

Hardware Security Module (LUNAEFT)

Project report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology

In

COMPUTER SCIENCE & ENGINEERING

SUBMITTED BY

Name: Aditya Jadia Roll no.: 141328

Under the Supervision of

Prof. Dr Satya Prakash Gherera

Professor, Brig (Retd.) and Head, Dept. of CSE and IT

 TO

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Hardware Security

Module” in partial fulfillment of the requirement for the award of the degree of Bachelor

of Technology in Computer Science and Engineering/Information Technology

submitted in the Department of Computer Science & Engineering/Information

Technology, Jaypee University of Information Technology, Waknaghat is an

authentic record of my own work carried out over a period from 5
th

 February 2018 to 23
rd

May 2018 under the supervision of Prof. Dr. Satya Prakash Ghrera(Professor, Brig

(Retd.) and Head, Dept. of CSE and IT).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Aditya Jadia

141328

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Prof. Dr. Satya Prakash Ghrera

Professor, Brig (Retd.) and Head, Dept. of CSE and IT

Department of Computer Science & Engineering/Information Technology

JUIT, Solan, HP

Dated:

ii

CERTIFICATE

This is to certify that Aditya Jadia, student of B.Tech CSE of Jaypee University of

Information Technology has completed his industrial training dated from February 5
th

2018 to 31
st
 May 2018. He is working in Crypto Management Department on the product

Hardware Security Module under the guidance of Mr. Suhail Shrivastava.

Signature of Manager

Mr. Suhail Shrivastava

Manager, Crypto Management

iii

ACKNOWLEDGEMENT

I would like to express my immense gratitude to Mr. Suhail Shrivastava (Manager,

Crypto Management) for helping me with every aspect of learning and understanding the

working of the organization. His guidance helped throughout the internship. I would like

to thanks Mr. Shivam Garg (Technical Lead), Mr. Vijendra Singh (Solutions & Services)

and Mr. Rajat Kumar (Software Engineer) for the guidance they provided during my

internship at Gemalto.

I would like to take this opportunity to thanks Gemalto, Noida for providing me the

golden opportunity to work on their flagship projects. My internship at Gemalto has been

a wonderful experience, the internship helped me to explore the new aspects of Digital

security and provided me a platform to work with some of the most advance technologies

in this domain.

I would like to express my special thanks for Prof. Dr Mr. Satya Prakash Ghrera for all

the support and guidance. He provided me solution for all the my problems and also was

always ready with suggestion that helped me carry out the internship smoothly.

iv

Gemalto: Digital Security Solutions & Services

Gemalto is the World’s leading provider of Digital security & Data Protection. Since

2006, Gemalto have helped Government agencies and Global corporations to secure their

most precious assets and intellectual property. Our data-centric approach focuses on the

protection of high value information throughout its lifecycle, from the data center to the

cloud. Our security solutions covers a vast area of industries ranging from Banking and

Payments, Biometrics to IOT and Software Monitization.

Protecting High Value Data

Gеmаlto's sесurіty services & solutіons hаvе еnаblеd our сustomеrs to аdарt to thе

еsсаlаtіng іntеrnаl аnd еxtеrnаl thrеаts to thеіr hіgh-vаluе dаtа, аnd rаріdly еvolvе to

аddrеss nеw busіnеss rеquіrеmеnts аnd сomрlіаnсе mаndаtеs. Οur рroduсts dеlіvеr

реrsіstеnt рrotесtіon of sеnsіtіvе dаtа throughout thе іnformаtіon lіfесyсlе by:

• Providing protection for both User Ids and applications Ids.

• Protecting transactions of highly valuable data.

• Providing encryption operations for critical sets data that is being shared, moved ,

accessed or stored.

