Student-Teacher Interaction System

Project report submitted in partial fulfillment of the requirement
for the degree of Bachelor of Technology

in
Computer Science and Engineering/Information Technology
By
Ishaan Vikram (141228)
Parashiv Sihaniya (141233)
Under the supervision of

Dr. Rajinder Sandhu

To

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
Solan-173234, Himachal Pradesh

CANDIDATES’ DECLARATION

We hereby declare that the work presented in this report entitled “Student-Teacher
Interaction System” in partial fulfillment of the requirements for the award of the degree
of Bachelor of Technology in Computer Science and Engineering submitted in the
department of Computer Science and Engineering, Jaypee University of Information
Technology, Waknaghat, is an authentic record of our own work carried out over a period
from January 2018 to May 2018 under the supervision of Dr. Rajinder Sandhu, Assistant
Professor, Department of Computer Science and Engineering.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Ishaan Vikram (141228)
Parashiv Sihaniya (141233)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Rajinder Sandhu
Assistant Professor
Department of Computer Science and Engineering

Dated:

ACKNOWLEDGEMENT

We are grateful and indebted to Dr. Rajinder Sandhu, Assistant Professor, Department of
Computer Science and Engineering, and Mr. Puneet Kumar Jain, for their help and advice

in the completion of this project report.

We also express our deep sense of gratitude and appreciation to our guide for his constant

supervision, inspiration and encouragement right from the beginning of this

project.

We also want to thank our parents and friends for their immense support and confidence
upon us. We deem it a pleasant duty to place on record our sincere and heartfelt gratitude
to our project guide for his long sightedness, wisdom and co-operation which helped us in
tackling crucial aspects of the project in a very logical and practical way.

Ishaan Vikram (141228)
Parashiv Sihaniya (141233)

TABLE OF CONTENTS

Candidates’ DeClaration...........ccoiiviiieiiiiie e e e e et e e e et e e e et e e e s stb e e e e s sbreeeeesabaeeesabaeeeeanns i
ACKNOWIBAGEMENT ...t re e e e e e sbeebeaneenres ii
Table OF CONLENES ...oviiiiicic bbbt i
LIST OF FIQUIES ...ttt ettt be et e re e be et enneenns \Y
LISE OF TADIES ...t sb e bbbt e %
ADSTTACT ...ttt bbb vi
IO (T (1 o4 A o o S STRUS 1
1.2 Problem STateMENT.........oiiie ettt anes 2
IR I @ o =T ot 1)Y= SRS 2
1.4 MELNOUOIOGY ...ttt 3
1.5 OFQANTZALION.......cuvieieeiei ittt bbbttt e bbbt ne e 4
N =) (0] (S TN Y OSSPSR 5
2.1 RESEAICH PAPEIS ...ttt bbb 5
2.1.1 The Development and Design of the Student Management System Based on the
NEtWOIK ENVIFONMENToviiiiiiiiieiee ettt 5
2.1.2 Android-based Attendance Management SYSEemMcccceverereneieneneseseeeeee e, 5
2.1.3 The Designment of Student Information Management System Based on B/S 6
2.1.4 Research and Implementation of Web Services in Android Network Communication
.. 6
2.2 ANArOid ATCNITECTUIEovveeieiecie ettt sttt 7
3 SYSLEM DEVEIOPMENT ...ttt sre e enes 16
3.1 SYStEM REGUITEMENTS. ...ccuiiiiiete ittt bbbt 16
3.2 MALEITAl DESIGN ...ttt bbb bbbttt 19
3.3 WOrKing OF thE PP ..c.veiveecieee e 21
4 Performance ANAIYSISoiiiiiieii e 33
4.1 Testing FUNAAMENTAIScviiiiiiie e 33
SR O] o [S]] ST SRSPP 42
T8 A 03 Tod 1115 o] 1 PSS 42
5.2 FULUIE SCOPE ...ttt bbbt b ettt et nb e 43
RETEIBINCES ...ttt ettt ettt e e e 44

