

PHISHING WEBSITE DETECTION

Major project report submitted in fulfilment of the

requirement for the degree of Bachelor of Technology

In

Computer Science and Engineering

By

 Akriti Soni (181315)

 Pranchal Abrol (181260)

 UNDER THE SUPERVISON OF

Mr. Prateek Thakral

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat,

173234, Himachal Pradesh, INDIA

TABLE OF CONTENTS

 Content Page No.

 Declaration by Candidate I

 Certificate by Supervisor II

 Acknowledgment III

 Abstract IV

1. Chapter No. 1: INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Methodology 4

1.5 Organization 6

2. Chapter No. 2: Literature Survey 9

3. Chapter No. 3: System Development 13

3.1 Analysis of the algorithm 13

3.2 Design 23

3.3 Flow Chart 27

3.4 Algorithm 29

3.5 Model Development 37

4. Chapter No. 4: Performance Analysis 38

4.1 Predicting the result 38

4.2 Model Testing 39

4.3 Discussion on the result Achieved 46

5. Chapter No. 5: Conclusion 53

5.1 Future Work 55

REFERENCE 63

DECLARATION

I hereby declare that, this project has been done by me under the supervision

of Mr.Prateek Thakral, Assistant Professor, Jaypee University of

Information Technology. I also declare that neither this project nor any part

of this project has been submitted elsewhere for award of any degree or

diploma.

 Mr.Prateek Thakral

Assistant Professor

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology

CERTIFICATE

I hereby declare that the work presented in this report entitled “PHISHING WEBSITE

DETECTION” in fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the department of Computer

Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my own work

carried out over a period from January 2022 to May 2022 under the supervision of Mr. Prateek

Thakral, Assistant Professor, department of Computer Science & Engineering and Information

Technology.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

AkritiSoni, 181315

PranchalAbrol, 181260

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Prateek Thakral

Assistant Professor

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat

AKCNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine blessing

makes us possible to complete the project work successfully.

I really grateful and wish my profound my indebtedness to Supervisor Mr. Prateek Thakral,

Assistant Professor, Department of CSE Jaypee University of Information Technology,

Wakhnaghat. Her endless patience, scholarly guidance, continual encouragement, constant and

energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stage have made it possible to complete this project.

I would like to express my heartiest gratitude to Mr. Prateek Thakral, Department of CSE,

for his kind help to finish my project.

I would also generously welcome each one of those individuals who have helped me straight

forwardly or in a roundabout way in making the project a win. In this unique situation, I might

want to thank the various staff individuals, both educating and non-instructing, which have

developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of my parents.

AkritiSoni

PranchalAbrol

III

LIST OF FIGURES

 Figure name Page no.
1.1 Flow of Methodology 04

3.1 Classification and Regression 25

3.1 LogisticRegression 26

3.2 MultinomialNB 27

3.3 FastAPI 30

3.4 Autoencoder neurak network 30

3.2.1 New window 21

3.2.2 Nx.draw(graph) 21

3.4.1 Combining dataset into one frame 22

3.4.2 Dataset 22

4.1 Importing Libraries 23

4.2 Combining dataset into one frame 23

4.3 Dataset 24

4.4 Missing value 24

4.5 Visualizing 25

4.6 Regular Expression 25

4.7 SnowballStemmer 26

4.8 WordCloud 27-28

4.9 Networkx 52

4.10 Create model 53

4.11 LogisticRegression 53

4.12 Good and bad links 54

4.2.2 Graphs of network 55

4.2.3 Testing 55

4.2.4 Tokenizer 56

4.2.5 Classification of imbalanced 57

4.2.6 Similar words which we use 57

4.2.7 SnowballStemmer good or bad 58

4.2.8 Visualizing of wordcloud 59

4.2.9 Common good words 59

4.2.10 Common bad words 59

4.2.11 prediction 60

4.2.12 Prediction between logistic regression and multinomialnb 60

4.2.13 Confusion matrix 60

5.3.1 LogisticRegression 61

5.3.2 MultinomialNB 62

5.3.3 FastAPI 63

5.3.5 Autoencoder neural network 64

ABSTRACT

Online phishing is one of the most common attacks on the modern internet. The goal of

phishing website uniform resource locators is to steal personal data including login

credentials and credit card numbers. As technology keeps growing, phishing strategies

began to develop rapidly.

Machine learning built an effective device used to attempt phishing attacks. In this project,

we have built a phishing website by using fastAPI. We have used two so many different

libraries and two algorithms which are logistic regression and multimodal NP. The

purpose of this project is to check whether phishing websites are good URLs or bad URLs.

We gathered data to create a dataset of malicious links and curate it for the machine

learning model.

V

1 | P a g e

Chapter 01: INTRODUCTION

In modern era Phishing becomes a main area of concern for security

researchers due to the fact it is not tough to create the fake internet site

which looks so close to legitimate internet site. Experts can discover fake

web site7s however not all the customers can discover the fake website

and such customers become the victim of phishing attack. Main purpose

of the attacker is to steal banks account credentials. How hackers do their

work, they send you just spam mail. In this mail though they will say that

this email is mean to inform you that you’re my university network

password will expire in 24 hours and they have provide you to update the

password and login when we click on that link we will redirect to that

page which is a hacker server and they will be steal your data everything

which is online.

