
SAFENET LUNA NETWORK HARDWARE SECURITY 

MODULE 

 

Project report submitted in partial fulfillment of the requirement for the 

Degree of Bachelor of Technology 

 

in 

Information Technology 

 

By 

 

Ranjan Kumar (141443) 

 

 

Under the supervision of  

 

Manjari Sharma 

(HSM GP Integration,Gemalto) 

to 

 

 
 

Department of Computer Science & Engineering and Information Technology 

 

Jaypee University of Information Technology Waknaghat, 

Solan-173234, Himachal Pradesh 



i 

 

DECLARATION 

 

 
I hereby declare that the work presented in this report entitled “SAFENET LUNA NETWORK 

HARDWARE SECURITY MODEL”   in partial fulfillment of  the requirements for the award 

of the degree of Bachelor of Technology in Information Technology submitted in the 

department of Computer Science & Engineering and Information Technology, Jaypee 

University of Information Technology Waknaghat, Solan is an authentic record of my own work 

carried out over a period from February  to May  2018 under the supervision Manjari 

Sharma,Senior Project Lead (HSM General Purpose integration) in Gemalto. 

The matter embodied in the report has not been submitted for the award of any other degree or 

diploma. 

 

 

 

 

 

Name:Ranjan Kumar 

Roll No: 141443 

 

 

 

 

 

 

 

 

 

                                                                                         (Signature Of Student) 

                           Dated:  …../ May /2018 

 

 

 

 

 

 

 

  



ii 

 

 

 

CERTIFICATE 
 

 

Τhіs іs to сеrtіfy thаt Ranjan Kumar, studеnt of Β. Τесh in Information Technology of Jaypee 

Unіvеrsіty of Information Technology іs сurrеntly рursuіng іndustrіаl trаіnіng in Gemalto from 

February  2018. Ηе іs workіng іn HSM  dераrtmеnt on thе рroduсt Ηаrdwаrе Sесurіty Μodule 

undеr thе guіdаnсе of Manjari Sharma,Senior Project Lead(HSM GP Integration). 

 

 

 

 

 

 

 

Name: Sudhakar Porwal 

Designation: Sr. Manager Engineering 

Department Name: HSM  

Dated:  …../May/2018 

 



iii 
 

ACKNOWLEDGEMENT 

 

I consider it a great privilege and honor to have had the opportunity to undergo the industrial 

training in Gemalto SafeNet Inc. I would like to offer my heartiest thanks to Manjari Sharma, 

Senior Project Lead,HSM GP Integration,Gemalto for being the mentor throughout my 

industrial training. I am greatly indebted to Sudhakar Porwal (Sr. Manager, Engineering), Md. 

Arif(Technical Lead) Somya Bansal (Senior Software Engineer), Deepak Gupta (Software 

Engineer),Chanpreet Grover(Software Engineer),Sahil Agarwal(Software Engineer) , 

Priyanka Batra (Software Engineer),Harshit Jain(Software Engineer) at Gemalto SafeNet 

Inc. for their most valuable suggestions, constant encouragement, and guidance during the 

period of this training.  

At last, I am greatly thankful to all my seniors and colleagues at Gemalto SafeNet Inc. for 

extending their constant cooperation which went a long way towards the completion of this 

training. Ι аm аlso grаtеful to Dr. Vivek Sehgal who wаs аlso thеrе for hеlр whеn Ι nееdеd іt. 

Ηіs guіdаnсе lеt mе саrry out thе trаіnіng wіth еаsе. 

 

 

Date: …../May/2018       

 

Ranjan Kumar (141443)    

 



 

iv 
 

CONTENTS 

 

 

Topic                 Page No.  

1. INTRODUCTION 

1.1. Introduction    1 

1.2. Company Profile    2 

 

2. PROFILE OF THE PROJECT 

2.1. HSM Overview    3  

2.1.1. Volatile and non-Volatile Data Storage    3 

2.1.2. Initialization    3 

2.1.3. Authentication methods    4 

 

3. PRODUCT OVERVIEW  

3.1. About SafeNet Luna HSM    5  

3.2. Physical Appearance    6  

3.2.1. Front View    7 

3.2.2. Rear View    8 

3.3. Technical Specifications    9 

3.3.1. Cryptographic API’s    9 

3.3.2. Cryptographic Hardware    9 

3.3.3. Cryptographic functions    9 

3.3.4. Cryptographic performance    9 

3.3.5. Cryptographic algorithms    10 

3.3.6. Physical Characteristics    10  

3.3.7. Regulatory Standards    11 

 

 

 



 

v 
 

4. PRODUCT CONFIGURATIONS 

4.1. Planning Configuration    12 

4.2. Configure network settings    13 

4.3. Initialize the hsm    13 

4.4. Set the hsm policies    14 

4.5. Create application partitions    17 

4.6. Set the partition policy settings    17 

4.7. Create NTL between client and the appliance    18 

4.8. Enable the client to access a partition    18 

4.8.1. Assign a client to a partition    19 

4.9. Configure ppso application partitions    19 

4.10. Set the partition policies for ppso partition    19 

4.11. HSM Partitions    20 

4.12. Network Trust Links    22 

4.12.1. Creating A Network Trust Link    22 

4.13. Secure Trusted Channel Link    29 

4.13.1. Creating a stc link to a legacy partition    30 

4.13.2. Creating an stc link to a partition with SO    37 

 

5. MY LEARNING 

5.1. Basics of Cryptography    42 

5.2. PKI components and functions    42 

5.3. PKI functions    43 

5.4. Manual Testing    44 

5.5. My Role In Organization     

5.5.1. Assignments carried out    45 

5.5.2. Experience    45 

 

6. CONCLUSION    46 

7. REFERENCES    47 

8. APPENDICES    48 



 

vi 
 

LIST OF FIGURES 

 

Fig.No.    Title     Page No. 

3.1     HSM Appliance     6 

3.2    HSM Appliance Front View    6 

3.2    HSM Appliance Rear View    8 

4.1    HSM Showpolicies     15 

4.2    HSM ChangePolicy     16 

4.3    Partition List      21 

4.4     Server Add and Client Certificate Create  26 

4.5     Client Registeration     27 

4.6     Lunacm      28 

4.7    Partition Id export     31 

4.8     Token and Id create     33 

4.9    STC Enable      36 

4.10    STC Status      37 

4.11    Partition and Roles Init    41 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

LIST OF TABLES 

 

Table No.    Title               Page No. 

Table 3.1   Description Of HSM Appliance Front View   7 

Table 3.2   Description Of HSM Appliance Rear View   8 

 

 

 



viii 
 

ABSTRACT 

This project titled “SAFENET LUNA NETWORK HARDWARE SECURITY MODULE” 

emphases on hardware security modules created to safeguard critical cryptographic keys and to 

speed up sensitive cryptographic actions across an extensive range of security applications. 

SafeNet HSMs fall into three classes: 

•SafeNet PCI HSM is a card-type HSM that installs into the PCI slot(s) of a host computer. 

Several SafeNet PCI HSMs can coexist in single host system. Each SafeNet PCI HSM 

provisions one HSM partition. 

•SafeNet USB HSM is a desktop HSM unit that links locally to a host computer via USB 

interface. Multiple SafeNet USB HSMs can be linked via USB connection. To each SafeNet 

USB HSM supports 1 HSM partition. 

•SafeNet Network HSM is a self-contained, network attached HSM appliance, comprising an 

HSM card like to SafeNet PCI HSM, and normally resides in an equipment rack in a server 

room and is log on remotely via secure administrative and client links. Apiece SafeNet Network 

HSM supports many HSM partitions, the quantity governed by bought licensesThis project 

titled SAFENET LUNA HSM emphases on hardware security modules created to safeguard 

critical cryptographic keys and to speed up sensitive cryptographic actions across an extensive 

range of security applications. 

