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                                                    ABSTRACT 

 

 
 
 
The work provided in this paper a contribution to utilising time series technique to model & 

forecast sales for  shampoo manufacturer. Our research shows how previous sales data may be 

used to estimate future sales, as well as how these forecasts influence the supply chain. 

Several autoregressive integrated moving averages were developed using the early sales data 

(ARIMA) You may forecast time series using the ARIMA model & the series previous values. 

We design an optimum ARIMA model from the ground up in this post, & then expand it to 

Seasonal ARIMA (SARIMA) & SARIMAX models. The chosen model was the ARIMA (1, 0, 

1), which was confirmed using previous sales data under the same conditions. The acquired 

findings show that the model may be used to predict & anticipate future sales in this shampoo 

firm. An ARIMA model is  type of statistical model  i.e used to analyse & forecast data using 

time series. The acronym ARIMA refers to  AutoRegressive Integrated Moving Average. It is  

generalisation of  AutoRegressive Moving Average that incorporates  concept of integration. 

Large-scale health initiatives are increasingly being evaluated using interrupted time series 

analysis. While segmented regression is  frequent method, it is not always sufficient, 

especially when seasonality & autocorrelation are present. An alternate technique that 

potentially address these concerns is  Autoregressive Integrated Moving Average (ARIMA) 

model. 

 

A systematic approach of discovering, fitting, verifying, & employing integrated 

autoregressive, moving average (ARIMA) time series models is known as Box - Jenkins 

Analysis. The approach is suitable for medium to long-term time series (at least 50 

observations). In this chapter, we'll go through the basics of  Box-Jenkins technique, focusing 

on  practical aspects rather than  theory. The majority of what is discussed here is taken from 

George Box & Gwilym Jenkins' seminal work on time series analysis (1976). A time series is  

collection of values that are observed consecutively across time. X1 X2 Xt, where t is  time 

period & X is  value, can be used to represent  series. The series is said to be deterministic if  



 

 

Xs are precisely defined by a mathematical formula. The series is said to be statistical or 

stochastic if future values can only be represented by their probability distribution. A 

stationary stochastic process is  type of stochastic process. If the probability distribution is  

same for all starting values of t, the statistical process is stationary. This means that for all t 

values,  mean & variance are constant. Because  values of the series are dependent on t, a 

series with a simple trend is not stationary. The mean, variance, & autocorrelation function 

completely define a stationary stochastic process. One of  procedures in  Box-Jenkins method 

for converting  non-stationary series to  stationary series is to use chevaliers. 
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CHAPTER-1 
 
INTRODUCTION 

 
 
 
1.1 About Sales Prediction Using Arima Model: 

 
We use  Arima Model to forecast sales in this project. Sales forecasting is essentially  

process of estimating future sales. With  use of an algorithm & cutting-edge 

technology, businesses may accurately anticipate product sales in  week, month, or 

year. The ARIMA model with  help of machine learning was used to create this model. 

The abbreviation ARIMA (Auto Regressive Integrated Moving Average) refers to  

group of mathematical models that can be used to depict a phenomenon defined by  

time series. With  confidence interval round  forecasts, an ARIMA model can be used 

to predict future values of  series characterising the phenomena. Let {} ∈ℕ * denote  

time series that describes a certain phenomenon & its mean values. We shall observe 

descriptive analysis of our data & subsequently the application of ARIMA MODEL in 

this project. So that we can get  information we need about the product's present & 

prospective sales. We also utilise SARIMA model in this which combines seasonal 

differencing with an ARIMA model & is used for time series data modelling with 

periodic characteristics or we can say seasonal ARIMA used with time series with 

seasonality. 

 

AutoRegressive Integrated Moving Average (ARIMA) is an acronym for 

AutoRegressive Integrated Moving Average. It's more complex version of  

AutoRegressive Moving Average, with  addition of  concept of interation. 

 

This abbreviation is descriptive, capturing  model's major features. They are, in brief: 

Autoregression (AR). The dependent relationship between an observation &  set of 

lagged observations is used in this model. 

Integrated (I) To make the time series steady, differencing raw observations (e.g. 
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subtracting an observation from an observation from  preceding time step) is used. 

 

MA stands for Moving Average. The dependency between an observation &  residual 

error from a moving average model applied to lagged observations is used in this 

model. 

 

Each of these elements is explicitly described as  parameter in  model. ARIMA(p,d,q) 

is a standard notation in which  parameters are replaced with integer values to 

immediately indicate  ARIMA model being utilised. 

The following are  parameters of the ARIMA model: 

p: The lag order, or the number of lag observations incorporated in the model. 

 

d: The degree of differencing is  number of times  raw observations are differenced. 

 

q: The order of moving average, also known as the size of the moving average 

window. 

 

A linear regression model with  appropriate number & kind of terms, & data processed 

using a degree of differencing to make it stationary,  i.e, to remove trend & seasonal 

structures that negatively cheval  regression model.  

A parameter with a value of 0 indicates that that piece of  model should not be used. 

This allows  ARIMA model to mimic  functionality of an ARMA model or even a 

basic AR, I, or MA model. 

When you use an ARIMA model to analyse a time series, you're assuming that  

underlying process that generated  data is itself an ARIMA process. This may seem 

self-evident, but it helps to justify  need to test the model's assumptions in raw 

observations & residual errors of model forecasts. 

Next, let’s take a look at how we can use  ARIMA model in Python. We will start with 

loading a simple univariate time series. 
. 
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1.2 Problem Statements: 

 
The background of  project is that there is  problem with previous systems in 

that  accuracy rate of these models is low, &  number of algorithms used in  majority 

of projects is low, with the highest number of algorithms being 3, which is why for 

this system, where  user can provide input & detect  following error in pattern. 

Organizations are moving toward  more effective sales-driven supply chain in today's 

competitive manufacturing market, in order to adapt rapidly to altering sales. 

Customers have become more salesy & discerning, dictating to suppliers what things 

they want & when they need them delivered, transforming the market into a "pull" 

environment. 

Forecasting sales is essential for inventory management. Inventory levels are 

determined by sales estimates. In reality, poor sales forecasting can result in 

significant expenses, demonstrating that  process has not improved. As result, many 

systems invest heavily on inventory to minimise "stock outs." Another difficulty is 

that certain sales are intermittent, meaning that there are times when we have no sales 

& other times when we have consecutive sales. Traditional statistical sales forecasting 

approaches are challenged by intermittent sales. In general, there are a variety of ways 

to forecasting sales, including exponential smoothing. However, in order to use these 

methods, we require previous data. Because there is no information about the history 

at  outset, we must make an educated guess based on previous circumstances or 

engineer experience. We have a lot of ambiguity in this case, but it will pass with 

time. 

