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ABSTRACT 

 

Online phishing is one of the most common attacks on the modern internet. The goal of 

phishing website uniform resource locators is to steal personal data including login 

credentials and credit card numbers. As technology keeps growing, phishing strategies 

began to develop rapidly.  

Machine learning built an effective device used to attempt phishing attacks. In this project, 

we have built a phishing website by using fastAPI. We have used two so many different 

libraries and two algorithms which are logistic regression and multimodal NP. The 

purpose of this project is to check whether phishing websites are good URLs or bad URLs. 

We gathered data to create a dataset of malicious links and curate it for the machine 

learning model. 
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Chapter 01: INTRODUCTION 

 

In modern era Phishing becomes a main area of concern for security 

researchers due to the fact it is not tough to create the fake internet site 

which looks so close to legitimate internet site. Experts can discover fake 

web site7s however not all the customers can discover the fake website 

and such customers become the victim of phishing attack. Main purpose 

of the attacker is to steal banks account credentials. How hackers do their 

work, they send you just spam mail. In this mail though they will say that 

this email is mean to inform you that you’re my university network 

password will expire in 24 hours and they have provide you to update the 

password and login when we click on that link we will redirect to that 

page which is a hacker server and they will be steal your data everything 

which is online.  

In our project we have to predict phishing websites whether they are good 

uniform resource locators (URLs) or bad URLs. The set of phishing 

URLs are gather from open source service called Phish Tank. Benign 

URLs (uniform resource locator) with zero malicious detection were 

classified as benign and URLs with no less than eight detection were 

classified as malicious. It is being labeled as ‘0’ and Phishing URL is 

being labeled as ‘1’. We study several machine learning algorithm for 

analysis of the characteristic in order to get a good understanding of the 

construction of the URLs that expand phishing. Phishing attacks are 

getting a success because lack of consumer awareness. Since phishing 

attack exploits the weaknesses found in customers, it's far very tough to 

mitigate them however it may be very vital to enhance phishing detection 

strategies. The general technique to discover phishing web sites through 

updating blacklisted URLs, Internet Protocol (IP) to the antivirus 

database which is also recognized as “blacklist" technique. To evade 

blacklists attackers makes use of innovative techniques to fool customers 

through modifying the URL to appear valid via obfuscation and lots of 
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other easy techniques such as: fast-flux, in which proxies are 

automatically generated to host the web-page; algorithmic era of recent 

URLs etc. To entice human beings, Phisher sends “spooled” mails to 

several human beings as possible. When such emails are opened, the 

customers generally tend to redirect to the spoofed internet site.The 

internet site intuitively asks you to run a software program or download 

a document while you're not waiting to do so. The internet site tells you 

that your device is inflamed with malware or that your browser 

extensions’ or software program the machine of date. Malicious URLs on 

the website could be easily recognized by examining them through 

machine learning techniques.    

To avoid getting phished, people should have an understanding 

of phishing websites and how they look if the person is using an 

online browser. So, the high-end companies can even blacklist 

phishing websites or detect phishing in their early arrival, using 

machine learning and deep neural network algorithm to build a 

model that can classify URLs as phishing. Machine learning 

technique is proven to be efficient than the other technique.    
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1.1Problem Statement  

 

The major trouble is that phishing technique is bad accuracy 

and low adaptability to new phishing links. We plan to apply 

machine learning to overcome these limitation through 

imposing some classification algorithms and evaluating the 

overall performance of these algorithms on our dataset.  

 

We have decided on the Random Forest method because of 

its excellent performance in classification but random forest 

and decision tree are not good with nlp data. 

 

1.2Objective 

 

A phishing internet site is the most common social 

engineering approach that mimics trustful URLs and web 

pages. This project aims to predict phishing websites 

whether are good URLs or bad URLs. Both phishing and 

benign URLs of websites are collected to form a dataset and 

from them required URLs and these projects aimed 

functions are extracted. We have used so many different 

libraries and algorithms like LogisticRegression, numpy, 
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pandas, MultinomialNB, RegexpTokenizer many more. We 

gather data to create a dataset of malicious links and curate 

it for the ML model. The performance level of every model 

is measured and compared.  

 

1.3Methodology  

 

In this project, we have predicted phishing websites whether 

they are good URLs or bad URLs. Before performing a code we 

have done some surfing and found some datasets. We have 

collected the phishing and estimated websites from open source 

platforms by using FastAPI and developed a bit of code to 

extract the feature. As there are different types of URLs like 

spam, benign, phishing, malware etc from legitimate URLs. 

Benign has around 35,000 URLS, so out of them; we have used 

5000 URL randomly. We have examined and pre-process the 

dataset and divide the datasets into training and test sets. Then 

we combine all the dataset into one frame. The data was 

containing more than 5lakhs unique approach and there were 

two columns which was further categories into Good and Bad. 

Further we have done some classification problems and 

vectorize our URLs by using CountVectorizer and tokenizer. 

We have used different libraries for different functions such as 

for visualizing most common words in good and bad URLs and 

turn URLs into data frame. After that we have create the model 

and splitting the data. Then we have import links to prediction 

and deploy the model. The metric that we used is accuracy 
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which is a simple one. We have compared the accuracies of the 

training datasets and the best one is declared.  