 



1 
 

CHAPTER – 1 

INTRODUCTION 

 

1.1 Introduction 

A well planned, systematically executed industrial internship is helpful in inculcating a good 

work culture. It provides a linkage between students and the industry in order to develop 

awareness of the industrial approach to problem solving based on broad understanding of 

operations of the industrial organizations. The following report describes the activities carried 

out during 4 months, full-time internship at Gemalto SafeNet Inc. The document contains 

information about the organization and the responsibilities performed throughout the period 

from February to May 2018. The objective of this report is to reflect upon the experiences 

collected during the internship from the perspective of a B.Tech CSE student. The first part of 

the report offers an overview of the organization, followed by the project overview. Following, 

it proceeds to describe in some detail the most relevant details of the. Finally, the report wraps 

up with conclusions from the experience. 

 

1.2 Company Profile                                 

 

 

SafeNet, Incorporation is an information security company with headquarters established in 

Belcamp, Maryland, United States. The firm is now the fifth largest seller in the security market 

and third largest supplier of information security solutions in the world with returns 

approximately $500M. Gemalto proclaimed On 8 August 2014,that it had signed a definitive 

agreement to acquire 100% of the share capital of SafeNet. This is notably one of the leading 

suppliers of encryption technology to the United States Government. Now, this is part of 

Gemalto and  falls under the brand name of Gemalto.Safenet provides enterprise authentication, 

data encryption, key management and software monetization. SafeNet is a leading global 



2 
 

provider of data protection.Companies like Fortune 500 global corporations and many 

government agencies have turned to SafeNet to secure and protect their most critical data assets 

and intellectual property for over 25 years,. SafeNet focuses on the protection of high value and 

critical information throughout its life span, takinf from  the data center to the cloud. More than 

25,000 customers across commercial enterprises and government agencies trust SafeNet to 

protect and control access to sensitive data, manage risk, ensure amenableness, and secure 

virtual and cloud environments. 

SafeNet is the only company which provides all the components needed to secure and manage 

digital identities, thereby ensuring lesser costs in terms of both deployment and ongoing 

maintenance. In addition, since all elements of the solution are provided by a single vendor, any 

risk of interoperability failure is minimized. 

 



3 
 

CHAPTER – 2 

PROFILE OF THE PROJECT 

2.1 HSM Overview 

An Safenet LUNA HSM is a Hardware Security Module. It has cryptographic, storage, and 

access-control functions, that allow cryptographic operations to be performed, and segregated 

within a secure physical hardware boundary, while offloading such functions from the general-

purpose pathways of the host or client. Here are basic elements common to SafeNet HSMs. 

 

2.1.1 Volatile and non-Volatile Data Storage 

SafeNet HSM can store two type of data: volatile and non-volatile data. 

 Non-volatile data contains identification parameters and data objects (such as 

certificates and keys ) that are stored for use in lon term. The objects stored exist  on the 

HSM until we delete them by ourselves . Also Non-volatile objects are stored in 

encrypted form. 

 Volatile data are usually data which is lost when it is not used.When the HSM loses 

power, or when a session closes then, the volatile data is lost. Volatile data contains 

decrypted copies of non-volatile data. 

Generally, The Cryptographic Keys and objects are stowed under multiple layers of encryption 

and are decrypted inside the physical bounds of the HSM, only into volatile/session storage, 

and only while being used. Some events that remove power to the HSM, instantly erases volatile 

objects. 

 

2.1.2 Initialization 

SafeNet Hardware Security Model  should be initialized before use, for the first time (It is also 

required to initialize HSM when multiple login attempt fails and Security Officer (SO) account 

is locked). 



4 
 

The Initialization Of Hardware Security Module creates up a complete set of different HSM 

parameters.This includes identification and authentication of HSM Administrator i.e  Security 

Officer (SO) and application Partition Crypto Officer(CO) and Crypto User(CU) who can 

access and  create and use HSM Partition objects and also setting up the domain for the HSM 

Appliance . 

Like keys, certificates, encrypted data, etc.Safenet provides the lunacm utility program on most 

of the supported platforms like windows,linux,sparc,AIX etc as some application like PKI and 

other cryptographic product vendors don’t have the capability to initialize  Safenet HSM. 

When a SafeNet Luna HSM is initialized,no any other person can have accees to it unless the 

password is not provided which unlocks the partition.It has also the capability to reiniatialise 

the HSM which destroys all the data on the HSM.    

 

2.1.3 Authentication methods 

SafeNet Luna HSMs come with factory configured to be either: 

• Password authenticated – In this we use the password to access the HSM uses typed text 

strings to access the HSM and authenticate to all roles on the HSM.Its advantage is 

greater convenience. 

• PED authenticated – It uses physical tokens which is  called PED Keys, inserted into a 

PIN Entry Device, or PED, to access the HSM and authenticate  all roles on the HSM 

.Its advantage is  greater security.   

Safenet Luna HSM in the  operating mode can’t be changed from Password-authentication 

method to PED-authentication method or from PED-authentication method Password-

authentication method But the only exception is with the SafeNet Luna Backup HSM, which  

sets its mode automatically at the time of backup, to match the authentication scheme of the 

Safenet HSM being backed up. The Backup HSM can do Backup and Restore only, and it has 

no ability to perform cryptographic operations. 

 



5 
 

CHAPTER – 3 

PRODUCT OVERVIEW  

 

3.1 About Safenet Luna HSM 

SafeNet Luna Network HSM is an Hardware Security Module which is attached to  Ethernet  

designed to store and protect critical cryptographic keys.It is used  to accelerate sensitive 

cryptographic operations across a wide range of security applications. SafeNet Luna HSM has 

many features which enhances the  security, connectivity, and ease-of-administration in 

dedicated and shared security applications. 

SafeNet Network HSM falls under one of two model families, according to the level of 

authentication and access control. SafeNet Network HSM is  factory configured to operate as 

either: 

• Password Authenticated version(PW)- which is equivalent to FIPS 140-2 level 2, using 

passwords only for authentication and access control. 

• Pin Entry Device (a Trusted Path) Authenticated version- which is equivalent to FIPS 

140-2 level 3, which requires SafeNet  Luna Pin entry Device and PED Keys for 

authentication and access control. 

 

 

3.2 Physical Appearance 

 

The standard appliance is the 1U-high, rack-mount device: 

 

 



6 
 

 

Fig. 3.1 HSM Appliance 

 

 

3.2.1 Front View 

First, the front; this illustration shows the appliance with its snap-on decorative bezel removed. 

 

Fig. 3.2 HSM Appliance Front View 



7 
 

 
Table 3.1 Description Of HSM Appliance Front View 

 

 

 

 

 

 

 

 

 



8 
 

 

 

3.2.2 Rear View 

 

Fig. 3.2 HSM Appliance Rear View 

Table 3.2 Description Of HSM Appliance Rear View 

  



9 
 

3.3  Technical Specifications 

 

3.3.1 Cryptographic Api’s 

 

 

3.3.2 Cryptographic Hardware 

 

3.3.3 Cryptographic Functions 

 

 

3.3.4 Cryptographic Performance 

 

 

 

 



10 
 

3.3.5 Cryptographic Algorithms 

 

3.3.6 Physical Characteristics 

        



11 
 

3.3.7 Regulatory Standards 

 



12 
 

CHAPTER – 4 

PRODUCT CONFIGURATION 

To ensure a trouble-free configuration, the following steps are performed in the order indicated: 

1. Planning Configuration 

2. Configure Network Settings 

3. Initialize the HSM 

4. Set the HSM Policies 

5. Create Application Partitions 

6. Set the Partition Policies for Legacy Partitions 

7. Create a Network Trust Link between the Client and the Appliance 

8. Enable the Client to Access a Partition 

9. Configure PPSO Application Partitions 

10. Set the Partition Policies for PPSO Partitions 

4.1 Planning Configuration 

In SafeNet Network HSM,the roles is mainly divided into two categories: 

• roles to access the appliance that contains the HSM and that provides the network 

connectivity; these are accessed through SSH or local serial connection, via the LunaSH 

or "lunash" command line 

• roles that access the HSM include: 

1. 'HSM Administrator' or 'Security Officer' (SO) responsible for initialization of the 

HSM, setting and changing of global Policies (based on the HSM's Capabilities), 

creation and deletion of application partitions. 

2. ‘Application partition Security Officer' (SO) responsible for creating other roles in 

the partition, resetting passwords, setting and changing partition-level Policies 

(based on the HSM's and the partition's Capabilities). 

3. ‘Application partition Crypto Officer' [Mandatory], responsible for creating the 

Crypto User role, and for creating and modifying cryptographic objects in the HSM 

partition.  