In our project we have to predict phishing websites whether they are good

uniform resource locators (URLs) or bad URLs. The set of phishing

URLs are gather from open source service called Phish Tank. Benign

URLs (uniform resource locator) with zero malicious detection were

classified as benign and URLs with no less than eight detection were

classified as malicious. It is being labeled as ‘0’ and Phishing URL is

being labeled as ‘1’. We study several machine learning algorithm for

analysis of the characteristic in order to get a good understanding of the

construction of the URLs that expand phishing. Phishing attacks are

getting a success because lack of consumer awareness. Since phishing

attack exploits the weaknesses found in customers, it's far very tough to

mitigate them however it may be very vital to enhance phishing detection

strategies. The general technique to discover phishing web sites through

updating blacklisted URLs, Internet Protocol (IP) to the antivirus

database which is also recognized as “blacklist" technique. To evade

blacklists attackers makes use of innovative techniques to fool customers

through modifying the URL to appear valid via obfuscation and lots of

14 | P a g e

other easy techniques such as: fast-flux, in which proxies are

automatically generated to host the web-page; algorithmic era of recent

URLs etc. To entice human beings, Phisher sends “spooled” mails to

several human beings as possible. When such emails are opened, the

customers generally tend to redirect to the spoofed internet site.The

internet site intuitively asks you to run a software program or download

a document while you're not waiting to do so. The internet site tells you

that your device is inflamed with malware or that your browser

extensions’ or software program the machine of date. Malicious URLs on

the website could be easily recognized by examining them through

machine learning techniques.

To avoid getting phished, people should have an understanding

of phishing websites and how they look if the person is using an

online browser. So, the high-end companies can even blacklist

phishing websites or detect phishing in their early arrival, using

machine learning and deep neural network algorithm to build a

model that can classify URLs as phishing. Machine learning

technique is proven to be efficient than the other technique.

15 | P a g e

1.1Problem Statement

The major trouble is that phishing technique is bad accuracy

and low adaptability to new phishing links. We plan to apply

machine learning to overcome these limitation through

imposing some classification algorithms and evaluating the

overall performance of these algorithms on our dataset.

We have decided on the Random Forest method because of

its excellent performance in classification but random forest

and decision tree are not good with nlp data.

1.2Objective

A phishing internet site is the most common social

engineering approach that mimics trustful URLs and web

pages. This project aims to predict phishing websites

whether are good URLs or bad URLs. Both phishing and

benign URLs of websites are collected to form a dataset and

from them required URLs and these projects aimed

functions are extracted. We have used so many different

libraries and algorithms like LogisticRegression, numpy,

16 | P a g e

pandas, MultinomialNB, RegexpTokenizer many more. We

gather data to create a dataset of malicious links and curate

it for the ML model. The performance level of every model

is measured and compared.

1.3Methodology

In this project, we have predicted phishing websites whether

they are good URLs or bad URLs. Before performing a code we

have done some surfing and found some datasets. We have

collected the phishing and estimated websites from open source

platforms by using FastAPI and developed a bit of code to

extract the feature. As there are different types of URLs like

spam, benign, phishing, malware etc from legitimate URLs.

Benign has around 35,000 URLS, so out of them; we have used

5000 URL randomly. We have examined and pre-process the

dataset and divide the datasets into training and test sets. Then

we combine all the dataset into one frame. The data was

containing more than 5lakhs unique approach and there were

two columns which was further categories into Good and Bad.

Further we have done some classification problems and

vectorize our URLs by using CountVectorizer and tokenizer.

We have used different libraries for different functions such as

for visualizing most common words in good and bad URLs and

turn URLs into data frame. After that we have create the model

and splitting the data. Then we have import links to prediction

and deploy the model. The metric that we used is accuracy

17 | P a g e

which is a simple one. We have compared the accuracies of the

training datasets and the best one is declared.

Figure 1.1 Flow of Methodology

1.4 Organization

In our project we have used FastAPI which is a python

framework and import many libraries for different purposes.

We have taken two algorithms which is LogisticRegression

and MultinomialNB. LogisticRegression will predict the links

are good or not and MultinomialNB work well with nlp data

(natural language process). Then we have used some

classification problems by using CountVectorizer and

tokenizer. We have used some another visualization. We can

18 | P a g e

show that what is the hidden link in the phishing site which

will redirect to another server. Then we have networkx it is

creating a data structure, dynamic function and more. We are

combining three datasets which we collected from several

sites then we combine this dataset into one frame. The

usability of this dataset is 10.0 which means very good. The

data size is approx 30 mb. The data contains more than 5 lakhs

unique approach. The label column means that its prediction

column in which there were two categories first is good and

second is bad. After that we have checked the imbalanced of

target column. Now we have a data, we convert URLs into

vector form. We have used regular expression tokenizers

which divide the string using regular expression. So, in our

code we are just splitting only alphabets and some URLs have

numbers, dots , slash etc which are not important our data. So

we only gather the string and simultaneously we have

transformed this in all the rows. After converting into words

we used snowball it’s an nltk API (natural language toolkit)

which is used to string words. It will remove all the English

works and create some root words. Root words means that it

will combine the common words like pictures, photos for this

two words it will create the one word. Phishing data text

streamer is equal to all the holder that list is words lists are

converted into streamers. Then we join all the lists words into

single sentence. We also use word cloud. In our code we have

used this to convert most repeated word into the word cloud

form. Then we use chrome webdriver. This will create a new

19 | P a g e

window of that chrome. So to this new chrome we will pass

that link. Then by using beautifulSoup, we gather the all html

code from its page source and it is getting all the anchor tags.

So we will get all the hidden link which will hacker use to

redirect any users to this server and we create a data frame of

this links. So it will give a two links: first is what we passed

to this and second what we are getting from this link. Logistic

regression object and we fit it by trainX, trainY. After that we

checked the score and we are getting very good score which

is 90.96. After that we just created the confusion matrix to see

the actual prediction and normal prediction. Using Logistic

Regression we are creating a pipeline. Then we are saving this

pipeline model using pickle and we check the accuracy of it

and it is giving very good accuracy.