LIST OF FIGURES

1.1 ANAroid COMPONENTScvviieiiieiieeie s este et se et e e te e sbe e te s esreeteereesreeneesneesreennennes 1
2.1 Layers Of ArChItECIUIEc.oceiiiee et 8
2.2 ANArOId ATCRITECIUIEeoviiiie ettt r e e e 8
2.3 ANAroid ACLIVILY STACKccviiieiicie e 11
2.4 ACLIVItY IN BACKQIOUNG.......cuiiieiicie e 13
3.a Recommended packages for Android developmentcccooevereniieniniseeeee 17
I U T O I D - Vo - o PSSR 21
3.2 Level-1 DFD (STUABNL) ...cceeieiie ettt ns 22
3.3 Level-2 DFD (AdmMIN and FACUILY).......ccooieiriiieiiicse e 23
3.4 LeVel-2 DFD (STUABNT) ...eeeiieiiieisieeie et 24
3.5 Activity Diagram (RegiStration)cccccueieiiieiiieiieie e 25
3.6 Activity Diagram for Writing aSSIgNMENTcccooiririninieieeee e 26
3.7 Sequence Diagram (RegIStratioNn)ccccveiueiierieririenisisesee e 26
3.8 Sequence Diagram (NOICE)cccveiuiiieieeie et 27
3. 11 APP SPIASH SCIEEN ...t 28
TN Y o U] S T (= o SRS 29
3.13 REQISIIALION SCIEEMvviiteeie ettt e e e te e re e nte e e e sreesreeneennes 30
B0 N 1 (=T o P LTI =T o SR 31
3.15 NOtes Uploading SCIEENcc.oiiiiiiiieieieie et 32
4.1 TeStiING FraMEWOIKc.ociiiiieie ettt et sae e ens 34
4.2 Default App Module TeSt DIFECIOIIES.ccviieieierieiee st 36

LIST OF TABLES

3.1 Components ReqUIred by SDKuiiiiiiiiiiiiiiiieecciiee et e e s saaeee s

4.1 TESHING TYPES eeeeeieiiitiiitiittitittttttetttttettee e et e e e ettt —tatattattttatttatattaaeaaeaaaaererarerarannnes

ABSTRACT

This project aimed at developing a mobile Android based application based on student-
teacher interaction since smartphone applications are finding use into almost every pathway
in our fast paced lives. As the proficiency and achievement of an academic class is fairly
reliant on the level and extent of student-teacher interaction in class, this project report
underlines how our mobile application can viably contribute in expanding communication

and give the important criticism to make the present and future classes better ones.

Today, the impact that the communication amongst teachers and students has on learning
and educating is an irrefutable issue. Deprived of interaction, it is hard for learners to be
motivated to continue their courses, and the learning gets obtuse. This discussion of
interacting in an e-learning environment is more complicated than conventional education.
Some ways to surmount this challenge of interaction involve using customized techniques
of presentation speed, style, the graphics, and survey content. Another good way is the

formation of student associations and discussion group

Vi

CHAPTER 1
INTRODUCTION

1.1 Introduction

Android is an open source mobile operating system (OS) written primarily in Java and
based on the Linux Kernel and outlined fundamentally for touchscreen cell phones, for
example, tablets and cell phones. It is currently developed by Google. According to
Google’s official Android documents, “Android's user interface is largely based on using
touch gestures loosely corresponding to real-world actions such as tapping, swiping and/or
pinching, to work on-screen interactable objects, with a virtual keyboard for text input.
Google has further launched and developed Android TV for televisions, and Android
Wear for wrist watches, each with a specialized Uls.” Several Android variants are also
used on gaming consoles, digital cameras, notebooks, and many other electronics.

Android Components

Application framework allowing reuse and auxiliary components

Dalvik Virtual Machine (DVM) optimized for portable gadgets

Integrated browser It is based on the open source engine Web Kit

Optimized graphics are processed by a custom 2D graphics library; basing 3D graphics
on the specification of OpenGL ES (with optional hardware acceleration)

SQL.ite for storage and retrieval of data in a structured manner

Media support for popular audio, video, and still image formats (H.264, MPEG4,AMR,
AAC, MP3, GIF, PNG, JPG)

GSM Telephony (dependent on hardware)

Wif_Fi, Bluetooth, 4G, 3G, EDGE and Wi-Fi (dependent on hardware)

GPS, Camera, compass, accelerometer (dependent on hardware)

Figure 1.1 Android Components

1.2 Problem Statement

An Android application similar to Student Teacher Interaction System already
exists in the market.

Many institutes use an internal portal for interacting between students and faculty,
to remain abreast about various on-going events.

