
i

AN FPGA-BASED SINGULAR VALUE

DECOMPOSITION PROCESSOR

Dissertation submitted in partial fulfillment of the

requirement for the degree of

 BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

By

Rahul Attri (141069)

Shiven (141072)

UNDER THE GUIDANCE OF

Dr. Harsh Sohal

JAYPEE UNIVERSITY OF INFORMATION

TECHNOLOGY,WAKNAGHAT

ii

CERTIFICATE

We hereby declare that the work reported in the B-Tech report entitled “AN

FPGA-BASED SINGULAR VALUE DECOMPOSITION

PROCESSOR” submitted at Jaypee University of Information

Technology, Waknaghat, India, is an authentic record of the work carried

out by Rahul Attri (141069) and Shiven (141072) under the supervision of

Dr. Harsh Sohal. We have not submitted this work else where for any other

degree or diploma.

Rahul Attri (141069)

Shiven (141072)

Department of Electronics And Communication

Supervisor : Dr. Harsh Sohal

Grade : Assistant Professor

Signature :

iii

ACKNOWLEDGEMENT

It is our privilege to express our sincerest regards to our project supervisor

Dr. Harsh Sohal, for their valuable inputs, able guidance, encouragement,

whole-hearted cooperation and direction throughout the duration of our

project. We deeply express our sincere thanks to our supervisor Dr. Harsh

Sohal for encouraging and allowing us to present the project on the topic

“AN FPGA BASED SINGULAR VALUE DECOMPOSITION

PROCESSOR” at our department premises for the partial fulfillment of the

requirements leading to the award of B-Tech degree.

Toward the end, we might want to express our true regards on account of

every one of my companions and other people who helped me straight

forwardly or in a roundabout way amid this venture work.

iv

ABSTRACT

This features a FPGA based Singular Value Decomposition processor which

utilizes the two-sided turn Jacobi SVD calculation. Two SVD processors, the

Basic SVD Processor and the Extended SVD Processors. In the Basic SVD

Processor, the greatest network, which can be obliged in the focused on

gadget, is investigated by exploiting of the highlights of the gadget, and a

few outline methods are utilized to speed the SVD calculation. The objective

of the Extended SVD Processor is to register a major SVD without

expanding the processor estimate by reusing the SVD exhibit of the Basic

SVD Processor. Both of the SVD processors can successfully compute the

SVD, and the errors from the Matlab algorithm was used to measure the

quality of the image using SVD algorithm.

v

TABLE OF CONTENTS

List of Figures viii

List of symbols vii

CHAPTER 1

INTRODUCTION

9

1.1 SVD 9

1.2 SVD Algorithm 11

1.3 Two Sided Rotation Jacobii SVD algorithm 12

Chapter 2

LITERATURE REVIEW

14

2.1 Basic SVD Processor 16

2.2 FPGAs VS ASICs 18

2.3 Comparison betweem BLV array and Proposed Array 19

2.4 Applications of SVD 19

2.4.1 Image Copmpressing 19

 2.4.2 Image DE blurring 20

 2.4.3 Other applications 20

CHAPTER 3

SYSTEM DEVLOPMENT

21

3.1 Hardware and Software (FPGA and Xillinx) 21

CHAPTER 4

IMPLEMENTATION AND METHODOLODGY

21

4.1 Hardware Implementation solutions of SVD

Algorithm

25

4.2 CORDIC Algorithm 25

vi

4.3 Implementing SVD in 2X2 Matrix 26

4.4 Implementing SVD in a Mesh connected network of

Processors

28

CHAPTER 5

CONCLUSION AND FUTURE WORK

30

5.1 Conclusion 30

5.2 Future Work 31

REFERENCES

vii

List of Figures

 Figure No. Name Page No.