 

For most businesses, controlling sales is difficult due to  difficulties of 

effectively projecting future consumer needs. Poor forecasting accuracy & sales 

volatility are developing important obstacles to supply chain flexibility, according to 

more than 74 percent of respondents in research survey. The most successful firms 

improve supply chain flexibility,agility, & responsiveness by enhancing forecasting 

accuracy across  whole supply chain. 
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Forecasting must be linked to improvement goals, & historical performance must be used to 

avoid past errors & achieve a high level of efficiency. 

 

Researchers have done a lot of work in  forecasting arena & proposed a lot of methods, but 

two of  most popular are time series approaches & artificial neural network (ANN) 

techniques. ANN models have had great success with forecasting sales.The se models are 

characterised by sales intervals with significant variety. When it comes to  ability to capture 

nonlinearity in data sets,  ANN technique is considered an alternative. ANN is used in 

various fields. For  scenario of deterministic time-varying sales, Gaafar & Choueiki 

used neural network model to solve a lot-sizing problem as part of material 

requirements planning. 

 
                                                          
1.3 OBJECTIVE: 

 
The main goal of this project is to forecast  sales of  shampoo firm using  company's prior 

sales data. ARIMA model & Box-Jenkins time series are used to forecast. 

1.4 METHODOLOGY: 
 

The technique we employed in this project was Machine Learning (ML), which is  

study of computer systems that improve themselves over time. Artificial intelligence is 

associated with it. Machine learning algorithms create a model based on training data 

to make predictions or judgments without being specifically trained to do so. Python is 

an interpreted high-level general-purpose programming language that we employed 

here. 

Time series properties  

A time series is  chronologically ordered sequence of data points at evenly spaced 

moments in time. Non-stationarity, autocorrelation, & seasonality are three 

characteristics of time series.  

 

Non-stationarity  

The time series must be stationary for ARIMA modelling to work. A stationary series 

has three characteristics:  constant mean, constant variance, & constant covariance  i.e 

independent of  time interval between values. A stationary series (sometimes known as  
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"white noise process") is easier to analyse since it has fewer parameters to model. 

While it fluctuates, it always returns to  consistent mean, making it easier to predict. 

The first is changing variance with time (heteroscedasticity), which may easily be 

addressed by using  log trans formation;  second is an increasing or declining trend, 

which can often be avoided by taking  first difference (i.e. Yt Yt  

1). A second differencing may be necessary to establish stationarity on rare occasions, 

although third order differencing & above is uncommon. To be precise,  definition 

above applies to a weakly stationary series. If  prob ablity distribution of a sequence of 

observations is unaltered by time changes,  time series is deemed strictly stable. 

Strictly stationary series are uncommon, thus weak stationarity is generally assumed. 

 

Autocorrelation 

Time series observations are frequently associated with data from prior time points, & 

thus are not dispersed randomly. Autocorrelation or serial correlation is  name given to 

this type of correlation. Time series with autocorrelation do not meet normal regression 

analysis assumptions, as previously stated. Because autocorrelated data are rarely 

steady, differencing  data frequently enough to re-move autocorrelation is necessary 

before testing for autocorrelation. Stationarity & autocorrelation can be checked using 

autocorrelation functions (ACFs). An ACF depicts  correlation between each 

observation & previous values at different lags, where a lag is  number of time points 

between two observations The partial ACF (PACF), which is the correlation between 

an observation & historical values  i.e not explained by correlations at lower order lags, 

is a companion to  ACF. For example, after adjusting for  correlation between Yt & Yt 

3, Yt 2, & Yt 1,  PACF value at lag 4 is the correlation between an observation (Yt) &  

prior observation at lag 4 (Yt 4). The autocorrelation in  ACF plot should decrease 

quickly for  stationary series; the ACF will decay slowly for a non-stationary series. 

 

Seasonality  
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Seasonality refers to changes in a definite or recognised frequency that occur at regular 

intervals, such as time of year or week. Seasonality is widespread in health data time 

series, & it can be caused by natural factors like weather patterns or 

business/administrative processes like weekend or holiday effects. Antibiotic 

prescriptions & influenza hospitalizations, for example, are more common in  winter 

[11, 12]. Furthermore, due to financial incentives to stockpile pharmaceuticals, 

medicine dispensings are highest near  end of a calendar or financial year in several 

countries [13, 14]. Seasonality will vary depending on  series' unit of time; for 

example, seasonality is uncommon in time series measured in years intervals. With 

seasonal monthly data,  ACF plot will almost certainly show strong autocorrelation at 

lag 12. Seasonality is commonly handled in ARIMA models by taking  seasonal 

difference. You take  difference between each observation &  previous value at lag 12 

(Yt Yt 12) using monthly data. You'd use lag 4 for quarterly data. The  first 12 

observations are lost when calculating  seasonal difference for monthly data since  

seasonal difference cannot be calculated for those observations. This is critical to 

remember: if your data is seasonal, you'll need additional time points in your series to 

adequately adjust for seasonal impacts. 

Components of ARIMA models  

 

ARIMA models feature  single dependent variable (Yt), which is  function of previous 

Y values as well as  error term (t). ARIMA models may accommodate any continuous 

output (such as rates or means) as well as high counts that are not bounded by zero 

because they assume mistakes are normally distributed. While ARIMA cannot be 

utilised with small counts that follow a Poisson distribution, generalised linear models 

have been used to model serially correlated count data in recent years. We introduce  

essential components before moving on to comprehensive ARIMA models.. 

1. Autoregressive (AR) model: one or more lagged values of Yt predict Yt. This 

is expressed by  equation below, in where c is a constant, is  autocorrelation 

magnitude, p is  number of lags, & t is  error. 
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2. Model of average (MA): One or more lagged values of  error (t) are used to 

predict Yt. This is not  same as moving average smoothing. q is  number of 

lags, & is  value of  autocorrelation of  mistakes in  equation below. 

 

3. Seasonal model: Lagged Yt readings at regular intervals s are used to predict 

Yt (the season). The autocorrelation value is &  seasonality is in  equation 

below (e.g. 52 for weekly, 12 for monthly, 4 for quarterly). Differentiation, as 

well as autoregressive &/or moving average components, are frequently 

required in seasonal models.  

4. Differencing (Integration): To achieve meaningful predictions in an ARIMA 

model,  time series being modelled must be stationary. Differentiating, or 

calculating  difference between adjacent data, causes stationarity.