 

 

 

Figure 1.1 Flow of Methodology  

 

1.4      Organization 

 

In our project we have used FastAPI which is a python 

framework and import many libraries for different purposes. 

We have taken two algorithms which is LogisticRegression 

and MultinomialNB. LogisticRegression will predict the links 

are good or not and MultinomialNB work well with nlp data 

(natural language process). Then we have used some 

classification problems by using CountVectorizer and 

tokenizer. We have used some another visualization. We can 
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show that what is the hidden link in the phishing site which 

will redirect to another server. Then we have networkx it is 

creating a data structure, dynamic function and more. We are 

combining three datasets which we collected from several 

sites then we combine this dataset into one frame. The 

usability of this dataset is 10.0 which means very good. The 

data size is approx 30 mb. The data contains more than 5 lakhs 

unique approach. The label column means that its prediction 

column in which there were two categories first is good and 

second is bad. After that we have checked the imbalanced of 

target column. Now we have a data, we convert URLs into 

vector form. We have used regular expression tokenizers 

which divide the string using regular expression. So, in our 

code we are just splitting only alphabets and some URLs have 

numbers, dots , slash etc which are not important our data. So 

we only gather the string and simultaneously we have 

transformed this in all the rows. After converting into words 

we used snowball it’s an nltk API (natural language toolkit) 

which is used to string words. It will remove all the English 

works and create some root words. Root words means that it 

will combine the common words like pictures, photos for this 

two words it will create the one word. Phishing data text 

streamer is equal to all the holder that list is words lists are 

converted into streamers. Then we join all the lists words into 

single sentence. We also use word cloud. In our code we have 

used this to convert most repeated word into the word cloud 

form. Then we use chrome webdriver. This will create a new 
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window of that chrome. So to this new chrome we will pass 

that link. Then by using beautifulSoup, we gather the all html 

code from its page source and it is getting all the anchor tags. 

So we will get all the hidden link which will hacker use to 

redirect any users to this server and we create a data frame of 

this links. So it will give a two links: first is what we passed 

to this and second what we are getting from this link. Logistic 

regression object and we fit it by trainX, trainY. After that we 

checked the score and we are getting very good score which 

is 90.96. After that we just created the confusion matrix to see 

the actual prediction and normal prediction. Using Logistic 

Regression we are creating a pipeline. Then we are saving this 

pipeline model using pickle and we check the accuracy of it 

and it is giving very good accuracy.  
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- Chunlin Liu, Bo Lang : Finding effective type  for malicious 

URL detection : In ACM,2018  

Chunlin et al. proposed method that primarily consciousness on 

individual frequency features. In this they've mixed statistical 

evaluation of URL with machine learning method to get end result 

this is more accurate for category of malicious URLs. Also they've 

compared six machine learning algorithms to confirm the 

effectiveness of proposed algorithm which offers 99.7% precision 

with fake positive rate much less than 0.4%.  

 

- FadiThabtah et al. experimentally as compared massive numbers 

of ML techniques on actual phishing datasets and with admire to 

different metrics. The cause of the evaluation is to show the 

benefits and drawbacks of machine learning predictive models 

and to reveal their real performance in terms of phishing attacks. 

The experimental outcomes display that Covering method models 

are extra suitable as anti- phishing solutions. MuhemmetBaykara 

et al. proposed an application which is referred to as Anti Phishing 

Simulator; it offers records about the detection trouble of phishing 

and how to detect phishing emails. Spam emails are brought to the 

database through Bayesian algorithm. Phishing attackers use 

JavaScript to area a legitimate URL of the URL onto the browsers 

deal with bar. The recommended method in the have a look at is 

to apply the textual content of the email as a key-word simplest to 

carry out complicated word processing.  
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- Ankit Kumar Jain, B. B. Gupta : Towards detection of phishing 

websites on client-side using machine learning based approach :In 

Springer Science+Business Media, LLC, part of Springer Nature 

2017 

 

Gupta et al. [11] put forward a novel anti phishing method that 

extracts features from client-aspect only. Suggested method is fast 

and reliable as it is now no longer depending on third party 

however it extracts capabilities only from URL and source code. 

In this paper, they have reached 99.09% of overall detection 

accuracy for phishing website.This paper has concluded that this 

method has limitation as it can detect website written in HTML. 

Non-HTML website can't detect through this method.  

 

- A Prior-based transfer learning techniques for the Phishing 

Detection:-  

A logistic regression is the basis of a concern based transferrable 

learning method, which is supplied right here for our 

classification of statistical machine learning. It is used for the 

detection of the phishing web sites relying on our decided on traits 

of the URLs.   

Due to the divergence in the allotment of the capabilities in the 

distinct phishing areas, several models are proposed for 

distinctive regions.  