 1.1 Image through k

singular values

 11

2.1 Input and output lines

for processing elements

16

 2.2

Architecture of 4X4

BSVD processor

17

 2.3

CORDIC Scheme

17

2.4 Image Compression

20

2.5

3.1

Image deblurring

A Spartan FPGA from

Xillinx

20

21

4.5

BLV Mesh connected

array structure

29

viii

LIST OF SYMBOLS

𝑎𝑝𝑞 the cell value

J(p,q,ф) right sided Jacobi rotation matrix

J(p,q, ϴ) left sided Jacobi rotation matrix

J(p,q,ф,j) right sided Jacobi rotation matrix for

normalized SVD algorithm

SJ(p,q,ϴ, j)

left sided Jacobi rotation matrix for

normalized SVD algorithm

Z the CORDIC scale factor

U n x n orthogonal matrix

Z n x n nonnegative diagonal matrix

A original matrix

Ф right rotation angle

ϴ left rotation angl

9

CHAPTER 1

INTRODUCTION

1.1 SVD

The Singular Value Decomposition (SVD) is a standout amongst the most

essential calculations in numerical polynomial math for furnishing

quantitative data about a grid with various applications in flag and picture

preparing. This work was roused by the plan of an ongoing computerized

discourse upgrade conspire which requires quick Singular Value

Decomposition (SVD) calculation. A work associated exhibit is proposed to

be utilized with the CORDIC (Coordinate Rotation Digital Computer)

calculation to register the SVD. The array structure allows all the processing

elements to compute in parallel thus increasing the computation speed. The

image below can be represented by a matrix of grey-scale values 0-255. The

picture of the mathematician Gauss is a 340 x 280 pixel image with 256

shades of grey. When the singular value decomposition of the image is

calculated, three resultant matrices are produced one of which is the matrix

containing the singular values on the diagonal and all other values are zero.

The diagonal singular values are listed in order of greatest to least. The image

where k = 2 represents the image as reproduced from 2 singular values. It can

be seen that when k = 32, there is almost no difference between the original

image and the one reproduced from only 32 singular values.

The applications of SVD include signal processing ,image deblurring, and

digital image processing. This example provided a little context what is to

be achieved and how it can be applied .The Singular Value Decomposition

(SVD) of a matrix is a computationally complex linear algebra algorithm,

and its applications vary from control systems, to digital speech processing

and digital image processing.

10

Real-time applications, such as digital signal processing and image

processing requires fast SVD computation involving large matrices. The high

through put needed in the SVD computation can be obtained only through

special architectures. A mesh-connected array is proposed to be used along

with CORDIC (Coordinate Rotation Digital Computer) algorithms for the

computation of SVD. All the processing elements can compute in parallel

because of the improved array structure. The structure speeds the

implementation of the SVD processor. A two-sided revolution Jacobi SVD

calculation is utilized to process the SVD and is actualized on a two million

entryway FPGA. A work associated cluster structure is proposed to process

the SVD of a framework, in order to abbreviate the emphasis time and in this

manner increment the execution speed. The array consists of an n/2xn/2 array

of 2x2 processor elements to compute the SVD of an nxn matrix. The

trigonometric functions and the vector multiplication in the algorithm uses

CORDIC (Coordinate Rotation Digital Computer) algorithms for hardware-

efficient solutions. Firstly, two SVD processors, the Basic SVD Processor

and the Extended SVD Processor were developed. The algorithms to

decompose the matrix were first evaluated in Matlab and then the processors

were implemented using the Virtex-II FPGA from Xilinx as the target device

for the decomposition. A two-sided revolution Jacobi SVD calculation is

utilized to process the SVD and is actualized on a two million entryway

FPGA. A work associated cluster structure is proposed to process the SVD of

a framework, in order to abbreviate the emphasis time and in this manner

increment the execution speed. These two processors were successfully

implemented on the FPGA device.

11

 Fig 1.1

A matrix is simple a rectangular array of number considered as an entity. it is

usually enclosed in either parentheses or brackets. with M rows and N

columns in the array,(written as m×n).and usually denote a matrix in capital

letters such as A,B,and so on.however,where a matrix has only one row, it

will often we regarded as row vector and denoted by Bold lowercase letter,

similarly treat as one column but in general m×n matrix is of the form

 A=[
𝑎11 ⋯ 𝑎12… . 𝑎1𝑛

𝑎21 ⋯ 𝑎22… . 𝑎2𝑛
]

12

This matrix is said to have order M×N the mn numbers that constitute called

elements or entities. in particular, aij denotes the elements in the ith row and j

column

Types of matrix:

1. Square matrix

2. Diagonal matrix

3. Scalar matrix

4. Identity matrix

5. Null matrix

6. Transpose of matrix

Matrix operations:

We know that matrices useful for storing information. the real motivation for

introducing matrices, however , is that there are useful rules for manipulating

them that correspond with familiar rule of ordinary algebra.