The apps provide many usable functionalities. However, they have certain
drawbacks as well:

The organization of content is not proper and consequently tough to comprehend.
A large amount of probing is needed.

Notifications are not sent appropriately, the student has to browse through the app
manually to know about upcoming events and new announcements.

Students from one class can see and alter forums and gatherings and of some
different class, which can bring about vagueness of displayed data and make
disarray.

We strived to create an app that would provide a wholesome experience to the user,

be it student or faculty.

1.3 Objectives

The target of the design of a new system is to computerize the present technique of
supervision and monitoring the data about the students' points of interest and to lessen the

overhead of supervising reports for every notification being created.

The proposed system will be responsible for storing the data on a focal server while
allowing clients to fetch that data from their own smartphones by making use of the
installed android app. A database will be present on the server and an enhanced Ul on every
customer machine i.e. on the STIS application installed on the user smartphone. The created

application will be utilized by understudies, instructors, guardians and administrator.

1.4 Methodology

With overall increase in smart phones usage, the mobile app development market is
growsing rapidly. Developing an app that would have a long life span is becoming a
challenging task. Hence, it becomes practically compulsory for app development

companies to adopt the constantly shifting industry trend in order to gain positive results.

These days, companies use a agile methodology which is most proficiently utilized by
software and mobile development organizations accommaodating in streamlining the basic
development process and make it speedier. The agile approach for building up a mobile
app for the most part consists of flexible and adaptable planning, risk managing, customer

involvement and continuous evaluation.

This procedure causes improvement group to outline a last item correctly according to the

desire of their client. The key advances engaged with a spry improvement process include:

1. Initiation of the Project: Initiation includes setting up the plan, determining the business
needs, solidifying the specifications, assembling the group, and getting ready for

architecture modeling initially.

2. Development lIterations: This dreary stage includes dynamic customer cooperation,
thorough and collective improvement by experts, including new highlights upon

prerequisite, corroborative and investigative testing, and interior sending of programming.

3. Release of the product: This stage includes last system testing, last user
acknowledgment testing, and sending of system into creation and general and refreshed
conveyance of software which meets the changing needs of the customer. Discharge stage
enables the end user to audit the software and send the criticism and in addition ask for

more highlights if required.

4. Production: This phase involves maintaining the system regularly and identifying

defects, enhancing the system stability as well as system performance.

Agile Software Development offers a number of benefits:

Agile development methodology permits numerous degrees for changes all through

the entire life cycle of application improvement

e It augments design sensitivity, sustainability in user experience and app usage.

e Every step needs testing to ensure the product is seamless, enabling to launch the

product in a short period of time.

e Tenders comfortable and flexible work conditions to members of the team.

e Ituses a reliable work approach.

e Well-organized and swift application process empowers increasing the performance

and quality of the project.

e With the continuous communication of the developers, testers and clients, it boosts

the transparency and flexibility of the process.

1.5 Organization

Chapter 1: Highlights and underlines the concepts behind the student-teacher interaction
system. In this chapter, the introduction to the android based service is covered. The key
focus defining the problem statement and specifying the objectives of the project.

Chapter 2: Presents review from journals, research papers and books in deatil. In this
chapter, research papers excerpts on research and development of student management
systems are given.

Chapter 3: The different stages involved in the the development have been discussed here.

Chapter 4: The methods used for app testing and the performance analysis is shown here.

Chapter 5: Presents concluding remarks about the project and possible scope of the future

work to augment the current work with improved efficacy.

CHAPTER 2
LITERATURE SURVEY

According to David Lamb writing for ‘Academic Writing Tutor’, “A literature survey is a
text of a scholarly paper, which includes the current knowledge including substantive
findings, as well as theoretical and methodological contributions to a particular topic.
Literature reviews are secondary sources, and do not report new or original experimental
work. Most often associated with academic-oriented literature, such reviews are found in
academic journals, and are not to be confused with book reviews that may also appear in
the same publication.” The objective of this literature review is to locate the relevant
literature about Student-Teacher Interaction and their systems with the end goal of
background studying, and to outline the current work and distinguish the gap in present

researches.