13 
 

4. ‘Application partition Crypto User', responsible for using cryptographic objects 

(encrypt/decrypt, sign/verify...) in the HSM partition 

 

4.2 Configure Network Settings 

HSM Appliance Network Parameters 

• the static IP address assigned to this device  

• the hostname for the HSM appliance (registered with network DNS) 

• domain name 

• default gateway IP address 

• DNS Name Server IP address 

• search Domain name(s) 

• device subnet mask 

• Ethernet device (use eth0, which is the uppermost network jack on the HSM ppliance 

back panel, closest to the power supply) 

 

4.3 Initialize The HSM 

Safenet Luna Network  HSM is initialized  to configure and  set up the necessary identities, 

ownership and authentication on the HSM. The initialization is mandatory before using the 

HSM.For this,the hsm init command is used. 

For an HSM with Password Authentication, there is need to provide a label, password, and 

cloning domain.  

Type the hsm init command at the prompt, supplying a text label for the new HSM. 

lunash:> hsm -init -label myLuna 

> Please enter a password for the security officer 

> ******** 

Please re-enter password to confirm: 

> ******** 

Please enter the cloning domain to use for initializing this HSM : 

> ******** 

Please re-enter domain to confirm: 

> ******** 



14 
 

CAUTION:  Are you sure you wish to re-initialize this HSM? 

All partitions and data will be erased. 

Type 'proceed' to initialize the HSM, or 'quit' to quit now. 

>proceed 

‘hsm - init’ successful. 

When activity is complete, the system displays a “success” message. 

 

4.4 Set The HSM Policies 

Type the hsm showPolicies command, to display the current policy set for the HSM. 

In order to change HSM policies, the HSM SO must first login.  

lunash:> hsm login  

To modify a policy setting to comply with operational requirements, type:  

lunash:> hsm changePolicy -policy <policyCode> -value <policyValue> 

 

 

 

 

 

 



15 
 

Fig.4.1 HSM Showpolicies 

 

 

Above is the Output of the HSM ShowPolicies command when executed in Lunash. 

  



16 
 

Below is the illustration of HSM ChangePoliciy command when done on lunash. 

 

Fig.4.2 HSM ChangePolicy 

 

 

 

 

 



17 
 

4.5 Create Application Partitions 

Choose Partition Type 

The options are: 

• Legacy-style application partitions are owned and administered by the HSM SO, who 

retains complete control. 

• PPSO-style application partitions each have their own SO, independent of the HSM SO, 

and all control except partition creation and deletion resides with the Per-Partition SO 

 

4.6 Set The Partition Policy Settings 

First, display the policies (default) of the created legacy-style application Partition. In order to 

run the partition showPolicies command, you do not need to be logged into the HSM Partition. 

But to change policy of the Hardware Security Module or any individual Partition, login as 

HSM SO or Partition SO is mandatory. 

To display the current partition policy settings 

1. Open a LunaSH session on the appliance. 

2. Enter the following command to display current partition capability and policy settings. 

Capabilities are factory settings. Policies are the means of modifying the adjustable 

capabilities: 

lunash:> partition showPolicies -partition <partition name> 

Changing the Partition Policy Settings 

After checking  the Policy settings, we can now change the Partition Policy for a given Partition, 

if it is  required. 

To change a partition policy 

1. Open a LunaSH session on the appliance. 

2. Enter the following command to change a Partition Policy: 

lunash:>partition changepolicy -partition <name of HSM Partition> -policy <policy_code> -

value <new_ policy_value> 

 

 

 



18 
 

4.7 Create Network Trust Link Between The Client And The Appliance 

The first step in preparing your clients to use the cryptographic resources provided by the HSM 

appliance is to create a secure network trust link (NTL) between the client and the appliance. 

After you create the NTL link between the client and the appliance, you can configure links to 

individual partitions on the appliance using NTL or Secure Trusted Channel (STC) 

NTL is discussed in detail in  upcoming topics.  

 

 

4.8 Enable The Client To Access A Partition 

After creating the network trust link between the client and the appliance, enable the client to 

access a specific partition on the appliance. Configure the client to access a partition using an 

NTL or STC connection, as follows: 

NTL client-partition links: Assign the partition to a specific client using the LunaSH client 

assignpartition command. This allows the client to create NTL connections to the partition to 

perform cryptographic operations 

STC client-partition links: Enable Secure Trusted Channel (STC) on the client and partition. 

This disables the NTL connection to the partition, and replaces it with an STC connection. 

4.8.1 To Assign A Client To A Partition 

1. Launch LunaSH and log in as the HSM SO. 

2. Enter the following command to assign a client to a partition: 

3. client assignPartition -client <clientname> -partition <partition name>  

4. Enter the following command to verify that the HSM Partition is assigned to the client. 

5. client show -client <clientname> 

 

 

 

 

 

 

 



19 
 

4.9 Configure PPSO Application Partitions 

The configuration tasks needed to be performed depend on whether the partition is password-

authenticated or PED-authenticated as follows: 

Authentication Tasks 

Password  

1. Partition Security Officer is Iniatialized.  

2. Crypto Officer Roles on a PW-Authorized PPSO Partition is initialized. 

3. Finally,the Crypto User Role on a PW- Authorized PPSO Partition is initialized.  

PED  

1. Initialize the Partition SO and Crypto Officer Roles on a PED- Authorized PPSO 

Partition 

2. Initialize the Crypto User Role on a PED- Authorized PPSO Partition 

3. Activate a PED- Authorized PPSO Partition for the Crypto Officer Role or Activate a 

PED- Authorized PPSO Partition for the Crypto User Role. 

 

4.10 Set The Partition Policies For PPSO Partitions 

First, display the policies (default) of the created legacy-style application Partition.There is no 

login required into the HSM to  run the partition showPolicies command.But to change the 

policy of HSM or any single partition ,login is mandatory. 

To display the current partition policy settings 

1. Open a Lunacm session. 

2. Enter the following command to display current partition capability and policy settings. 

Capabilities are factory settings. Policies are the means of modifying the adjustable 

capabilities: 

partition showpolicies -partition <partition_name> 

Having viewed the Policy settings, you can now modify a Partition Policy for a given Partition, 

if required. 

To change a partition policy 

1. Open a Lunacm session. 

2. Enter the following command to change a Partition Policy: 

partition changepolicy -policy <policy_id> -value <policy_value> 



20 
 

4.11 HSM Partitions 

HSM Partitions are independent logical HSMs that reside within the SafeNet HSM inside, or 

attached to, host computer or appliance. Each Partition inside the HSM has its own data, access 

controls, security policies, and separate administration access independent from other HSM 

partitions. Depending on the product, the HSM can contain multiple HSM partitions, and each 

partition can be associated with one or more Clients. Each HSM Partition has a special 

administrative account or role, who manages it. 

 

HSMs with firmware 6.22.0 or newer can have three types of partitions: 

• HSM administrative partition, administered by the HSM SO 

• Legacy-style application partition(s) administered at a high level by the HSM SO, but 

administered and operated at an operational level by the User or Crypto Officer role 

(with optional Crypto User).  

• PPSO application partitions (requires that the PPSO capability is installed) that are 

created by the HSM SO, but are thereafter owned by their own local SOs, and 

administered and operated at an operational level by the Crypto Officer role (with 

optional Crypto User). 

 

We can think of HSM Partitions  as 'safe deposit boxes' which reside within the K6/K7 

Cryptographic Engine's 'vault'. The vault is itself has a high level of security for all the contents 

inside.Morover, each safe deposit box has its own security and access controls.The bank 

managers can  have access to the vault but they still cannot open the individual safe deposit 

boxes because  the safe deposit can only be opened by the owner who has the key. 

A legacy application partition was/is owned by the HSM SO, who assigns a User or Crypto 

Officer to handle day-to-day management of partition contents, creation, use, and destruction 

of keys and objects, and so on. PPSO application partitions (where HSM firmware is version 

6.22.0 or newer, and the PPSO capability is applied) have their own partition SO, distinct from 

the HSM SO. The HSM SO initializes the HSM, sets HSM-wide policies, creates an empty 

application partition, and hands off complete control to whoever is to become the partition SO. 

