Implementation of Scheduling Algorithm for transfer of Packets in Networks

Project report submitted in partial fulfillment of the requirement for the degree of
Bachelor of Technology

in
Computer Science and Engineering Information Technology
By
DAVINDER SINGH (141281)

PALAK (141277)

Under the supervision of

Dr. Amit Kumar Singh

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234, Himachal
Pradesh

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “Implementation of
Scheduling Algorithm for Transfer of Packets in Networks” in partial fulfillment of
the requirements for the award of the degree of Bachelor of Technology in Computer
Science and Engineering and Information Technology submitted in the department of
Computer Science & Engineering and Information Technology, Jaypee University of
Information Technology Waknaghat is an authentic record of my own work carried out
over a period from August 2016 to December 2016 under the supervision of Dr. Amit

Kumar Singh , Assistant Professor (Senior grade)

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature)

Davinder Singh(141281)

Palak(141277)

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr. Amit Kumar Singh
Assistant Professor (senior grade)
Department of Computer Science & Engineering and Information Technology

Dated:

ACKNOWLEDGEMENT

On the submission of our thesis report on “Implementation of Scheduling Algorithm
for transfer of packets in Networks”, we would like to extend our gratitude and sincere
thanks to our supervisor Dr. Amit Kumar Singh, Assistant Professor (senior grade),
Department of Computer Science & Engineering and Information Technology for
his constant motivation and support during the course of our work. We truly appreciate
and value his esteemed guidance and encouragement from the beginning. We are
indebted to him for having helped us shape the problem and providing insights towards

the solution.

And for providing a solid background for our studies and research thereafter.

He has been a great source of inspiration to us and we thank him from the bottom of our
heart. Above all, we would like to thank all our friends whose direct and indirect support

helped us.

Davinder Singh (141281), Palak (141277)

CONTENTS

L INTRODUCTION. .ttttiiitieieieitieieraiarasarasasasssstssesnsnsssmmmmmmmeiemens 1
1.1 About scheduling algorithm
1.2 Benefits of using Priority Queuing and Round Robin
1.3 Problem Statement
1.4 Objectives
1.5 Methodology

2. LITERATURE SURVEY .cutiiiiiiiiiiiiiiiiiiiiiiiiciicicn e ecscaeeaaen 12

3. SYSTEM DEVELOPMENT ...uitiiiiiiitiiiiiiiiiieiiieierernsasasasasasasssassssssssses 15
3.1 Design Overview
3.2 Proposed Algorithm Approach
3.2.1 Proposed Algorithm
3.3 Module Description
3.3.1 Module Description for UDP
3.3.2 Class Diagram of UDP
3.3.3 Module Description for TCP
3.3.4 Class Diagram for TCP
3.3.5 Activity Diagram of the Process

4. PERFORMANCE ANALYSIS...itiiiiiiiiiiiniiiuiaiiiitiitiininieinininsnsenee 34
4.1 Experiment Test cases for UDP
4.2 Experiment Results for UDP
4.3 Experiment Test Cases for TCP
4.4 Experiment Results for TCP

D CONGCLUSION .t ttttttiitteiiaetteitseeteessseesesseeessssscessssssssssscsssssssssssssnnns 46
5.1 Conclusion

5.2 Future Scope

REFRENCES

LIST OF ABBREVIATIONS

FCFS First Come First Serve

SJF Shortest Job First

PS Priority Scheduling

RR Round Robin

MDRR Mean-Difference Round Robin Algorithm
SRBRR shortest remaining burst in round robin
SRRQT Selective-Round-Robin Quantum of Time
SMDRR Sub-contrary Mean Dynamic Round Robin
BJF Best Job First

PBDRR Priority Based Dynamic Round Robin

FP factor of precedence

PRRDTQ | Precedence based Round Robin with Dynamic Time Quantum
ITS Intelligent Time Slice

MLFQ multilevel feedback queue

VM Virtual Machine

API Application Program Interface

TCP Transmission Control Protocol

UDP User datagram Protocol

JDBC Java Database Connectivity

URL Uniform resource Locator

ODBC Object Database Connectivity

LIST OF FIGURES

Fig. 1 Preemptive Scheduling
Fig. 2 Non-Preemptive Scheduling
Fig. 3 Multilevel Feedback Queue Process
Fig. 4 Major Java Features

Fig. 5 Java Compilation Process
Fig. 6 Java Compiler Parts

Fig. 7 Java compilation Parts
Fig. 8 A Java Platform

Fig. 9 Java program compilation
Fig. 10 OSI Layer

Fig. 11 UDP Model Diagram

Fig. 12 Jacobson’s Algorithm

Fig. 13 UDP Class Diagram

Fig. 14 TCP Model Diagram

Fig. 15 TCP Class Diagram

Fig. 16 Activity Diagram

Fig. 17 UDP Packet Transfer

Fig. 18 UDP Proposed Algorithm
Fig. 19 Proposed Time

Fig. 20 Calculating time for Proposed algorithm
Fig. 21 UDP Packet Transfer

Fig. 22 UDP Proposed Algorithm
Fig. 23 Proposed Time

Fig.

24

Calculating time for Proposed algorithm

LIST OF TABLES

Table 1. FCFS Process Table

Table 2. FCFS Gantt chart

Table 3. FCFS Gantt chart

Table 4. SJF Process Table

Table 5. SJF Gantt chart

Table 6. PS Process Chart

Table 7. PS Gantt Chart

Table 8. RR Process Chart

Table 9. RR Gantt Chart

Table 10. Priority Scheduling Algorithm Test case
Table 11. Proposed Scheduling Algorithm Test Case
Table 12. Round Robin Scheduling Algorithm Test case
Table 13. Proposed Scheduling Algorithm Test Case
Table 14. Priority Scheduling Algorithm Test case
Table 15. Proposed Scheduling Algorithm Test Case
Table 16. Round Robin Scheduling Algorithm Test case
Table 18. Proposed Scheduling Algorithm Test Case

ABSTRACT

Scheduling algorithm helps easing decision making in an efficient manner. Scheduling
becomes necessary when the request for computing ability increases. Task scheduling and
load balancing are two central and perplexing areas in the field of computer engineering.
Distributing processes to the processor in such a manner such that total execution time is
reduced. Improving the load on processors by way of balancing the load of processes is
termed as load balancing. An algorithm is used using round robin and priority scheduling
to help transferring packets in efficient manner. It provides a fair chance to each class to
be executed successfully and without starvation. Scheduling is required in vast number of
applications like reservations, process efficiency, medical appointments etc. All such
applications use scheduling to perform operations efficiently. In this report, we describe
the five types of scheduling algorithms along with their merit and limitations. First Come
First Serve, Shortest job first, Priority Scheduling, Round robin, Multilevel Feedback
Queue are the scheduling algorithms included. We tried to focus on the two algorithms
i.e. Priority Scheduling and Round Robin as they are fairest of all the other algorithms.
We implemented this algorithm in UDP and TCP architectures to transfer the packets and
compare our proposed algorithm with all the other basic algorithms:

Chapter 1 introduces the basic scheduling algorithms explaining their execution criterions
with suitable examples by plotting their Gantt charts and finding turnaround and waiting
time for each.

Chapter 2 provides the literature survey showing important factors that play major role in
selecting an efficient algorithm through the research papers published during recent years.
In chapter 3, we present the system design overview in which we explained the choice of
programming platform with its features and some general related terms. We also
explained our proposed algorithm with steps and implemented the same on network
architectures (TCP & UDP) analyzing the various class diagrams.