Thus two matrix A and B are equal if they have the same dimensions and if

all their corresponding entries are equal.

Application of matrix:

It is used for simple calculation tool, can be represented in a simple form and

complex form. They are used for plotting graphs, statics and also to do

scientific studies in almost different fields. it is used in representing the real

world data like traits of people’s population, habits etc.

13

1.2 SVD Algorithm :

The SVD of a real n x n matrix A is its factorization into the product of three

matrices,

 A =𝑈𝛴𝑉𝑇

where U and V are n x n unitary matrices and Σ = diag (σ1,σ2,...,σn) is an n x

n diagonal matrix. The columns of U and V are called respectively the left

and right singular vectors and σi the ith singular value of A. The singular

values in Σ may be arranged in any order but they are usually arranged in

decreasing order.

14

CHAPTER 2

Literature Review

The importance of the SVD as a matrix factorization technique is

underscored by the variety of algorithms available. They range from serial

algorithms to parallel Jacobi methods. On a conventional uniprocessor

system, the most commonly used procedure is the Golub-Kahan-Reinsch

algorithm. This SVD algorithm is a kind of serial algorithm that is

implemented in both EISPACK and LINPACK . The first step in the Golub-

Kahan-Reinsch algorithm is the bi-diagonalization of the matrix. This is

followed by an iterative diagonalization of the bi-diagonal matrix to complete

the SVD. For an m X n matrix, the time complexity o f the Golub-Kahan-

Reinsch algorithm is of the order 0.

 The QR-based SVD algorithm and the Jacobi SVD algorithm are the most

commonly used classes of algorithms among many numerically stable

algorithms for computing the SVD. In sequential computing the QR-based

algorithms are usually preferred because they are faster than the Jacobi-based

algorithms. However, the inherent parallelism which characterises the Jacobi

method has made them an attractive solution on parallel computers.

Moreover, James Demmel demonstrated that the Jacobi algorithms may be

more accurate than the QR-based SVD algorithm in

The Jacobi SVD algorithms have recently attracted a lot o f attention as they

have a high degree o f potential parallelism different Jacobi-based methods

for SVD computation are usually considered, namely the Kogbetliznt (two-

sided rotation) method and the Hestenes (one-sided rotation) method .

Although the two-sided rotation method is computationally more expensive

than the one-sided method, the two-sided algorithm usually is adopted

because it is suitable for mapping onto a regular systolic array architecture

and highly suitable for parallel computation.

15

Brent, Luk and Van Loan proposed an expandable systolic array of simple

processors to compute the SVD. A ‘parallel ordering’ discovered by Brent

and Luk is adopted in this structure instead o f the conventional cyclic-by-

row ordering or the cyclic-by-column ordering . The Brent, Luk, and Van

Loan (BLV) array combined the Jacobi SVD method with this ‘parallel

ordering’ scheme to exploit the parallelism inherent in the SVD computation.

 Algorithms for use on uniprocessor systems require many division and

square root calculations to compute the sine and cosine rotation parameters

necessary in Jacobi algorithms. The Coordinate Rotation Digital Computer

(CORDIC) algorithm can easily compute the trigonometric functions and the

vector multiplication by using a set of shift-add algorithms. All have invoked

the CORDIC techniques in the BLV systolic array and performed an SVD

processor in hardware .