Thereafter, the HSM has no oversight and can do nothing with the partition except to delete it, 

if that is ever required. The Partition SO then initializes the partition creating a Crypto Officer 



21 
 

Depending upon the configuration, each SafeNet Network HSM can contain a number of HSM 

Partitions. Data can be stored in each partition, the no of objects that can be stored depends 

upon the size of each partition.. You can use the partition re-size command to modify the sizes 

of individual partitions until all memory on the HSM is allotted. So, you can increase the size 

of any partitions by shrinking others. Each partition can be assigned  to a different client.Also 

a single HSM partition can be shared by multiple clients. 

 

Fig.4.3 Partition List 

  



22 
 

4.12 Network Trust Links 

Network Trust Links (NTL) are secure, authenticated network connections between the SafeNet 

Network HSM and Clients. NTLs use two-way digital certificate authentication and TLS data 

encryption to protect sensitive data as it is transmitted between HSM Partitions on the SafeNet 

Network HSM and Clients. NTLs consist of the following parts: 

• Network Trust Link Service (NTLS). The NTL server daemon runs on the SafeNet 

Network HSM appliance and manages the NTL connections to the appliance. NTL uses 

port 1792 on the SafeNet Network HSM appliance. 

• Network Trust Link Agent (NTLA). The NTL agent runs on a SafeNet HSM client 

workstation and manages the NTL connections to the workstation. The NTL agent is 

included in the SafeNet HSM client software. 

• The NTL itself is an encrypted and secure communications channel between the Clients’ 

NTLA and the HSM appliance’s NTLS. 

Network Trust Links use digital certificates to verify the identities of connecting clients. During 

the initial HSM appliance configuration, the appliance administrator generated a unique 

certificate that identifies the HSM appliance. Similarly, each Client has to generate its own 

certificate which identifies it uniquely. Both the Client and the HSM appliance use these 

certificates to verify each other’s identity before an NTL is created between them. 

 

4.12.1 Creating A Network Trust Link 

To create a Network Trust Link  the Client and HSM appliance must first exchange each other 

certificates.So, Once their certificates have been exchanged, the Client registers the SafeNet 

Network HSM’s certificate in a trust list, and the SafeNet Network HSM appliance, in turn, 

registers the Client’s certificate in its list of clients.After  the certificates have been exchanged 

and registered at each end, the NTL is setup and ready to use. 

 

“Ready to use” means that an application at the client host (such as lunacm or your crypto-using 

application) can see the registered SafeNet Network HSM application partition(s) as slot(s) in 

the client slot list, can select such registered partitions by slot number, and can then perform 

cryptographic operations in those slots after providing appropriate partition authentication 

(Crypto Officer, Crypto User). 



23 
 

 

To create a network trust link 

1. Prepare the client workstation: 

a. Install the SafeNet HSM client software. 

b. Install an SSH client to provide secure shell access to the SafeNet appliance for 

certificate exchange and registration. The PuTTY SSH client (putty.exe) is 

included in the SafeNet HSM client for Windows. 

c. Ensure that the client workstation has network access to the SafeNet Network 

HSM appliance. The appliance auto-negotiates network bandwidth up to Gigabit 

Ethernet speeds. 

2. Open a SafeNet HSM client session: 

a. Open a command prompt or terminal window. 

b. Go to the SafeNet HSM client installation directory: 

Windows  C:\Program Files\SafeNet\LunaClient 

Linux/AIX  /usr/safenet/lunaclient/bin 

Solaris/HP-UX /opt/safenet/lunaclient/bin 

3. Use pscp (Windows) or scp (Linux/UNIX) to import the HSM Appliance Server 

Certificate (server.pem) from the SafeNet Network HSM appliance to the SafeNet HSM 

client workstation. You require the SafeNet Network HSM appliance admin password 

to complete this step: 

Windows  

Syntax: pscp [options] <user>@<host>:<source_filename> <target_filename> 

Example: To copy the server certificate from host myHSM to the current (.) directory, 

keeping the same name: 

pscp admin@myHSM:server.pem .  

admin@myHSM’s password:  ***** 

server.pem     | 1 kB |   1.1 kB/s | ETA: 00:00:00 | 100% 

 

 

 

 



24 
 

Linux/UNIX  

Syntax:scp [options] <user>@<host>:<source_filename> <target_filename> 

Example: To copy the server certificate from host IP 192.168.0.123 to the current (.) 

directory, keeping the same name: 

scp admin@192.168.0.123:server.pem .  

admin@192.168.0.123’s password:    

server.pem      | 1 kB |   1.1 kB/s | ETA: 00:00:00 | 100%                      

4. Register the HSM Server Certificate with the client, using the vtl addserver command. 

Examples: 

The following command copies the server.pem file that was downloaded in the previous 

step, from <luna_install_dir> to <luna_install_dir>/cert/server, and registers the 

myLunaSA server certificate (<luna_install_dir>/ cert/server/server.pem), with the 

client: 

bash-2.05# ./vtl addServer –n myLunaSA –c server.pem 

New server myLunaSA successfully added to the server list. 

 As shown, the server certificate from any SafeNet appliance arrives as the default 

named file server.pem. The vtl addserver command places a copy of the imported 

server.pem file in the ./cert/server folder, (re-)naming the new file with the hostname 

(or IP) that you supply with –n in the command. In one example, above, the new copy 

would be 192.168.0.123Cert.pem. In the other example, the new cert file would be 

myLunaSACert.pem. Additionally, the command updates the CAFile.pem at that 

location, adding the new, named SafeNet Network HSM server certificate to the list of 

certs that the client recognizes. 

The downloaded server.pem file, from the earlier step, is now redundant and can be 

deleted, or it will be replaced the next time you download a server certificate from a 

SafeNet appliance. 

 

5. Create a certificate and private key for the client, using the vtl createcert command. See 

VTL in the Utilities Reference Guide for full command syntax: 

vtl createcert –n <Luna_client_hostname_or_IP> 



25 
 

Example: The following command creates a certificate and private key for the client 

named myLunaClient: 

bash-2.05# ./vtl createCert –n myClient1 

Private Key created and written to:/usr/safenet/lunaclient/bin/cert/client/ `

 myClientKey.pem 

Certificate created and written to: /usr/safenet/lunaclient/bin/cert/client/myClient.pem 

  

6. Export the client certificate to the HSM appliance, using pscp (Windows) or scp 

(Linux/UNIX). You require the SafeNet Network HSM appliance admin password to 

complete this step: 

Windows  

Syntax : pscp [options] <source_filename> <user>@<host> :[<target_filename>] 

Example:To copy the client certificate (myLunaClient.pem) to the myLunaSA 

appliance, keeping the same name: 

pscp myLunaClient.pem admin@myLunaSA:  

admin@myLunaSA’s password : ********   

myLunaClient.pem   | 1 kB |   1.1 kB/s | ETA : 00 :00 :00 | 100% 

 

Linux/UNIX  

Syntax : scp [options] <source_filename> <user>@<host> :[<target_filename>] 

Example: To copy the client certificate (myLunaClient.pem) to the SafeNet Network 

HSM appliance with IP 192.168.0.123, keeping the same name: 

scp myLunaClient.pem admin@192.168.0.123:  

admin@192.168.0.123’s password: ********   

myLunaClient.pem   | 1 kB |   1.1 kB/s | ETA: 00:00:00 | 100% 



26 
 

 

Fig. 4.4 Server Add and Client Certificate Create 

 

7. Register the client certificate with the HSM appliance using the LunaSH client register 

command. You need an admin or operator-level account on the SafeNet Network HSM 

appliance to complete this step. 

a. Use an SSH client to connect to the SafeNet Network HSM appliance and login 

using an admin or operator-level account. 

b. Use the LunaSH client register command to register the client by IP address 

client register -client <client_name> -ip <client_IP_address>  

The <client_name>, above can be any string that allows you to easily identify 

this client.  