 

An ARIMA model is a hybrid of an AR, MA, & differencing models (Integration). 

If = 0, then  time series is a white noise process given as Yt = c + t, where c is a 

constant. (p, d, q), where p, d, & q are positive integers, is  basic notation for 

defining a non-seasonal ARIMA model: 

 

p = the AR component of the model's order; 

d = non-seasonal differencing degree; &  

q = the MA portion of  model's order. 
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A white noise (stationary) model ARIMA, for example (0, 0, 0). ARIMA(p, 0, 0) 

for an AR model, & ARIMA(q, 0, 0) for an MA model (0, 0, q)  If seasonality 

exists,  ARIMA model is written as (p, d, q)(P, D, Q)S. P & Q are  AR & MA 

terms for the seasonal component, & D is the degree of seasonal differencing. 

 

Using ARIMA to evaluate interventions 

 

When used to evaluate interventions,  goal of ITS analysis is to estimate  influence 

of  intervention's implementation on a specific outcome, or  "intervention effect." 

While there are many different sorts of impacts that can be noticed, we'll focus on 

three of  most common: step change, pulse, & ramp. These can be summarised as 

follows if we use T0 to denote  intervention's start time:Step change (also called  

level shift): A sudden, sustained change where  time series shifted either up or 

down by  given value immediately following  intervention. The step change 

variable takes  value of 0 prior to  start of the intervention, & 1 afterwards. 

                    

 Pulse: A sudden, temporary change  i.e observed for one or more time points 

immediately after  intervention & then returns to baseline level. The pulse 

variable takes  value of 1 on the date of the intervention, & 0 otherwise. 
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 Ramp: A change in slope that occurs immediately after the intervention. The 

ramp variable takes the value of 0 prior to the start of the intervention & 

increases by 1 after the date of the intervention. 

   

The shape of the intervention's impact should ideally be predicted ahead of time. The 

form is determined by a number of criteria, including the type of intervention, such as 

whether it is temporary or ongoing, & the specific outcome being measured. For 

example, in  2015 study, we looked at the infuence of unfavourable media surrounding 

statin medicine useand discovered that this transient event led in both a momentary rise 

in statin discontinuance (a "pulse") & a sustained decrease in statin dispensing (a "step 

changeLong-term effects are more likely with ongoing or permanent actions, such as 

tighter restrictions on medicine prescribing or the introduction of plain packaging on 

cigarette products, however these can be immediate or gradual (a "ramp"). For some 

interventions,  combination of impact factors best represents the change; for example, 

it is usual to have both  step change &  change in slope (ramp). If there are several 

viable models, the Akaike information criterion (AIC) &/or the Bayesian information 

criterion (BIC) can be used to choose the best combination of effect variables It's also 

vital to evaluate whether changes will occur before the intervention is implemented; 

for example, when it was reported that prescribing of alprazo lam would be restricted 

in Australia, prescribing of this medicine began to decline in anticipation of this 

change. Finally, the influence may be suspected of being delayed by one or more time 

units in some circumstances. To avoid spurious associations, we recommend pre-

determining  fair period of time in which the influence should be noticed based on 

subject knowledge or past study. Within this range of alternatives, the most appropriate 

delay can be identified during the modelling stage ARIMA forecasts Yt in the absence 

of the intervention (the "counterfactual") in ITS analysis & assesses how the observed 

differs from this forecast. Unlike segmented regression, the ARIMA model does not 

require time or seasonal dummy variables since ARIMA can eliminate trends & 
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seasonality through differencing. The pre- & post-intervention trends cannot be 

estimated from the model if the trend is abolished via differencing. If estimation of the 

pre- &/or post-intervention slope is desired, time can be included as a covariate, & AR 

& MA terms can be used to account for autocorrelation (e.g. ARMA models). 

 

Fitting an ARIMA model  

 

The ARIMA model's parameters are determined in the next phase. The Box 

Jenkins technique, which involves model identification & selection, parameter 

estimation, & model checking, is a popular methodology. Automated algorithms in 

statistical packages (such as R) now make the procedure easier by identifying the 

best-fitting ARIMA model based on the information criteria (AIC, BIC). However, 

as shown in Fig. 1, we also detail the manual process.Plot data to understand 

patterns:  

 

 

 

Before proceeding to model fitting, plot the time series to understand the patterns, 

specifically pre-existing trends, seasonal effects, & extreme or outlier values. If 

outliers are present, how to deal with will depend on their cause & influence on the 

model & the recommendations are the same for ARIMA as for other regression 

models. For instance, if the researchers are aware that these extreme values are due to 

external factors, such as other interventions or known misclassification, these should 

be explicitly modelled in the data.   

 Transform data to stabilise variance (if necessary).  

If the variance is changing over time,  log-transformation should be applied.  
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 Model selection: While automated algorithms in several statistical packages can 

identify candidate p & q parameters, they can sometimes be estimated based on the 

ACF/PACF plots.  

a. Determine differencing order to induce stationarity: 

 A first order difference is required if there is  trend, & d = 1. If 

there is seasonality, there must be a seasonal difference, & D = 1. 

The ACF plot or unit-root tests (such as the Dickey-Fuller test) can 

also be used to determine whether the time series is stationary & 

whether differencing is necessary. The d & D terms in the model 

may usually be prespecified in most automated techniques. 

b. Plot the ACF/PACF of stationarity data to determine potential 

AR/MA orders: 

 

Determine which AR (p/P) or MA (q/Q) orders are required to adjust 

for lingering autocorrelation after the time series has been 

transformed &/or differencing. AR terms are usually required if the 

stationary series has positive autocorrelation at lag 1. If the 

autocorrelation at lag 1 is negative, the model may require MA terms. 

Models usually just require AR or MA terms, & very rarely both. 

However, this is not always the case. Table 1 provides suggestions for 

choosing the best AR & MA phrases. 

Estimate model & use information criteria to find the best model: 

Estimate your model using the previously determined p, d, q, P, D, & 

Q variables, & apply information criteria (AIC, BIC) to assist you 

find the best model. If words were chosen using an automated 

method, it should be treated as a tool only, as it does not ensure  well-

fitting model. 

 Check if residuals of chosen model are white noise.  
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This can be done by looking at residual plots & using the Ljung-Box test for white 

noise to formally test for the presence of autocorrelation. Choose other AR &/or 

MA orders if autocorrelation is still present in the residuals or your model is 

otherwise a poor fit. Non-normally distributed residuals may benefit from a 

transformation if the data have not been modified previously. Generally, 

identifying the AR & MA words is an iterative, trial-and-error process. There may 

not be a single "correct" model. The goal is to find the best cost-effective model 

(lowest p/P & q/Q) with a good fit & acceptable autocorrelation & sea sonality 

controls. The intervention impact can be calculated once the final ARIMA model 

has been chosen estimated. 