2.1 Research Papers

2.1.1 “The Development and Design of the Student Management System Based on the

Network Environment”

Authors: Zhi -gang YUE, You-wei JIN

The paper talks about the strategy for information management in advanced education.
Quoting the summary, “Based on a complete examination and enquiry on the scholar
administration in advanced education, the models of the students' administration
information were developed by embracing the propelled information innovation, and build
the student administration information stage.” Lastly, the crucial strategy plus innovation

in completing the administration stage are offered.

2.1.2 “Android-based Attendance Management System”

Authors: Siti Aisah Mohd Noor, Norliza Zaini, Nabilah Hamzah

This papers outlines a technique of placing students’ attendance through usage of an app
made for the “Android” platform has been presented in the paper. Once installed, the list
of students can be fetched using a nominated web server.

2.1.3 “The Designment of Student Information Management System Based on B/S”

Authors: Jin Mei-shan, Qiu Chang-li, Li Jing

This paper utilizes the B/S structure to outline the student information administration
system, and clarifies the system plan standard, system structure and design, the capacity
module of information framework as indicated by current college student information
administration needs. It gives due for information of substantial figure of students while

giving intelligent students administration stage.

2.1.4 “Research and Implementation of Web Services in Android Network

Communication”

Authors: Yang Shulin, Hu Jieping.

The paper incorporates blending of Web Services including the way cell phones will
advance the improvement of versatile applications. Citing the paper’s summary, “Based on
examination and research of the Volley, Ksoap2 and Java Web Services, through the
execution of the Http Stack interface and the development of JSON Object Request to
acknowledge bolster for Web Services. The plan utilizes JSON configuration to exchange
information, bolster S SL/TLS convention demands, custom parameter, sets or gets the
demand header.” The above plan has great similarity, utlity, ease of use, and is reasonable

for Android stage.

2.2 Architecture of Android

The Android platform architecture has mainly 4 following layers:
1. Applications Layer
2. Application Framework
3. Libraries along with android runtime libraries
4. Hardware Abstraction Layer (HAL)
5. Linux Kernel.

Figure 2.1 Layers of architecture

Each of the layers of the architecture is explained in Figure 2.2 below.

System Apps

Email Calendar Camera

Java API Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES .. Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth Camera

Shared Memory WIFI

Power Management

Figure 2.2 Android Architecture

https://developer.android.com/guide/platform/images/android-stack_2x.png

There are 5 components around which an android application revolves. They are:
1. Activities

2. Broadcast Receivers

3. Services

4. Content Providers

5. Intents

2.2.1 Activities

An Activity is an application component providing an interactive screen where users can
do something, like making a phone call, taking photos, send emails, or viewing maps. All
activities have their own windows to draw their user interface in. This window normally

covers the entire screen, but it may be smaller than the screen and float atop other windows.

At the point when an activity is ceased in light of the fact that another activity begins, it is
advised of this adjustment in state by means of the activity's lifecycle callback strategies.
An activity might obtain several callback methods, owing to changes in its state—whether
the system is ““stopping it, creating it, resuming it, or destroying it” —and each callback
gives the chance to perform specific work suitable to that particular state change.

For example, when stationary, the activity should release somewhat huge objects, like
database or network connections. Once the activity recommences, the essential resources
and resume actions can be reacquired that were broken up. These state transitions all form
the “Activity lifecycle”.

2.2.2 Broadcast Receivers
Broadcast Receiver is “a mechanism to transfer events back and forth so that all interested

applications can be informed when something happens. There are lots of System events

which are broadcast by Android OS, such as connectivity related events, Messaging related

events, camera related events, etc.”

Two chief categories of broadcasts that are received are:

Normal broadcasts are completely asynchronous. In a vague request, every
collector of the communication are kept running, regularly in the meantime. It is
additionally proficient, but it leads to the implication that recipients are not able to utilize

the outcome or prematurely finish the included application programming interfaces.

Ordered broadcasts are delivered to a single receiver at a time. When every
recipient executes, proliferate an outcome to the following collector, or prematurely end
the communication totally with the goal that it won't be passed to different beneficiaries.
The order receviers keep running in can be controlled with the priority attribute of the
coordinating intent-filter; receivers with a similar priority will be kept running in an order

arbitrarily.

Indeed, even on account of typical communicates, the framework may in a few
circumstances return to conveying the communicate one collector at any given moment.
Specifically, for collectors that may require the formation of a procedure, just a single will
be keep running at an opportunity to abstain from over-burdening the framework with new
procedures. In this circumstance, be that as it may, the non-requested semantics hold: these

beneficiaries still can't return results or prematurely end their communicate.