8. Restart the Network Trust Link service. After registering a client, with a hostname 

certificate, or after registering a client with an IP certificate and then mapping the client 

hostname to its IP, stop and start the NTL service, to ensure that the new client is 

included. 

lunash:>service restart ntls 



27 
 

 

Fig. 4.5 Client Registeration 

 

9.TCPKeepAlive is a TCP stack option, available at the LunaClient, and at the SafeNet 

Network HSM appliance. For SafeNet purposes, it is controlled via an entry in the 

Chrystoki.conf /crystoki.ini file on the LunaClient, and in an equivalent file on SafeNet 

Network HSM. For SafeNet HSM 6.1 and newer, a fresh client software installation 

includes an entry “TCPKeepAlive=1” in the “LunaSA Client” section of the configuration 

file Chrystoki.conf (Linux/UNIX) or crystoki.ini (Windows). Config files and certificates 

are normally preserved through an uninstall, unless you explicitly delete them.  

As such, if you update (install) LunaClient software where you previously had an older 

LunaClient that did not have a TCPKeepAlive entry, one is added and set to “1” 

(enabled), by default. In the case of update, if TCPKeepAlive is already defined in the 

configuration file, then your existing setting (enabled or disabled) is preserved.  



28 
 

On the SafeNet Network HSM appliance, where you do not have direct access to the 

file system, the TCPKeepAlive setting is controlled by the lunash:> ntls TCPKeepAlive 

set command. The settings at the appliance and the client are independent. This allows 

a level of assurance, in case (for example) a firewall setting blocks in one direction.   

9. Register the partition with client. 

 

NTLS is created successfully. 

 

Fig. 4.6 Lunacm 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

4.13 Secure Trusted Channel Link 

If a higher level of security is required for network links than is offered by NTL, such as in 

cloud environments, or in situations where message integrity is paramount, Secure Trusted 

Channel (STC) is used to provide very secure client-partition links. STC offers the following 

features to ensure the security and integrity of your client-partition communications: 

 

• Privacy of all communicated data through the use of symmetric encryption, so that only 

the end-points can read any sensitive data. 

• Integrity of the communicated data through the use of message authentication codes, so 

that not eavesdropper could add, delete, modify or replay any command or response. 

• Bi-directional authentication of both the HSM and the end-point, so that only authorized 

entities can establish an STC connection, and there can be no man-in-the-middle attack. 

 

STC and NTL can co-exist on the same SafeNet Network HSM appliance, allowing you to 

configure some partitions to use STC, while other partitions use NTL. The client can also 

support both STC and NTLS links. However, all links from a specific client to a specific 

SafeNet Network HSM appliance can be either NTL or STC, but not both. 

 

Secure Trusted Channel protects HSM and client communications using endpoint and message 

authentication, verification, and encryption. With the help of Secure Trusted Channel, HSM 

and client message integrity is ensured even if these  messages are sent over public or other 

unsecured networks. Secure Trusted Channel links can be used to confidently deploy HSM 

services in cloud environments or in situations where message integrity is paramount. 

Secure tunneling and messaging 

STC connections are established in two distinct phases: 

1. Secure tunnel creation: To ensure client integrity, STC performs bi-directional 

HSM/client authentication, and creates unique session keys for each STC connection, 

as described in Secure Tunnel Creation. 

2. Secure message transport: To ensure message integrity, STC uses symmetric data 

encryption and message integrity verification, ensuring that any attempt to alter, insert, 



30 
 

or drop messages is detected by both end-points, resulting in immediate termination of 

the connection, as described in Secure Message Transport. 

 

All messages protected outside the HSM 

When STC is fully enabled on an HSM, all sensitive communications with the HSM are 

protected all the way into the HSM. That is, any messages exchanged between a client 

application and the HSM use STC encryption, authentication, and verification from the client 

interface to the HSM interface, regardless of whether those links traverse a network, or are 

internal to an HSM appliance (LunaSH to HSM) or SafeNet HSM client workstation (SafeNet 

Client to HSM). In addition, all STC links that use a network connection also use the same 

network protection as NTLS links, that is, they are wrapped using SSL. 

 

To use STC, you must enable the following policies: 

• HSM policy 39: Allow Secure Trusted Channel. This policy enables STC on the HSM, 

so that you can configure the HSM such that some partitions to use STC, while other 

partitions use NTLS. This policy can only be set by the HSM SO. 

• Partition policy 37: Force Secure Trusted Channel. This policy forces the partition to 

use STC, and requires that HSM policy 39 is also set. For legacy partitions, this policy 

can be only be set by the HSM SO. For partitions with SO, this policy can only be set 

by the partition SO. 

The procedure for creating an STC link between a client and a partition differs depending on 

whether the partition is a legacy partition or a partition with SO. 

 

4.13.1 Creating An STC Link To A Legacy Partition 

The procedure for creating an STC link to a legacy partition consists of the following major 

steps: 

1. Enable the STC policy on the HSM and partition. 

2. Export the partition identity public key to a file on the appliance. 

3. Create the client token and identity. 

4. Exchange the partition and client identity public keys. 

5. Register the client identity public key to the partition. 



31 
 

6. Register the partition identity public key with the client. 

7. Enable and verify the STC link. 

 

Step 1: Enable the STC policy on the HSM and partition 

 

1. Launch LunaSH and log in as the HSM SO. 

2. Enter the following command to ensure that policy 39: Allow Secure Trusted Channel 

is enabled on the HSM: 

hsm showpolicies 

If it is not enabled, enter the following command to enable the policy: 

hsm changePolicy -policy 39 -value 1 

3. Enable the STC admin channel to provide STC on all links (NTLS and STC) on the 

portion of the link from the appliance to the HSM 

4. Enter the following command to ensure that policy 37: Force Secure Trusted Channel is 

enabled on the partition: 

partition showpolicies -partition <partition_name> 

If it is not enabled, enter the following command to enable the policy: 

partition changepolicy -partition <partition_name> -policy 37 -value 1 

 

Step 2: Export the partition identity public key to a file on the appliance 

This step is performed by the HSM SO. Exporting the partition identity public key creates the 

partition identity if it does not already exist. The public key is exported to a file named  

 <partition_serial_number>.pid on the appliance. 

Enter the following command to export the partition's public key to a file: 

stc partition export -partition <partition_name> 

 

 

Fig. 4.7 Partition Id export 

 



32 
 

 

Step 3: Create the client token and identity 

This step is performed by the root user on the SafeNet HSM client workstation, using Lunacm. 

1. Open a SafeNet HSM client session: 

a. Open a command prompt or terminal window. 

b. Launch lunacm: 

Windows  C:\Program Files\SafeNet\LunaClient\bin\lunacm 

Linux/AIX  /usr/safenet/lunaclient/data/bin/lunacm 

Solaris/HP-UX /opt/safenet/lunaclient/data/bin/lunacm 

2. Initialize the STC client software token, or insert the STC client hardware token you 

have prepared for this client: 

stc tokeninit -label <token_label> 

3. Enter the following command to create a client identity on the token. The STC client 

identity public key is automatically exported to the 

<luna_client_root_dir>/data/client_identities directory: 

stc identitycreate -label <client_identity> 

4. Exit LunaCM. 



33 
 

 

Fig. 4.8 Token and Id create 

 

Step 4: Exchange the partition and client identity public keys 

The STC identity public keys are exchanged as follows: 

• the client identity public key is copied from the SafeNet HSM client 

data/client_identities directory to the SafeNet Network HSM appliance. 

• the partition identity public key is copied from the appliance to the 

data/partition_identities directory on the SafeNet HSM client workstation. 

Copying the public keys to or from the SafeNet Network HSM appliance is performed by the 

SafeNet Network HSM appliance administrator, using scp (UNIX/Linux) or pscp (Windows). 

Copying the public keys to or from the SafeNet HSM client workstation is performed by the 

root user on the SafeNet HSM client workstation. 