Chapter 4 presented the experiment results and analysis.

Concluding remarks and future directions are in Chapter 5.

CHAPTER 1

Scheduling Algorithms: An Introduction

1.1 Introduction & Scheduling Algorithms:

For the better understanding of the difficult set of rules and procedures which are
used to run the order in which tasks are executed by the processor we need
scheduling algorithms. Many CPU scheduling algorithms have been established for

the modern multiprogramming operating system [1].

1.1.1 Issues in scheduling algorithms:
Different issues as described below,
e Processor can migrate from one class to another.
e Distribution in shortest possible time.
e Utilizing all the resources.
e Circulation of processes without any progress.
e Requirement of fair scheduling.

e Non-uniform and non-pre-emptive nature of distributed system.

1.1.2 Arrangement based on pre-emption[2]:

Preemptive Scheduling: When a higher priority job arrives in a system it can interrupt
the system’s current flow of execution. This type of scheduling is present in all kind of

systems. Figure 1 shows the preemptive scheduling:

CPU Burst

Process Arrival

Time Ti_T;',e n
P, 3 2
P, 2 a
P, o 6
P, 1 a
p2 p3 l:)O pl P2
(0] 1 5 7 11 16

Preemptive Scheduling

Figure 1

Non-Preemptive Scheduling: When a higher priority job arrives in a system it cannot
interrupt the system’s current flow of execution. FCFS is a non-pre-emptive type of

scheduling. Figure 2 shows the non-preemptive scheduling:

wval CPU Burst

Process Arriva Time in
Time oo

millisec.

P, 3 2
2 4
P, O 6
1 4
P, P | P P
0 6 10 14 16

Non-Preemptive
Scheduling

Figure 2

1.1.3 Basic Scheduling Algorithms[2]::

Some basic scheduling algorithms are discussed below:
I. First Come First Serve Algorithm.
[1. Shortest Job First Algorithm.

I1l. Priority based Algorithm.

IV. Round Robin Algorithm.

V. Multilevel Feedback Queue Algorithm.

I. First Come First Served Scheduling

In this algorithm the jobs are processed in the order of in which they appear in the ready
queue. All the jobs are put into one ready queue. The PCB is linked onto the tail of the
queue. In this type of algorithm the waiting time is very long. Below are the processes
from P1 to P3 with their arrival time equal to 0:

Table 1 shows the process execution.

Table 1: Process execution in FCES

Process Burst time Waiting Time Turnaround time
P1 48 0 48
P2 6 48 54
P3 6 54 60
Average - 34 54

Below given Gantt chart can be obtained in case of FCFS if order is above

mentioned.

Table 2:Gantt chart for FCFS

P1

P2

P3

0

60

If the order of the processed is P3, P3,P1:

Table 3: Gant chart

48

54

P2 | P3 P1

0

60

12

This algorithm cannot utilize parallel resources and waiting time is long=6 ms.

Il. Shortest Job First Scheduling:

This algorithm takes into account the burst of next process to be executed. CPU is

assigned to the process that has smallest burst time. If the burst of two processes is same

then FCFS criteria can be used. Below example depicts the algorithm briefly: Table 4

shows the process execution.

Table 4: Process execution in SJF

Process Burst time Waiting Time Turnaround time
P1 12 6 18

P2 16 32 48

P3 14 18 32

P4 6 0 6

Average - 14 26

ms

Following gantt chart can be obtained when SJF scheduling is observed with process

order as:

Table 5:Gantt chart for SJF

P4 [P4 P3 P2

For given processes the SJF generates minimum average waiting time. The only

complexity with this algorithm is that it’s hard to find out the burst of next process.

If short term scheduling is required then this algorithm can be implemented. This

algorithm is either preemptive or non preemptive.

5

I11. Priority Scheduling:

Priority is given to every process according to any criteria i.e. it can be numbers like 0 to
20 or alphabets A to B. Process with highest priority will get the CPU. FCFS criteria can
be followed if two processes with similar priority are encountered. Below chart depicts
the algorithm adequately: Processes are from P1 to P5 and lowest number represent

highest numbers. Table 6 shows the process execution.

Table 6: Process execution in PS

Process Burst time Priority Waiting Time | Turnaround
time

P1 20 6 12 32

P2 2 2 0 2

P3 4 8 32 36

P4 2 10 36 38

P5 10 4 2 12

Average - 16.4 24

Following Gantt chart can be obtained using the priority scheduling:

Table 7:Gantt chart for RR

P2 [P5 P1 P3 [P4
0 2 12 32 36
38

This algorithm can either be preemptive or nonpreemptive. Process with highest
priority will be pre-empted other it will be placed on the head of the ready queue.
This algorithm suffers from indefinite blocking i.e. starvation.

IV. Round Robin Scheduling:

This is one of the fairest algorithm of all the other algorithms and yet very simple. In this
algorithm time quantum is defined which is basically a time interval for which the process
will have CPU allocated to it. A circular queue of all the incoming processes is
maintained and the scheduler goes round the queue to pick the process and execute it for a
time slice. Process will give up the CPU voluntarily if its time is completed. If the process
still needs more time it will be attached to tail of the circular queue. This algorithm has
maximum average waiting time. Below chart explain the process adequately. Time

quantum is 4ms. Table 8 shows the process execution.

Table 8: Process execution in RR

Process Burst time Waiting Time Turnaround time
P1 48 12 60

P2 6 8 14

P3 6 14 20

Average - 11.33 31.33

Following Gantt chart can be obtained in RR algorithm:

Table 9: Gantt chart for RR

P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26
30

No process gets the time quantum more than 1 defined quantum. It is pre-emptive.

V. Multilevel Feedback Queue Scheduling:

In this algorithm once a process arrives in the system it assigned to a permanent queue.
No change of queue is allowed after that. This algorithm has the less overhead of all other
basic algorithms. Due to that it is highly inflexible also. This algorithm does have a

mechanism of changing a process from one queue to another. It can be performed as:

I. Process will be moved to a less priority queue if it is consuming more CPU time.
I1. Process will be moved to a high priority queue if it can be executed fast.

Figure 3 shows the Multilevel queue scheduling:

pd A >
—'I Quantum =8
L/
£ >
Quantum=16
>
| . FCFS

Figure 3:Multilevel Feedback Queuing

1.1.4 QUALITATIVE PARAMETERS [2]

Following are the parameters used to judge the efficiency of above written algorithms.
I. CPU Utilization/Efficiency: Utilization of the CPU to its full potential.
Il. Throughput: maximizing the throughput is the motive.

1. Turnaround time: Minimize the time between a process is submitted and

processed.
IV. Waiting time: The time spent in the ready queue should be minimized.
V. Response Time: Minimising response to a process.

VI. Fairness: Every process should get fair share of the process.

1.2 Benefit of Using Priority Scheduling Round Robin[]:

After analysis of above mentioned algorithms it’s made quite clear that the algorithm is
said to be efficient if it executes job in a fair manner and result in less avg. waiting and

turnaround time.

Now we have established in coming literature survey that time quantum and priority
serves as a bottleneck for efficiency of various scheduling algorithm. How two or more
algorithm works together based on dynamic properties is another concept. What should
be the limit of time quantum for optimality of RR algorithm is perplexed question to
encounter. Another question of dynamicity comes which is not easy task to take under
consideration. But the solution should satisfy performance goals and should be accepted

by operating system.

