    # print(matches_positions) 

    matches_positions = [x+8 for x in matches_positions] 

    # print(matches_positions) 

    list_genre = [] 

    for i in matches_positions: 

        idx = i 

        gne = "" 

        for j in text[idx:]: 

            if(j=='}'): 

                break 

            gne=gne+j 
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        list_genre.append(gne[:-1]) 

        cmn_list.append(gne[:-1]) 

    return list_genre 

idx_genres = [] 

for text in genere_specific.genres: 

    idx_genres.append(find_genres(text)) 

cmn_list_new = set(cmn_list) 

 

Marking true and false to genres in movie 

genres = ['Fantasy', 'Romance', 'Music', 'Action', 'Adventure', 'TV 

Movie', 'Horror', 'Science Fiction', 'Comedy', 'Documentary', 'Western', 

'Foreign', 'Drama', 'Mystery', 'Crime', 'Animation', 'Family', 'Thriller', 

'War', 'History'] 

for x in genres: 

    test[x] = 0 

drop_index = [] 

for ind in test.index: 

    cat = test['new_gen'][ind] 

    for x in cat: 

        try: 

            test[x][ind] = 1 

        except: 

            print(ind, " = ", test['id'][ind], " - ", 

test['new_gen'][ind]," - ", cat, " - ",x) 

            drop_index.append(ind) 

drop_index = list(set(drop_index)) 

test.drop(drop_index, inplace = True) 

 

 

Creating Cosine Similarity Table for Genre dataset 

from sklearn.metrics.pairwise import linear_kernel 

# Compute the cosine similarity matrix 

cosine_sim = linear_kernel(dataset, dataset) 

indices = pd.Series(data.index, index=data['title']).drop_duplicates() 

 

Creating get_recommendation function for Movie Genres 

indices=pd.Series(q_movies.index,index=q_movies['title']).drop_duplicate

s() 

def get_recommendations(title, cosine_sim=cosine_sim): 

    # Get the index of the movie that matches the title 

    idx = indices[title] 
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    # Get the pairwsie similarity scores of all movies with that movie 

    sim_scores = list(enumerate(cosine_sim[idx])) 

    # Sort the movies based on the similarity scores 

    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) 

    # Get the scores of the 10 most similar movies 

    sim_scores = sim_scores[1:11] 

    # Get the movie indices 

    movie_indices = [i[0] for i in sim_scores] 

    # Return the top 10 most similar movies 

    return metadata['title'].iloc[movie_indices] 

 