It is sort of impractical to accumulate enough information from a 

new region to repair the detection model and use the transfer 

learning algorithm for adjusting the present version. A suitable 

manner for phishing detection is to apply our URL based 

technique. To deal with all of the conditions of failure of detecting 

traits, we need to undertake the shifting method to generate a extra 

effective version.  
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- Ahmad Abunadi, Anazida Zainal ,OluwatobiAkanb: Feature 

Extraction Process: A Phishing Detection Approach :In IEEE,2013 

Ahmad et al. [17] proposed three new capabilities to enhance 

accuracy rate for phishing internet site detection. In this paper, 

Author used both type of capabilities as usually recognized and 

new features for category of phishing and non-phishing site. At 

the cease author has concluded this work can be improve by the 

usage of this novel capabilities with decision tree machine 

learning classifiers  

 

- Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019. 

Machine learning primarly based totally phishing detection 

from URLs. Expert Systems with Applications, 117, pp.345-

357.  

Attempts to detect phishing site the use of URL for preventing 

customer sensitive information. Computer customers fall for 

phishing because of the 5 major reasons:-   

 

• Users don’t have precise information about URLs,   

• Users don’t know, which internet pages may be trusted,   

• Users don’t see the entire address of the internet page, 

because of the redirection or hidden URLs,   

• Users don’t have plenty time for consulting the URL, or 

by chance enter a few internet pages,   

• Users can't distinguish phishing internet pages from the 

valid ones.   
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In proposed system, writer used NLP based features and Word 

features for type of phishing and non-phishing sites. For category 

used Decision Tree, Adaboost, K-star, kNN(n=3), Random 

Forest, SMO(Sequential Minimal Optimization) and NaÃ¯ve 

Bayes [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 03: SYSTEM DEVELOPMENT  

 

3.1 Analysis of the 

Algorithms:  
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As our whole project is based on supervised machine learning.   

Supervised learning is a subcategory of machine learning and 

artificial intelligence. It works as we pass a data along with label to 

that data to a model and once the model is trained it recognizes 

some patterns and associates the labels to that pattern and thus 

makes the new predictions. There can be so many different 

applications possible using supervised learning. Some of them can 

be to detect the spam or spam detection. This is the way in which 

we can detect if mail is a spam or not if mail is a spam it will 

automatically put it in a spam folder and if it is not a spam mail 

then put it in your inbox. Another can be object classification and 

many more. Supervised machine learning has two categories:-  

 

• Classification :   

 

It helps find things that we can search by keywords, but it 

actually helps you find our own invention that’s very close to 

our own. An area that is grouped in subject areas called classes 

and subclasses. Used to classify characteristics of invention. 

The type predictive modelling is the challenges of 

approximating the mapping characteristic from enter variables 

to discrete output variables. Example: email spam detector. 

The major purpose of the Classification algorithm is to pick 

out the category of a given dataset, and those algorithms are 

especially used to expect the output for the specific data. The 

algorithm which implements the kind on a dataset is referred 

to as a classifier. 
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• Regression:  

 

It is a supervised learning method which enables in finding the 

correlation among variables and allows us to be looking ahead 

to the non-stop output variable primarily based totally at the 

simplest or greater predictor variables. It is specifically used 

for prediction, forecasting, time collection modeling, and 

figuring out the causal-impact relationship among variables. 

In Regression, we plot a graph among the variables which 

satisfactory suits the given data points, the use of this plot, the 

machine learning version could make predictions about the 

data.  

 

 
 

Fig 3.1 Classification and Regression  

 

In our project we have used FastAPI which is a python 

framework and import many libraries for different purposes. 

We have taken two algorithms which is LogisticRegression 

and MultinomialNB. LogisticRegression will predict the 

links are good or not and MultinomialNB work well with 

nlp data (natural language process). Then we have used 
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some classification problems by using CountVectorizer and 

tokenizer. We have used some another visualization. We 

can show that what is the hidden link in the phishing site 

which will redirect to another server. We are combining 

three datasets which we collected from several sites then we 

combine this dataset into one frame. The usability of this 

dataset is 10.0 which means very good. The data size is 

approx 30 mb. 

So, this has different types of URLs like spam, benign, 

phishing etc. We took the benign URL from them and it has 

around 35,000 URLs. So, out of them we have used 5000 

URL randomly. Benign URLs (uniform resource locator) 

with zero malicious detection were classified as benign and 

URLs with no less than eight detection were classified as 

malicious.  

We study several machine learning algorithm for analysis of 

the characteristic in order to get a good understanding of the 

construction of the URLs that expand phishing. So, 

supervised machine learning that we have chosen for this 

project are:-  

 

3.1.1       LogisticRegression:  

 

Logistic Regression is set becoming a curve to the facts. It is utilized in 

statistical software program to apprehend the connection among the based 

variable and one or greater unbiased variables with the aid of using 

estimating possibilities the usage of a LogisticRegression equation. These 



 

27 | P a g e  
 

sorts of estimation allow that we are expecting the probability of an occasion 

taking place or a desire being made. 

 

 

 

Fig 3.2 LogisticRegression 

 

3.1.2 MultinomialNB :  

 

Multinomial Naïve Bayes algorithm is a probabilistic learning method 

that is mostly used in Natural Language Processing (NLP). For example 

: As in  this definition how many times the word is coming or what is 

the frequency of word in this definition and it is a machine learning 

method. Naïve Bayes is also called conditional probability in the world 

of statistics. Multinomial is described discrete frequency counts in other 

words word counts or something like that. 
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Fig 3.3 MultinomialNB 

 

 

3.1.3     FastAPI :  

 

There are already popular frameworks based on flask and django. It is relatively 

new framework. So it was able to learn great features from other tools and also 

having new features such as better python type hints. 