 

 Transfer functions  

Another advantage of ARIMA models is their ability to model more complicated 

affects via "transfer functions" beyond the basic intervention impact shapes. The 

relationship between the intervention & the outcome series Yt is described by 

transfer functions. They can add lagged effects & vary the relationship between the 

above inputs (step change, pulse, ramp) & the time series to mimic more complex 

relationships, such as progressive level shifts or a pulse that decays gradually over 

time. 

The general form of a transfer function 𝜔(𝐵)
𝛿(𝐵)

 , or: 

               

Bp Yt = Yt p, where B is the backshift operator. 0 denotes the initial value for the 

intervention's influence at the moment of intervention (T), is the decay rate, & Xt is 

the intervention variable in the transfer function (step change, pulse, or ramp). The 

researcher must specify the values of h & r; h indicates when the effect occurs, 

while r represents the decline pattern. Model fit statistics (such as AIC & BIC) can 

aid in determining the best shape for the transfer function as well as the event's 
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timing (i.e. if the impact was delayed & if so by how much). Table 2 describes the 

most common scenarios, using the intervention indicator variables described 

above, & where h = 0, & r = 0 or r = 1. The use of transfer functions is a complex 

topic, & several texts cover them in more detail 
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Incorporation of a control series  
 

Because ITS cannot rule out the potential that any observed change was caused by the 

intervention of interest or another co-intervention or event, using a control series in the 

analysis improves causal inference. A control series is one  i.e unaffected by the 

intervention; the process of selecting an appropriate control is discussed elsewhere [3]. 

Including a control series, as ITS in segmented regression, requires running an ARIMA 

model for the series of interest & separately for the control series [17]. If there is a 

change in the intervention series but not the control series, this indicates that the 

impact was unique to the intervention.  

 

Sample size requirements  

 

There is no precise guideline on the number of time points needed to apply ARIMA 

modelling. The commonly reported estimate of a minimum of 50 time points is based 

on a statement by Box & Jenkins [23], although it lacks empirical support & has not 

been rigorously evaluated. A one-size-fits-all strategy is, in reality, simple. More 

observations will be required to identify the underlying patterns from the noise as the 

data becomes more varied & noisy. ARIMA can handle short time series satisfactorily 

in simple circumstances, as long as there are enough time points to estimate all 

parameters [26]. There should be enough time points in the presence of seasonality to 

identify seasonal impacts & account for seasonal differences. 
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CHAPTER-2 

 

LITERATURE SURVEY 

 
 

Forecasting sales are becoming increasingly important in today's organisations, 

which are subject to abrupt & enormous changes that affect even the most established 

of 2 International Journal of Engineering Business Management structures, & where all 

requirements of the business sector require accurate & practical readings into the 

future. A forecast is a science that involves predicting the level of particular variables 

in the future. The variable in question is usually sales, although it might also be supply 

or pricing. Forecasting is the process of producing predictions about the future values 

of the variables being researched. 

Forecasting sales is one of the most important challenges in inventory 

management in manufacturing, & it can be employed in a variety of operational 

planning tasks during the production process, including capacity planning & 

used-product acquisition management. 

 

Sales forecasts are considered the foundation of supply chain planning for both 

forms of "push/pull" supply chain activities. The supply chain's pull activities 

are implemented in response to customer sales, whereas all push processes are 

implemented in anticipation of client purchases. 
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Such variables must be considered before a corporation chooses a proper 

forcasting methodology, as choosing a methodology is not as straightforward as 

it appears. There are four different sorts of forecasting methods: qualitative, 

time series, causal, & simulation. 

 

A time series is a collection of observations organised in chronological order. 

 

To forecast sales, time series forecasting models use mathematical 

methodologies based on previous data. 

 

It is based on the premise that the future is an extension of the past; thus, 

historical data may be used to forecast future sales. 

 Many studies about sales forcasting by time series analysis have been done in 

several domains. They encircle sales forcasting for shampoo product 

sales,tourism,maintenance repair parts,electricity, automobile,and some other 

products & services. By time series analysis, the forcasting accuracies depend 

on the characteristics of time series of sales. If the transition curves show 

stability & periodicity, we will reach high forcasting accuracies, whereas we 

can’t expect high accuracies if the curves contain highly irregular patterns. 

  

Yule & Wold's contributions to developing a viable technique to performing ARIMA models 

were the foundation for Box & Jenkins. Model identification, parameter estimates, & 

diagnostic checking are all iterative processes in the Box–Jenkins principle. If a time series is 

created from an ARIMA process, it should have some theoretical autocorrelation qualities, 

according to the principle rule for identifying the model. We can find one or more plausible 

models for a given time series by matching the theoretical & empirical autocorrelation 

characteristics. Box & Jenkins recommended using the sample data's autocorrelation function 

(ACF) & partial autocorrelation function (PACF) as basic tools for determining the ARIMA 

model's order In terms of the identification step, we need to create a stationary time series, 

which is a need for finding the ARIMA model, hence data modification is required. A 

stationary time series' statistical features, such as the mean & autocorrelation structure, remain 



19 

 

unchanged over time. Before fitting an ARIMA model, we normally need to eliminate the 

trend & stabilise the variance using differencing & power transformation. After that, 

calculating the model parameters & specifying the model becomes simple. These parameters 

are estimated in order to minimise the overall inaccuracy. Finally, we perform diagnostic 

model adequacy checks. 

In this final stage, we confirm that our theory regarding the errors is correct. Diagnostic 

statistics & residual plots can be used to evaluate the suitability of future values for our data. If 

the model is inadequate, we must perform further parameter estimations before validating the 

model. Diagnostic data can assist us in developing new models. The Box–Jenkins model is a 

method that should be followed & repeated until the model is highly satisfied & errors are 

minimised. As a result, we can use this model to forecast our variable with ease. Researchers 

agree that parameter estimation necessitates a large number of observations. As a result, the 

ARIMA model has several limitations. Nevertheless, once we apply ARIMA model, we reach 

a high quality in the opposite of the time series models. 

 

 

2.1 BOX-JENKINS MODEL 

 

 The Box-Jenkins Model is a mathematical model that uses inputs from a time series to 

forecast data ranges. The Box-Jenkins Model can be used to forecast numerous distinct forms 

of time series data. 