• Creating cloud-based infrastructure

.

v

vi

Content

Declaration i

Certificate ii

Acknowledgement iii

About the Company iv

Table of Contents vi

Unit 1: Introduction

Chapter 1: Outline

1.1 Abstract 1

1.2 About H.S.M. 2

1.3 Product Overview 3

1.4 Project Overview 4

Unit 2: Project

Chapter 2: Requirement and Analysis

2.1 Software Requirements 5

2.1.1 Aim 5

2.1.2 Scope 5

2.1.3 Feasibility 5

2.1.3.1 Technical Feasibility 5

2.1.3.2 Cost Feasibility 6

2.1.3.3 Time Feasibility 6

2.1.4 Environment 7

2.1.4.1 Hardware & Software 7

2.1.4.2 Input / Output 8

vii

2.1.4.3 Interaction

2.1.4.4 Security

2.2 Product Perspective 8

2.2.1 Interface

2.2.2 H.S.M.’s Operations

2.3 Functions 9

2.4 User Characteristics 9

2.5 Constraints 10

Chapter 3: Design Specification

3.1 Introduction 11

3.2 Development Strategies 11

3.3 System Architecture 13

3.3.1 Purpose 13

3.3.2 Architecture 14

3.3.2.1 Lush 14

3.3.2.2 Function Module 15

3.3.2.3 Crypto Module 15

3.3.2.4 Console Module 15

3.3.2.5 Host Module 15

3.3.2.6 Base Module 15

3.4 Policies and Tactics 16

3.5 Coding Guidelines 16

viii

Chapter 4: My Learning and Role

4.1 Basics of Cryptography 18

4.2 Technology Studied/Used 21

4.2.1 Basics of Linux 21

4.2.2 C language 22

4.2.3 Coding Guidelines 23

Chapter 5: Development and Snapshots

5.1 Dev tasks 25

5.2 Overall Flow of Task 25

5.3 List of Tasks 25

5.3.1 Understanding basic cryptographic key mamupulation APIs 26

5.3.2 Automation framework hands on & Modification 27

5.3.3 Key Generation API Modification 27

5.3.4 Key View API Modification 28

5.3.5 Key Delete API Modification 28

5.3.6 Removed all C++ warnings from LUNAEFT code base 29

5.3.7 Coverity Fixes 29

5.4 Snapshots 31

Chapter 6: Conclusion

6.1 Conclusion 37

References 38

1

Unit 1: Introduction

Chapter 1: Outline

1.1 Abstract

Internship program provides students with an opportunity to experience and understand

the work culture of an organization. It helps interns to form the foundation for their

careers by providing them the exposure to industry and an understanding of industrial

operations. Ability to understand problems and the ability to solve them enhances because

professionals that work around you always motivates you and help you to do things with

perfection.

1.2 About H.S.M.

I had a wonderful experience in the company. The internship helped me to expand my

knowledge base by providing me with the opportunity to work with products for which

Gemalto is famous for, as instance LUNAEFT 2.x . It is one of the many flagship projects

of Gemalto. H.S.M.s are known for is reliable protection for applications, transactions

and information assets by securing cryptographic keys.

Fig 1.1 LUNAEFT 2.x

2

1.2 Product Overview

Here are some H.S.M.s that are offered by Gemalto:

 Gеnеrаl Purрosе ΗSΜs, Εmbеddеd

Fig 1.2 General Purpose H.S.M.s

Gemalto’s embedded H.S.Ms provides tight integration b/w an application server and

the H.S.M. Gemalto’s embedded H.S.M provides a cost effective solutions of data

protection without interrupting the business processes, making Gemalto’s embedded

H.S.M.s the best solution for the protection of cryptographic keys.

 General Purpose H.S.M.s, Network Attached

Fig 1.3 General Purpose H.S.M., Network Attached

In situations where H.S.M. is needed to be shared b/w multiple application servers,

Network attached H.S.M.s protects cryptographic keys used to secure transactions and

sensitive data.

3

 Payment H.S.M.s

Security solutions for electronic fund transfers are a growing concern in the market.