Key benefits of FastAPI :- 

 Fast (high-performance): It is one of the fastest python frameworks 

available. This is mainly due to the framework being built on top of tools 

like Starlette and Pydantic. FastAPI features parallelism FastAPI is 

especially a good match for building web API for machine learning systems. 
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 Easy data Validation in FastAPI based on standard python type hints 

handled by pydantic. The python type hints are a special syntax to indicate 

the type of variable. It is relatively new feature that’s only available in 

recent version of python with such declaration of types in FastAPI pydantic 

enforces it at run time and provides user friendly error messages when data 

is invalid. 

 

 Automatic interactive documentation:  As we program in FastAPI it 

automaticaaly documents everything with open standards like OpenAPI and 

JSON Schema. We can view this documentation through systems like 

Swagger UI and ReDoc in our browsers. 

 Also FastAPI was tested on multiple editors. So we can get great editor 

support including auto completion. This means we can code faster and have 

fewer bugs using FastAPI .  
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Fig 3.4 FastAPI 

 

 

3.1.4      RegexpTokenizer:  

 

Regular Expression is quite useful or generalize the kind of expression that we can 

use. The way we can simply avoid is by just telling tokenizer or python that 

whatever words it is scanning in that word if it is finding an apostrophe do not break 

into two parts.So for that what we can do is we can use something called a regular 

expression or tokenizer. It allows us to check a series of characters for ‘matches’ 
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3.1.5: NLTK (Natural Language Toolkit) :  

 

 

 

Suite of open source tools created to make NLP processes in Python easier to build. 

NLP has revolutionised many areas, like it may be parts of speech tagging. It may 

be sentence translation. It may be even Text generation and many applications. So 

there are many inbuilt of functions and libraries that are included inside this NLTK 

library. For example, we may have a stem function inside this so what it does it if 

many words like coder, coding, coders and many more then it all comes down to 

its these all words are a stemmed to their root word ‘code’. Similarly, words 

separation so given a sentence or a text we want to tokenize it into a list of words. 

So we don’t need to write a custom function of ourselves. We can just use the 

tokenize function there and similarly, there are many more things like stop words 

and many more applications which are inbuilt in NLTK and many more are being 

added continuously due to its open source nature. So it’s very useful library and if 

we don’t know how to use it then anything we want to design ar develop will be 

very slow because we will need to do everything ourselves. 
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Fig 3.5 Autoencoder neural network  

 

 

We have examined and preprocess the dataset and divide the datasets into 

training and checking out sets. The metric that we used is accuracy which 

is a simple one. We have compared the accuracies of the training datasets 

and the best one is declared.  
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3.2Design:  

 

In this project, we have mainly used machine learning techniques. In 

which we have used their algorithms for training and prediction whether 

the links are good or bad and done some accuracy of it. We have used 

FastAPI which is a python framework and import many libraries for 

different purposes. We have taken two algorithms which is 

LogisticRegression and MultinomialNB. LogisticRegression will predict 

the links are good or not and MultinomialNB work well with nlp data 

(natural language process). Then we have classification_report it will 

give whole information of metrics like recall precision and advanced 

curve. 

 

o The series of phishing URLs is instead easy due to the open 

source provider referred to as Phish Tank. This provider offer 

a fixed of phishing URLs in a couple of formats like CSV, 

JSON etc. that receives up to date hourly. The CSV record of 

phishing URLs is received through the usage of wget 

command. After downloading the dataset, it is loaded right 

into a Data Frame. 

 

o For the legitimate URLs, we discovered a supply that has a set 

of benign, spam, phishing, malware & defacement URLs. The 

variety of legitimate URLs on this collection is 35,300.This 

record is then uploaded to the Colab for the feature extraction. 

 

We have used some classification problems by using CountVectorizer and 

tokenizer. The CountVectorizer to use to transform the data into a space 

matrix and at last we do the pipelining work using SQL and pipeline. We 

have used someanother visualization. We can show that what is the hidden 

link in the phishing site which will redirect us to the another server. Then we 
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have networkx it is creating a data structure, dynamic function and more. We 

are combining three datasets which we collected from several sites then we 

combine this dataset into one frame. After combining into one frame we 

create creator and then save into my drive. The usability of this dataset is 10.0 

which means very good. The data size is approx 30 mb. There is two columns 

first are URLs and second is label. S when we saw our information about the 

dataset data contains more than 5 lakhs unique approach. The label column 

means that its prediction column in which there were two categories first is 

good and second is bad. After that we have checked the imbalanced of target 

column. From that we can saw that there is lots of difference between on both 

classes. After that we started the pre-processing work. So now we have a data, 

we convert URLs into vector form. We have used regular expression 

tokenizer which divides the string using regular expression. So, in our code 

we are just splitting only alphabets and some URLs have numbers, dots , slash 

etc which are not important our data. So we only gather the string and 

simultaneously we have transformed this in all the rows into this tokenizer 

text. After converting into words we used snowball it’s an NLTK API (natural 

language toolkit) which is used to string words. It will remove all the english 

works and create some root words. Root words means that it will combine 

the common words like pictures, photos for this two words it will create the 

one word. Phishing data text streamer is equal to all the holder that list is a 

words list is converted into streamers. Then we join all the lists words into 

single sentence. We also use word cloud. In our code we have used this to 

convert most repeated word into the word cloud form. Then we use chrome 

webdriver. This will create a new window of that chrome. So to this new 

chrome we will pass that link. 
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                                                      Fig 3.2.1 New Window 