Researches shows that although the so much efforts has been put into taking response
time and other related factors to be first criteria but vast amount of work has been done to
select right time quantum and dynamic properties. For these reasons RR and PS scheduler

are the first algorithm to choose from.

10

Also we must add that processes are different types like 1/0 bound and CPU bound etc. so
efficiency of an algorithm is highly subjective and an efficient algorithm is represented by
goal it is meant to achieve.

1.3 PROBLEM STATEMENT:

I. To find out an efficient scheduling algorithm that will provide fair

packet transfer with better turnaround time and waiting time etc.

I1. To implement the found algorithm using java platform.

1.4 OBJECTIVES
I. Implementation of efficient Scheduling Algorithm.

Il. To reduce turnaround time and waiting time as compared to existing

algorithms.

I1l. Notify the user of packet loss

1.5 METHODOLOGY
I. Tounderstand what are scheduling algorithms and its types.
I1. To find improvements in the algorithms.
1. Implementing the proposed Algorithm on Java Platform.

IV. To find the results in terms of turnaround time and waiting time.

11

CHAPTER 2

LITERATURE SURVEY

Three important factors play crucial role in scheduling algorithms-

I. Arrival time of a process present in the ready queue
Il. Priority of a process present in the ready queue

I11. CPU burst time of the processes in the ready queue.

Vast number of scheduling algorithms has been developed.

We categorized the research field accordingly:-

() The static time used in the RR scheduling is attempted to make dynamic and

(i1) Research on priority as one of the main factor in determining the efficiency of an
algorithm is also given enough thoughts in following papers. Doing this lead to

development of more number of applications than that of Static time.

Kiran et al.[10] have presented an algorithm called MDRR. Their suggested algorithm
analyses the mean burst time of all the processes in the ready queue. Then it discover out
the variance between a process burst time and intended mean burst time. This step is
repetitive for all the processes in the ready queue. It is executed for one time slice. After

the expiration of time slice next process can be executed

The authors have presented [11] an algorithm ERR which apply dynamic time quantum
in RR scheduling. In the planned approach, time quantum is the ratio of the sum of the

burst times to the no. of processes.

12

Kishore et al.[8] gave a scheduling algorithm based on Median based time quantum. All
jobs are first ordered in increasing order of their burst time and then RR scheduling is

implemented.

Bisht et al. [13] used dynamic time quantum in RR scheduling. But this time it only needs

fractional value of time quantum given to the processes for their execution.

In[8], highest burst time and median is used to calculate time quantum and then it is used

for execution of processes.

Hagery[5] proposed a method called SRRQT. He considered all the RR scheduling

basics. It provides one of the best results used by via dynamic quantum time.

Bhoi et al.[15] presented a paper which provided harmonic mean to calculate time

quantum.

Al-Husainy[3] proposed BJF algorithm that takes into consideration the fact that
scheduling algorithm are mostly analyse via three properties priority ,arrival time ,CPU
burst time. He calculate a factor f that takes into account the fact that the job with highest
priority, less CPU burst and came first will be executed first. This algorithm is actually
far better than FCFS, SJF, RR, PS etc.

Yaashuwanth and Ramesh[17] presented this paper gave the idea that small size
processor can be used which will take the load of other processes to be executed. A new
design was proposed in which all the defects of the RR scheduling algorithm were
removed. Considered time slice was different for each Process and independent of each
task.

13

Saxena and Agarwal[12] presented this paper shows concept of RR scheduling is
elongated by calculating fp i.e. precedence factor and IST i.e. intelligent time slice that
measure order and time given to each process for its execution. RR scheduling becomes a
lot better.

Varma et al.[14] calculated mean average as time quantum and used bp for precedence to

improve RR scheduling further.

Behera and Swain[16] presented a PRRDTQ algorithm. This algorithm gives precedence
to the processor with shorter burst time and then applies RR on it. Turnaround time and
response time becomes much better. Algorithm performs better than MRR [16] and
PBDRR [29] w.r.t. CPU performance.

Jamal and Zubair[4] tried to improve performance of round robin by considering the

factors like the waiting time and turnaround time along with number of context switches.

14

CHAPTER 3
SYSTEM DEVELOPMENT

3.1 Design Overview:

Design involves basic UDP and TCP architecture with the estimation of delay and
bandwidth measurements. It was designed by the way of a client uploading the file to the
server. Any project is worked out by designing appropriate diagrams. Likewise the design
was realized with the help of various diagrams. Two diagrams explain the model of the
project for UDP and TCP both. Class diagrams and activity diagrams were also drawn for
better understanding of the project. Once the design is over it is we require to decide
which software is suitable for the application. The platform used for the project has been

explained via describing its major features and common terms used.

Java Technology[19]

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language is a high-level language that can be characterized by all

of the following buzzwords: Figure 3 shows the Major features of java:

15

Multi
Threaded

High
Performanc
e

Major
Features of

Java
Language

Interpreted

Distributed

Figure 4: Major Features of Java Language

Object
Oriented

Architecture
Neutral

Guideline on the PC. Aggregation happens just once; understanding happens each time

the program is executed. The accompanying figure delineates how this functions.

16

myProgran. java

My
| Program

myProgran. class

Figure 5: Java Compilation

Java Program

class HelTolorTdépp {
public stakic vaid mainitring[] args §

b eten out . printIng"HeTTo Whrld!"™; . I Cumpiler

HellWorlddpp ., Java

Clnterpreter) Clnterpretﬂr) Clnterpreter)

Hello
Woarldl

Hello
Word!

o

Solaris MacO$S

Warld!

&

Figure 6: Java Compiler Parts

17

The Java Platform[20]:

A platform is the hardware or software environment in which a program runs. We’ve
already mentioned some of the most popular platforms like Windows 2000, Linux,
Solaris, and MacOS. Most platforms can be described as a combination of the operating
system and hardware. The Java platform differs from most other platforms in that it’s a
software-only platform that runs on top of other hardware-based platforms. The Java

platform has two components:

e The Java Virtual Machine (Java VM)

e The Java Application Programming Interface (Java API)

You've just been acquainted with the Java VM. It's the base for the Java stage and is

ported onto different equipment based stages.

The accompanying figure delineates a program that is running on the Java stage. As the
figure appears, the Java APl and the virtual machine protect the program from the

equipment. Figure 7 shows Java Compiler Parts:

nyProgran. java

Java AP \
Java Virtual Machine Java Platform

Hardware-Hased F'Iatfnrm‘

Figure 7: Java Compiler Parts

18

Local code will be code that after you assemble it, the ordered code keeps running on a
particular equipment stage. As a stage free condition, the Java stage can be a bit slower

than local code.

In any case, shrewd compilers, very much tuned mediators, and in the nick of time byte
code compilers can convey execution near that of local code without undermining

compactness.

(Java IDE)

(Java Compiler"javac” Other Dey. Tools Java Debugoer
| Client Compiler Java" Plug-n o
m| 2
2| 2
ﬁ i Java [meet) awt) bems [b jl(lang %
: HotSpot (mah | rmet) rmi][secuity }f: sl m
: Runtime (text jf util j(acmﬂhil'ﬁﬂf zing j(corba L

[Solaris J (Win3? J [Linux] [Mac] (Other

Figure 8: A Java Platform
Why Java:

o Get started quickly

e Write less code

e Write better code

o Develop programs more quickly

o Avoid platform dependencies with 100% Pure Java
e Write once, run anywhere

« Distribute software more easily

19

Java Program Interpreter

Compilers My Program

Figure 9: Java Program Compilation

TCP/IP stack[21]

The TCP/IP stack is shorter than the OSI one. Figure 10 shows OSI layer:

| application | | application | OsS| 5-—7F

TP)= OSE 4
| I= | oS 3
}
| A interface | O 1 -2

Figure 10: OSI layer
UDP:
UDRP is likewise connectionless and temperamental. What it adds to IP is a checksum for
the substance of the datagram and port numbers. These are utilized to give a
customer/server display - see later.