The appearance of reconfigurable rationale PCs grants higher rates of

devoted equipment arrangements at costs that are focused with the customary

programming approach. A broadly useful processor based SVD processor

was acknowledged by Manfredi, C. Be that as it may, because of the speed

confinement of the broadly useful processor, just a low-arrange SVD is

performed for their situation under the continuous usage. The Jacobi SVD

strategy in light of the CORDIC calculation and associated by utilizing the

parallel cluster engineering planned by is an equipment proficient

arrangement and can be acknowledged in VLSI innovation .FPGAs present a

powerful tool for SVD algorithm hardware realization, due to their

reconfigurable features and shorter design cycle. Based on the BLV array in

present an architecture which can increase the efficiency of the BLV array

structure. Bobda and Steenbock designed an SVD processor targeting FPGAs

by utilizing their reconfigurability aspect, and thus provided an improved

device for the hardware solution o f the SVD.

16

2.1The Basic SVD Processor

The Basic SVD (BSVD) Processor is based on the BLV square mesh-

connected array using a PE for each 2 x 2 sub matrix, interchanging matrix

elements and rotation angles and parallel ordering. The BSVD Processor

algorithm transfers the rotation data to all off-diagonal PEs at the same time

rather than propagating them through the PE array. The BSVD Processor

architecture consists of two function blocks, the BSVD PE array (the

diagonal PE sand the off-diagonal PEs) and the array controller.

 Fig 2.1

In the BSVD array, the 2x2 SVD algorithm for the sub matrices is split into

two portions, one to compute the left and right rotation angles called the

Angle Solve, and the other to perform the two-sided Jacobi rotation equation

called Vector Rotation. To compute a 4 x 4 BSVD requires 2 diagonal PE

sand 2 off-diagonal PEs. The diagonal PEs compute the Angle Solve function

and transfer the new rotation parameters to all PEs simultaneously. Then all

PEs concurrently execute the vector rotation and exchange the matrix

elements with their neigh bours. This reduces the number of steps required to

accomplish one iteration from n/2steps required by BLV to 2 steps required

by the BSVD array. The data exchange is implemented by the array

controller and takes less time than one iteration of computations.

17

The array controller has three tasks.

 It controls the data in and out of the array

 It schedules the propagation of the rotation angles

 Using the BLV parallel ordering, it exchanges all the matrix elements

after all PEs have completed the Vector Rotation function.

The array controller includes one module for each of the sub matrices.

So for a 4 x 4 BSVD processor, four modules are required. Each

module uses the same architecture and state machine algorithms.

Within each module there are four blocks as shown. Each iteration,

the 4input matrix elements accepted by each sub matrix are stored.

temporarily in the array controller module in serial memory. Parallel

to serial conversion is required to convert the data toserial form. Since

data is also output from each sub matrix it needs to be converted back

from serial to parallel. The state machine block implements

algorithms to control the movement and rearrangement of the data so

that pairs of columns can be orthogonalized in parallel.

 Fig 2.2

18

c

 fig 2.3

2.2 FPGAs vs. ASICs and General-Purpose Processors

FPGAs (Field Programmmable Gate Arrays), which have become one o f the

most effective hardware implementation devices for digital circuit design,

have been more and more adopted in industry. FPGAs have a fixed but

electrically programmable architecture which consists of a two-dimensional

structure of logic blocks. Thanks to their reconfigurable capability, FPGAs

19

can be used to implement different circuits simply by appropriate

programming.

In contrast to other implementation technologies, such as ASICs (Application

Specific Integrated Circuits), FPGAs do not need a new silicon chip

fabricated for each design, and the hardware-efficient algorithms which run

in FPGAs speed the implementation, compared with the software-efficient

algorithms used in general-purpose processors. Furthermore, a design can be

easily verified on a prototype development system in the lab. Therefore the

whole development o f applications using FPGAs requires less time than

using ASICs, and the revision of the FPGAs design costs less as well.

2.3 Comparisons between the BLV Array and the Proposed

Array

Table summarizes the performance comparisons between the proposed array

and the BLV Array, n is the size of the SVD matrix, and 𝑇𝑎𝑠 and 𝑇𝑣𝑟 are the

time for Angle Solver and the time for Vector Rotation, respectively. Ti and

T2 are the broadcasting time in the BLV array and the proposed mesh-

connected array respectively. They consist of the time of rotation angle

propagation and cell value interchange. Since the broadcasting time is shorter

than the time of Angle Solve and Vector Rotation, it can be ignored in the

performance time per iteration. It should be mentioned that the ‘𝑇𝑎𝑠’s and the

‘𝑇𝑣𝑟 ’s in both the BLV array and the proposed array are equal

.