Chapter 02: LITERATURE SURVEY

20 | P a g e

- Chunlin Liu, Bo Lang : Finding effective type for malicious

URL detection : In ACM,2018

Chunlin et al. proposed method that primarily consciousness on

individual frequency features. In this they've mixed statistical

evaluation of URL with machine learning method to get end result

this is more accurate for category of malicious URLs. Also they've

compared six machine learning algorithms to confirm the

effectiveness of proposed algorithm which offers 99.7% precision

with fake positive rate much less than 0.4%.

- FadiThabtah et al. experimentally as compared massive numbers

of ML techniques on actual phishing datasets and with admire to

different metrics. The cause of the evaluation is to show the

benefits and drawbacks of machine learning predictive models

and to reveal their real performance in terms of phishing attacks.

The experimental outcomes display that Covering method models

are extra suitable as anti- phishing solutions. MuhemmetBaykara

et al. proposed an application which is referred to as Anti Phishing

Simulator; it offers records about the detection trouble of phishing

and how to detect phishing emails. Spam emails are brought to the

database through Bayesian algorithm. Phishing attackers use

JavaScript to area a legitimate URL of the URL onto the browsers

deal with bar. The recommended method in the have a look at is

to apply the textual content of the email as a key-word simplest to

carry out complicated word processing.

21 | P a g e

- Ankit Kumar Jain, B. B. Gupta : Towards detection of phishing

websites on client-side using machine learning based approach :In

Springer Science+Business Media, LLC, part of Springer Nature

2017

Gupta et al. [11] put forward a novel anti phishing method that

extracts features from client-aspect only. Suggested method is fast

and reliable as it is now no longer depending on third party

however it extracts capabilities only from URL and source code.

In this paper, they have reached 99.09% of overall detection

accuracy for phishing website.This paper has concluded that this

method has limitation as it can detect website written in HTML.

Non-HTML website can't detect through this method.

- A Prior-based transfer learning techniques for the Phishing

Detection:-

A logistic regression is the basis of a concern based transferrable

learning method, which is supplied right here for our

classification of statistical machine learning. It is used for the

detection of the phishing web sites relying on our decided on traits

of the URLs.

Due to the divergence in the allotment of the capabilities in the

distinct phishing areas, several models are proposed for

distinctive regions.

It is sort of impractical to accumulate enough information from a

new region to repair the detection model and use the transfer

learning algorithm for adjusting the present version. A suitable

manner for phishing detection is to apply our URL based

technique. To deal with all of the conditions of failure of detecting

traits, we need to undertake the shifting method to generate a extra

effective version.

22 | P a g e

- Ahmad Abunadi, Anazida Zainal ,OluwatobiAkanb: Feature

Extraction Process: A Phishing Detection Approach :In IEEE,2013

Ahmad et al. [17] proposed three new capabilities to enhance

accuracy rate for phishing internet site detection. In this paper,

Author used both type of capabilities as usually recognized and

new features for category of phishing and non-phishing site. At

the cease author has concluded this work can be improve by the

usage of this novel capabilities with decision tree machine

learning classifiers

- Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019.

Machine learning primarly based totally phishing detection

from URLs. Expert Systems with Applications, 117, pp.345-

357.

Attempts to detect phishing site the use of URL for preventing

customer sensitive information. Computer customers fall for

phishing because of the 5 major reasons:-

• Users don’t have precise information about URLs,

• Users don’t know, which internet pages may be trusted,

• Users don’t see the entire address of the internet page,

because of the redirection or hidden URLs,

• Users don’t have plenty time for consulting the URL, or

by chance enter a few internet pages,

• Users can't distinguish phishing internet pages from the

valid ones.

23 | P a g e

In proposed system, writer used NLP based features and Word

features for type of phishing and non-phishing sites. For category

used Decision Tree, Adaboost, K-star, kNN(n=3), Random

Forest, SMO(Sequential Minimal Optimization) and NaÃ¯ve

Bayes [12].

Chapter 03: SYSTEM DEVELOPMENT

3.1 Analysis of the

Algorithms:

24 | P a g e

As our whole project is based on supervised machine learning.

Supervised learning is a subcategory of machine learning and

artificial intelligence. It works as we pass a data along with label to

that data to a model and once the model is trained it recognizes

some patterns and associates the labels to that pattern and thus

makes the new predictions. There can be so many different

applications possible using supervised learning. Some of them can

be to detect the spam or spam detection. This is the way in which

we can detect if mail is a spam or not if mail is a spam it will

automatically put it in a spam folder and if it is not a spam mail

then put it in your inbox. Another can be object classification and

many more. Supervised machine learning has two categories:-

• Classification :

It helps find things that we can search by keywords, but it

actually helps you find our own invention that’s very close to

our own. An area that is grouped in subject areas called classes

and subclasses. Used to classify characteristics of invention.

The type predictive modelling is the challenges of

approximating the mapping characteristic from enter variables

to discrete output variables. Example: email spam detector.

The major purpose of the Classification algorithm is to pick

out the category of a given dataset, and those algorithms are

especially used to expect the output for the specific data. The

algorithm which implements the kind on a dataset is referred

to as a classifier.

25 | P a g e

• Regression:

It is a supervised learning method which enables in finding the

correlation among variables and allows us to be looking ahead

to the non-stop output variable primarily based totally at the

simplest or greater predictor variables. It is specifically used

for prediction, forecasting, time collection modeling, and

figuring out the causal-impact relationship among variables.

In Regression, we plot a graph among the variables which

satisfactory suits the given data points, the use of this plot, the

machine learning version could make predictions about the

data.