TCP:
TCP supplies rationale to give a dependable association situated convention above IP. It

gives a virtual circuit that two procedures can use to impart.

20

3.2 Proposed Algorithm Approach:

e Combination of two techniques i.e. Priority and Round robin Algorithm.

e After doing the literature survey three points are major for a process: Burst time,
Arrival time, Priority.

e New factor can be calculated by considering all above factors [3].

e In a real time environment, factor f is the more deciding factor than the arrival time
and burst time.

e F=(priority*priority_ratio)+(burst_time*burst_time_ratio)+(arrival_time*arrival
time_ratio)

e Then CPU burst time can be considered more important factor than the arrival time.

e Therefore, in this equation more weight is given to priority (80%).

e CPU bursts should be 80 % shorter than the time quantum [1] (rule of thumb).

e To make target at least 70%, 0.7 weight is given to the Burst time.

e F=(priority*0.8)+(burst time*0.7)+(Arrival time*0.2)

e Based on the priority and arrival time of packet, factor f is given to each packet.

e As performance of RR algorithm is directly proportional to time quantum.

e Small value generates too many context switches otherwise FCFS.

e To impart dynamicity nature Harmonic mean[4] is taken into account as:

TQ=n/(1/bt;+1/bt,+1/bts+1/bts+........ +1/bty)

n=no. of packets
Bt;=CPU bt of ith packet.

21

3.2.1 Proposed Algorithm:

Input: CPU BT, AT, and Pi of each process.

VI.

VII.
VIII.

Start the algorithm with all packets ready.

Give every packet a number BTT such that packet with low burst time has high
value of BTT.

Give every packet a number ATT such that packet with low burst time has high
value of ATT.

Calculate the factor f;

F=(P*0.8)+(BTT;)+(ATT,; *0.2)
Pi = Priority of packets
BTT; = Burst time of packets
ATT,; = Arrival time of packets

Packet with highest f will be executed first.
Calculate the time quantum TQ according to harmonic mean;

TQ=n/(1/bt;+1/bt,+1/btz+1/bts+........+1/bt,)
Assign the TQ to packet(i=1 to n)

Execute the packet in Round Robin fashion until ready queue is empty.

Stop.

22

3.3 Module Description: Implemented on Java Platform using Eclipse IDE Version:

Oxygen.2 Release (4.7.2)

3.3.1 Module Description for UDP: Figure 11shows UDP Model Diagram

Client 1

lsend ()

Server
(Establish Connection,

Handles Incoming files)

Sender

(Send file Input,Control
Input,

Store batch of file data)

Message Split

— Packet 1

Packet 2

s Packet n

When send|) is completed,

Start

Process

Transfer the

packets

Receive the

¥ packets

@eive

Receivepacket|)

Y

Error check on received
packets and catch missing
ACK sent to sender

!

Client n

send()

Y
Server
(Establish Connection,

Handles Incoming files)

Sender

(Send file

Store batch of-

f file data)]

Message Split

F

Packet 1

Comparison via proposed
algorithm

Packet 2 1+—

Packet n [«

Write the Statistics
to Output

23

Figure 11: UDP Model Diagram

* Number of Modules=5

* Name of modules:

« Server

* Receiver
* Message
* Client

» Sender

Initiation of connection starts from the Server class which prepares the initial packet to be
received. It helps in capturing the connection data i.e. IP and Port to open a port for that

DatagramSocket. The client for each DatagramSocket is handled by a thread.

A Receiver object is instantiated by the thread for the file being received from a client.
The receiver is hoping for an initial packet containing file name and size. It helps in
creating necessary buffers and output buffers. After that we keep track of bytes from

incoming packets in a continuous loop.

With the help of an abstracted object called a Message packets are deserialized which
serves as a container for the packet size, data, and segment ID. This loop continues until

we reach bytes received to greater than file length.

Once the user generates the send command in the client side, an initial packet regarding
the action of the user and connection details i.e. IP and Port is sent to the Server.

Now to handle the sending we will call the Sender.java class. In this class after setting up
the streams, we start by keeping in check our position using current_pos and loop
continuously until file length is smaller than current_pos. the packet timeout time is 2sec*
the estimated connections delay so far following the original TCP RTT time algorithm. In
the next step based on our buffer size read fixed amount of data from the file to be sent
and make a Message object that contains the data, length of the data and segment ID. A
packet is sent containing the Message object and RTT timing starts. Once we receive

acknowledgement or reply that’s the end time for RTT. But in some case we don’t get

24

reply due to the time out that means packet has been lost. We just continue with our next
packet without retransmitting the packet.

RTT(Round Trip Time):

The time it takes for a bundle to cross the web is a troublesome incentive to compute. In
view of the Round-Trip Time (RTT), a clock is set. It is started when the bundle is sent,
and is ended when the sender gets an affirmation from the beneficiary demonstrating the
bundle's finished conveyance. We can diminish the measure of time squandered amid
web correspondence by nearly evaluating this movement time. The first estimation
calculation is named after its engineer Jacobson, and has been executed since the

introduction of online information exchange.

TCP/IP is a five layer convention suite. It characterizes the trading of transmissions over
the web, with the most essential conventions being TCP and IP. The convention most
nearly connected with this venture is TCP. This is the vehicle layer in the convention
suite and manages a higher level of information transportation, as opposed to the bits of
information. In this layer, the whole bundle of data is contemplated. In light of the extent
of this parcel, a RTT is evaluated. This is the time needed to make information go from a
source to goal and after that get affirmation of the entry. The RTT has numerous
applications to TCP. A standout amongst the most critical is the Retransmission Time-
Out (RTO) clock. This clock is kept up with every association; what's more, if the sender
does not get affirmation upon the termination of the clock, TCP will retransmit the
information and restart the clock. This clock depends on the extent of the bundle. Since
every bundle might be an alternate size, the clock can't be a settled esteem furthermore,
thusly depends on a precise estimation of the RTT. Another use of RTT is computing the
quantity of retransmissions of an information bundle, which in a perfect world is kept to
zero guaranteeing unbroken correspondence. The time too measures the throughput and
good put, which are the quantity of transmissions sent over the system and the quantity of
positive transmissions recognized individually. In this manner, it is critical that the RTT

be figured absolutely to or as near the genuine incentive as could be allowed.