Gemalto’s Payment H.S.M.s, also known as LUNAEFT, is one of the highest

performance solutions for the protection of online transactions, providing its user with

a powerful end to end security for electronic fund transfers.

 Certifications and Validations

Fig 1.5 FIPS Standard 140-2

4

1.4 Project Overview

My role in the project was to deal with modifying present APIs in payment H.S.M. to add

the support for a new key know as AES BDK. APIs were to be modified in such a way,

so that none of the existing functionality are impacted in a negative way. In order to

accomplish my task I went through an extensive research about the basic concepts of

cryptography and various algorithms dealing with Key manipulation in the H.S.M.

Apart from the major task of modifying the APIs, I was involved in removal of errors that

were discovered during the static analysis of the source code for the H.S.M. and also was

involved during the testing and debugging of smartcard functionalities and newly added

features. Understanding of high level architecture and guidelines to manage the code was

also a learning experience.

I was also given a task to modify the present automation framework used to test the

smartcard functionality.

5

Unit 2: Project

Chapter 2: Analysis and Requirements

2.1 Software Specifications

2.1.1 Aim

The aim of this project was to change an existing API and adding new methods to address

the new user requirements. The modification dealt with the change in key manipulation

techniques used to handle cryptographic key stored in the H.S.M. Apart from the changes

in the API, creation of new test case sets to harden APIs was also the aim of this project.

2.1.2 Scope

This project was a improvement task designed to satisfy new customer requirements. It

was assigned to me as an assessment.

2.1.3 Feasibility

2.1.3.1 Technical Feasibility

After conducting the analysis of this project, we discovered that both the hardware and

software components like the Operating System, Programming languages used for

development of the APIs etc. which were essential for the development of the project

were easily available in the market.

Since all resources are easily available and there was no such resource that was

unavailable. Hence, we can conclude that the given project is technically feasible.

6

2.1.3.2 Cost Feasibility

Basic COCOMO model was used to conduct the analysis of cost feasibility. According to

the COCOMO model, the cost required for the completion of the task can be calculated

using the following equations-

 Effort Applied = a (KLOC)
b

Dev Time = c (Effort Applied)
d

People Required = Effort Applied / Dev Time

Where,

a = 2.4,

b = 1.05

c = 2.5

d = 0.38

& KLOC stands for estimated number of lines of source code delivered.

The calculated cost was much less than the revenue generated and also the required

number of developers is 2.

2.1.3.3 Time Feasibility

COCOMO model was used for this analysis and according to the results of the analysis,

the time required for the development of this project was 1 month.

The resources required for the development of the project are available and there is no

dependency of any sought which needs to be resolved, therefore requirement is not an

issue.

However, It is my first experience with the product and therefore I took some time to

understand the basic design and architecture of the product. Initially, I start with the study

of Payment H.S.M. and gained knowledge of the existing API.

7

2.1.4 Environment

2.1.4.1 Hardware and Software

The specs are listed below:

Platform used: Windows & Linux OS

Tools used: VMware, Putty

Hardware: Any hardware can be used for the client

Software: Provides by Gemalto. No Additional software required.

2.1.4.2 Input / Output

Input to the system are in the form of command or string , these are then used to call API

which perform the task specified by the user. The function code and the data required by

the API is supplied by the input.

The output of the system will provide response code for the call which will indicate the

success of the failure of the command.

2.1.4.3 Interaction

Interaction to the project being developed can only be made through a selected number of

systems. These systems are specified by the admin using their IP addresses No System

other than the one specified by the admin can interact with the API.

2.1.4.4 Security

 There was no requirement for the implementation of additional security measures for

development, however any dependencies that results due to the changes made in the API

must be resolve as soon as possible.

8

2.2 Product Perspective

2.2.1 Interface

The Payment H.S.M. (LUNAEFT) is not dependent on any other system for its input.

Only test data or processing data are provided by external systems. The H.S.M. is Self

Contained device and all operations for the H.S.M. are performed internally.