 



34 
 

1. Log in to the SafeNet HSM client workstation as the root user. 

2. Go to the SafeNet HSM client data/client_identities directory: 

Windows  cd C:\Program Files\SafeNet\LunaClient\data\client_identities 

Linux/AIX  cd /usr/safenet/lunaclient/data/client_identities 

Solaris/HP-UX cd /opt/safenet/lunaclient/data/client_identities 

 

3. Export the client identity public key to the HSM appliance, using pscp (Windows) or 

scp (Linux/UNIX). You require the SafeNet Network HSM appliance admin password 

to complete this step: 

Windows  

Syntax: pscp [options] <source_filename> <user>@<host>:[<target_filename>] 

Linux/UNIX  

Syntax: scp [options] <source_filename> <user>@<host>:[<target_filename>] 

4. Go to the SafeNet HSM client data/partition_identities directory: 

Windows  cd/C:\ProgramFiles\SafeNet\LunaClient\data\ partition_identities 

Linux/AIX  cd /usr/safenet/lunaclient/data/partition_identities 

Solaris/HP-UX cd /opt/safenet/lunaclient/data/partition_identities 

5. Use pscp (Windows) or scp (Linux/UNIX) to import the partition public key from the 

SafeNet Network HSM appliance to the data/partition_identities directory on the 

SafeNet HSM client workstation. You require the SafeNet Network HSM appliance 

admin password to complete this step: 

Windows  

Syntax: pscp [options] <user>@<host>:<source_filename> <target_filename> 

Linux/UNIX  

Syntax:scp [options] <user>@<host>:<source_filename> <target_filename> 

 

Step 5: Register the client identity public key to the partition 

Each client identity registered to a partition uses 2332 bytes of storage on the partition. Before 

registering a client identity to a partition, ensure that there is adequate free space. 

This step is performed by the HSM SO. You can register multiple clients to a partition. 

 



35 
 

1. Launch LunaSH and log in as the HSM SO. 

2. Enter the following command to register the client identity public key to the partition: 

stc client register -partition <partition_name> -label <client_label> -file 

<client_public_key> 

 

 

 

Step 6: Register the partition identity public key to the client 

This step is performed by the root user on the SafeNet HSM client workstation. 

1. Log in to the SafeNet HSM client workstation as the root user. 

2. Open a SafeNet HSM client session: 

a. Open a command prompt or terminal window. 

b. Launch lunacm: 

Windows  C:\Program Files\SafeNet\LunaClient\bin\lunacm 

Linux/AIX  /usr/safenet/lunaclient/data/bin/lunacm 

Solaris/HP-UX /opt/safenet/lunaclient/data/bin/lunacm 

3.Enter the following command to register the partition identity public key to the client token: 

stc partitionregister -file <partition_identity> [-label <partition_label>] 

 

Step 7: Enable and verify the STC link 

When you enable STC on the client, you must specify the SafeNet Network HSM appliance 

that hosts the partition you want to link to. This forces the client to use STC for all links to the 

specified SafeNet Network HSM appliance. Any existing NTLS links to the specified SafeNet 

Network HSM appliance will be terminated. 

This step is performed by the root user on the SafeNet HSM client workstation. 

1.Log in to the SafeNet HSM client workstation as the root user. 

 

2.Open a SafeNet HSM client session: 

a.Open a command prompt or terminal window. 

b.Launch LunaCM: 

Windows  C:\Program Files\SafeNet\LunaClient\bin\lunacm 



36 
 

Linux/AIX  /usr/safenet/lunaclient/data/bin/lunacm 

Solaris/HP-UX /opt/safenet/lunaclient/data/bin/lunacm 

 

3.Enter the following command to determine the server ID of the SafeNet Network HSM 

appliance that hosts the partition: 

lunacm:> clientconfig listservers 

 

4.Enter the following command to enable the STC link: 

stc enable -id <server_id> 

At this point, LunaCM restarts. If successful, the partition is listed in the list of available HSMs. 

You can use the stc identityshow command to list the partitions registered to the client token. 

 

Fig. 4.9 STC Enable 



37 
 

5.Enter the following command to verify the link. This command displays the status of the STC 

link for the current slot: 

lunacm:> stc status 

 

Fig. 4.10 STC Status 

 

4.13.2 Creating An STC Link To A Partition With So 

Creating an STC link to a partition with SO is performed entirely by the root user on the SafeNet 

HSM client workstation, using lunacm. The procedure consists of the following major steps: 

1.Ensure that you have satisfied the prerequisite conditions. 

2.Create the client token and identity. 

3.Register the partition identity public key with the client. 

4.Enable and verify the STC link. 

5.Initialize the partition. 

 

STC allows you to claim the partition as the holder of the partition public key, and creates a 

one-time temporary STC link to allow you to register the client to the partition. You must 

complete all of the steps in this procedure in a single lunacm session. If you do not, the partition 

is locked, and will not be accessible. The only workaround is for the HSM SO to delete the 



38 
 

partition, create a new partition, and provide you with new partition public key so that you can 

try again. 

 

Step 1: Ensure that you have satisfied the prerequisite conditions 

Before attempting to create an STC link to a partition with SO, ensure that you have satisfied 

the following prerequisites: 

 

1.You have the STC partition identity public key for the partition.  

2.Confirm with the HSM SO that policy 39: Allow Secure Trusted Channel is enabled on the 

HSM. 

Note:  This procedure automatically registers the client identity to the partition. Each client 

identity registered to a partition uses 2332 bytes of storage on the partition. Before enabling the 

STC link, ensure that there is adequate free space on the partition. 

 

Step 2: Create the client token and identity 

1.Open a SafeNet HSM client session: 

a. Open a command prompt or terminal window. 

b. Launch lunacm: 

Windows  C:\Program Files\SafeNet\LunaClient\bin\lunacm 

Linux/AIX  /usr/safenet/lunaclient/data/bin/lunacm 

Solaris/HP-UX /opt/safenet/lunaclient/data/bin/lunacm 

 

2. Initialize the STC client software token, or insert the STC client hardware token (SafeNet 

eToken 7300) you have prepared for this client: 

If you are using an STC client software token, enter the following command to initialize the 

STC client token. 

stc tokeninit -label <token_label> 

 

 



39 
 

3.Enter the following command to create a client identity on the token. The STC client identity 

public key is automatically exported to the <luna_client_root_dir>/data/client_identities 

directory: 

stc identitycreate -label <client_identity> 

 

 

Step 3: Register the partition identity public key to the client 

1.Enter the following command to register the partition identity public key to the client token: 

stc partitionregister -file <partition_identity> [-label <partition_label>] 

2.If you were provided with the partition identity public key hash, enter the following command 

to verify that the hashes match: 

stc identityshow 

 

Step 4: Enable and verify the STC link 

 

1.Enter the following command to determine the server ID of the SafeNet Network HSM 

appliance that hosts the partition: 

lunacm:> clientconfig listservers 

2.Enter the following command to enable the STC link: 

stc enable -id <server_id> 

 

3.Enter the following command to set the current slot to the slot containing the new partition: 

 

slot set -slot <slot> 

4.Enter the following command to verify the link: 

lunacm:> stc status 

 

 

 

 

 



40 
 

Step 5: Initialize the partition 

When you initialize the partition, the following actions are performed automatically: 

•the client identity public key is registered to the partition. 

•partition policy 37: Force Secure Trusted Channel is enabled on the partition. 

1.Set the current slot to the slot containing the uninitialized (unlabelled) partition. 

2.Enter the following command to initialize the partition. On a password-authenticated HSM, 

you are prompted to specify the partition SO password and domain you want to use for the 

partition. On a PED-authenticated HSM, you are prompted to attend to the PED to imprint (or 

provide) the partition SO PED key and domain PED key: 

partition initialize -label <partition_label> 

Enter password for Partition SO: ******** 

Re-enter password for Partition SO: ******** 

Enter the domain name: ******* 

Re-enter the domain name: ******* 

 

lunacm:> slot list 

  

You can now create the Crypto Officer and Crypto User roles on the partition. 



41 
 

 

Fig. 4.11 Partition and Roles Init 

 

STC link is established. 

 



42 
 

CHAPTER – 5 

MY LEARNING AND ROLE 

5.1 Basics Of Cryptography 

Cryptography uses mathematical algorithms and processes to convert intelligible plaintext into 

unintelligible cipher text, and vice versa.  