2.2.3 Intents

Activities, broadcast receivers and services are 3 of the chief application components, and
are activated through what are called intents. A facility called Intent messaging is present
for delayed run-time binding of components in that application or in different applications.

The intent, what we call an Intent object, is a passive data structure which holds a

10

conceptual portrayal of an activity to be performed — or,as it often is in when it comes

broadcasts, a depiction of something that has happened and is being declared.

2.2.4 Activity Stack

Activity stack is responsivle for managing the system activities.
At the point when another activity commences, it becomes the running activity and is
pushed to the top of the stack -- the past activity reliably stays underneath it in the stack,
and does not come to the top again till the new activity is exited.
In the case the Previous button is pressed by the user the subsequent activity of the present

stack moves upward and becomes active.

Activity Stack
T > BT

New Activity Back button pushed or
started

running activity closed

—>

Last Running

Activity
Activity n-1
Activity Stack
Previous o
Activity 3
Activities Removed to
Activity 2 — free resources

Activity 1

Figure2.3 Activity Stack

11

http://blog.appliedinformaticsinc.com/android-activity-an-overview/

2.2.5 Processes and Threads

According to the official Android development website, “When an application segment
begins and the application does not have some other segments running, the Android system
begins another Linux procedure for the application with a solitary string of execution. As a
matter of course, all parts of a similar application keep running in a similar procedure and
string (called the "primary" string). In the event that an application segment begins and
there as of now exists a procedure for that application (in light of the fact that another part
from the application exists), at that point the segment is begun inside that procedure and
utilizations a similar string of execution.” Whatver the case may be, distinctive parts in the
application can be organized to be kept running in independent procedures. Extra strings

can be made for any procedure.

2.2.6 Multi-Tasking

An application for the most part contains different activities. Every movement ought to be
composed around a particular sort of activity the user can perform and can begin different

activities.
For instance, an email application may have one movement to demonstrate a rundown of

new email. At the point when the user chooses an email, another action opens to see that

email.

12

Figure 2.3 explains the Android activity process in the background.

w e e « WM e » Wl i

Activity
<
Back Stack Activity 1 | | Activity 2 ‘ | Activity 3 |
[Activity 1 ‘ | Activity 2 l
Root activity for the task
Running Activity Destroyed activity

Figure 2.4 Activity in Background

13

http://ftp.gunadarma.ac.id/android/sdk/sdk_310712/docs/images/fundamentals/diagram_backstack.png

CHAPTER 3
SYSTEM DEVELOPMENT

3.1 System Requirements

These are the software and system necessities of the Android SDK:

3.1.1 Operating System Support
Windows 10 (64-bit), Windows 7 (x64 or x86), Windows Vista (x64 or x86).

Linux (tested on Ubuntu Linux)
GNU “C Library (glibc) 2.7” or later.

On “Ubuntu Linux, version 8.04” or later

For Android applications development, installing one of these packages is recommended:

= Eclipse IDE for Java Developers
= Eclipse Classic (versions 3.5.1 and higher)
e Eclipse IDE for Java EE Developers

e JDK 5 or IDK 6 (JRE alone is not sufficient) Android

Development Tools plugin (required)

Not compatible with Gnu Compiler for Java (gcj)

Other development environments or IDEs

JDK 5 or JDK 6 (JRE alone is not sufficient) Apache
Ant 1.8 or later

Not compatible with Gnu Compiler for Java (gcj)

Figure 3.a Recommended packages for Android application development

14

3.1.3 Hardware requirements
For all components that are installed, the Android SDK requires disk storage. Table 3.1

roughly gives an idea of the expected disk-space requirements, depending upon the
components which will be used.

Type of Component Size (appx.) Remarks

Software Development Kit

(SDK) Tools 40 MB Needed.

Software Development Kit

Platform-tools 6 MB Needed.

Android platform 150 MB One platform is at least
(each) required.

SDK Add-on (each) 100 MB Elective.

USB Driver for 20 MB [Elective. Only for Windows.
Windows

Samples (per I5M [Elective.

platform)

Offline 300 MB Elective.
documentation

Table 3.1 Components required by SDK

15

3.2 Material Design
The following text explains how making revamped changes that follow material design
principles will enhance the experience using apps, across Android devices and on other

platforms planned for the future.

