JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- May, 2022

B.Tech. (CSE, IT) VI Semester

COURSE CODE: 18B1WCI634 (2)

MAX. MARKS: 35

COURSE NAME: Machine Learning

COURSE INSTRUCTORS: Dr. Ekta Gandotra, Dr. Vipul Sharma, Dr. Shubham Goel

MAX. TIME: 2 Hrs.

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. a. Give geometric intuition behind gradient descent algorithm? What will happen [5] if learning rate is too high or too low?
 - b. What is vanishing gradient problem? Which activation function can be used to [2] solve this problem?
- Q2. a. Consider the following 8 data points with (x, y) representing locations. Use k- [5] means clustering algorithm to group these into three clusters.

 A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A3(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)

Note: Consider the initial cluster centers as A1, A4 and A7. The distance function between two data points a = (x1, y1) and b = (x2, y2) is defined as: P(a, b) = |x2 - x1| + |y2 - y4|

- b. What is a dendrogram in hierarchical clustering? How to get the optimal [2] number of clusters using a dendrogram?
- Q3. a. Discuss the working of Genetic Algorithms with the help of a diagram and give [5] a short description of each step.
 - b. Differentiate between Linear Regression and Logistic Regression. [2]
- Q4. a. Differentiate between hard and soft SVM using geometric interpretation. [5]

 Derive the objective function for soft SVM and also explain how to optimize it.
 - b. Consider the data distribution in the following figures. Which case provides the minimum entropy and why?

Q5. a. Consider the following diagram of a single artificial neuron. The node has three [5] inputs $x = (x_1, x_2, x_3)$ that receive only binary signals (either 0 or 1).

Suppose that the weights corresponding to the three inputs have the values w1 = 2, w2 = -4 and w3 = 1 and the activation of the unit is given by the following step-function:

$$\varphi(v) =
\begin{cases}
1 & \text{if } v \ge 0 \\
0 & \text{otherwise}
\end{cases}$$

Calculate the output value y of the unit for each of the following input patterns.

Pattern	P1	P2	P3.	P4
xl	1	0	Ĩ,	1
x2	0 .	1	0	» 1
x2	0	1990		1

b. Given the following training examples from the questionnaires survey (to ask people opinion) with two attributes (acid durability and strength) to classify whether a special paper tissue is good or not. Find the class of the test sample using k-NN algorithm. Take k = 3. Use L2 Norm for distance computations.

[2]

X1 = Acid Durability (seconds)	X2 = Strength (kg/squaremeter)	Y= Classification
7	7	Bad
	4	Bad
A 33	4	Good
1	4	Good

Fest Sample

X1 = Acid Durability	X2 = Strength	Y=
(seconds)	(kg/squaremeter)	Classification
3	7	?