Applications of cryptography include:  

• Data encryption for confidentiality 

• Digital signatures to provide non-repudiation (account- ability) and verify data integrity 

• Certificates for authenticating people, applications and services, and for access control 

(authorization)  

There are two main kinds of cryptography: shared secret and public key. In shared secret 

cryptography, sender and receiver use the same key for both encryption and decryption. Thus, 

many clients need to have the same key. Since encryption is presumably not available prior to 

key distribution, network- based key distribution is not a secure option. Other options, such as 

a secure courier, are expensive and slow. Public key cryptography, in contrast, uses pairs of 

keys: a public key that is widely available, and a different private key known only to the person, 

application or service that owns the keys. The public key can be transmitted unencrypted over 

insecure lines, since it is not a secret, while the private key must be kept secret. Thus, key 

distribution is greatly simplified using public key cryptography. The sender’s private key may 

be used to produce a digital signature, an encrypted block of data which, when decrypted by the 

recipient, verifies the sender’s identity (non- repudiation) as well as the integrity of the data. 

 

5.2 PKI Components And Functions  

There are three core functional components to a PKI(Public Key Infrastructure):  

• The Certificate Authority (CA), an entity which issues certificates. One or more in-house 

servers, or a trusted third party such as VeriSign or GTE, can provide the CA function.  

• The repository for keys, certificates and Certificate Revocation Lists (CRLs) is usually based 

on an Light- weight Directory Access Protocol (LDAP)-enabled directory service.  

• A management function, typically implemented via a management console. 



43 
 

 

5.3 PKI Functions  

The main functions of PKI are issuing certificates,storing them,and retrieving them.It ualso 

helps in  revoking certificates, creating and publishing CRLs and lifecycle management of the 

key. Enhanced or emerging functions include time-stamping and policy-based certificate 

validation.  

 

Issuing certificates  

The CA signs the certificate, thereby authenticating the identity of the requestor, in the same 

way that a notary public vouches for the signature and identity of an individual. In addition, the 

CA “stamps” the certificate with an expiration date. The CA may return the certificate to the 

requesting system and/or post it in a repository. 

 

Revoking certificates  

A certificate may become invalid before the normal expiration of its validity period. For 

instance, an employee may quit or change names, or a private key may be compromised. Under 

such circumstances, the CA revokes the certificate by including the certificate’s serial number 

on the next scheduled CRL.  

 

Storing and retrieving certificates and CRLs  

Directory service is the most common way for storing and retrieving the certificates and CRLs, 

with access via LDAP. Other options  which include X.500 compatible directories, HTTP, FTP, 

and e-mail providing trust. Each public key user must have at least one public key from a CA 

that the user trusts implicitly. Organizations can establish and maintain trust within a single 

security management domain through a thorough audit of the CA’s policies and procedures, 

repeated at regular intervals. 

 

 

 

 



44 
 

5.4 Manual Testing 

 

I have done manual testing of SafeNet Luna Clients with SafeNet Luna HSM. I have performed 

two types of testing: 

1. Sanity testing 

2. Regression testing 

 

Sanity testing is a software testing technique performed by the test team for some basic tests. 

This is usually done when there is some bug fixed and new build is released to check that its 

functionality is working as expected.Regression testing can also be done but it would take a lot 

of time to run full regression testingt.So,sanity testing usually saves our time and effort. 

 

Regression testing could be a form of software package testing that verifies that software 

package that was antecedently developed and tested still performs properly when it had 

been modified or interfaced with differentsoftware package. Changes might embrace software 

package enhancements, patches, configuration changes, etc. throughout regression testing 

new software package bugs or regressions could also be uncovered.  

Sometimes a software package modification impact analysis is performed to see what areas can 

be suffering from the planned changes. These areas might embrace purposeful and non-

functional areas of the system. the aim of regression testing is to confirm that changes like those 

mentioned on top of haven't introduced new faults. one amongst the mostreasons for regression 

testing is to see whether or not a modification in one a part of the software 

package affects different components of the software package. Common strategies of 

regression testing embrace rerunning antecedently completed tests and checking whether or 

not program behavior has modified and whether or notantecedently fastened faults have re-

emerged. Regression testing may be performed to check a 

system expeditiouslyby consistently choosing the acceptable minimum set of tests required to 

adequately cowl a specific modification. 

 

 



45 
 

5.5 My Role 

 

Role  :  Intern 

Department :  HSM General Purpose Integration 

 

5.5.1 Assignments Carried Out 

 

Automation of Network trust link on Linux Platform 

Integration of SafeNet Luna HSM with Microsoft IIS Web Server 

Integration of IBM HTTP SERVER with SafeNet Luna HSM 

Integration of OCSP (Online Certificate Status Protocol) with SafeNet Luna HSM 

Integration of SafeNet Luna HSM with JBOSS 

Integration of SafeNet Luna HSM with Oracle TDE 

 

5.5.2 Experience 

It was a good opportunity to put in practice and develop organizational skills and learn concepts 

in digital security required in today’s world. I did hands-on project with domain Cryptography 

operations and Integration of HSM with third party. So, overall It was a great opportunity for 

me for developing my inter-personal skills  and making contacts which may prove of value in 

the future and to work with a hardworking team of  HSM GP Integration . 

 



46 
 

CHAPTER – 6 

CONCLUSION 

The role assigned to me in the organization was carried out to my satisfaction as well as my 

team’s expectations. I have added significant knowledge to myself after this industrial training. 

This has provided me an opportunity to do self-introspection of what value we have added to 

ourselves. 

 

I have gathered the domain experience in the field of Digital Security, Hardware security 

modules, Cryptographic operations and concepts related. The training proved to be interesting 

with lots of things to be learned. It helped to acquire knowledge on punctuality, regularity and 

working environments in IT industries. 

 



47 
 

REFERENCES 

 

1. SafeNet Network HSM documentation 

2. Understanding Public key infrastructure (PKI) 

3. ftp://ftp.rsa.com/pub/pdfs/understanding_pki.pdf 

4. httр://www.sаfеnеt-іnс.сom/аbout-sаfеnеt/ 

5. httр://ryаnstutorіаls.nеt/lіnuxtutorіаl/ 



48 
 

APPENDIX 

 

Assignment name  :  Automation of Network trust link on Linux Platform 

Language used :  Python 

 

############### 

# Name: ntls.py 

# Description: Written in python using Python Modules: 

#  * OS 

#  * PEXPECT 

# 

# 

# Imports: ntls_details.py file  

#  * It contains all the details of Luna SA and Luna Client Machine 

# 

# 

# This scripts automates the NTLS connection:  

# 

#  

 

############ 

# This section imports the required libraries. 

 

import os              #This module provides a portable way of using operating 

system dependent functionality. 

import pexpect        #This module create threads by making child 

applications, controls them and respond to expected patterns in their output. 

import ntls_details    #This imports the another .py file which contains all the 

details of Luna SA and Luna Client Machine 

 

 

############# 

# FUNCTION 

# Name:   fetch_details() 

# Description: This function involves taking input from user about credentials of Luna SA and 

validating the ip address user entered for Luna SA. 

 

 

def fetch_details(): 

 '''This function involves fetching input from external py file about credentials of Luna 

SA and validating the ip addresses of the same. 

  



49 
 

 Then this function will call client_processes function to execute commands at client 

side''' 

  

 # Declaring variables as global to be used in whole script 

  

 global client_ip_address,luna_sa_ip,user_name,password,partition,hsm_password 

  

 # client_ip_address is the IP address of the Luna Client machine 

 # luna_sa_ip is the IP address of the Luna SA 

 # user_name is the name of the account used for logging in the Luna SA 

 # password is the confidential password for logging in Luna SA 

 # hsm_passowrd is the confidential password of the HSM SO of Luna SA 

  

 luna_sa_ip=ntls_details.luna_sa_ip 

 user_name=ntls_details.user_name 

 password=ntls_details.password 

 partition=ntls_details.partition 

 hsm_password=ntls_details.password 

 client_ip_address=ntls_details.client_ip_address 

 

 #Checking IP address validity for the ip address user entered for Luna SA  

 ip_check(luna_sa_ip) 

 ip_check(client_ip_address) 

 

  

######### 

# FUNCTION 

# Name :  ip_check(ip_address) 

# Description : This function splits the ip address to check its length and validate it. 

# Input: Takes ip adresss as parameter 

# Output: If the ip address is invalid,it terminates the execution of the script 

 

def ip_check(ip_address): 

 '''An Internet Protocol address (IP address) is a numerical label assigned to each device 

for luna_sa_ip or network interface identification and location addressing. 