User Interface (UI)

In order to operate the H.S.M., Users are provided with the following screens-

1. Web Console

2. Luna Shell (Lush)

Hardware Interface

The hardware interface for the H.S.M. comes in the form of

1. LCD Screen

 2. 3 USB Ports

 3. Serial Port

 4. Ethernet Ports

9

2.2.2 H.S.M’s Operations

The List of Operations that can be performed by the H.S.M. are provided by the user

interface of the H.S.M. The UI can be used to call API and also to supply them with the

appropriate data. I cannot disclose the list of operations as per the company policy

however some generic operations include key entry, pin mailer etc.

2.3 Functions

The project is responsible for a wide variety of tasks, however the API that I was

developing is used to perform key manipulation operations like key generation, view

and delete.

2.4 User Characteristics

Here are some operations that can be performed by the admin user-

1. Create Partition

2. Change Passwords

3. Host Functions

4. Configure APIs

5. Key Entry

6. Network configurations

7. Enable Sensitive functions

8. View audit logs

9. View H.S.M. configurations

10. Delete Keys

11. View keys

12. Create Administrators

13. Enable web console

10

Operations that can be performed by non-admin users-

1. View audit logs

2. Configure APIs

3. Configure H.S.M

2.5 Constraints

Certain constraints are imposed during the designing of the product, some of those

constraints are listed below-

1. In order to support Client Server Architecture, a minimum of 64 MB of RAM

must be giving to the Client.

2. Only Specific communication modes can be used to conduct the communication

between the systems.

11

Chapter 3: Design Specification

3.1 Introduction

The existing design used by the H.S.M. is not altered by the newly added functionality. It

is simply an addition to the existing API. Hence, this section of the report would help us

to understand the high-level design of the H.S.M.

All the operations which can be performed by the product are listed on the user interface.

As per the company policies, I cannot disclose the list of operation in the report. But for

your understanding I can mention some of the generic operation which includes key

generation, Encryption pin mailer etc.

3.2 Development Strategies

Fig 3.1- Agile Methodology

12

Gemalto follows agile method to divide tasks into modules and achieve smaller goals on a

daily basis. Some of the basic terminologies used in agile developments are as follows -

 Story- A statement from the end user perspective that defines the software

requirements.

 Sprint- Fixed period of time in which stories are converted into deliverables.

 Scrum- Scrum is one of the most popular Agile methods. It is an adaptive and

iterative framework. It can be conducted in form of standup meetings that are held

on a daily basis. Main focus areas of the meetings are-

o What did you do yesterday that helped the team meet the sprint goal?

o What will you do today to help the team meet the sprint goal?

o Do you see any impediment that prevents you or the team from meeting the
sprint goal?

Agile Training

Gemalto officials conducted a 2 days session on Agile Development for helping new

comers to understand the code of conduct of the organization. The Session was held in the

company premises by my mentor Mr. Shivam Garg. The further understanding of the

Scrum Framework and other Agile technique was provided by Mr. Manish Kumar, who

is the Scrum Master for the LUNAEFT 2.x team.

Agile Process

1. Initially , bigger tasks are broken into small stories by Project Lead Manager.

2. Specific measures are taken to assign priorities to the stories. These measures depend

on the business conducted by the organization.

3. Team is assigned with some of the stories which are to be completed within the

duration of the sprint.

4. A sprint can have a duration of 1 or 2 weeks depending on the team.

13

5. Α functional product is delivered by the team after the completion of the sprint. Each

delivered product have some market value.

6. The deliverables are then reviewed at the end of the sprint and new stories are decided

for the next sprint.

3.3 System Architecture

3.3.1 Purpose

The sections aim at describing the high-level design of the General Purpose Hardware

Security Module.