Fig 3.1 Classification and Regression

In our project we have used FastAPI which is a python

framework and import many libraries for different purposes.

We have taken two algorithms which is LogisticRegression

and MultinomialNB. LogisticRegression will predict the

links are good or not and MultinomialNB work well with

nlp data (natural language process). Then we have used

26 | P a g e

some classification problems by using CountVectorizer and

tokenizer. We have used some another visualization. We

can show that what is the hidden link in the phishing site

which will redirect to another server. We are combining

three datasets which we collected from several sites then we

combine this dataset into one frame. The usability of this

dataset is 10.0 which means very good. The data size is

approx 30 mb.

So, this has different types of URLs like spam, benign,

phishing etc. We took the benign URL from them and it has

around 35,000 URLs. So, out of them we have used 5000

URL randomly. Benign URLs (uniform resource locator)

with zero malicious detection were classified as benign and

URLs with no less than eight detection were classified as

malicious.

We study several machine learning algorithm for analysis of

the characteristic in order to get a good understanding of the

construction of the URLs that expand phishing. So,

supervised machine learning that we have chosen for this

project are:-

3.1.1 LogisticRegression:

Logistic Regression is set becoming a curve to the facts. It is utilized in

statistical software program to apprehend the connection among the based

variable and one or greater unbiased variables with the aid of using

estimating possibilities the usage of a LogisticRegression equation. These

27 | P a g e

sorts of estimation allow that we are expecting the probability of an occasion

taking place or a desire being made.

Fig 3.2 LogisticRegression

3.1.2 MultinomialNB :

Multinomial Naïve Bayes algorithm is a probabilistic learning method

that is mostly used in Natural Language Processing (NLP). For example

: As in this definition how many times the word is coming or what is

the frequency of word in this definition and it is a machine learning

method. Naïve Bayes is also called conditional probability in the world

of statistics. Multinomial is described discrete frequency counts in other

words word counts or something like that.

28 | P a g e

Fig 3.3 MultinomialNB

3.1.3 FastAPI :

There are already popular frameworks based on flask and django. It is relatively

new framework. So it was able to learn great features from other tools and also

having new features such as better python type hints.

Key benefits of FastAPI :-

 Fast (high-performance): It is one of the fastest python frameworks

available. This is mainly due to the framework being built on top of tools

like Starlette and Pydantic. FastAPI features parallelism FastAPI is

especially a good match for building web API for machine learning systems.

29 | P a g e

 Easy data Validation in FastAPI based on standard python type hints

handled by pydantic. The python type hints are a special syntax to indicate

the type of variable. It is relatively new feature that’s only available in

recent version of python with such declaration of types in FastAPI pydantic

enforces it at run time and provides user friendly error messages when data

is invalid.

 Automatic interactive documentation: As we program in FastAPI it

automaticaaly documents everything with open standards like OpenAPI and

JSON Schema. We can view this documentation through systems like

Swagger UI and ReDoc in our browsers.

 Also FastAPI was tested on multiple editors. So we can get great editor

support including auto completion. This means we can code faster and have

fewer bugs using FastAPI .

30 | P a g e

Fig 3.4 FastAPI

3.1.4 RegexpTokenizer:

Regular Expression is quite useful or generalize the kind of expression that we can

use. The way we can simply avoid is by just telling tokenizer or python that

whatever words it is scanning in that word if it is finding an apostrophe do not break

into two parts.So for that what we can do is we can use something called a regular

expression or tokenizer. It allows us to check a series of characters for ‘matches’

31 | P a g e

3.1.5: NLTK (Natural Language Toolkit) :

Suite of open source tools created to make NLP processes in Python easier to build.

NLP has revolutionised many areas, like it may be parts of speech tagging. It may

be sentence translation. It may be even Text generation and many applications. So

there are many inbuilt of functions and libraries that are included inside this NLTK

library. For example, we may have a stem function inside this so what it does it if

many words like coder, coding, coders and many more then it all comes down to

its these all words are a stemmed to their root word ‘code’. Similarly, words

separation so given a sentence or a text we want to tokenize it into a list of words.

So we don’t need to write a custom function of ourselves. We can just use the

tokenize function there and similarly, there are many more things like stop words

and many more applications which are inbuilt in NLTK and many more are being

added continuously due to its open source nature. So it’s very useful library and if

we don’t know how to use it then anything we want to design ar develop will be

very slow because we will need to do everything ourselves.

32 | P a g e

Fig 3.5 Autoencoder neural network

We have examined and preprocess the dataset and divide the datasets into

training and checking out sets. The metric that we used is accuracy which

is a simple one. We have compared the accuracies of the training datasets

and the best one is declared.

33 | P a g e

3.2Design:

In this project, we have mainly used machine learning techniques. In

which we have used their algorithms for training and prediction whether

the links are good or bad and done some accuracy of it. We have used

FastAPI which is a python framework and import many libraries for

different purposes. We have taken two algorithms which is

LogisticRegression and MultinomialNB. LogisticRegression will predict

the links are good or not and MultinomialNB work well with nlp data

(natural language process). Then we have classification_report it will

give whole information of metrics like recall precision and advanced

curve.

o The series of phishing URLs is instead easy due to the open

source provider referred to as Phish Tank. This provider offer

a fixed of phishing URLs in a couple of formats like CSV,

JSON etc. that receives up to date hourly. The CSV record of

phishing URLs is received through the usage of wget

command. After downloading the dataset, it is loaded right

into a Data Frame.

o For the legitimate URLs, we discovered a supply that has a set

of benign, spam, phishing, malware & defacement URLs. The

variety of legitimate URLs on this collection is 35,300.This

record is then uploaded to the Colab for the feature extraction.