3.2.1 Discussing material design

According to Google’s official support page, “A material representation is the binding
together hypothesis of a supported space and an arrangement of movement. The material
is grounded in material reality, propelled by the investigation of paper and ink, yet

innovatively progressed and open to creative ability and enchantment.

Surfaces and edges of the material give visual prompts that are grounded as a general rule.

The utilization of natural material qualities helps clients rapidly comprehend affordances.
However the adaptability of the material makes new affordances that supersede those in the
physical world, without disrupting the guidelines of physical science.

The basics of light, surface, and development are vital to passing on how protests move,
connect, and exist in space and in connection to each other.” Sensible lighting demonstrates

creases, isolates space, and shows moving parts.

16

3.3 Working of the app

3.3.1 Use Case Diagram

Student Management Use Case

!
Systemn Adminis tretor

Figure 3.1 Use Case Diagram

17

3.3.2 Data Flow Diagram

STUDENT:

Enmer Dot

Show resporce

Chack for Vandazon
Usemame and Passwond

Swdent et ace

Swore Dol
H J
Take Respose _ . Rewpored

Store Dead XS,
Ouestion 14 >
5 stion Mange L 2 Tedwical Bock

= FANIOL
echnical Block ere ixirns
Take Respose

Level-1 Diagram for Student

Figure 3.2 Level-1 DFD (Student)

18

stude miD faoutyiD

S o - studentiD facultyiD
- lallocate Student y StudemAliocaso
Success iy allocawd To Faculty

< sl uccessfully allo cated n

useriD

reporee

Veridcazon of

repornse
Student and

aadty

FACULTY

studentiD Sudertin

>, X Ll
/(View Progress \' Display repartof sadent

Display repont of student

Path for fiie

iy uploaded

Folder at server

Path for ideo

20 Successtu by upload od Upioad Lecum

\ideo /

QUESTIONG, ODTIONG, 3N SweT

Question, Arewer, Opson

1 Succes shully uploaded

>
Question Bank

Fesporae |

Figure 3.3 Level-2 DFD (Admin and Faculty)

19

STUDENT

il o e

ot

Tick o doraiload

b esmage o WView
"y

Whdea

Mesmage for download
1

File: oo IDecramboad

Al for Doraniload

Scsage tos Test

Wt

Oick on Grade

B sage o Rt

R

Figure 3.4 Level-2 DFD (Student)

20

3.3.3 Activity Diagram

[User tries again]

[Invalid Registration Details]

[User exits Registration]

Figure 3.5 Activity Diagram (Registration)

[Valid Registration Details]

21

e

{To'-n For Somitted A g-.-nv-rV

whsignment— _
] ricem Mew Assignment
~—3{ Write Asigrment |

| Sunmit Assgrment

D play Scores

Chech Scores

3.3.4 Sequence Di

Figure 3.6 Activity Diagram for writing assignment

agram

VES

Student / Faculty Registration

> verify()

[User Yerified] Registration Swocessfull

j[L.Isnr not verified] Registration Unsuccoessful

|=:
I S
L

Figure 3.7 Sequence Diagram (Registration)

22

Student

Motice

il

Student

Update / View

Update [View [Delete

Faculty

Figure 3.8 Sequence Diagram (Notice)

23

3.4 Screenshots

3.4.1 Splash Screen: Splash screen displayed on starting app. The screen is animated
to bring a sense of organic movement when opening the app.

0.08K/s Zt © .« I .all 4G @D 94%

Classroom

Figure 3.11 App Splash Screen

24

3.4.2 Home Screen:

7:07 © 0.07K/s 2 ©

< Classroom

ATTENDANCE

x A0 Ll 4G 4 T 46%

PROFILE

NOTICE

Figure 3.12 Main Screen

25

3.4.5 Signup Screen

. ‘-ﬂ?ﬂ
@ User Registration

Enter email

Enter username

Enter password

SIGNUP

Already Registred? Sign in here

Figure 3.13 Registration Screen

26

3.4.3 Attendance Screen

50.2K/s %t © « {F _ail 4G @D 93%

2018

Mon, 14 May

May 2018

Enter Hour

Not Specified

CANCEL ENTER

Figure 3.14 Attendance Screen

27

3.4.4 Notes Uploading

ﬁ Upload

= % Documents

Call-Up Instructions

UPLOAD PDF

91% Uploading...
View Uploads

Figure 3.15 Notes Uploading Screen

28

CHAPTER 4
PERFORMANCE ANALYSIS

4.1 Fundamentals of Testing

The information given below document guides through important concepts that relate to
Android app testing. Made by Google, an outlining of the testing tools and APIs is
provided.