SVD Array

 BLV Array

 Proposed Array

'Time per iteration 𝑇𝐴𝑆+(n/2)*𝑇𝑉𝑅+T, 𝑇𝑎𝑠 +𝑇𝑣𝑟 +𝑇2

 Table 2.1

20

2.4APPLICATIONS

2.4.1 Application 1 - image compression

 Fig 2.4

Grayscale image = Matrix, each entry represents a pixel brightness.

2.4.2Application 2 -Image deblurring

 Fig 2.5

Image processing is method to perform some operation on an image, in order

to get an enhanced image .it is a type of signal processing in which input is

an image and output may be image or charecteristics associated with that

image . These days image processing is becoming a more growing

technology in word. . It is widely used in engineering and computer4

science discipline to.

Image processing uses three steps which are following

21

1 Canning the image via image various tools like, acquisition

2 Second analysis of image and manipulating the images

3 The output of image i.e report of the image in which add analysis of

images.

Two types methods for image processing techniques are uses

1 Analog

2 Digital Image processing

Which here we are discussing

1. Analogue image processing can be used for the Hard copies like

printouts and photographs image analysis used various fundamental of

interpretion while using these visual technique

2. Computerized picture handling strategy controls of the advanced

picture by utilizing PC the three general stage that a wide range of

information need to experience while utilizing advanced method are pre-

preparing improvement and show data extraction.

Resizing image

Image interpolation occur when you resize or distort your image from one

pixel grid to another .it is necessary when you need to increase or decrease

the total number of pixel

Interpolation works by using known data to estimate values at unknown

points image interpolation works in two direction and tries to achieve a best

approximation of pixel intensity based on the values of surrounding pixel

Many compact digital camera can perform both an optical and digital zoom a

camera performs an optical zoom by moving the zoom lenses so that increase

22

exponentially. even though the photo with digital zoom contains the same

numbers of pixel,

2.4.3 OTHER APPLICATION

• computer tomography (CT)

• magnetic resonance

• seismology

• crystallography

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Software and Hardware

23

FPGA AND XILLINX

A field-programmable gate array is an integrated circuit designed to be

configured by a customer or a designer after manufacturing – hence field-

programmable. The FPGA configuration is generally specified using a

hardware description language(HDL), similar to that used for an application-

specific integrated circuit (ASIC).

Fig 3.1

FPGAs contain a variety of programmable rationale pieces, and a chain of

importance of reconfigurable interconnects that enable the squares to be

wired together, in the same way as other rationale entryways that can be

between wired in various designs. Rationale pieces can be arranged to

perform complex combinational capacities or only basic rationale entryways

like and XOR. In many FPGAs, rationale pieces likewise incorporate

memory components, which might be basic flip-failures or more entire

squares of memory Contemporary field-programmable door clusters

(FPGAs) have vast assets of rationale entryways and RAM squares to

actualize complex computerized calculations. As FPGA plans utilize quick

I/Os and bidirectional information transports, it turns into a test to confirm

revise timing of legitimate information inside setup time and hold time. Floor

arranging empowers asset allotment inside FPGAs to meet these time

https://en.wikipedia.org/wiki/File:Fpga_xilinx_spartan.jpg

24

limitations. FPGAs can be utilized to execute any sensible capacity that an

ASIC could perform. The capacity to refresh the usefulness in the wake of

delivery, fractional re-arrangement of a segment of the plan and the low non-

repeating building costs in respect to an ASIC outline (despite the for the

most part higher unit cost), offer favorable circumstances for some

applications.