Its approach of determining outcomes is based on disparities between data points. The 

methodology allows the model to recognise patterns & create forecasts utilising 

autoregresssion, moving & seasonal differencing. 

A type of Box-Jenkins model is the autoregressive integrated moving average (ARIMA). 

ARIMA & Box-Jenkins are terms that are occasionally used interchangeably. 
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Box-Jenkins models are used to forecast a wide range of expected data points or data ranges, 

such as company data & future security prices. 

George Box & Gwilym Jenkins, two mathematicians, developed the Box-Jenkins Model. In a 

1970 publication titled "Time Series Analysis: Forecasting & Control," the two 

mathematicians outlined the concepts that make up this paradigm. 

The Box-Jenkins Model's parameters can be extremely difficult to estimate. As with other 

time-series regression models, the best results will almost always be obtained by using 

programmable software. The Box-Jenkins Model is also best for forecasting for periods of 18 

months or less. 

When using programmed forcasting software, the Box-Jenkins Model may be one of several 

time series analysis models that a forcaster will encounter. The software will be built to apply 

the best suitable forcasting methodology depending on the time series data to be forecasted in 

many circumstances. For data sets that are mainly stable & have little volatility, Box-Jenkins 

is said to be a great pick. 

The Box-Jenkins Model uses three principles to forecast data: autoregression, differencing, & 

moving average. These three principles are referred to as p, d, & q. Each principle employed 

in the Box-Jenkins analysis is represented individually as ARIMA (p, d, q). 

The autoregression (p) process determines whether the data is stationary. It can make the 

forecasting process easier if the data is static. If the data isn't stationary, it'll have to be 

differentiated (d). The data was also examined for its ability to fit a moving average (which is 



21 

 

done in part q of the analysis process). Overall, the data is prepared for forecasting by 

establishing the parameters (p, d, & q), which are then used to create a forecast. 

Autocorrelation Function  

We can make simple claims regarding the correlation between two subsequent values, Xt & 

Xt+k, using the stationary assumption. The autocorrelation of lag k of the series is the name 

given to this correlation. The autocorrelation function plots the autocorrelation of successive 

values of k on the horizontal axis on the vertical axis. The autocorrelation function of sunspot 

data is depicted in the diagram below. 
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The ARMA Model  
 

The ARMA (autoregressive, moving average) model defined as follows: 
 

 
 

  
The a's are a series of unknown random errors (or residuals) that are expected to follow 

the normal probability distribution. Box- Jenkins makes writing these models easy by using 

the backshift operator. The backshift operator, B, changes the time period t to the time period 

t-1. As a result, BXt = Xt1 & B Xt Xt 2 = 2. The aforementioned model could be written in 

this backshift notation. rewritten as: 
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This may be abreviated even further by writing: 

 

 

 
 

These formulas show that the operators φ p (B) & θ q (B) are polynomials in B of 

orders p & q respectively. One of the benefits of writing models in this fashion that we can see 

why several models may be equivalent. For example, consider the model 

 

 

 
 

 

   
 

Notice that the polynomial on the left may be factored, so that we can rewrite the 

model as 
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Finally, canceling the (1 - 0.3B) from both sides leaves the simpler, but equivalent, 

model 

 

     

      
 
 Please keep in mind that this is a much simpler model! Experienced Box-Jenkins 

forcasters employ this type of model rearrangement to get the simplest models feasible. The 

roots of the two polynomials, p (B) & q (B), are displayed in the Theoretical ARIMA 

programme, allowing you to see various model simplifications. 

 

Nonstationary Models  

 

Nonstationary behaviour is seen in many time series in practise. Nonstationarity is 

usually caused by a trend, a shift in the local mean, or seasonal variation. We must 

make certain adjustments before we can model these nonstationary series because the 

Box-Jenkins approach is only for stationary models. To convert a nonstationary series 

with trend to a stationary series (without trend), we utilise one of two methods: 

 

1. Use Wt = Xt Xt1 as the first difference in the series. It's worth noting that Wt = 

(B)Xt 1 can be rewritten. This equation in a more general form: 

  

 



25 

 

 
where d is the differencing order The ARIMA(p,d,q) model is used to describe this. 2. Fit the 

residuals to a least squares trend & the Box-Jenkins model. First differences will result in a 

stationary model if the model has an infrequent change of mean. 

 

 
Seasonal Time Series  
 

To deal with series containing seasonal fluctuations, Box-Jenkins recommend the 

following general model: 

 

 
where d the order of differencing, s the number of seasons per year, & D the order of 

seasonal differencing. The operator polynomials are 
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 Note that (1− B ) X = X − X − s t t t s . Box-Jenkins explain that the maximum value 

of d, D, p, q, P, & Q is two. Hence, these operator polynomials are usually simple expressions. 

 

 

 

 

 

 
Partial Autocorrelation Function  
 

The autocorrelation function, which reveals the correlations between different lags of a 

series, was previously addressed. A second function, the Partial Autocorrelation 

Function, expresses information useful in establishing the order of an ARIMA model. 

This function was created by calculating the partial correlation between Xt & Xt1, Xt 

& Xt2, & so on, while statistically compensating for intermediate lags. For example, 

after statistically removing the influence of Xt1, Xt2, & Xt3 from both Xt & Xt4, the 

partial autocorrelation of lag four is the partial correlation between Xt & Xt4. The lag 

of the latest large partial autocorrelation is used to calculate the autoregressive order, p. 
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Consider the case when the partial autocorrelations were 

 

 
 

We would conclude that a reasonable value for p is four, since the partial 

autocorrelations are relatively small after the fourth lag 

 

 

 

The Box-Jenkins method refers to the iterative application of the following three steps:  

 

1.Identification. A class of basic ARIMA models was chosen based on data plots, 

autocorrelations, partial autocorrelations, & other information. This entails estimating 

acceptable p, d, & q values. 

 

2.Estimation. Maximum likelihood approaches, backcasting, & other methods are used 

to estimate the phis & thetas of the chosen model, as discussed in Box-Jenkins (1976). 

 

 

 

3.Confirming the diagnosis The residual series' autocorrelations were used to check for 

flaws in the fitted model (the series of residual, or error, values). 
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These steps are repeated repeatedly until the model does not improve after step three. 

We'll go through each step in detail now. 

 

Model Identification 

 

Assuming that there is no seasonal variation, the model identification step's goal is to 

choose values for d, then p, & finally q in the ARIMA(p,d,q) model. We can either fit 

& eliminate a deterministic trend or difference the series when it shows a trend. 