3.3.2 Architecture

The diagram below depicts the high level view of the architecture of LUNAEFT

Fig 3.2 Software Architecture

LUSH MODULE FUNCTION MODULE

CONSOLE

MODULE

CRYPTO

MODULE

BASE

MODULE

DRIVER LAYER HOST MODULE

14

3.3.2.1 Lush Console

“LUSH” is the short form for Luna Shell. It provides the user with a command line

interface using which any operation can be performed on the H.S.M. Lush console is

similar to the Bourne shell.

In order to use lush as an interface, user must connect to the Hardware Security Module

machine via a serial cable or SSH. C & C++ are used to implement the Lush module and

the implementation is such that new commands can be added in the future without

changing much of the code.

15

3.3.2.2 Function Module

Methods that are responsible for the proper working of the hardware security module are

placed in this module. It is also responsible for handling host requests and for redirecting

these calls to appropriate APIs. Some of the major operations of the function module are

creation of threads, to load and initialize modules, to initialize the communication

between different components, entry and exit point setup etc. Disabling/enabling of

functions is also handled by this module.

3.3.2.3 Crypto Module

It includes implementation of symmetric and asymmetric cryptographic algorithms

(both h/w & s/w). Key generation algorithms are also implemented here.

3.3.2.4 Console Module

Console Module provides the H.S.M. administrator with the list of modules that are

responsible for performing console operations. These operations may include

initialization of admin credentials, key management etc.

3.3.2.5 Host Module

H.S.M. users can use different modes of communication to make function requests.

Now, these modes of communication are placed in the host module.

3.3.2.6 Base Module

It consists of core libraries for the Hardware Security Module source code.

16

3.4 Policies & Tactics

Here are some of the policies and tactics that are followed during the making of this

design spec document-

 Product being used in Development

o C language

o “gdb” compiler

o Using MSEXCEL sheets as an input.

 Guidelines & conventions

Standard C language guidelines are used during the development of the API.

 Testing of s/w

Testing is done by both manually and through automation. New APIs are check

for the expected outputs.

 S/w maintenance

All users can easily maintain the system as provided all the provided resources are

easily available in the market.

 Interfaces(UI, s/w, h/w, communications)-

User are supposed to have a good knowledge of Linux & Windows OS and should

also have in depth knowledge about H.S.M.s.

3.5 Coding guidelines

During our internship at Gemalto, we had to strictly follow the coding guidelines and

conventions used by the development team. The guidelines came in the form of a

17

document, stating different approaches to make the code cleaner during compilation,

much readable, and bug free.

Some of the best practices stated in the coding guideline are as follows-

 Do not use standard system header file name for any other header files.

 Use inline function in lieu of macros.
 Do not read uninitialized variables.
 Do not access a variable through a pointer of an incompatible type.
 Do not form or use out-of-bounds pointers or array subscripts.

 Do not subtract or compare two pointers that do not refer to the same array.
 Do not attempt to modify string literals (constants).
 Arguments to character-handling functions must be representable as an unsigned

char.
 Always close files descriptors when they are no longer needed.
 Do not access a closed file.
 Do not access freed memory.

18

Chapter 4: My Role and Learning

4.1 Basic of Cryptography

Fig 4.1 Cryptography Flow

4.1.1 Cryptosystem

Cryptosystem as a whole consists of the following items-

 Required S/w

 Essential Protocols

 Encryption and Decryption Algorithms

 Cryptographic Keys

4.1.2 Services of Cryptosystem

 Confidentiality: Confidentiality is an approach to avoid or restrict any

unauthorized access to the sensitive data.

 Authenticity: Authenticity stated that the information being received during the

communication between the sender and the receiver is coming from a valid

sender and not from any imposter.

 Integrity: It means that the message being receiver will not be modified in any

way during its transmission from the sender and the receiver. The modification

can be accidental or intentional.

 Non-Repudiation: Sender cannot deny having sent a message.

Plain text -X Ek(x) Cipher text

te

 Dk(x) Plain text-X

19

4.1.3 Symmetric Cryptography

In symmetric cryptography, Same key is used for both encryption and decryption of data.