 

Then by using BeautifulSoup, we gather the all html code from its page 

source and it is getting all the anchor tags. So we will get the entire hidden 

link which will hacker use to redirect any users to this server and we create a 

data frame of this links. So it will give a two links: first is what we passed to 

this and second what we are getting from this link. After that we have use 

networkx and networkx is doing here by visualize all the internal links in the 

structure by feeding network from panda edge list first and draw it by calling 

dot nx dot draw like and here this the redirected links which is shown by the 

networkx like nodes.  
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                                                      Fig 3.2.2 Nx.draw(graph) 

 

Logistic regression object and we fit it by trainX, trainY. After that we 

checked the score and we are getting very good score which is 90.96. After 

that we just print the score so model is not over fitted or undefeated. After 

that we just created the confusion matrix to see the actual prediction and 

normal prediction. Multinomial is giving us 95 which are not good as a 

logistic regression but fine. Using Logistic Regression we are creating a 

pipeline and we are using the regular tokenizer and stopwatch equals English. 

There using stopwatch it will be stops all the English words and we also used 

the tokenizers but these are not giving me the best accuracy.  Then we are 

saving this pipeline model using pickle and we check the accuracy of it and 
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it is giving very good accuracy. After that we are dumping this model and 

after dumping we just load model to check our model is working well and we 

see that load model dot score it will be giving me the 96 percent again.  

 

3.3 Flow Chart  

 

 

 

In this project, we have predicted phishing websites whether 

they are good URLs or bad URLs. Before performing a code we 

have done some surfing and found some datasets. We have 

collected the phishing and estimated websites from open source 

platforms by using FastAPI and developed a bit of code to 

extract the feature. As there are different types of URLs like 

spam, benign, phishing, malware etc from legitimate URLs. 

Benign has around 35,000 URLS, so out of them; we have used 



 

 

 

  

38 | P a g e 

 

5000 URL randomly. We have examined and pre-process the 

dataset and divide the datasets into training and test sets. Then 

we combine all the dataset into one frame. The data was 

containing more than 5lakhs unique approach and there were 

two columns which was further categories into Good and Bad. 

Further we have done some classification problems and 

vectorize our URLs by using CountVectorizer and tokenizer. 

We have used different libraries for different functions such as 

for visualizing most common words in good and bad URLs and 

turn URLs into data frame. After that we have create the model 

and splitting the data. Then we have import links to prediction 

and deploy the model. The metric that we used is accuracy 

which is a simple one. We have compared the accuracies of the 

training datasets and the best one is declared.  

 

3.4 Algorithm  

 

In this project, we have done various implementations for training 

and we have predicted phishing websites whether they are good 

URLs or bad URLs. As we have used some of the supervised 

algorithm.  

 

• Firstly, we imported some libraries such as pandas, numpy, 

multinomialNB, LogisticRegression and many more. 
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• We have examined and pre-process the dataset and divide the 

datasets into training and test sets. Then we combine all the 

dataset into one frame. 

 

                Fig 3.4.1 Combining dataset into one frame. 

 After combining into one frame we created creator and then save into my drive. 

 

 

 

 

Fig 3.4.2 Dataset 

 

 So we can see that there is two columns first is URLs and second is Label. So when 

we see our information about dataset data contains more than 5lakhs unique entries 

which means that more than 5 lakhs unix URl in their data. 
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 After that we check the imbalanced of that target column. 

 

1. Label underscore counts  is equal to pd.dataframe (phish underscore 

data.label.value underscore counts()) 

 

2. Sns.set underscore style (‘darkgrid’) 

Sns.barplot (label underscore counts. Index, label underscore counts.label) 

 

 Now that we have our data we have to vectorize our URLs. We have use regular 

expression tokenizer . 

1. Tokenizer is equal to RegexpTokenizer(r’[A-Za-z]+’) 

In this expression {r’ [A-Za-z]+} we just splitting only alphabets.  

 

2. Phish underscore data.URL[0] 

After we only gather the strings. 

3. Tokenizer.tokenize (phish underscore data.URL[0]) 

 

 After doing this with one rows we transform all the rows although all the URLs 

into tokenizer text. So it takes 4 seconds something so to convert all the rows more 

than 50 URLs into that word. 

1. Print (‘getting words tokenizer’) 

2. T0 is equal to time.perf underscore counter() 

3. Phish underscore data [‘text underscore tokenizer’] is equal to phish 

underscore data.URL.map (Lambda t: tokenizer.tokenize(t)) 

4. T1 is equal to time.perf underscore counter() 

5. Print (‘time taken’, t1,’sec’) 
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6. Phish underscore data.sample(5) 

 

 So after converting into words we use a snowball. It is a NLTK API which is used 

to stream words. 