Differentiating appears to be preferred by Box-Jenkins, although deterministic trend 

elimination is preferred by numerous other writers. In any scenario, the initial step is to 

examine the plots of autocorrelations & partial autocorrelations. A trending series will 

have autocorrelation patterns that look like this. 

. 

 
 

 

 

 

We notice that the large autocorrelations persist even after several lags. This indicates 

that either a trend should be removed or that the series should be differenced. The next 

step would be to difference the series. 
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Differencing generally significantly lowers the amount of big autocorrelations. If the 

differenced series does not appear to be stationary, we will have to difference it once 

more. The size of a big autocorrelation & partial autocorrelation coefficient is 

frequently beneficial. To be statistically significant, an autocorrelation must be at least 

2 / N in absolute value. The table below shows several frequent significant 

autocorrelation values for various sample sizes. Even if an autocorrelation is 

statistically significant, it might not be substantial enough to cause concern. 
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 By considering the patterns of the autocorrelations & the partial autocorrelations, we 

can guess a reasonable model for the data. The following chart shows the autocorrelation 

patterns that are produced by various types of ARMA models. 

 

 

 
The identification phase determines the values of d (differencing), p (autoregressive order), & 

q (moving average order). By studying the two autocorrelation plots, you estimate these 

values. 

 

Differencing  

The autocorrelation plots are used to measure the amount of differencing. The suitable value of d has 

been established when the autocorrelations die off soon. 

 

p's value 

The partial autocorrelations of the correctly differenced series were used to calculate the value of p. 

The projected value of p would be the final lag with a big value if the partial autocorrelations broke off 

after a few lags. You have a moving average model (p=0) or an ARIMA model with positive p & q if 

the partial autocorrelations do not cut off. 
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q's value 

The autocorrelations of the correctly differenced series yielded the value of q. 

 If the autocorrelations cut off after a few lags, the last lag with a large value would be the estimated 

value of q. If the autocorrelations do not cut off, you either have an autoregressive model (q=0) or an 

ARIMA model with a positive p & q.  

 

Mixed Model  

 

A mixed model was suggested when neither the autocorrelations nor the partial autocorrelations cut 

off. After the first q-p delays, the autocorrelation function in an ARIMA(p,d,q) model will be a mixture 

of exponential decay & damped sine waves. After p-q delays, the partial autocorrelation function has 

the same pattern. You might be able to figure out p & q by looking at the first few correlations in each 

graphic. 

 

Directly finding the values of p & q in mixed models has proven problematic in our experience. 

Instead, we employ a trial-and-error method in which we fit more complicated models until the 

residuals reveal no more structure (large autocorrelations). Typically, we fit an ARIMA(1,d,0), an 

ARIMA(2,d,1), & an ARMA(1,d,1) (4,3). ). We'd go with the simplest model that matched us quite 

well. (We normally start with the ARIMA(2,d,1) because it frequently works well.) A seasonal series is 

far more difficult to identify. Box-Jenkins describes model identification procedures, however to 

effectively identify the model order, the user must be extremely knowledgeable & experienced. We've 

discovered that trial & error is frequently required. Typically, you want to limit the number of 

parameters to a minimum, so the values you choose for p, P, q, Q, d, & D should be fewer than or 

equal to two. The identification stage, as you can see, is subjective. 

One of the most common criticisms of the Box-Jenkins approach is that, although using the same 

software, two trained forcasters will come at different forcasting models. As we have demonstrated, 

models that appear to be extremely different on the surface are often surprisingly similar.  

 

Model Estimation & Diagnostic Checking  

 

Maximum Likelihood Estimation  

 

You're ready to estimate the phis & thetas once you've calculated the values of p, d, & q. This 

software follows the Box-Jenkins maximum likelihood estimation technique (1976). Nonlinear 
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function maximization is used to solve the greatest likelihood problem. Estimates of the 

original residuals are obtained through backcasting. Because the estimating procedure is 

calculation-intensive & iterative, obtaining a solution might take a few seconds. 

 

 

 Diagnostic Checking 

 

The diagnostic examination of the model comes after it has been fitted. The verification is 

done by looking at the residual autocorrelation plots to determine whether there is any 

additional structure (high correlation values). The model is deemed acceptable & forecasts are 

created if all autocorrelations & partial autocorrelations are modest. The values of p &/or q are 

modified & the model is re-estimated if some of the autocorrelations are high. 

 

This procedure of reviewing the residuals & modifying the p & q values continues until the 

residuals have no more structure. The application may be used to create forecasts & related 

probability limitations after an appropriate model has been chosen. 
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CHAPTER -3 

SYSTEM  DEVELOPMENT 

 

3.1 Data Formatting  

 

Data from a shampoo manufacturer was gathered through a Kaggle sales forecasting competition. To 

examine how the data was formatted. Since the data comes from the shampoo firm, rather than just one 

store, there is sales data from numerous outlets throughout a three-year period. Holiday data was not 

included. The dataset contains almost 4,000 goods; however, the 10 most popular products were 

utilized to analyze the models for simplicity. For each of the most common goods, there were over 80 

000 rows of data. All sales from each retailer were totalled up for each date for each unique product to 

form a time-series. Furthermore, only the sales parameter was used as a feature in the models. The data 

can be expressed as [s0, ..., st ] where s the sales for a product & the subscript denotes which day, t the 

total amount of days logged. To be able to utilize the data for training, it had to be split up into time 

windows as follows: 
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Where d is the amount of prior time steps that the model considers while predicting p future 

time steps. Each row's first d columns are utilized for training, while the remaining columns are 

labeled for each matching row. 

 

 
3.2 Model implementations  
 

3.2.1 Baseline model  

 

A naïve forcasting method was used to create one baseline model. The model basically 

examines each value in the time series & forecasts the same value for the next time step. The baseline 

model basically determines if the ARIMA & LSTM models can forecast more accurately than a naïve 

forcasting technique.  

 

3.2.2 LSTM-implementations  

 

Following the two cases previously described, two LSTM models were implemented. LSTM1 & 

LSTM7 are two models that anticipate one & seven days ahead, respectively. One projected only one 

day ahead, while the other anticipated the next seven days. Keras, a Python library, was used to 

implement both models. Both models used 80% of the data as training data, while the remaining 20% 

was used as the test set. The information was also standardized & divided.. 
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Model summary (Figure 3): The layers & input/output-shapes in the network are depicted in the 

diagram. The greatest results were obtained when only one LSTMlayer was used. The left model 

depicts the structure of LSTM1, whereas the right model depicts LSTM7, as evidenced by the last 

output layer. 