25

Jacobson's Algorithm:

The estimation includes a straightforward four-advance process requiring just two info
values and settled weights to ascertain the RTT and RTO (showed in figure 5). Basic
math is included: expansion, subtraction, and augmentation. Figure 12 shows Jacobson’s
Algorithm:

I. error = measured RTT - prediction

old prediction + '/s x error

2. new prediction =
= 7/ % old prediction + '/g x measured RTT

3. new variation = ¥/4 x old variation + '/4 x abs(error)

4. RTO

prediction + 4 x variation

Figure 12: Jacobson’s Algorithm

26

3.3.2 Class Diagram for the model: Figure 13 shows UDP class Diagram

getAddress();
connect();

Sender();
currentTimeMillis{};
setSaTimeout]);
send();

receivel);
Meassage();

1
01

segment|D :int

packet : byte[]:
bytesToWrite : int

getBytes ToWrite();
gatSegmentlD();
getPacketl);

Figure 13: UDP class Diagram

27

Client Server
BUFFER_SIZE : int — 04—, |PORT NUMBER : int
PORT_NUMEER : int * 7| BUFFER_SIZE :int
clientlD; int
receivaPacket{); DatagramSocket():; .
Sender(); send();
sendFile(); startf);
StringTokenizer(); receivel);
send|packet); ClientConnection);
1. —
I I
1.4 1.
Y
0.1
Sender l
apwl tint Receiver
- 0.1
:'ll::r'r'rnrlihg;'ﬁm l}.l.l filename : string
. init_string : string
segmeanl_id @ int Message bybes_received int

bytes_to_receive :int
segment|D_expected : int

0.1 — receiveFilel);

— 1.5 [nextTokenl);
receivePacket);
send{packet);
message getPacket();

Creately

i creately.com « Online Diagramming

3.3.3 Module Description for TCP: Figure 14 shows TCP Model Diagram

Start Process

Client

Segment data on buffersize

Write data to buffer stream and
Flush

Perform the various

Algorithms

Write Statistics to
Output

End

Figure 14: TCP Model Diagram

* Number of Modules=2

28

* Name of modules:

Client

Server

TCP architecture follows a basic and a concurrent model and Server-Client architecture.

Its different in way that client.java which is a very convenient class (because it allows

once to send not just send bytes but also java primitive types) sends file name and length

information via a DataOutputStream. Data is segmented based on our buffer size which is

1024. This segment data is written out and is flushed. This operation is timed to RTT. Its

timed this way as TCP sends a continuous stream of data.

3.3.4 Class Diagram for the model: Figure 15 shows TCP Class Diagram

Client

BUFFER_SIZE : int
PORT_NUMBER : int
TIME_OUT : int
file_name : String
file_length :int
current_pos : int
bytes_read : int

getOutputStream();
datalnputStream();
getBytes():
getName();
setSoTimeout();
wiriteLongl();

close():
currentTimeMillis();

Server

PORT_NUMBER : int
BUFFER_SIZE :int

1" —
— 04 _|_ clientlD :in

clientConnection();
run);

close();

accept():
datalnputStream);
getPort();
oetBytes|);
getinputStream();

creately

www.creately.com » Online Diagramming

29

Figure 15: TCP Class Diagram

3.3.5 Activity diagram of the process: Figure 16 shows Activity Diagram

Send Messages

Split Messages in terms of
packets

Allocate the packet as a process

to different alogorithm

Compare the algorithm

Write the statistics to output file

Figure 16: Activity Diagram

30

CHAPTER 4
EXPERIMENT RESULT AND ANALYSIS

4.1 Test Cases For UDP:

Table 10: Priority Scheduling Algorithm

5 9 0 9

3 10 9 11
9 1 11 15
2 5 15 20
4 8 20 23

Table 11: Proposed Algorithm

S 2 9 0.0 3.0
3 3 10 12.17 17.17
9 4 1 13.78 17.58
2 1 5 10..17 12.17
4) 8 14.0 23

- 9.98 14.58

31

Table 12: Round Robin Scheduling

) 3 11 16
3 3 3 6

9 3 14 23
2 3 9 11
4 3 16 20

Table 13: Proposed Algorithm

5) 2 9 0.0 3.0
3 3 10 12.17 17.17
9 4 1 13.78 17.58
2 1 5 10..17 12.17
4) 8 14.0 23

- - 0.98 14.58

32

4.2 Experimental Result And Analysis for UDP:

n

i

158

1"
o

e Figure 17 shows Transferring the packets and receiving the acknowledgement:

1 Receiverjava %8 1 Senderjava 01 Severjave ° O] Moblems @ Javadoc [Declration B Consale & 1 Propertis] | -13E E@"
nessage = (Hessage) deserialize(received packet.getData()); A Client (1) ave Anplicaton] CAProgram FieJave\re1 80,1\t javavee (20-Mar-2018 83414 AM)
} cateh (ClassllotFoundException ex) { COMDS: send *File patht
Systen.out println("*** Nessage packet failed. ***"); exaple: send C: fdata. bet
} udp> send C:\Users\HP\Desktop\eclipse\data. txt
} while (nessage.getSeanentID() I= sepnentld expected); 5 E onane: data. bt ¥

*5 Bytes to send: 4533 *#
segnentl expected+;

w Sending segment B with 1024 byte payload.
|/ handles the last byte segnentlD size .getBytesTolirite()

file_os.urite(nessage.getPacket(), 0, nessage. getytesTollrite()); #++ Recelved ALK to seamentd Delay: 1.0ns
Systen.out.println("Received segnertID " + nessage.getSegmentDd() + " | Fil

bytes_received = bytes_received + nessage.getPacket(). length; e Sending segnent 1 with 1024 byte paylosd.
1/ Send ACK message (uhich is the segnent id) #++ Recelved ALK to seament1 Delay: 1.0ns

String ACK = Integer. toString(nessage. getSegnentID());
send(init packet.getAddress(), init packet.petPort(), (ACK).getbytes()); ~e Sending segnent 2 with 1024 byte payload.
}

Systen,outprintln("Fle tranfer complete.”): +++ Recedved ACK to segment? Delay: 0.0ns
file os.close();

} w Sending seguent 3 with 1624 byte payload.
private DatagranPacket receivePacket() throus I0Exception { +++ Receved ACK to seement Delay: 0.0ns
buffer = new byta[BUFFER_SIZE];
DatagranPacket packet = new DatagranPacket (buffer, buffer. length); e Senting seament 4 with £37 byte payload.

Figure 17: UDP Packet Transfer

33

Figure 18 shows comparing the basic algorithms with proposed algorithm:

o B <G8 o2
I Clientjava 2 1) Messa ation B Console & = Prop L] BEzg8 #Brn-=0

Client (1) [Java Application] C\Program Files\Javaljre1.80_111\binjavaw.exe (20-Mar-2018, 83414 AM)

2.SHORTEST J0B FIRST method (non-preemptive))
3.SHORTEST J0B FIRST method(preemptive)

4.ROUND ROBIN method

5.PRIORITY method (non-preemptive)

6.PRIORITY method (preemptive)

14 public class (lient { ”
15 private static byte[] buffer;
private static final int BUFFER_SIZE = 1804,
17 public static final int PORT_MUMBER = 26433;
18 private static DatagramSocket socket;
19 private static BufferedReader stdin;
0 private static StringTokenizer userInput; 1.RXIT
un private static DetagranPacket initPacket, packet; ENTER YOUR CHOTCE
2= public static void main(String[] args) throws I0Exception { 5

set port number to 2089 +

3 socket = new DatagramSocket(); ENTER burst time for each process: pl
24 InetAddress address = InetAddress.getByName("localhost"); 5
25 buffer = new byte[BUFFER_SIZE]; ENTER burst time for each process: p2
stdin = new BufferedReader(new InputStreamReader(System.in)); 3

Systen.out.println("COMMANDS: send *file path®"); ENTER burst time for each process: p3

System.out.println("\t example: send C:/data.txt");
System.out.print("udp> ");
String selectediction = stdin.readline();