Android presents a coordinated framework encourageing to test every part of the
application. Android Testing Support Library incorporates APIs for the setup and execution
of test apps using an emulator.

4.1.1 Testing Concepts

JUnit is used for Android testing. JUnit testing, in essence, is a method that tests apps partly
using its methods. Test methods are classified into what are known as test cases. Test suits
contain group test cases.

In JUnit, a single or multiple test classes may be built. To execute them on a local machine,
the test runner is used. Using Android Studio, multiple test source files can be built into an
test Android app and be used to test applications on physical Android devices or the

emulator.

The test code structure and the way tests are built and run in “Android Studio” are
dependent on the testing being performed. Table 4.1 below showcases common Android

testing types:

29

[|

Unit tests Local Unit Unit tests that run on your local machine only. These tests are compiled to run locally on the Java Virtual Machine (JVM) to minimize
Tests execution time. Use this approach to run unit tests that have no dependencies on the Android f k or have dependencies that mock
objects can satisfy.

Instrumented Unit tests that run on an Android device or emulator. These tests have access to Instrumentation information, such as the Context of

unit tests the app you are testing. Use this approach to run unit tests that have Android dependencies which mock objects cannot easily satisfy.

Integration Components This type of test verifies that the target app behaves as expected when a user performs a specific action or enters a specific input in its

Tests within your activities. For example, it allows you to check that the target app returns the correct Ul output in response to user interactions in the app's
app only activities. Ul testing frameworks like Espresso allow you to programmatically simulate user actions and test complex intra-app user
interactions.
Cross-app This type of test verifies the correct behavior of interactions between different user apps or between user apps and system apps. For

Components example, you might want to test that your app behaves correctly when the user performs an action in the Android Settings menu. Ul testing
frameworks that support cross-app i ions, such as Ul A allow you to create tests for such scenarios.

Table 4.1 Testing Types

4.1.2 Instrumentation

Instrumentation is “a set of control methods, or hooks, in the Android system. They are
responsible for controlling Android components autonomously of their regular lifecycles
(the control methods).” These hooks are also in charge of controlling how apps are loaded
by Android.

30

Figure 4.1 below demonstrates the framework for testing:

process
Application package I Test Tools
InstrumentationTestRunner :
T beneeed MonkeyRunner
Test package
Test case classes Mock objects
Instrumentation JUnit

Figure 4.1 Testing Framework

Ordinarily, Android components run in system determined lifecycles. E.g., the lifecycle of

an Activity object's begins when an Activity is activated by an Intent. The framework calls

31

http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/images/testing/test_framework.png

the object's onCreate() strategy, then the onResume() technique. At the point when the

client begins another app, the framework calls the onPause() technique.

iapp
build
libs
Src

androidTest
.-:.-";java
main
test
java

Figure 4.2 Default app module test directories

androidTest/ source set are common to every build variant. However, you can create

additional source set directories for tests that are specific to certain build variants:

src/
main/

androidTest/

flavorl/

androidTestFlavorl/

flavor2/

32

androidTestFlavor2/

For example, when a test APK is being built for the "flavorl" version of the app, Gradle
uses the androidTestFlavorl/ and androidTest/ source sets. Every tests runs the debug build.
This could be changed to a different build type by making use of the testBuildType property

in the module-level build.gradle file.

android {

testBuildType "staging"

Gradle automatically generates manifest files for your androidTest/ source sets. Optionally,

you can create your own manifest.

4.2 Testing APIs:
4.2.1 JUnit

According to Android’s developer support document, “A unit or joining test class is ought
to be composed as a JUnit 4 test class. JUnit is the most mainstream and broadly utilized
unit testing framework for Java. The framework offers a supportive strategy to perform

standard setup, teardown, and announcement exercises in your test.”