We have used some classification problems by using CountVectorizer and

tokenizer. The CountVectorizer to use to transform the data into a space

matrix and at last we do the pipelining work using SQL and pipeline. We

have used someanother visualization. We can show that what is the hidden

link in the phishing site which will redirect us to the another server. Then we

34 | P a g e

have networkx it is creating a data structure, dynamic function and more. We

are combining three datasets which we collected from several sites then we

combine this dataset into one frame. After combining into one frame we

create creator and then save into my drive. The usability of this dataset is 10.0

which means very good. The data size is approx 30 mb. There is two columns

first are URLs and second is label. S when we saw our information about the

dataset data contains more than 5 lakhs unique approach. The label column

means that its prediction column in which there were two categories first is

good and second is bad. After that we have checked the imbalanced of target

column. From that we can saw that there is lots of difference between on both

classes. After that we started the pre-processing work. So now we have a data,

we convert URLs into vector form. We have used regular expression

tokenizer which divides the string using regular expression. So, in our code

we are just splitting only alphabets and some URLs have numbers, dots , slash

etc which are not important our data. So we only gather the string and

simultaneously we have transformed this in all the rows into this tokenizer

text. After converting into words we used snowball it’s an NLTK API (natural

language toolkit) which is used to string words. It will remove all the english

works and create some root words. Root words means that it will combine

the common words like pictures, photos for this two words it will create the

one word. Phishing data text streamer is equal to all the holder that list is a

words list is converted into streamers. Then we join all the lists words into

single sentence. We also use word cloud. In our code we have used this to

convert most repeated word into the word cloud form. Then we use chrome

webdriver. This will create a new window of that chrome. So to this new

chrome we will pass that link.

35 | P a g e

 Fig 3.2.1 New Window

Then by using BeautifulSoup, we gather the all html code from its page

source and it is getting all the anchor tags. So we will get the entire hidden

link which will hacker use to redirect any users to this server and we create a

data frame of this links. So it will give a two links: first is what we passed to

this and second what we are getting from this link. After that we have use

networkx and networkx is doing here by visualize all the internal links in the

structure by feeding network from panda edge list first and draw it by calling

dot nx dot draw like and here this the redirected links which is shown by the

networkx like nodes.

36 | P a g e

 Fig 3.2.2 Nx.draw(graph)

Logistic regression object and we fit it by trainX, trainY. After that we

checked the score and we are getting very good score which is 90.96. After

that we just print the score so model is not over fitted or undefeated. After

that we just created the confusion matrix to see the actual prediction and

normal prediction. Multinomial is giving us 95 which are not good as a

logistic regression but fine. Using Logistic Regression we are creating a

pipeline and we are using the regular tokenizer and stopwatch equals English.

There using stopwatch it will be stops all the English words and we also used

the tokenizers but these are not giving me the best accuracy. Then we are

saving this pipeline model using pickle and we check the accuracy of it and

37 | P a g e

it is giving very good accuracy. After that we are dumping this model and

after dumping we just load model to check our model is working well and we

see that load model dot score it will be giving me the 96 percent again.

3.3 Flow Chart

In this project, we have predicted phishing websites whether

they are good URLs or bad URLs. Before performing a code we

have done some surfing and found some datasets. We have

collected the phishing and estimated websites from open source

platforms by using FastAPI and developed a bit of code to

extract the feature. As there are different types of URLs like

spam, benign, phishing, malware etc from legitimate URLs.

Benign has around 35,000 URLS, so out of them; we have used

38 | P a g e

5000 URL randomly. We have examined and pre-process the

dataset and divide the datasets into training and test sets. Then

we combine all the dataset into one frame. The data was

containing more than 5lakhs unique approach and there were

two columns which was further categories into Good and Bad.

Further we have done some classification problems and

vectorize our URLs by using CountVectorizer and tokenizer.

We have used different libraries for different functions such as

for visualizing most common words in good and bad URLs and

turn URLs into data frame. After that we have create the model

and splitting the data. Then we have import links to prediction

and deploy the model. The metric that we used is accuracy

which is a simple one. We have compared the accuracies of the

training datasets and the best one is declared.

3.4 Algorithm

In this project, we have done various implementations for training

and we have predicted phishing websites whether they are good

URLs or bad URLs. As we have used some of the supervised

algorithm.

• Firstly, we imported some libraries such as pandas, numpy,

multinomialNB, LogisticRegression and many more.

39 | P a g e

• We have examined and pre-process the dataset and divide the

datasets into training and test sets. Then we combine all the

dataset into one frame.

 Fig 3.4.1 Combining dataset into one frame.

 After combining into one frame we created creator and then save into my drive.

Fig 3.4.2 Dataset

 So we can see that there is two columns first is URLs and second is Label. So when

we see our information about dataset data contains more than 5lakhs unique entries

which means that more than 5 lakhs unix URl in their data.

40 | P a g e

 After that we check the imbalanced of that target column.

1. Label underscore counts is equal to pd.dataframe (phish underscore

data.label.value underscore counts())

2. Sns.set underscore style (‘darkgrid’)

Sns.barplot (label underscore counts. Index, label underscore counts.label)

 Now that we have our data we have to vectorize our URLs. We have use regular

expression tokenizer .

1. Tokenizer is equal to RegexpTokenizer(r’[A-Za-z]+’)

In this expression {r’ [A-Za-z]+} we just splitting only alphabets.

2. Phish underscore data.URL[0]

After we only gather the strings.

3. Tokenizer.tokenize (phish underscore data.URL[0])

 After doing this with one rows we transform all the rows although all the URLs

into tokenizer text. So it takes 4 seconds something so to convert all the rows more

than 50 URLs into that word.