ENTER burst time for each process: pd

1

userInput = new StringTokenizer(selectedAction); ENTER burst time for each process: p5

try { 4
if (userInput.nextToken().equalsIgnoreCase("send")) { Enter the priority for pl
J/ send "Send" command to server]
packet = new DatagrasPacket((selectedAction).getBytes(), (selectedAction Enter the priority for p2
socket. send(packet); 10
Enter the priority for p3
File thefile = new File(userInput.nextToken()); 1
30 Enter the priority for p4
40 initPacket = receivePacket(); 5
41 Enter the priority for p5
1) |/ create object to handle out going file
18] Sender fileHandler = new Sender(socket, initPacket); indivisual waiting time for process p3 is@

fileHandler.sendrile(therile); indivisual waiting time for process pt is9
indivisual waiting time for process p5 isil
indivisual waiting time for process pl isl5

indivisual waiting time for process p2 is20

} cateh (Exception e) {
1) System.err.printIn("Not velid input " + e.toString());
48 }

49 socket.close(); average waiting time is:11.8

‘I

5 turneround time for process p3 is9

51 private static DatagranPacket receivePacket() throws IOException { turnaround time for process pd isil

52 DatagranPacket packet = new DatagranPacket(buffer, buffer.length); turneround time for process ps is15

53 socket.receive(packet); turnaround time for process pl is28

54 return packet; turnaround time for process p2 is23

55 }

5 } ¥ gverage turn-around time is:15.6 g

Figure 18: UDP Proposed Algorithm

34

® Figure 19 shows Calculating turnaround and waiting time for any algorithm(Round
Robin)

1) Clientjava % 3 Receiverjava Serverjava = B [problems @ Javadoc [¢ Declaration B Console 5 [Properties |aEEE@re-0-=0
14 public class Client { A Client (1) [Java Application] C\Program Files\Java\jre1.8.0_111\bin\javaw.exe (20-Mar-2018, 8:34:14 AM)
15 private static byte[] buffer; Which algorithm you want to compare the efficient algorithm to ”
16 private static final int BUFFER_SIZE - 1024; 1.FCFS method

17 public static final int PORT_NUMBER = 26433; // set port number to 2008 + 2.SHORTEST JOB FIRST method(non-preemptive)
18 private static DatagramSocket socket; 3.SHORTEST J0B FIRST method(preemptive)

19 private static BufferedReader stdin; 4.ROUND ROBIN method

20 private static StringTokenizer userInput; 5.PRIORITY method (non-preemptive)

pil private static DatagramPacket initPacket, packet; 6.PRIORITY method (preemptive)

22° public static veoid main(String[] args) throws IOException { 7.EXIT

23 socket = new DatagramSocket(); ENTER YOUR CHOTCE

24 InetAddress address = InetAddress.getByName("localhost"); 4

25 buffer = new byte[BUFFER_SIZE]; ENTER burst time for each process: pl

26 stdin = new BufferedReader(new InputStreamReader(System.in)); 5

27 System.out.printIn("COMMANDS: send *file path*"); ENTER burst time for each process: p2

28 System.out.printIn("\t example: send C:/data.txt"); 3

29 System.out.print("udp> "); ENTER burst time for each process: p3

30 String selectedAction = stdin.readline(); 9

31 userInput = new StringTokenizer(selectedAction); ENTER burst time for each process: pd

32 try { 2

33 if (userInput.nextToken().equalsIgnoreCase("send")) { ENTER burst time for each process: p5

30 // send 'Send" command to server 4

35 packet = new DatagramPacket((selectedAction).getBytes(), (selectedAction enter time quantum

36 socket.send(packet); 3

37

38 File theFile = new File(userInput.nextToken());

39 waiting time for pl is:11

49 initPacket = receivePacket(); waiting time for p2 is:3)

41 waiting time for p3 is:14

42 [/ create object to handle out going file waiting time for p4 is:9

43 Sender fileHandler = new Sender(socket, initPacket); waiting time for p5 is:16

A4 fileHandler.sendFile(theFile);

45 m average waiting time i5:10.6

46 } catch (Fxception e) { turn around time is:16

47 System.err.println("Not valid input " + e.toString()); turn around time is:6

48 } turn around time is:23

49 socket.close(); turn around time is:11

50 } turn around time is:20

51 private static DatagramPacket receivePacket() throws IOException {

52 DatagramPacket packet = new DatagramPacket(buffer, buffer.length); average turn-around time is:15.2

Figure 19: Calculating Time

35

® Figure 20 shows finally calculating average waiting time and turnaround time for

proposed algorithm:

1 Clientjava 2) Messagejava) Receiverjava 11 Senderjava 11 Senverjava =0 Blonsoke 2 IX%5E2E8#B-0v=0
1 socket = new DatagramSocket(); A cterminated> Client (1) [Java Application] C:\Program Files\Java\jre-10\bin'javam.exe (10-May-2018, &4
3 InetAddress address = InetAddress.getByName("localhost"); A
I buffer = new byte[BUFFER_SIZE]; Harmonic Time Quentum calculated is:3.5856573705179287

25 stdin = new BufferedReader(new InputStreanReader(Systen.in));

2% System.out.printIn("COMMANDS: send *file path*");

0 System.out.printn("\t example: send C:/data.txt"); Sequence of the packets will be:»

28 System.out.print("udp> *); 1

Pl String selectedAction = stdin.readline();]

30 userInput = new StringTokenizer(selectedAction); 4

| try { 3

3 if (userInput.nextToken().equalsIgnorease("send")) { 1

B3] /[send "Send" command to server

H packet = new DatagranPacket((selectedAction).getBytes(), (selectedAction).getBytes().1

3 socket. send(packet);

3% waiting time for pl is:0.0

37 File theFile = new File(userInput.nextToken()); waiting time for p2 1s:12.171314741635857

38 waiting time for p3 1s:13.585657370517929

39 initPacket = receivePacket(); waiting time for pd is:10.171314741035857

waiting time for ps is:14.0

i /| create object to handle out oing file

L) Sender fileHandler = new Sender(socket, initPacket); average waiting time 1s:9.985658

Lt fileHandler.sendFile(theFile);

u } turn around time is:3.0

5 } catch (Exception e) { turn around time is:17.171314741835857

46 System.err_printn("Not velid input " + e.toString()); turn around time is:17.58565737051793

Ly turn around time is:12.171314741635857

8 socket.close(); turn around time is:23.0

5}

50 private static DatagranPacket receivePacket() throws I0Exception { average turn-around time is:14.585657

51 DatagranPacket packet = new DatagramPacket(buffer, buffer.length);

52 socket . receive(packet);

53 return packet; Average Waiting Time: 9.985658 | Average Turnaround Time: 14.585657

%o}

5% } v v
{ H ¢ >

Figure 20: Calculation Time For Proposed Algorithm

36

4.3 Test Cases For UDP:

Table 10: Priority Scheduling Algorithm

3) 9 0 9
3 10 9 11
9 1 11 15
2 5 15 20
4 8 20 23

Table 11: Proposed Algorithm

5 0.0 3.0

2 9

3 10 12.17 17.17
4 1 13.78 17.58
1 5 10..17 12.17
5 8 14.0 23

9.98 14.59

37

Table 12: Round Robin Scheduling

3) 3 11 16
3 3 3 6

9 3 14 23
2 3 9 11
4 3 16 20

- - 10.6 15.3

Table 13: Proposed Algorithm

0.0 3.0

5 2 9

3 3 10 12.17 17.17
9 4 1 13.78 17.58
2 1 3) 10..17 12.17
4 3) 8 14.0 23

- - 9.98 14.58

38

4.4 Experimental Result And Analysis for TCP:

e Figure 21 shows Transferring the packets and receiving the acknowledgement:

Oerte DVesageioe DRecierjn 05 e D Oimma 1 Seneroe TE Bl LERTEY: =10 LR
| patkage top; A et e Aaplcto]C: Progtam Pl e\ 0-Vag008 114752 A0)

] Hi there, plese provide & comend (send). A
] s

Fimert Ja.Io.BufferedinputStrean; Enter file path (ie. C:/data.tot): C:\Users\FP\Desktopleclipselfeta. bt

17 public class Client { e Spnting seguent 0 with 1024 byte peyload (/4533).

i} b fotal Infinity - bytes read fotal 933 - rit total 0.0

18 private static final int BUFFER SIZF - 100L;

1 privete staic inal int TINE OUT - J66; Bytes sent: 10 bytes | g NTT: G0 | Fotineted RTT: D.00es | A
1 private static final int PORT_MNBER = 183; o Sonting seent 1 with 1024 byte peyload (/4533).

