JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATIONS-2022

B.Tech-VI Semester (ECE)

COURSE CODE (CREDITS): 18B11EC612 (4)

MAX. MARKS: 35

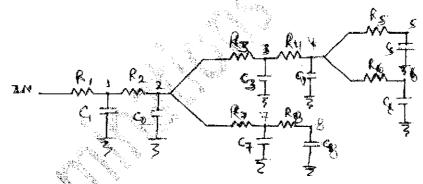
COURSE NAME: VLSI TECHNOLOGY

COURSE INSTRUCTORS: ANUJ KUMAR MAURYA

MAX. TIME: 2 Hours

[02]

[05]


Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. (a) Draw and explain Y-chart of VLSI design flow introduced by D. Gajski
 - (b) Explain channel length modulation. Also, develop new drain current equation if channel length modulation exists. [03]
- Q2. (a) Consider an enhancement type pMOS transistor with following parameters: [03]

$$V_S = 4V$$
, $V_G = 2V$, $V_D = 1V$, $(W/L)_p = 5$, $V_{SB} = 0V$, $V_{T0,p} = -0.8V$, $\mu_p C_{ox} = 100 \mu A/V^2$.

Determine the value of current flowing through this transistor.

(b) Calculate the Elmore delay τ_{D6} at node 6 in the network of Fig. 1.

- Q3. Explain the structure and operation of enhancement type nMOS transistor in details. [05]
- Q4. Explain CMOS inverter with its circuit diagram, its operation in different operating region and draw its voltage transfer curve (VTC). [05]
- Q5. Consider a CMOS inverter with the following parameters: [05]

$$V_{T0,n} = 0.6 V$$
 $\mu_n C_{ox} = 60 \mu A/V^2$ $(W/L)_n = 8$ $V_{T0,p} = -0.8 V$ $\mu_p C_{ox} = 20 \mu A/V^2$ $(W/L)_p = 12$

Find the noise margin NM_H of this circuit. The power supply voltage V_{DD} is 3.3 V.

Q6. Consider a CMOS inverter with the following parameters:

$$V_{T0,n} = 1.0 V$$
 $\mu_n C_{ox} = 45 \mu A/V^2$ $(W/L)_n = 10$ $V_{T0,p} = -1.2 V$ $\mu_p C_{ox} = 25 \mu A/V^2$ $(W/L)_p = 20$

The power supply voltage is 5 V, and the output load capacitance is 1.5 pF. Calculate the fall time (90% level to 10% level) of the output signal.

Q7. Draw the CMOS circuit diagram of two input NAND gate. Explain the working with respect to its truth-table. Also, draw its stick diagram. [05]