1. Print (‘getting words tokenizer’)

2. T0 is equal to time.perf underscore counter()

3. Phish underscore data [‘text underscore tokenizer’] is equal to phish

underscore data.URL.map (Lambda t: tokenizer.tokenize(t))

4. T1 is equal to time.perf underscore counter()

5. Print (‘time taken’, t1,’sec’)

41 | P a g e

6. Phish underscore data.sample(5)

 So after converting into words we use a snowball. It is a NLTK API which is used

to stream words.

 Stemmer is equal to SnowballStemmer (“English”)

 Print (‘getting words tokenizer’)

 T0 is equal to time.perf underscore counter()

 Phish underscore data [‘text underscore tokenizer’] is equal to phish underscore

data [‘text_tokenized’].map (lambda 1: [stemmer. stem (word) for word in 1])

 T1 is equal to time.perf underscore counter() subtract T0

 Print (‘time taken’, T1,’sec’)

All the holder that a words list are converted by stremmers. Then we just join the

all the list words into just single sentence.

 After that we thought we do some visualization like showing what is the keywords

using in bad sites and what is the keywords using by good sites.

 Bad underscore is equal to phish underscore data [phish underscore data. Label ==

“bad”]

 Good underscore is equal to phish underscore data [phish underscore data. Label

== “good”]

 Bad underscore sites.head()

 defplot underscore wordcloud(text,mask is equal to None,max underscore words is

equal to 400,max underscore font underscore size is equal to 120,figure underscore

size is equal to (24.0,16.0),

 title is equal to None,title underscore size is equal to 40,image underscore color is

equal to False):

 stopwords is equal to set(STOPWORDS)

 More underscore stopwordsis equal to{'com','http'}

 stopwordsis equal tostopwords.union(more is equal to stopwords)

42 | P a g e

 wordcloudis equal toWordCloud(background underscore color is equal to 'white',

 stopwordsis equal tostopwords,

 Max underscore wordsis equal to max underscore words,

 Max underscore font underscore size is equal to max underscore font underscore

size,

 Random underscore state is equal to42,

 Mask is equal to mask)

 wordcloud.generate(text)

 plt.figure(figsize is equal to figure underscore size)

 ifimage underscore color:

 Image underscore colors is equal toImageColorGenerator(mask);

 plt.imshow(wordcloud.recolor(color underscore func is equal to

image_colors),interpolation is equal to "bilinear");

 plt.title(title,fontdict is equal to {'size':title underscore size,

 'verticalalignment':'bottom'})

 else:

 plt.imshow(wordcloud);

 plt.title(title,fontdict is equal to {'size':title underscore size,'color':'green',

 'verticalalignment':'bottom'})

 plt.axis('off');

 plt.tight underscore layout()

 data is equal togood underscore sites.text underscore sent

 data.reset underscore index(drop is equal to True, inplace=True)

 In [28]:

 Common underscore text is equal to str(data)

43 | P a g e

 Common underscore mask is equal to np.array(Image.open('star.png'))

 Plot underscore wordcloud(common underscore text, common underscore mask,

max underscore words is equal to 400, max underscore font underscore size is

equal to 120,

 title is equal to 'Most common words use in good urls', title underscore

size is equal to 15)

 We will show that all the redirect links. We are using that chrome driver.

 Browser is equal to webdriver.chrome(r”chromedriver.exe”)

 After this we are using BeautifulSoup and it will gather the all HTML code from

its page source.

1. forurlinlist is equal to urls:

2. browser.get(url)

3. soupis equal toBeautifulSoup(browser.page underscore source,"html.parser")

4. forlineinsoup.find underscore all('a'):

5. hrefis equal toline.get('href')

6. Links is equal to with is equal to text.append([url,href])

 We gather the all html code from its page source and it is getting all the anchor tags.

So we will get the entire hidden link which will hacker use to redirect any users to

this server and we create a data frame of this links.

 GAis equal tonx.from underscore pandas underscore edgelist(df,source is equal to

"from",target is equal to"to")

 nx.draw(GA,with underscore labelsis equal toFalse)

 Scores underscore ml is equal to {}

 Scores underscore ml['Logistic Regression'] is equal to

np.round(lr.score(testX,testY),2)

 In [46]:

 print('Training Accuracy :',lr.score(trainX,trainY))

 print('Testing Accuracy :',lr.score(testX,testY))

44 | P a g e

 con underscore mat is equal topd.DataFrame(confusion_matrix(lr.predict(testX),

testY),

 columns is equal to ['Predicted:Bad', 'Predicted:Good'],

 index is equal to ['Actual:Bad', 'Actual:Good'])

 print('\nCLASSIFICATION REPORT\n')

 print(classification underscore report(lr.predict(testX), testY,

 target underscore names is equal to['Bad','Good']))

 print('\nCONFUSION MATRIX')

 plt.figure(figsizeis equal to (6,4))

 sns.heatmap(con_mat, annot is equal toTrue,fmtis equal to'd',cmapis equal

to"YlGnBu")

 Scores_ml['MultinomialNB'] is equal to np.round(mnb.score(testX,testY),2)

 In [51]:

 print('Training Accuracy :',mnb.score(trainX,trainY))

 print('Testing Accuracy :',mnb.score(testX,testY))

 con underscore mat is equal to pd.DataFrame(confusion underscore

matrix(mnb.predict(testX), testY),

 columns is equal to ['Predicted:Bad', 'Predicted:Good'],

 index is equal to ['Actual:Bad', 'Actual:Good'])

 print('\nCLASSIFICATION REPORT\n')

 print(classification_report(mnb.predict(testX), testY,

 target underscore ['Bad','Good']))

 print('\nCONFUSION MATRIX')

 plt.figure(figsizeis equal to (6,4))

 sns.heatmap(con underscore mat, annot is equal toTrue,fmtis equal to'd',cmapis

equal to"YlGnBu")