1 private static fina] double ALPRA = 0.875; // from Jzcoheon's eloorithe bi_total Infinity - bytes read total 4533 - rit tofal 0.0

B privete static Socket socket;

U privete stetic String file me; Bytes st 0 bytes | Ave T O0ns | tincted RTT: 005 | g
5 privete stetic Bufferedheater stein; e Snding seppent 1 with 1002 byte peyload (/293).

B private static FilelutputStrean file witer; bi totel Infinity - bytes_read fotal 4933 - rit tofel 0.8

7 privete stetic PrintStrean o5,

B privete stetic int file ength, current possh, bytes read, bytes read total, sequent i6e0; Bytes sent: W bytes | Avg T B.s | Ftineted FTT: 0.0ns | g
1% private static double rtt stot, rtt end, rtf_totol, bondvidth estinated, dondvidth tota, i estinoted g, onn Sending sepment 3 with 1620 byte peyload (/453).

W bondicth estinated ovg, rit estinated < 0; bi_totel. Infinity - bytes read total 4533 - rit totel 0.0

I statie int il

1 static int gl Bytes sent: M bytes | g NTT: G0 | Ftimeted ATT: .00es | i
B static int i, e Senting seguent 4 with 437 byte poyload (/4533).

I statde dnt nl; b total Infinity - bytes read total 033 - rit total 0.0

3 static Bufferedfeater obr-ney BufferedReader ney TnputStreanfecer (Systen.in));

Figure 21: UDP Packet Transfer

39

e Figure 18 shows comparing the basic algorithms with proposed algorithm:

i D it & 1 Sener *F 8ok (REEYEE =1 =Rk A
1 package top; A Clent [lva Application] C\Program FlestJavajre-A0tiravamee 10-Viy-2018, 114732)
1 5

3 BTER burst tine for each pracess: pl
I#import Java, 1o.BufferadInputSirean; |]
16 AITER burst tine for each pracess: pd
17 public class (Lient { §
18 ENTER burst tine for each process: pd
19 private static final int BUFFER_SIZE - 1014; l
10 private static final int TIHE_OUT - 2000; EITER burst: tise for each pracess: p3
11 private static final int PORT MUMBER - 20783, 4
1 private static finel double ALPHA = 0.875; // fron Jacobson's eloorithn Enter the priorty for pl
B3 private static Socket socket; g
1 private static String file none; Enter the priority for p2
5 private static BufferedReader stdin;]
16 private static FiledutputStrean file writer, Enter the priority for p3
77 privats static PrintStrezn os; 1
18 private static int file length, current posB, bytes read, bytes read total, seqrent id-B; Enter the priority for pd
1% private static double rtt start, rit end, rit total, bandwidth estinated, bandvidth totul, rtt estinated avg, 3
I bandwidth estinated mug, rtt estinated = §; Enter the priority for p3
i static int gnil[]; §
1 static it p[]; |ir|d'1visua] weiting tine for process p3 s
T static int 100l indivisua] weiting tine for process pd is9
U shatic int ol indivisue] weiting tine for process gb isll
% static BufferedReader obj=nes BufferedReader(new InputStreanfeader (Systen.in)); indivisua] waiting tine for process pl is1s
I public static void nain(String[] args) throus I0Exception { indivisuel weiting tine for process pl is20
bl ty {
b socket = new Socket{"ocalhost”, PORT_MUMBER) avarage vaiting tine 1s:11.0
» stfin = ne BufferedReader (new InputStreanReader(Systen. in)); turnaround tine for process p3 is9
4 } cateh (Exception ¢) { turnaround tine for process pd 1511
4 Systen.err.printIn“Camnot comect to the server, try aggin later."); turnaround tine for process p5 is15
iy Systen.exit(1),; turnaround tine for process pl 1528
8 } turnaround tine for process pl is13
[} System.out.printIn("Hi there, please provide & comand (send).”);
15 05 = new PrintStrean(socket, setOutputStrean()); Y averase turn-around tine 15:15.

{ K)

Figure 22: UDP Proposed Algorithm

40

Figure 23 shows comparing the basic algorithms with proposed algorithm:

1 Clientjeva 2 [Messagejova 1 Receiverjava 1 Senderjava. 7 Senerjava =0 Doomoke IXN%|5E2EE #E-tireE

2 socket = new DatagranSocket (); A eminated> Clent (1) [lava Application] C\Program FleJavare-10\binavam.eve (10-May-2018, 84

3 InetAddress address = InetAddress.getBylne("localhost"); A

U buffer = nea byte[BUFFER_SIZE]; Harmonic Tine Quantum calculsted 15:3.5856573785179287

5 stdin = new BufferedReader(new InputStreanReader(Systen. in));

i} System.out.printIn("COMMANDS: send *file path®");

] System.out.printIn("\t example: send C:/data.txt"); Sequence of the packets will be:>

B System.out.print(“udps *); 1

pi] String selectedAction = stdin.readLine();]

0 userInput = new StringTokenizer(selectedAction); 4

3N try { 3

1 if (userInput.nextToken().equalsIgnoreCase("send")) { 2

3 /1 send 'Send" comand to server

! packet = new DatagranPacket((selectedAction).getBytes(), (selectediction). petBytes().1

3 socket. send(packet);

) waiting time for pl is:0.0

b File theFile = new File(userTnput .nextToken()); waiting tine for p2 is:12.171314741835857

'] waiting time for p3 is:13.585657370517929

Bl initPacket = receivePacket(); waiting tine for pd is:10.171314741035857

i} waiting tine for p5 is:14.0

4 J creste object to handle out going file

LH} Sender filefandler = new Sender(socket, initPacket); average waiting tine is:9.985658

4 fileiandler. sendrile(therile);

4 } turn around tine 1s:3.8

15 } eateh (Exception ¢) { turn around tine is:17.171314741035857

4 Systen.err.println("Not valid input " + e.toString()); turn around time 1s:17.58365737851793

4 } turn around tine 1s:12.171314741035857

i socket. close(); turn around time 15:23.0

H o}

505 private static DatapranPacket receivePacket() throus T0Bxception { average turn-around time 1s:14.585657

51 DatagranPacket packet = new DatagranPacket (buffer, buffer.length);

5 sochet. receive(packet);

5 return packet; fverage Waiting Tine: 9985658 | Average Turnaround Tine: 14.585657

TR

5} v v
¢ | p

Figure 23: Calculating Time

41

® Figure 20 shows finally calculating average waiting time and turnaround time for

proposed algorithm:

1 Qlentjava 2

1 package tep;