  

 IPv4 addresses are 32 bit number represented in dot-decimal notation, which consists 

of four decimal numbers, each ranging from 0 to 255, separated by dots''' 

  

 parts_of_ip=ip_address.split(".")      

#Splitting the ip address by decimal dots 

  

 if len(parts_of_ip)<4 or len(parts_of_ip) > 4:     

#Length of parts of ip splitted must be equal to 4 always 

  print '\nInvalid IP address that you are trying to connect. Try again with correct 

input. Error in:',ip_address 



50 
 

  os._exit(0) 

 else: 

  for i in range(0,3):        

#To fetch the parts of ip from index 0 to 3 

   ip_part=int(parts_of_ip[i]) 

   if ip_part < 0 or ip_part >= 255: 

    print '\nInvalid IP address that you are trying to connect. Try 

again with correct input',ip_address 

    os._exit(0)     

#Terminates the execution of script 

 

 

######### 

# FUNCTION 

# Name :  client_processes() 

# Description : This function executes the commands on client machine. 

 

def client_processes(): 

  '''This functions executes all the commands on client machine. 

 

 It also executes command of vtl utility such as registering the server,creating vertificate 

at client. 

 It also uses scp command to transfer certificates between Luna SA and client machine.''' 

  

 try: 

  os.chdir("/usr/safenet/lunaclient/bin")             

#Changing the working directory 

 except OSError: 

  print 'Check that Luna Client is installed on the system.' #If path not 

found,OSError exception is thrown. 

  os._exit(0)           

#terminates the execution 

  

 #Checking if server.pem already exists in the directory. 

 # If it does, it will delete the older version and replace it with new one. 

 status=os.popen("ls").read() 

 if 'server.pem' in status: 

  print "\nPrevious version of server.pem found.\nDeleting..." 

  os.system("rm server.pem -f")               

 # remove any older version of server.pem 

 

 #Copying server.pem to the Luna SA machine 

  

 #var_command is variable used to store the command to be next executed on server 

 var_command ="scp {0}@{1}:server.pem .".format(user_name,luna_sa_ip) 

 child=pexpect.spawn(var_command) 



51 
 

  

 # flag is the variable used to check the output status of the command 

 # if output of pexpect.spawn is ".*password.*" then flag will get 0 as output 

 # if EOF is encountered instead of "password" then the value of flag will be 1 

 flag=child.expect(['.*password.*',pexpect.EOF]) 

 if flag==0: 

  child.sendline(password) 

  child.expect(pexpect.EOF) 

  print "Copying server.pem successful." 

 elif flag==1: 

  print 'Error occured while transfering server certificate to luna_sa_ip machine.' 

  os._exit(0) #terminates the execution 

  

 

 #Check if server already registered. 

 status=os.popen("./vtl listservers").read() 

 if luna_sa_ip in status: 

  print "Server already registered.Deleting the old entry..." 

  var_command="./vtl deleteserver -n {0} -f".format(luna_sa_ip)    

#VTL utility command 

  os.system(var_command) 

 

 

 #Adding server to client 

 var_command="./vtl addserver -n {0} -c server.pem".format(luna_sa_ip)  

#VTL utility command 

 status=os.system(var_command) 

 if status!=0: 

  print "Error occured while registering server with the client." 

  os._exit(0)        

#terminates the execution 

 

 var_command="./vtl createcert -n {0}".format(client_ip_address)   

#VTL utility command 

 status=os.system(var_command) 

 if status!=0: 

  print "Error occured while creating client certificate." 

  os._exit(0)        

#terminates the execution 

 

 

 #Transfering certficates to server 

 extension='.pem' 

 file_name=client_ip_address+extension     #Certificate 

generated in form of .pem file 

  



52 
 

 var_command ="scp /usr/safenet/lunaclient/cert/client/%s %s@%s:" 

%(file_name,user_name,luna_sa_ip)  

#SCP copies the file between the two machines 

 child=pexpect.spawn(var_command) 

 flag=child.expect(['.*password.*',pexpect.EOF]) 

 if flag==0: 

  child.sendline(password) 

  child.expect(pexpect.EOF) 

  print "Client certificate transfered to server." 

 elif flag==1: 

  print "EOF exception caught. Try again." 

  os._exit(0)        

#terminates the execution 

 else:  

  print "Timeout occured.Try again." 

  os._exit(0)        

#terminates the execution 

 child.close() 

  

 

 

#################### 

# FUNCTION 

# Name :  luna_ssh_processes() 

# Description : This function makes SSH with Luna SA and executes commands there. 

# Process: SSH (Secure SHell) is a network protocol which provides a replacement for 

insecure remote login and command execution facilities 

 

def luna_ssh_processes(): 

 global child 

 #var_command is variable used to store the command to be next executed on server 

 # SSH connection is created to the remote Luna SA machine to execute commands 

 var_command="ssh {0}@{1}".format(user_name,luna_sa_ip)  

 #SSH command : ssh user_name@ip_address 

 child=pexpect.spawn(var_command) 

 # flag is the variable used to check the output status of the command 

 flag=child.expect(['.*password.*',pexpect.TIMEOUT]) 

 if flag==0: 

  child.sendline(password) 

  flag=child.expect('.*lunash.*') 

 if flag==0: 

  print "SSH session created." 

  child.sendline('hsm login') 

  flag=child.expect('.*password.*') 

 if flag==0: 

    



53 
 

   child.sendline(hsm_password) 

   flag=child.expect(['.*successful.*',pexpect.TIMEOUT]) 

 if flag==0: 

   print "Login successful as HSM Administrator." 

  

  

      

######### 

# FUNCTION 

# Name :  client_register_precheck() 

# Description : This function checks if client is already registered with Luna SA.  

 

def client_register_precheck(): 

 '''It checks if client is already registered with Luna SA. 

 

 If the entry exists, it deletes the old entry.''' 

  

 #Checking if client is already registered with Luna SA 

 var_command='client list\n' 

 

 #Creating a file to record the output of the shell in file 

 child.logfile=open("/home/admin/Logs/client.txt","w") 

 child.sendline(var_command) 

 flag=child.expect(".*lunash.*") 

 if flag==0: 

  if client_ip_address in open('/home/admin/Logs/client.txt').read(): 

   print "Client is already registered.Deleting the old entry..." 

   var_command="client delete  -c %s -f" %(client_ip_address) 

   child.sendline(var_command) 

   flag=child.expect(".*success.*") 

   if flag==0:    

    client_register() 

   else: 

    print "Error occured while deleting the old entry. Try again." 

    os._exit(0) 

  else: 

   client_register() 

  

######### 

# FUNCTION 

# Name :  client_register() 

# Description : This function registers the client on Luna SA. 

 

def client_register(): 

  

 #Registering client on server 



54 
 

 if child.expect(".*lunash.*")==0: 

  var_command="client register -c %s -ip %s -f" 

%(client_ip_address,client_ip_address)     

#Client register on lunash 

  child.sendline(var_command) 

  flag=child.expect(['.*lunash.*',pexpect.EOF,pexpect.TIMEOUT]) 

  if flag==0: 

   var_command="client assignpartition -c {0} -p 

{1}".format(client_ip_address,partition)  #Assigning partition to Client registered 

   child.sendline(var_command) 

   flag=child.expect(['.*success.*',pexpect.TIMEOUT]) 

   if flag==0: 

    print 'Partition assigned to client\n\n' 

    print '-------NTLS Created.---------' 

   else: 

    print 'Partition not assigned.Error occured.'  

    os._exit(0)       

  #terminates the execution 

  else: 

   print "client registration failed" 

   os._exit(0)        

  #terminates the execution 

 

 

############## 

# FUNCTION 

# MAIN() 

  

def main(): 

 '''This script automates the NTLS coonection between Client and Luna SA.''' 

 

 #FUNCTION CALLS 

  

 #Calling fetch_details function to fetch the details of the NTLS connection to be 

established. 

 fetch_details()  

  

 #Calling client_processes to execute commands on Luna Client machine 

 client_processes() 

  

 #Calling luna_ssh_processes function to execute commands at Luna SA 

 luna_ssh_processes() 

  

 #Checking if the client is already registered on Luna SA or not 

 client_register_precheck() 

  



55 
 

if __name__=="__main__": 

 main() 
 