Strength:

 It is a fast method to encrypt and decrypt data.

 Cipher text is hard to break for large keys.

Weaknesses

 A secure mechanism is needed to share the key b/w the sender and the receiver of

data.

 Key management becomes difficult with the increase in no of keys used by

different individuals.

 Provides confidentiality but not authenticity or nonrepudiation.

Fig 4.2 Symmetric Cryptography

Some of Symmetric Cryptography Algorithms

 Data Encryption Standard (DES)

 Triple DES

 Advanced Encryption Standard (AES)

 International Data Encryption Algorithm

20

 RC4, RC5 and RC6

 Blowfish

4.1.4 Asymmetric Cryptography

Fig 4.3 Asymmetric Cryptography

4.1.5 Message Integrity

When exchanging sensitive data, the receiver must have the knowledge of whether the

data being received the same and is not being altered in any way.

4.1.6 Triple Data Encryption Standard

Double Data Encryption Standard has a key length of 112 but it is not very good for

encrypting data efficiently as there are specific attacks against D-DES that reduces its

work factor to about the same as DES. Even though it requires a greater amount of

computation, D-DES is no more secure then DES.

21

T-DES on the other hand is highly resistant to differential cryptanalysis. This is because

of its high number of computational round which makes is much secured the DES and

D-DES. But due to the extra computation that T-DES performs, there is a heavy

performance penalty. Thus, for T-DES encryption and decryption operations can be 3

times slower when compare with encryption and decryption operations for DES.

4.1.7 What are Hash Functions?

Hash function is a mathematical function that can be used to detect changes in the

data/message. A numerical value taken as an input is converted into a compressed

numerical value. A hash function accepts a variable size input and produces a fixed sized

output. Return value of the hash function is called a hash value or message digest.

Hash functions are one-way functions ie for a given input, output can be easily calculated,

but calculating the input values from a given output values of a hash function is

infeasible. Also a good hash function must have strong collision resistance.

4.1.8 Some Popular Hash Functions

 Message Digest (MD)

 Secure Hash Function

4.2 Technologies Studied/Used

4.2.1 Languages –C/C++

C language was used to develop the APIs for H.S.M.. Some Advantage of the C

Language are as follows-

1. Modularity-Functionality

2. Speed

3. Portability

4. Flexibility

5. Code Reusability

Also, C++ was used to program some testing modules which were used to

perform unit testing on new APIs.

22

4.2.2 Basics of Linux

H.S.M. source code is deployed on virtual machines which run CENTOS kernel. Hence it

was important that we have basic knowledge of Linux commands in so that we don’t

encounter any problems working with the virtual machines and the H.S.M. Here are some

basic Linux commands that are generally used while working in the Linux environment-

 cd: In order to change the current working directory on linux or unix like system,

this command is used.

 mkdir: This command is used to create new directories.

 Pwd: The pwd command displays the full pathname for the current directory.

 grep: The grep command is used for searching plain text data sets for a particular

regular expression/sequence of characters.

 cat: The cat command have 3 major functions: Displaying text files, combining

copies of text files and creating new text files.

 mv: The mv command is used to move, rename & remove files & directories.

 cp: The cp command is used to copy files and directories. Also the copies are

independent of originals.

 rm: It is used to delete files and directories.

 ps: This command provides us with the lists of the currently running processes

and there PIDs.

23

 ls: This command is used for listing the content of the working directory. The

content listed can be a files or directories.

 ping: Ping is a shorthand for Packet Internet Groper. It can be used to test the

connectivity b/w 2 nodes. It uses ICMP to communicate with other devices. In

Linux, ping command keep executing until it is interrupted.

 Ifconfig: This command is used for network interface configurations.

 chmod: A File’s access permissions can be modified using this command.

 su: This command allows the user to run a shell as the root user.

 traceroute: This commands shows the number of nodes taken by a packet to

reach its destination.

 route: This command is used to manipulate and display IP routing table.

 host: This command is used to map IP addresses to names and vice versa

 whoami: It returns the name of the owner of the current login session.

 file: This command can classify file system objects that are provided to it as

arguments.