 Stemmer is equal to SnowballStemmer (“English”) 

 Print (‘getting words tokenizer’) 

 T0 is equal to time.perf underscore counter() 

 Phish underscore data [‘text underscore tokenizer’] is equal to phish underscore 

data [‘text_tokenized’].map (lambda 1: [stemmer. stem (word) for word in 1]) 

 T1 is equal to time.perf underscore counter() subtract T0 

 Print (‘time taken’, T1,’sec’) 

All the holder that a words list are converted by stremmers. Then we just join the 

all the list words into just single sentence.  

 

 After that we thought we do some visualization like showing what is the keywords 

using in bad sites and what is the keywords using by good sites. 

 Bad underscore is equal to phish underscore data [ phish underscore data. Label == 

“bad”] 

 Good underscore is equal to phish underscore data [ phish underscore data. Label 

== “good”] 

 Bad underscore sites.head() 

 defplot underscore wordcloud(text,mask is equal to None,max underscore words is 

equal to 400,max underscore font underscore size is equal to 120,figure underscore 

size is equal to (24.0,16.0), 

 title is equal to None,title underscore size is equal to 40,image underscore color is 

equal to False): 

 stopwords is equal to set(STOPWORDS) 

 More underscore stopwordsis equal to{'com','http'} 

 stopwordsis equal tostopwords.union(more is equal to stopwords) 
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 wordcloudis equal toWordCloud(background underscore color is equal to 'white', 

 stopwordsis equal tostopwords, 

 Max underscore wordsis equal to max underscore words, 

 Max underscore font underscore size is equal to max underscore font underscore 

size, 

 Random underscore state is equal to42, 

 Mask is equal to mask) 

 wordcloud.generate(text) 

  

 plt.figure(figsize is equal to figure underscore size) 

 ifimage underscore color: 

 Image underscore colors is equal toImageColorGenerator(mask); 

 plt.imshow(wordcloud.recolor(color underscore func is equal to 

image_colors),interpolation is equal to "bilinear"); 

 plt.title(title,fontdict is equal to {'size':title underscore size, 

 'verticalalignment':'bottom'}) 

 else: 

 plt.imshow(wordcloud); 

 plt.title(title,fontdict is equal to {'size':title underscore size,'color':'green', 

 'verticalalignment':'bottom'}) 

 plt.axis('off'); 

 plt.tight underscore layout() 

 data is equal togood underscore sites.text underscore sent 

 data.reset underscore index(drop is equal to True, inplace=True) 

 In [28]: 

 Common underscore text is equal to str(data) 
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 Common underscore mask is equal to  np.array(Image.open('star.png')) 

 Plot underscore wordcloud(common underscore text, common underscore mask, 

max underscore words is equal to 400, max underscore font underscore size is 

equal to 120,  

                title is equal to  'Most common words use in good urls', title underscore 

size is equal to 15) 

 We will show that all the redirect links. We are using that chrome driver.  

 Browser is equal to webdriver.chrome(r”chromedriver.exe”) 

 After this we are using BeautifulSoup and it will gather the all HTML code from 

its page source. 

1. forurlinlist is equal to urls: 

2. browser.get(url) 

3. soupis equal toBeautifulSoup(browser.page underscore source,"html.parser") 

4. forlineinsoup.find underscore all('a'): 

5. hrefis equal toline.get('href') 

6. Links is equal to with is equal to text.append([url,href]) 

 

 We gather the all html code from its page source and it is getting all the anchor tags. 

So we will get the entire hidden link which will hacker use to redirect any users to 

this server and we create a data frame of this links. 

 GAis equal tonx.from underscore pandas underscore edgelist(df,source is equal to 

"from",target is equal to"to") 

 nx.draw(GA,with underscore labelsis equal toFalse) 

 Scores underscore ml is equal to {} 

 Scores underscore ml['Logistic Regression'] is equal to 

np.round(lr.score(testX,testY),2) 

 In [46]: 

 print('Training Accuracy :',lr.score(trainX,trainY)) 

 print('Testing Accuracy :',lr.score(testX,testY)) 
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 con underscore mat is equal topd.DataFrame(confusion_matrix(lr.predict(testX), 

testY), 

             columns is equal to ['Predicted:Bad', 'Predicted:Good'], 

             index is equal to ['Actual:Bad', 'Actual:Good']) 

 print('\nCLASSIFICATION REPORT\n') 

 print(classification underscore report(lr.predict(testX), testY, 

                          target underscore names  is equal to['Bad','Good'])) 

 print('\nCONFUSION MATRIX') 

 plt.figure(figsizeis equal to (6,4)) 

 sns.heatmap(con_mat, annot is equal toTrue,fmtis equal to'd',cmapis equal 

to"YlGnBu") 

 Scores_ml['MultinomialNB'] is equal to np.round(mnb.score(testX,testY),2) 