 
3.2.3ARIMA-implementation 

 

The statsmodel library was used in Python for the ARIMA implementation. Similarly to the LSTM-

model, 80% of the data was utilized for training & 20% for testing. The lag-order was set to 7 days, 

same as the previous days in the LSTM-model for each prediction, the degree of differencing was set 

to 1, & the moving average was set to 0. Both forecast scenarios employed the same model. 

 

3.2.4 Hyperparameters 

 

A grid search was used to determine which variables to utilize as hyperparameters - the values that 

personalize the models. Grid search is a well-known method for improving hyperparameters in 

machine learning models. [24] It's a type of exhaustive search in which a huge number of 

hyperparameters are examined & the ones that produce the best results are incorporated in the final 
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model. Because the MAE- & RMSE error measurements were both used in this test, the analysis had to 

take both into account when determining the best values. As a consequence, the best 10 RMSE & 

MAE results were picked & compared. The following values were chosen using the grid search:  

LSTM1 parameter values The factors that affect the training include sequence length, which 

determines how long the LSTM technique should recall information, dropout, which prevents 

overfitting, & parameters that influence the training, as shown in table 3.1. 
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3.3 EVALUATION MERSURES 

 

Two separate assessment measures were utilized to compare the performance of LSTM & 

ARIMA: mean absolute error (MAE) & root mean square error (RMSE) (RMSE). Lower 

values for both metrics indicate more precision. RMSE & MAE may be defined as follows, 

with Ft as the forecast value (prediction), At as the actual value, & n as the number of time 

steps: 

 
 

 

 
Previous research ([25], [26]) has utilized the assessment metrics to assess the prediction 

performance of several models, including LSTM & ARIMA [10], [20], suggesting that they 

are valid. 

3.4 T-TEST 
 

Four t-tests were used to confirm the findings. The t-test [23] was used to compare the means of two 

populations, in this case the LSTM & ARIMA models. For each prediction model, a t-test was run for 

both the 1-dayahead & 7-dayahead forecast scenarios. H0 was that the LSTM model has a lower 

prediction error than the ARIMA model, while Ha was that the LSTM model has a prediction error  i.e 

equal to or larger than the ARIMA model. The same 10 goods were used to generate data for each t-

test. Table 3.4 shows the null hypothesis for each of the four t-tests performed.. 
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CHAPTER 4 

PERFORMANCE ANALYSIS 

Over a three-year period, this dataset depicts the monthly number of shampoo sales. 

There are 36 observations & the units represent a sales count. Makridakis, Wheelwright, & 

Hyndman are the authors of the original dataset (1998). 

Using Pandas to import the Shampoo Sales information & a custom function to parse the date-

time field. The dataset is fixed to a certain year, in this example 1900. 
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This indicates that the time series is not stationary & will require differencing (at least a 

difference order of 1) to make it stationary. 

Let's take a brief glance at the time series' autocorrelation plot. Pandas have this as well. The 

autocorrelation for a high number of lags in the time series is plotted in the example below. 
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Fitting an ARIMA model is possible with the statsmodels package. 

The statsmodels package may be used to generate an ARIMA model as follows: 

Call ARIMA() & pass in the p, d, & q parameters to define the model. 

 

The fit() method was used to prepare the model on the training data. 

 

Call the predict() method & give the index of the time or times to be forecasted to make 

predictions. 

 

Let's start with something straightforward. We'll run the whole Shampoo Sales dataset through 

an ARIMA model & look at the residual errors. 

 

We started by fitting an ARIMA(5,1,0) model. The lag value for autoregression is set to 5, the 

difference order is set to 1 & time stationary. 
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Rolling Forcast ARIMA Model 

 

Future time steps can be predicted using the ARIMA model. 

To produce predictions, we may utilize the predict() function on the ARIMAResults object. It 

accepts the index of the time steps as arguments for making predictions. These indices refer to 

the beginning of the training dataset that was used to create predictions. 

The index of the next time step for generating a prediction would be supplied to the prediction 

function as start=101, end=101 if we utilized 100 observations in the training dataset to fit the 

model. This would produce an array with the prediction as the first entry. 

 

In the event that we conducted any differencing (d>0 when configuring the model), we'd also 

want the projected values to remain in the original scale. 

Alternatively, we may use the forcast() method to generate a one-step forecast using the 

model, avoiding all of these parameters. 

We can divide the training dataset into train & test sets, fit the model with the train set, then 

create predictions for each element on the test set using the train set. 

Given the AR model's reliance on data from previous time steps, a rolling forecast is 

necessary. Re-creating the ARIMA model after each new observation received is a 

rudimentary technique to do this rolling forecast. 

 

We manually maintain track of all observations in a history list, which is seeded with the 

training data & to which additional observations are added each cycle. 
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We can also calculate a final root mean squared error score (RMSE) for the predictions, 

providing a point of comparison for other ARIMA configurations. 
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 Configuring an ARIMA Model 

The Box-Jenkins Methodology is the traditional approach for fitting an ARIMA model. 

This is a method for finding suitable ARIMA model parameters using time series analysis & 

diagnostics. 

Model recognition. To estimate the amount of differencing & the magnitude of the lag that 

will be required, use plots & summary statistics to detect trends, seasonality, & autoregression 

features. 
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Estimation of parameters. To get the regression model's coefficients, use a fitting process. 

 

 

 

Model verification. Determine the quantity & kind of temporal structure not represented by the 

model using graphs & statistical tests of residual errors. 

 

The technique was repeated until the in-sample or out-of-sample observations had a 

satisfactory degree of fit (e.g. training or test datasets). 

The procedure was outlined in George Box & Gwilym Jenkins' renowned 1970 textbook Time 

Series & Analyis: Forecasting & Control. If you're interested in learning more about this 

concept & technique, a new 5th edition is now available. 

Grid searching parameters of the model can be a useful strategy since the model can be fit 

effectively on small time series datasets.. 
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CHAPTER 5 

 

CONCLUSION 
 

 

We can plainly see that the model chosen can be used to model & forecast future sales in this 

shampoo manufacturing, but we must continually fill the historical data with fresh data in 

order to enhance the new model & forecasting. The projections provided through modeling 

helped this shampoo manufacturer make production decisions. In reality, the model allowed us 

to accurately estimate sales & make projections. Once we have a sales prediction, it will be 

much easier & clearer to design the appropriate production & therefore avoid large cost losses. 

This will assist us in making the best selections about raw material supply & daily production 

determination. Moreover, that will affect the whole production process eliminating then any 

kind of loss.. 