45 | P a g e

 print('Training Accuracy :',pipeline_ls.score(trainX,trainY))

 print('Testing Accuracy :',pipeline_ls.score(testX,testY))

 con underscore matis equal topd.DataFrame(confusion underscore matrix(pipeline

underscore ls.predict(testX),testY),

 columnsis equal to['Predicted:Bad','Predicted:Good'],

 ['Actual:Bad','Actual:Good'])

 print('\nCLASSIFICATION REPORT\n')

 print(classification underscore report(pipeline underscore ls.predict(testX),testY,

 target underscore namesis equal to['Bad','Good']))

 print('\nCONFUSION MATRIX')

 plt.figure(figsizeis equal to(6,4))

 sns.heatmap(con underscore mat,annotis equal toTrue, fmtis equal to'd',cmapis

equal to"YlGnBu")

3.5Model Development

In our project we have used FastAPI which is a python

framework and import many libraries for different purposes.

We have taken two algorithms which is LogisticRegression

and MultinomialNB. LogisticRegression will predict the links

are good or not and MultinomialNB work well with nlp data

(natural language process). Then we have used some

classification problems by using CountVectorizer and

tokenizer. We have used someanother visualization. We can

show that what is the hidden link in the phishing site which

will redirect to another server. Then we have networkx it is

creating a data structure, dynamic function and more. We are

combining three datasets which we collected from several

sites then we combine this dataset into one frame. The

usability of this dataset is 10.0 which means very good. The

data size is approx 30 mb. The data contains more than 5 lakhs

46 | P a g e

unique approach. The label column means that its prediction

column in which there were two categories first is good and

second is bad. After that we have checked the imbalanced of

target column. Now we have a data, we convert URLs into

vector form. We have used regular expression tokenizers

which divide the string using regular expression. So, in our

code we are just splitting only alphabets and some URLs have

numbers, dots , slash etc which are not important our data. So

we only gather the string and simultaneously we have

transformed this in all the rows. After converting into words

we used snowball it’s an nltk API (natural language toolkit)

which is used to string words. It will remove all the English

works and create some root words. Root words means that it

will combine the common words like pictures, photos for this

two words it will create the one word. Phishing data text

streamer is equal to all the holder that list is words lists are

converted into streamers. Then we join all the lists words into

single sentence. We also use word cloud. In our code we have

used this to convert most repeated word into the word cloud

form. Then we use chrome webdriver. This will create a new

window of that chrome. So to this new chrome we will pass

that link. Then by using beautifulSoup, we gather the all html

code from its page source and it is getting all the anchor tags.

So we will get the entire hidden link which will hacker use to

redirect any users to this server and we create a data frame of

this links. So it will give a two links: first is what we passed

to this and second what we are getting from this link. Logistic

47 | P a g e

regression object and we fit it by trainX, trainY. After that we

checked the score and we are getting very good score which

is 90.96. After that we just created the confusion matrix to see

the actual prediction and normal prediction. Using Logistic

Regression we are creating a pipeline. Then we are saving this

pipeline model using pickle and we check the accuracy of it

and it is giving very good accuracy.

We have done the featured extraction where we have saw that each

category is described properly and we have done implementation

for that. So, all these features are based on URL structured

48 | P a g e

Chapter 04: Performance Analysis

In this project, we have done various implementations for training

and we have predicted phishing websites whether they are good

URLs or bad URLs. As we have used some of the supervised

algorithm.

• Firstly, we imported some libraries such as pandas, numpy,

multinomialNB, LogisticRegression and many more.

• We have examined and pre-process the dataset and divide the

datasets into training and test sets. Then we combine all the

dataset into one frame.

 Fig 4.1 importing the libraries

49 | P a g e

 Fig 4.2 Combining dataset into one frame

 After combining into one frame we created creator and then save into my drive.

 Fig 4.3 Dataset

50 | P a g e

Fig 4.4 Missing value

Fig 4.5 Visualizing

 We have used regular expression tokenizers which divide the string using regular

expression. So, in our code we are just splitting only alphabets and some URLs

have numbers, dots , slash etc which are not important our data. So we only gather

the string and simultaneously we have transformed this in all the rows.

51 | P a g e

 Fig 4.6 Regular Expression

Fig 4.7 SnowballStemmer

 After converting into words we used snowball it’s an nltk API (natural language

toolkit) which is used to string words. It will remove all the English works and

create some root words. Root words means that it will combine the common words

52 | P a g e

like pictures, photos for this two words it will create the one word. Phishing data

text streamer is equal to all the holder that list is words lists are converted into

streamers.

 We also use word cloud. In our code we have used this to convert most repeated

word into the word cloud form. Then we use chrome webdriver. This will create a

new window of that chrome. So to this new chrome we will pass that link.

 Fig 4.8 WordCloud

53 | P a g e

Fig 4.9 Networkx

 Fig 4.10 create model

54 | P a g e

 Using Logistic Regression we are creating a pipeline. Then we are

saving this pipeline model using pickle and we check the accuracy of

it and it is giving very good accuracy.

 Fig 4.11 Logistic Regression

 MultinomialNB work well with nlp data (natural language process).

Multinomial is giving us 95 which are not good as a logistic regression but

fine.

