JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- December-2021

TEST -3 EXAMINATION- December 20-2	
V Semester MAX. MARKS	S:35
COURSE CODE: 18B11CI513 COURSE NAME: Formal Language and Automata Theory MAX. TIME: Two He	ours
COURSE CREDITS: 03 Note: All questions are compulsory. Carrying of mobile phone during examinations with the compulsory.	u be
Note: All questions are companies.	
treated as case of unfair means.	V
1. For accepting all the string generated by language $L=\{a^nb^mc^md^n n,m>=1\}$ which type of machine is most appropriate. Justify your answer and also design the machine?	[5]
2. For accepting all the string generated by language $L=\{a^mb^nc^md^n n,m>=1\}$ which type of machine is most appropriate. Justify your answer and also design the machine?	[5]
	[3]
3. Prove that the class of CFL are closed under concatenation operation?	ron
4. Prove that the class CFL are not closed under intersection operation?	[3]
5. Define Instantaneous Description of PDA and Turing Machine with example?	[3]
6. Design a PDA for acceptance of given language by Empty Stack $L=\{\mathbf{w}\in\{0,1\}^* \ \mathbf{w}\ \text{has equal number of 0's and 1's in any order}\}$	[5]
7. A Grammar $G=(\{S\}, \{0,1\}, P, S)$ is defined such as $P=\{S\rightarrow aSbb \mid abb\}$. You need to construct the PDA for acceptance the Grammar G by Empty Stack. Also generate a string figuren grammar G and accept this string by your constructed PDA.	From [3+2]

8. Find the language accepted by given Automata $M=(\{q_0,q_1\},\{0,1\},\{Z_0,X\},\delta,\ q_0,Z_0,\phi)$ and

he transaction function (δ) is define Current State Input Symbol	Top of Stack Symbol	New State	New Top of Stack Symbol
	Z_0	q_0	XZ ₀
0 0	X	q_0	XX
0 1	X	q_1	<u> </u>
	X	q_1	$\frac{\varepsilon}{\varepsilon}$
ε	X	$- q_1 $	ε
ϵ	Z_0	q_1	re not accepted by the

Is this machine is a deterministic machine? Also write few strings which are not accepted by this machine?

9. With help of pumping lemma prove that language $L=\{a^n b^n c^n | n > 1\}$ is not a CFL? [3]