 

Forecasting sales is an important aspect of supply chain management. Because of its 

connection with other business operations, it is one of the most significant planning 

procedures a company may use in the future. Using the Box– Jenkins time series technique, 

we developed an ARIMA model to simulate the sales forecasting of the completed product in 

a shampoo manufacturing. Several models were developed using historical sales data, & the 

best one was chosen based on four performance criteria: SBC, AIC, standard error, & 

maximum likelihood. ARIMA is the model that we choose to minimize the four prior criteria 

(1, 0, 1). 

 

The acquired findings demonstrate that this model may be utilized to predict & anticipate 

future sales in this shampoo production; these results will give managers with trustworthy 

decision-making recommendations. We will continue to create new models that combine 

qualitative & quantitative methodologies to make credible forecasts & improve forecast 

accuracy in the future. In order to confirm the ANN's strength in the shampoo industry, we 

will also test a neural network technique & compare it to ARIMA's findings. 
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In terms of both RMSE & MAE, the findings of total difference in error demonstrate that the 

LSTM-model appeared to have superior prediction accuracy than the ARIMA-model. The 

difference between the models in the one-day-ahead prediction scenario is not statistically 

significant, according to the t-test. The t-test only shows that the LSTM model is more 

accurate than the ARIMA model in the seven-days-ahead prediction scenario. Given that 

ARIMA is a commonly used state-of-the-art model, the LSTM-network displays promising 

results for sales prediction in the seven-days-ahead scenario, & is therefore considered to be a 

model that can compete with ARIMA. 

 

 

5.1 Further Research 
 

We can draw some inferences about things that need to be improved based on the conversation 

above. First & foremost, a more practical application of the concept appears appropriate in 

order to provide an underlying incentive for the real study. We feel that grocery shops do not 

order food on a daily basis, therefore developing a model that forecasts sales for two weeks/a 

month ahead should be a good place to start. As previously stated, this would also help to 

clarify if LSTM is preferable to ARIMA for more complicated models. Even if it is our own 

forecast, we cannot guarantee that the findings produced for our core models will be consistent 

when enlarged. Furthermore, hyperparameter fine tuning may be enhanced. Building the 

LSTM within Tensorflow, as well as implementing the ARIMA-model in a more precise 

manner, should be studied for greater control & fine-tuning. 

5.2 Result Discussion 
 

We predicted that the non-linear LSTM model would beat the linear ARIMA model in both 

instances due to the problem's complexity, as non-linear models are believed to provide 

superior accuracy for difficult issues. The one-day-ahead prediction scenario results were not 

statistically significant according to the t-test, despite the fact that the findings suggest that 

LSTM may be better. Future study might potentially rule out if LSTM is better at handling 

complexity, as recent research shows, by increasing prediction length & complexity. It didn't 

appear to matter how many prior values were examined & utilized as input for the LSTM..  
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We tested a sequence length of 7-28 days in the hopes that the LSTM would recognize the 

idea of weeks, but the prediction accuracy did not seem to improve. In our parameter grid 

search, we discovered that models with sequence lengths of 7, 14, & 21 were in the top 10. In 

retrospect, because we don't designate each weekday (added as a feature, for example), it was 

probably difficult for the model to grasp the idea of weeks, especially given the low datasets. 

Our findings are consistent with earlier studies comparing LSTM & ARIMA for time-series 

forecasting challenges, at least for the seven-days ahead prediction scenario, are also in 

agreement with previous research also comparing LSTM & ARIMA for time-series 

forecasting problems. In  they compared ARIMA & LSTM on four datasets & their RMSE 

values favored LSTM in three out of the four datasets. 

 
 

5.3 Limitations & Relevance  
 

A sufficient amount of data is required for the network to be successfully trained & evaluated 

[5]. The results may have been influenced by the fact that the data was confined to only one 

supermarket chain over a four-year period. It would have been preferable to have access to 

sales data from numerous chains & locations over a longer period of time in order to create a 

more diversified training dataset & test dataset for the network. Furthermore, having 

additional data would have allowed for further experimentation, resulting in results that may 

have improved the study's credibility or highlighted methodological flaws. For the best 

prediction accuracy, each machine learning issue uses distinct hyper parameters.even if the 

underlying model the same. Given this, determining the appropriate settings may prove 

challenging. Another option is to draw inspiration from other models in comparable contexts, 

such as time-series forecasting in our instance. However, because we constructed a basic 

model, it was difficult to draw inspiration from the more complex models in the research 

articles we looked at. Instead, we used a manual grid search, which turned out to be wasteful 

in terms of time. There are libraries like Hyperas or Sklearn that can accomplish this 

considerably more quickly, but we learned this too late in our project. However, the grid 

search produced results, although they were fairly coarse & might have been fine-tuned if time 

had permitted.  
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Because our understanding of LSTM implementation was restricted, we chose a higher 

abstraction framework - Keras - to make the LSTM network construction easier. However, 

because Keras has a greater degree of abstraction, having complete control of the network 

becomes more difficult. Even while we gain from the absence of essential knowledge, the lack 

of control might lead to ambiguity in the results since it's unknown what sort of network is 

being constructed in the background. However, the models projected better than the baseline 

model, which is at least reassuring. 

 

The LSTM-model has received the most attention, whereas the ARIMA-model has 

received less. Both in terms of understanding how it works & putting it into practice. In 

comparison to ARIMA, the LSTM model offers far more fine-tuning choices. At the very 

least, we can use the libraries we have. This might cast doubt on the ARIMA findings. Both 

models, however, are constructed using high-abstraction libraries & may certainly be much 

improved. Preprocessing the data differently might have possibly improved the ARIMA 

results. For example, aggregating revenues across weeks rather than days. It appears that a 

discussion of the model's real usefulness is also required. 

 

 Our ultimate objective was to create a model that may assist a retailer in placing more 

precise food orders, hence reducing food waste & empty shelves. However, this concept has 

no real-world applicability. Given delivery timeframes, the algorithm could never be utilized 

in a real business because it can only anticipate sales one to seven days ahead. However, with 

future development, this might be increased. 

 

Furthermore, the models only cover one product & are not extended to other items, 

which might hamper usability because a more generalized prediction model may necessitate a 

more sophisticated system [8]. Finally, we'd like to develop a model that allows users to enter 

a product ID & receive sales forecasts for that product. The result that the LSTM-model 

predicts better than ARIMA-model in seven-day-ahead prediction scenario inspires additional 

study into  field, despite  model's lack of practical use. 
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