55 | P a g e

 Fig 4.14 Good and Bad links

4.2 Result

 Fig 4.2.1 new chrome window

56 | P a g e

Fig 4.2.2 graph of networkx

 Fig 4.2.3 Testing

 Fig 4.2.4 Tokenizers

57 | P a g e

 Fig 4.2.5 Classification of imbalanced

Fig 4.2.6 Similar words which we use

58 | P a g e

Fig 4.2.7 SnowballStemmer good or bad

Fig 4.2.8 Visualizing of wordcloud

59 | P a g e

Fig 4.2.9 Common good words

60 | P a g e

 Fig 4.2.10 Common bad words

 Fig 4.2.11 prediction

61 | P a g e

 Fig 4.2.12 prediction between logistic regression and multinomialnb

 Fig 4.2.13 Confusion matrix

Chapter 05: CONCLUSIONS

62 | P a g e

In our project we have used FastAPI which is a python

framework and import many libraries for different purposes.

We have taken two algorithms which is LogisticRegression

and MultinomialNB. LogisticRegression will predict the links

are good or not and MultinomialNB work well with nlp data

(natural language process). Then we have used some

classification problems by using CountVectorizer and

tokenizer. We have used someanother visualization. We can

show that what is the hidden link in the phishing site which

will redirect to another server. Then we have networkx it is

creating a data structure, dynamic function and more. We are

combining three datasets which we collected from several

sites then we combine this dataset into one frame. The

usability of this dataset is 10.0 which means very good. The

data size is approx 30 mb. The data contains more than 5 lakhs

unique approach. The label column means that its prediction

column in which there were two categories first is good and

second is bad. After that we have checked the imbalanced of

target column. Now we have a data, we convert URLs into

vector form. We have used regular expression tokenizer which

divide the string using regular expression. So, in our code we

are just splitting only alphabets and some URLs have

numbers, dots , slash etc which are not important our data. So

we only gather the string and simultaneously we have

transformed this in all the rows. After converting into words

we used snowball it’s an nltk API (natural language toolkit)

which is used to string words. It will remove all the English

63 | P a g e

works and create some root words. Root words means that it

will combine the common words like pictures, photos for this

two words it will create the one word. Phishing data text

streamer is equal to all the holder that list is words lists are

converted into streamers. Then we join all the lists words into

single sentence. We also use word cloud. In our code we have

used this to convert most repeated word into the word cloud

form. Then we use chrome webdriver. This will create a new

window of that chrome. So to this new chrome we will pass

that link. Then by using beautifulSoup, we gather the all html

code from its page source and it is getting all the anchor tags.

So we will get the entire hidden link which will hacker use to

redirect any users to this server and we create a data frame of

this links. So it will give a two links : first is what we passed

to this and second what are we getting from this link. Logistic

regression object and we fit it by trainX, trainY. After that we

checked the score and we are getting very good score which

is 90.96. After that we just created the confusion matrix to see

the actual prediction and normal prediction. Using Logistic

Regression we are creating a pipeline. Then we are saving this

pipeline model using pickle and we check the accuracy of it

and it is giving very good accuracy.

5.2Future Scope

Through this project, one could recognize plenty

approximately the phishing web sites and how they're

differentiated from legitimate ones. This project may be

taken in addition through developing browser extensions of

growing a GUI. These have to classify the inputted URL to

legitimate or phishing with the use of the stored model.

64 | P a g e

65 | P a g e

 REFERENCES

1) https://www.researchgate.net/profile/Rishikesh-

Mahajan/publication/328541785_Phishing_Website_Detection_usin

g_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af

4/Phishing-Website-Detection-using-Machine-Learning-

Algorithms.pdf

2) Ankit Kumar Jain, B. B. Gupta : Towards detection of phishing

websites on client-side using machine learning based approach :In

Springer Science+Business Media, LLC, part of Springer Nature

2017

3) Chunlin Liu, Bo Lang : Finding effective classifier for malicious URL

detection : In ACM,2018 https://www.researchgate.net/profile/Er-

Purvi

Pujara/publication/331198983_Phishing_Website_Detection_using_

Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/P

hishingWebsite-Detection-using-Machine-Learning-A-Review.pdf

4) Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019. Machine

learning based phishing detection from URLs. Expert Systems with

Applications, 117, pp.345-357.

5) Sci-kit learn, SVM library. http://scikit-learn.org/stable/modules/svm.html.

6) https://www.unb.ca/cic/datasets/url-2016.html

7) Ahmad Abunadi, Anazida Zainal ,OluwatobiAkanb: Feature

Extraction Process: A Phishing Detection Approach :In IEEE,2013

APPENDICES

Raw code:

https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Rishikesh-Mahajan/publication/328541785_Phishing_Website_Detection_using_Machine_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-Detection-using-Machine-Learning-Algorithms.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
https://www.researchgate.net/profile/Er-Purvi-Pujara/publication/331198983_Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585156b5706e727/Phishing-Website-Detection-using-Machine-Learning-A-Review.pdf
http://scikit-learn.org/stable/modules/svm.html.
http://scikit-learn.org/stable/modules/svm.html.
http://scikit-learn.org/stable/modules/svm.html.
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html

66 | P a g e

import

uvicorn

from fastapi import FastAPI

import joblib,os

app = FastAPI()

#pkl

phish_model = open('phishing.pkl','rb')

phish_model_ls = joblib.load(phish_model)

ML Aspect

@app.get('/predict/{feature}')

async def predict(features):

 X_predict = []

 X_predict.append(str(features))

 y_Predict = phish_model_ls.predict(X_predict)

 if y_Predict == 'bad':

 result = "This is a Phishing Site"

 else:

 result = "This is not a Phishing Site"

 return (features, result)

if __name__ == '__main__':

 uvicorn.run(app,host="127.0.0.1",port=8000)

	Fig 3.1 Classification and Regression
	3.1.1 LogisticRegression:
	3.1.2 MultinomialNB :
	Fig 3.4 FastAPI