L

#import jave. 0. BufferedInputStrean;[]

1

17 public class (Lient {

19 private static final int BUFFER_SIZE - 1024,

20 private static final int TIME_OUT - 2008;

21 private static final int PORT_VUMBER = 22783;

20 private static final double ALPHA - 8.875; // from Jacobson's algorithn

53 private static Socket sochet;

2 private static String file nane;

25 private static BufferedReader stdin;

26 private static FileQutputStrean file writer;

27 private static PrintStrean os;

28 private static int file length, current pos=B, bytes read, bytes read total, seguent id=0;

295 private static double rtt start, rtt end, rtt total, bandwidth estinated, bandvidth total, rtt estimated avg,

30 bandwidth estinated avg, rtt estinated = 6
3 static int anl[];
static int p[];
static int i-6,n-0;
3 static int nl;
35 static BufferedReader obj=new BufferedReader(new InputStreanReader (Systen.in));
3¢ public static void main(String[] args) throms I0Exception {
try {

3 socket = new Socket("localhost”, PORT_NUMBER);
3 stfin = new BufferedReader(new InputStreanReader(Systen.in));
} cateh (Exception ¢) {

System.err.printIn("Cannot connect to the server, try again later.");
v Systen.exit(1);
i }
u System.out.println("Hi there, plesse provide a command (send).”);

5 0 = new PrintStrean(socket. getOutputStrean());
¢

1 Problems £

Yermars, 15 wamings, 0 others

EEE e 0

B Console R L1

£ ctprminated> Client [Java Application] C\Program Files\Javaljre-10bir javaw e (10-May-2018, 1147:52 AM)

Hermonic Time Quantum calculated is:3.5856573765179287

Sequence of the packets will be:»

o e e

weiting time for pl is:0.9
weiting time for pl is:12.171314741635857
weiting time for p3 is:13.585657378517929
weiting time for p4 is:10.171314741035857
‘waiting tine for p5 is:14.0

average waiting time is:9.985658

tuen around time is:3.0
turn around time is:17.171314741035857
turn around time is:17.58565737051793
turn around tie 1s:12.171314741635857
turn around time is:23.0

average turn-around tine is:14.585657

Totel Avg Estinated RTT: 0.00us | Total Avg Estinated BH: InfinitykB/s

#%% File transfer complete... v
<)

Figure 24: Calculation Time For Proposed Algorithm

42

CHAPTER S
CONCLUSION

Different algorithms are compared on the basis of qualitative parameters in this report.
Analysis is done by way of comparing several of scheduling algorithms with certain
parameters. If either the AWT or ATT is required to be shortest, the SJF algorithm can be
used. Also if either avg. CPU utilization or avg. throughput is to be minimized the FCFS
can be used. Algorithm which is fair to every process is Round robin. The highly efficient
and low scheduling overhead is achieved with multilevel feedback queue. Any type of
simulation of any algorithm has very limited accuracy therefore a lot of effort and hard
work has been put to make the algorithm fair and starvation free. This research establish
that

I. Fairness and starvation free qualities of execution of processes required a lot of
effort.
1. Dynamic behaviour of the time quantum should be considered if the goal is to
minimize turnaround time and response time.
I1l. We are trying to make new algorithm out of RR and PS by way of calculating
time quantum and executing processes in that manner.

IV. Highest priority is given highest chance.

Future Work: The future work includes implementing this algorithm in real time routers.
Obviously it will need more research in the field of networks and existing applications of
OS based scheduling algorithms in the packet transmission from any source to

destination.

43

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

A. Silberschatz, Galvin, and G. Gagne, “Operating System Concepts*, 2009, Wiley
Inc.

A. S. Tanenbaum, “Modern Operating Systems” 2009 Prentice Hall (book).
Al-Husainy, M.A F., “Best-job-first CPU scheduling algorithm” 2007, Inform.
Technol. J.,Volume 6: No. 2, pp. 288-293

Adeeba Jamal and Aiman Zubair “A Varied Round Robin Approach using Harmonic
Mean of the Remaining Burst Time of the Processes” 3rd International IT Summit
Confluence 2012

Mohammed Abdullah Hassan Al-Hagery “A selective quantum of time for round
robin algorithm to increase CPU utilization”, 2011,IJCIS , Vol.3 No. 2, 2011
Abbas Noonl, Ali Kalakech2, Seifedine Kadry “A New Round Robin Based
Scheduling Algorithm” for Operating Systems: Dynamic Quantum Using the Mean
Average May 2011, IJCSI, Vol. 8,

Sanjay Kumar Panda, An Effective Round Robin Algorithm using Min-Max
Dispersion Measure, Vol. 2, No. 12, December 2011.

Lalit Kishore, Dinesh Goyal, “Time Quantum Based Improved Scheduling
Algorithm”, Volume 3, Issue of JARCSSE. ISSN: 2277 128X, 4, April, 2013.

KN Rout, G.Das,B.M. Sahoo,A.K. Agrawalla, ,Improving Average Waiting Time
Using Dyanamic Time Quantum,IRAJ,2013.

Kiran, PolinatiVinodBabu, B.B Murali Krishna, Optimizing CPU Scheduling for Real
Tim e Application Using Mean-Difference Round Robin (MDRR)
Algorithm,springer,2014

KumkumPattanayak, PayalPansari, SubhashreePatra, SubhashreeMohapatra, “An
Enhanced Round Robin (ERR) Scheduling Algorithm” using Dynamic Time
Quantum,lJSAA,2013

HimanshiSaxena, Prashant Agarwal, Design and Performance Evaluation of
Precedence Scheduling Algorithm with Intelligent Service Time , ICCMS, 2012
AashnaBisht, Mohd Abdul Ahad, Sielvie Sharma, “Enhanced Round Robin
Algorithm For Process Scheduling Using Varying Quantum Precision”, ICRIEST-
AICEEMCS, 29th December 2013, Pune India

P.SurendraVarma, Design and Performance Evaluation of Precedence Scheduling
algorithm with Mean Average as Time Quantum (PSMTQ), 2012

Sourav Kumar Bhoi, Sanjaya Kumar Panda and DebasheeTarai,Enhancing CPU
Performance Using Subcontrary Mean Dynamic Round Robin (SMDRR) Scheduling
Algorithm, JGRCS,2011

H. S. BeheraBrajendra Kumar Swain, “A New Proposed Precedence based Round
Robin with Dynamic Time Quantum (PRRDTQ) Scheduling Algorithm” For Soft
Real Time Systems,IJARCSSE, Vol. 2, Issue 6, 2012

C. Yaashuwanth and R. Ramesh, : A New Scheduling Algorithm for Real Time
System, IJCEE, Vol. 2, No. 6, PP 1104-1106, December, 2010.

44

18. R. Bhaskaran and V.Parthasarathy*“An improved performance analysis of priority
scheduling algorithm” in modified ad hoc grid layer, International Journal of
Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

19. http://www.informit.com/articles/article.aspx?p=31940

20. http://met.quc.edu.eg/OldOnlineTutorials/chapterl.aspx

21. http://www.newagepublishers.com/samplechapter/002302.pdf

22. http://www.math.uni-hamburg.de/doc/java/tutorial/getStarted/intro/definition.html

45

http://www.informit.com/articles/article.aspx?p=31940
http://met.guc.edu.eg/OldOnlineTutorials/chapter1.aspx
http://www.newagepublishers.com/samplechapter/002302.pdf
http://www.math.uni-hamburg.de/doc/java/tutorial/getStarted/intro/definition.html