 In [51]: 

 print('Training Accuracy :',mnb.score(trainX,trainY)) 

 print('Testing Accuracy :',mnb.score(testX,testY)) 

 con underscore mat is equal to pd.DataFrame(confusion underscore 

matrix(mnb.predict(testX), testY), 

  columns is equal to ['Predicted:Bad', 'Predicted:Good'], 

 index is equal to ['Actual:Bad', 'Actual:Good']) 

 print('\nCLASSIFICATION REPORT\n') 

 print(classification_report(mnb.predict(testX), testY, 

 target underscore ['Bad','Good'])) 

 print('\nCONFUSION MATRIX') 

 plt.figure(figsizeis equal to (6,4)) 

 sns.heatmap(con underscore mat, annot is equal toTrue,fmtis equal to'd',cmapis 

equal to"YlGnBu") 
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 print('Training Accuracy :',pipeline_ls.score(trainX,trainY)) 

 print('Testing Accuracy :',pipeline_ls.score(testX,testY)) 

 con underscore matis equal topd.DataFrame(confusion underscore matrix(pipeline 

underscore ls.predict(testX),testY), 

 columnsis equal to['Predicted:Bad','Predicted:Good'], 

 ['Actual:Bad','Actual:Good']) 

 print('\nCLASSIFICATION REPORT\n') 

 print(classification underscore report(pipeline underscore ls.predict(testX),testY, 

 target underscore namesis equal to['Bad','Good'])) 

 print('\nCONFUSION MATRIX') 

 plt.figure(figsizeis equal to(6,4)) 

 sns.heatmap(con underscore mat,annotis equal toTrue, fmtis equal to'd',cmapis 

equal to"YlGnBu") 

 

3.5Model Development  

 

In our project we have used FastAPI which is a python 

framework and import many libraries for different purposes. 

We have taken two algorithms which is LogisticRegression 

and MultinomialNB. LogisticRegression will predict the links 

are good or not and MultinomialNB work well with nlp data 

(natural language process). Then we have used some 

classification problems by using CountVectorizer and 

tokenizer. We have used someanother visualization. We can 

show that what is the hidden link in the phishing site which 

will redirect to another server. Then we have networkx it is 

creating a data structure, dynamic function and more. We are 

combining three datasets which we collected from several 

sites then we combine this dataset into one frame. The 

usability of this dataset is 10.0 which means very good. The 

data size is approx 30 mb. The data contains more than 5 lakhs 
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unique approach. The label column means that its prediction 

column in which there were two categories first is good and 

second is bad. After that we have checked the imbalanced of 

target column. Now we have a data, we convert URLs into 

vector form. We have used regular expression tokenizers 

which divide the string using regular expression. So, in our 

code we are just splitting only alphabets and some URLs have 

numbers, dots , slash etc which are not important our data. So 

we only gather the string and simultaneously we have 

transformed this in all the rows. After converting into words 

we used snowball it’s an nltk API (natural language toolkit) 

which is used to string words. It will remove all the English 

works and create some root words. Root words means that it 

will combine the common words like pictures, photos for this 

two words it will create the one word. Phishing data text 

streamer is equal to all the holder that list is words lists are 

converted into streamers. Then we join all the lists words into 

single sentence. We also use word cloud. In our code we have 

used this to convert most repeated word into the word cloud 

form. Then we use chrome webdriver. This will create a new 

window of that chrome. So to this new chrome we will pass 

that link. Then by using beautifulSoup, we gather the all html 

code from its page source and it is getting all the anchor tags. 

So we will get the entire hidden link which will hacker use to 

redirect any users to this server and we create a data frame of 

this links. So it will give a two links: first is what we passed 

to this and second what we are getting from this link. Logistic 
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regression object and we fit it by trainX, trainY. After that we 

checked the score and we are getting very good score which 

is 90.96. After that we just created the confusion matrix to see 

the actual prediction and normal prediction. Using Logistic 

Regression we are creating a pipeline. Then we are saving this 

pipeline model using pickle and we check the accuracy of it 

and it is giving very good accuracy.   

We have done the featured extraction where we have saw that each 

category is described properly and we have done implementation 

for that. So, all these features are based on URL structured    
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Chapter 04: Performance Analysis  

 

In this project, we have done various implementations for training 

and we have predicted phishing websites whether they are good 

URLs or bad URLs. As we have used some of the supervised 

algorithm.  

 

• Firstly, we imported some libraries such as pandas, numpy, 

multinomialNB, LogisticRegression and many more.  

 

• We have examined and pre-process the dataset and divide the 

datasets into training and test sets. Then we combine all the 

dataset into one frame. 

 
 

                        Fig 4.1 importing the libraries 
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  Fig 4.2 Combining dataset into one frame 

 

 After combining into one frame we created creator and then save into my drive. 

 
  Fig 4.3 Dataset  
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Fig 4.4 Missing value 

 

 

 

Fig 4.5 Visualizing  

 We have used regular expression tokenizers which divide the string using regular 

expression. So, in our code we are just splitting only alphabets and some URLs 

have numbers, dots , slash etc which are not important our data. So we only gather 

the string and simultaneously we have transformed this in all the rows. 
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                                             Fig 4.6 Regular Expression 

 

 

 

 

Fig 4.7 SnowballStemmer 

 

 After converting into words we used snowball it’s an nltk API (natural language 

toolkit) which is used to string words. It will remove all the English works and 

create some root words. Root words means that it will combine the common words 
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like pictures, photos for this two words it will create the one word. Phishing data 

text streamer is equal to all the holder that list is words lists are converted into 

streamers. 