4.2.3 GDB Debugger

GDB debugger is an open source debugger that can be used on unix-like operating

systems. It allows the user to exercise control over the execution of the code and also give

them the privilege to observe changes in the variables.

Using GDB a user can add breakpoint ,this allows the user to pause the execution at any

point within the source code. User can also watch a step by step execution of the source

code.

GDB is supported for the following languages-

 Ada

 Assembly

 C

24

 C++

 D

 Fortran

 Go

 Objective-C

 OpenCL

 Modula-2

 Pascal

 Rust

Fig 4.4 GDB Debugger

25

Chapter 5: Development

5.1 Dev Tasks

C language was used to accomplish the development tasks. All the coding was done using

‘Eclipse IDE for C/C++’. It is a very powerful and efficient as it provides an excellent

interface for coding and is also helpful for searching function, references and variable

across the entire source code.

The source code cannot be shared as per the company policy.

5.2 Overall Flow of Task

Initially my goal was to gain the knowledge about LUNAEFT which includes-

1. Grasping the basic high-level architecture of the H.S.M.

2. Learning the procedure to deploy the code on a machine.

3. Setting up the virtual machines.

4. Understanding the procedure to compile and debug code.

5. Understanding the testing frameworks.

6. Understanding macros created to generate test cases in MS Excel.

Step by Step description

 Learning about APIs: Understanding the high level design and low level

implementation of APIs.

 Coding: C Language and shell scripting were used to modify the source code of

the H.S.M. Eclipse IDE was used for editing the code.

 Compiling: Linux virtual machine and ‘gdb’ compiler were used to compile the

code.

26

 Testing and Debugging: ESM tester was used to test the modified APIs. If any

bugs were captured after testing, ‘gdb’ debugger was also used for step by step

debugging of the modified code.

5.3 List of Tasks

5.3.1 Understanding basic cryptographic key manipulation APIs

After understanding the architecture of H.S.M., basics of cryptography and development

environment, the first task that was assigned to me comprised of understanding the basic

key APIs used for key manipulation. Some of these APIs included the functionality for

generating, viewing and deleting cryptographic keys.

High level manual test cases were executed to get a better understanding of the API’s

functionalities. The result for the manual test were observed and kept as a reference for

testing the functionalities that would be included after modifying the APIs.

5.3.2 Automation framework hands on & Modification

In order to test the functionality of the smartcard APIs, an automation framework was

used for previous s/w releases. I was assigned with a duty to modify this automation

framework so that it can be used for future s/w releases.

5.3.3 Key Generation API Modification

The aim of this task was to add the support for a new key know as AES BDK.(Base

Derivation Key). In order to accomplish this task, new functions must be added to the

LUNAEFT code base and also some old functions must be modified to support the new

key features. Lush command that triggers the generation of the AES BDK key was also

modified in order to accept the change format of input and output of the functions. The

changes were made using C language and shell script.

After the function was successfully, new test cases were written to test the functionality

of the new functions .Also unit testing was done at my end.

27

Fig 5.1 Key Generation lush command

5.3.4 Key View API Modification

This task was in continuation with the AES BDK key generation and involved the

modification of the existing key view APIs in order to support and display the AES

BDK keys. Again the APIs were written in C Language and Eclipse IDE was used to

modify H.S.M.’s source code.

New test cases were generated and the newly added functionality was tested. The code

was then manually review by Project leads of our team.

Fig 5.2 Key view lush command

5.3.5 Key Delete API Modification

In this task, I was supposed to add a new feature which allows the H.S.M. users to delete

AES BDK cryptographic keys. This task was a bit more challenging as it involved

debugging the existing code for some errors and bugs & then adding the new

functionalities to the H.S.M. The changes were made in such a way that none of the

existing functionalities are affected. The Technology used to implement this feature

were C language.