Some FPGAs have simple highlights notwithstanding computerized

capacities. The most widely recognized simple element is programmable

slew rate on each yield stick, enabling the designer to set low rates on gently

stacked pins that would somehow or another ring or couple unsatisfactorily,

and to set higher rates on vigorously stacked sticks on fast channels that

would some way or another run too gradually. Additionally basic are quartz-

gem oscillators, on-chip protection capacitance oscillators, and stage bolted

circles with installed voltage-controlled oscillators utilized for clock age and

administration and for fast serializer-deserializer (SERDES) transmit

timekeepers and recipient clock recuperation. Genuinely normal are

differential comparators on input pins intended to be associated with

differential flagging channels. A couple of blended flag FPGAs have

incorporated fringe simple to-advanced converters (ADCs)and computerized

to-simple converters (DACs) with simple flag molding squares enabling

them to work as a framework on-a-chip. Such gadgets obscure the line

between a FPGA, which conveys advanced zeros on its inner programmable

interconnect surface, and field-programmable basic bunch (FPAA), which

passes on straightforward characteristics on its internal programmable

interconnect surface. Truly, FPGAs have been slower, less vitality proficient

and for the most part accomplished less usefulness than their settled ASIC

partners. A more established investigation had demonstrated that plans

actualized on FPGAs require overall 40 fold the amount of region, draw 12

25

fold the amount of dynamic power, and keep running at 33% the speed of

relating ASIC implementations[citation needed]. All the more as of late,

FPGAs, for example, the Xilinx Virtex-7 or the Altera Stratix 5 have come to

match comparing ASIC and ASSP arrangements by giving fundamentally

lessened power use, expanded speed, bring down materials cost, negligible

usage land, and expanded potential outcomes for re-design 'on-the-fly'.

Where beforehand an outline may have included 6 to 10 ASICs, a similar

plan would now be able to be accomplished utilizing just a single FPGA.

Favorable circumstances of FPGAs incorporate the capacity to re-program in

the field to settle bugs, and may incorporate a shorter time to market and

lower non-repeating designing expenses. Sellers can likewise take a center

street by building up their equipment on normal FPGAs, yet produce their

last form as an ASIC with the goal that it can never again be adjusted after

the outline has been conferred.

Xilinx claims that few market and innovation progression are changing the

ASIC/FPGA worldview:

• Integrated circuit advancement costs are rising forcefully

• ASIC unpredictability has protracted advancement time

• R&D assets and headcount are diminishing• Revenue losses for slow time-

to-market are increasing

•Financial constraints in a poor economy are driving low-cost technologies

These patterns improve FPGAs an option than ASICs for a bigger number of

higher-volume applications than they have been truly utilized for, to which

the organization characteristics the developing number of FPGA

configuration begins

26

Some FPGAs have the capacity of halfway re-design that gives one part of

the gadget a chance to be re-modified while different segments keep running.

MATLAB CODE

SVD Function

function [U, E, V] = svd_funct(A)

% expect 2x2 matrix as input

% outputs 3 2x2 matrixes, following the A = UED singular decomposition

a = A(1,1);

b = A(1,2);

c = A(2,1);

d = A(2,2);

sum = atan((c+b)/(d-a)); %sum = angle([p+t*i]) %theta sum (tr + tl)

diff = atan((c-b)/(d+a)); %diff = angle([q+s*i]) %theta diff (tr - tl)

l = (sum - diff)/2; %radians to rotate left

r = (sum + diff)/2; %radians to rotate right

L = [cos(l), sin(l); -sin(l), cos(l)]; % left rotation matrix

R = [cos(r), sin(r); -sin(r), cos(r)]; % right rotation matrix

U = L;

E = L.'*A*R;

V = R.';

% A = U*E*V

SVD demo

A = [1,2;3,4]

a = A(1,1)

b = A(1,2)

27

c = A(2,1)

d = A(2,2)

p = c + b

q = c - b

s = d + a

t = d - a

sum = angle([p+t*i]) %theta sum

diff = angle([q+s*i]) %theta diff

l = (sum - diff)/2

r = (sum + diff)/2

L = [cos(l), sin(l); -sin(l), cos(l)]

R = [cos(r), sin(r); -sin(r), cos(r)]

%cos sin -sin cos

taoeu = sin(l)

aoeudhctns = sin(pi/2)

[U,E,V] = svd(A)

ED = L*A*R.'