 

 We also use word cloud. In our code we have used this to convert most repeated 

word into the word cloud form. Then we use chrome webdriver. This will create a 

new window of that chrome. So to this new chrome we will pass that link. 

 

 

 

    Fig 4.8 WordCloud 
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Fig 4.9 Networkx 

 

 

 

           Fig 4.10 create model 
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 Using Logistic Regression we are creating a pipeline. Then we are 

saving this pipeline model using pickle and we check the accuracy of 

it and it is giving very good accuracy.   

 

 

                            Fig 4.11 Logistic Regression 

 

 MultinomialNB work well with nlp data (natural language process). 

Multinomial is giving us 95 which are not good as a logistic regression but 

fine.  
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  Fig 4.14 Good and Bad links 

4.2 Result  

 

                                       Fig 4.2.1 new chrome window 
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Fig 4.2.2 graph of networkx 

 

 

                                                   Fig 4.2.3 Testing   

 

 

 

 Fig 4.2.4 Tokenizers 
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 Fig 4.2.5 Classification of imbalanced 

 

 

 

Fig 4.2.6 Similar words which we use 
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Fig 4.2.7 SnowballStemmer good or bad  

  

 

Fig 4.2.8 Visualizing of wordcloud 
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Fig 4.2.9 Common good words 
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                                                     Fig 4.2.10 Common bad words 

 

 
 

                  Fig 4.2.11 prediction  
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 Fig 4.2.12 prediction between logistic regression and multinomialnb 

 

 

 
 

 Fig 4.2.13 Confusion matrix 

 

Chapter 05: CONCLUSIONS 
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In our project we have used FastAPI which is a python 

framework and import many libraries for different purposes. 

We have taken two algorithms which is LogisticRegression 

and MultinomialNB. LogisticRegression will predict the links 

are good or not and MultinomialNB work well with nlp data 

(natural language process). Then we have used some 

classification problems by using CountVectorizer and 

tokenizer. We have used someanother visualization. We can 

show that what is the hidden link in the phishing site which 

will redirect to another server. Then we have networkx it is 

creating a data structure, dynamic function and more. We are 

combining three datasets which we collected from several 

sites then we combine this dataset into one frame. The 

usability of this dataset is 10.0 which means very good. The 

data size is approx 30 mb. The data contains more than 5 lakhs 

unique approach. The label column means that its prediction 

column in which there were two categories first is good and 

second is bad. After that we have checked the imbalanced of 

target column. Now we have a data, we convert URLs into 

vector form. We have used regular expression tokenizer which 

divide the string using regular expression. So, in our code we 

are just splitting only alphabets and some URLs have 

numbers, dots , slash etc which are not important our data. So 

we only gather the string and simultaneously we have 

transformed this in all the rows. After converting into words 

we used snowball it’s an nltk API (natural language toolkit) 

which is used to string words. It will remove all the English 
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works and create some root words. Root words means that it 

will combine the common words like pictures, photos for this 

two words it will create the one word. Phishing data text 

streamer is equal to all the holder that list is words lists are 

converted into streamers. Then we join all the lists words into 

single sentence. We also use word cloud. In our code we have 

used this to convert most repeated word into the word cloud 

form. Then we use chrome webdriver. This will create a new 

window of that chrome. So to this new chrome we will pass 

that link. Then by using beautifulSoup, we gather the all html 

code from its page source and it is getting all the anchor tags. 

So we will get the entire hidden link which will hacker use to 

redirect any users to this server and we create a data frame of 

this links. So it will give a two links : first is what we passed 

to this and second what are we getting from this link. Logistic 

regression object and we fit it by trainX, trainY. After that we 

checked the score and we are getting very good score which 

is 90.96. After that we just created the confusion matrix to see 

the actual prediction and normal prediction. Using Logistic 

Regression we are creating a pipeline. Then we are saving this 

pipeline model using pickle and we check the accuracy of it 

and it is giving very good accuracy.   

5.2Future Scope  

 

Through this project, one could recognize plenty 

approximately the phishing web sites and how they're 

differentiated from legitimate ones. This project may be 

taken in addition through developing browser extensions of 

growing a GUI. These have to classify the inputted URL to 

legitimate or phishing with the use of the stored model.  
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import 

uvicorn 
 

from fastapi import FastAPI 
 

import joblib,os 
 

app = FastAPI() 
 

#pkl 
 

phish_model = open('phishing.pkl','rb') 
 

phish_model_ls = joblib.load(phish_model) 
 

# ML Aspect 
 

@app.get('/predict/{feature}') 
 

async def predict(features): 
 

 X_predict = [] 
 

 X_predict.append(str(features)) 
 

 y_Predict = phish_model_ls.predict(X_predict) 
 

 if y_Predict == 'bad': 
 

  result = "This is a Phishing Site" 
 

 else: 
 

  result = "This is not a Phishing Site" 
 

 return (features, result) 
 

if __name__ == '__main__': 
 

 uvicorn.run(app,host="127.0.0.1",port=8000) 
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