A fundamental JUnit 4 test class is a Java class that contains at least one test strategies. A
test strategy starts with the @Test explanation. Containing the practice and confirm a

solitary usefulness (that is, a consistent unit) in the segment that need to be tested.

33

The accompanying bit demonstrates a case “JUnit 4 mix” test using the “Espresso APIs”
to play out tick activity on a Ul component, at that point verifies whether a normal string

is shown.

@RunWith(AndroidJUnit4.class)

(@LargeTest

public class MainActivitylnstrumentationTest {
(@Rule

public ActivityTestRule mActivityRule = new
ActivityTestRule<>(MainActivity.class);

@Test

public void sayHello(){
onView(withText("Say hello!")).perform(click());
onView(withId(R.id.textView)).check(matches(withText("Hello, World!")));

4.2.2 Android Testing Support Library APIs

A collection of APIs is provided by the Android Testing Support Library. These APIs
enable us to rapidly build and run test codes. These include, but are not limited to, JUnit 4
and functional Ul tests. The below instrumentation-based APIs are provided by the library

that prove beneficial when tests are to be automated:

34

AndroidJUnitRunner

A test runner that is JUnit 4-compatible for Android.

Espresso

A Ul testing framework; suitable for functional UI testing within an app.
UI Automator

A UI testing framework suitable for cross-app functional Ul testing between both system
and installed apps.

35

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

We learnt how the proposed system is better and overall more efficient than the existing
system. It is highly compatible and greatly reduces human effort. Through the proposed
system, the standard will maintain security and also provide features that are not included
in the existing system. This system provides a rather simple way to maintain records. It
provides an easy way for interaction between students and college faculties. Students can

also improve interaction skills by making use of the proposed system.

The proposed system will also help the college to manage their records and save natural
resources. This will also get the job done in less time compared to existing systems. All the
users receive the information without delays because of real time data accessing and
updating. It helps in reaching every student and faculty in the college instantaneously. The
data which is stored on the database will help the management take major decisions,

keeping in mind the suggestions and ideas taken from the system.

The proposed system will also help the students to get their queries solved by the answers
of other users such as fellow students and respected faculties of the college. Since there
will be many users on system we planned to make it secure and spam free using various

algorithms.

36

5.2 Future Scope

In the future this system can be implemented to automate most of the educational system
and it can be designed for cross platform use. This would greatly improve the level of
penetration and transparency that the several facilities and services of education have, and

that are being provided to both the students and faculty over-the-air.

The application will significantly help in simplifying and speeding up the management and
communication process. It offers good level of safety and a structure that lessens manual
work and reduces usage of resources the conventional procedure demands. The proposed
system tenders a better way of computing and displaying actions with receptive and striking

user-interfaces.

Hence, with the help of several literature surveys and through examination of the prevailing
systems, we have made the conclusion that using the proposed application will not only
assist in the automating the academy learning process, but similarly helping to digitize the

system and therefore helping in the efficient deployment of resources.

37

REFERENCES

[1] Rakhi Joshi, V. V. Shete, S. B. Somani, “Android Based Smart Learning and
Attendance Management System”, International Journal of Advanced Research in

Computer and Communication Engineering (IJARCCE), Vol. 4 Issue 6, June 2015

[2] A.J. Kadam, Aradhana Singh, Komal Jagtap, Srujana Tankala, “Mobile Web Based
Android Application for College Management System”, International Journal of
Engineering and Computer Science (IJECS) ISSN: 2319-7242, Volume 6 Issue 2, Feb.
2017, Page No. 20206-20209

[3] Manasi Kawathekar, Kirti K. Bhate, Pankaj Belgoankar, “An Android Application for
Student Information System”, International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET) Volume 4 Issue 9, September 2015

[4] Prof. Sagar Rajebhosale, Mr. Shashank Choudhari, Mr. Sachin Patil, Mr. Akshay
Vyavahare, Mr. Sanket Khabiya, “SMART CAMPUS — An Academic Web Portal with
Android Application”, International Research Journal of Engineering and Technology

(IRJET), Volume 3 Issue 4, Apr-2016
[5] Pallavi Mohadikar, Nasrin Mulani, Afnan Shaikh, Rachna Sable, “College Parent

Interaction using Android Application”, International Journal of Computer Science and
Network (IJCSN), Volume 4 Issue 1, February 2015

38