28

Fig 5.3 Key delete lush command

5.3.6 Removing all C++ warnings from LUNAEFT code base

I was assigned a task to remove all C++ code warnings from LUNAEFT codebase to

improve the quality of the code and make it look cleaner during compilations. Initially

there were around 100 lines of warnings, but after completion of my task it was reduced

to ‘0’.

After the removal of all the warnings, the root directory MakeFile was protected with –

Werror Flag for C++ so that no further warnings can be introduced to the code. If any

further warnings are introduced then they will be treated as errors and hence the code

will not compile.

29

Fig 5.4 MakeFile (with new CPPFLAGS)

5.3.7 Coverity Issues

Coverity is a powerful tool used to conduct both static and dynamic code analysis.

Coverity is used to identify possible security bugs and vulnerability in the code. After

every scan, coverity generates a report consisting of all the possible bugs in the code,

each bug is provided with a coverity id and priority. Some examples of possible bugs are

Stack overflow, Reference to a NULL pointer etc. After taking appropriate actions, you

can mark the issue as fixed or false positive.

30

A team lead by my project lead Mr. Shivam Garg was given a task to remove all the

coverity issues in our LUNAEFT codebase. I was a part of the team and was responsible

for handling 40 issues. The task was completed without any complications.

Fig 5.5 Coverity Dashboard for LUNAEFT

31

5.4 Snapshots

Here are some snapshots of H.S.M interfaces, virtual machine etc.

 LUNAEFT and available Accessories

Fig 5.6 Payment H.S.M.

Fig 5.7 Power Chord

Fig 5.8 Null-Modem Serial Cable

32

Fig 5.9 Serial to console

Fig 5.10 Smartcard Reader

33

 Web console

Fig 5.11 Web Console Partition Owner

34

Fig 5.12 Web console Admin

35

 Lush

Fig 5.12 Lush console

36

 JIRA Dashboard

Fig 5.13 JIRA

37

 Virtual Machine used to compile codes

Fig 5.14 Virtual Machine (CENTOS)

38

 Putty

Fig 5.15 Putty

Putty is an emulator that was used to connect to the H.S.M via SSH protocol or

using a Serial cable. Using putty you can login into your H.S.M admin account

and perform operations using built in H.S.M command.

39

 Gerrit Dashboard

Fig 5.16 Gerrit Dashboard

Gerrit portal was used to monitor the changes being done to the code by developers. The

code that is being modified is fisrt reviewed by the team leaders before merging it into the

source code to ensure that the change does not impact the functionality in any way.

40

Chapter 6: Conclusion

6.1 Conclusion

During my 4 months of internship in Gemalto, I got a chance to work with some of the

latest and cutting edge technologies of the IT industry. Gemalto’s LUNAEFT is the most

trusted Payment Hardware Security Module all around the globe. With high performance

& temper resistant solutions, LUNAΕFΤ provides рrotесtion for digital kеys. Also

LUNAEFT provide solutions for the protection of sensitive information like, User PΙNs

аnd саrdholdеr dаtа with great efficiency. Βy асhіеvіng PCΙ сomрlіаnсе, Gemalto’s

LUNAΕFΤ ΗSΜs саn not only аssіst thеm іn mееtіng thе bаsіс сomрlіаnсе rеquіrеmеnts

but аlso lеvеrаgе thе tесhnology to sесurе othеr kеy аssеts of thеіr busіnеss. Ι got to

undеrstаnd thе рroduсt аnd work on іt.

In the end, I would like to conclude this report by saying that the entire project work

assigned to me was completed without any major issue and was delivered on time. This

project has helped me to understand the working of security industry and have added

significant knowledge to my knowledge base.

41

References

Websites-

 https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/

 https://www.gerritcodereview.com/

Books/Guide

 HSM User Guide

 Network Security and Cryptography By William Stalling

https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/
https://www.gerritcodereview.com/