>>SVD_demo

A = 1 2

 3 4

28

a = 1

b = 2

c = 3

d = 4

p = 5

q = 1

s = 5

t = 3

diff = 1.3734

l = -0.4165

r = 0.9569

L = 0.9145 -0.4046

 0.4046 0.9145

R = 0.5760 0.8174

 -0.8174 0.5760

taoeu =-0.4046

aoeudhctns = 1

U = -0.4046 -0.9145

 -0.9145 0.4046

E = 5.4650 0

29

 0 0.3660

V = -0.5760 0.8174

 -0.8174 -0.5760

ED = 0.0000 0.3660

 5.4650 -0.0000

CHAPTER 4

IMPLEMENTION AND METHODOLODGY

30

4.1 Hardware Implementation Solutions of SVD

Algorithm

The two-sided rotation Jacobi SVD algorithm was chosen for

implementation. The 2 X 2 real Jacobi SVD algorithm is introduced in

applied to the computation of an n x n real SVD in this chapter. The

hardware implementation of the Jacobi SVD algorithm needs a hardware

efficient algorithm to compute the trigonometric functions, such as the

inverse tangent function used to compute the left and right rotation angles,

and a special mechanism that realizes the parallel computation of the Jacobi

SVD algorithm in the hardware device to speed the implementation. The

Coordinate Rotation Digital Computer (CORDIC) algorithm which uses

only shifts and adders for the trigonometric functions and vector

multiplication is described. The Brent-Luk-Van Loan (BLV) mesh-connected

array architecture n 2 is used to explain how to connect (—) 2 x 2

submatrices for computing the SVD of an n x n real matrix.

4.2 CORDIC Algorithm

The Digital Signal Processing (DSP) landscape has long been dominated by

microprocessors due to their capabilities, such as single cycle multiply-accumulate

instructions, and their low cost and extreme flexibility. However, software

approaches are not fast enough for the demands o f real-time DSP, and the advent of

reconfigurable logic devices permits the higher speeds o f dedicated hardware

solutions. Unfortunately, the algorithms optimized for those software approaches do

not map well into the hardware, so hardware-efficient solutions have been

developed to realize the DSP algorithms in hardware. Among these equipment

productive arrangements is an arrangement of move include calculations known as

CORDIC for figuring a wide range o f trigonometric and different capacities . The

31

CORDIC calculation is especially suited to equipment usage since it doesn't require

any increases. CORDIC spins around pivoting the period of a perplexing number, by

duplicating it by a progression o f consistent qualities. In any case, the duplicates

would all be able to be forces of 2, so in parallel math they should be possible

utilizing just moves and includes; no real multiplier is required. The CORDIC

calculation was at first created by Voider , and the main inspiration was to

iteratively settle trigonometric conditions. Later, Walther extended the algorithm to

solve a broader range o f equations, which include the hyperbolic and square root

equations. The CORDIC algorithms implement five varieties of functions, Vector

Rotation (Polar to Rectangular Translation), Vector Translation(Rectangular to

Polar Translation), trigonometric functions, hyperbolic functions, and square root

equations. The CORDIC algorithm has also been proposed for computing Discrete

Fourier , Discrete Cosine , Discrete Hartley and Chirp-z Transforms , filtering ,

SVD , and solving linear systems .

4.3Implementing SVD on a 2 x 2 matrix

Brent, Luk, Van Loan proposed a mesh-connected network of processors for

handling SVD on a larger scale. However, to achieve the SVD through a

network of processors, the SVD of a single 2 x 2 matrix must be first

developed. They proposed an iterative process, based on multiple processors

concurrently providing an SVD for their corresponding 2 x 2 matrix.

Forsythe and Henrici proposed the diagonalization of a n x n matrix by a

sequence of 2 x 2 SVD’s.

 Fig 4.1

The math involved is fairly straightforward on the handy TI-83. However,

how can this be implemented on an FPGA that is based on mathematical

32

operations through logic gates. Three trig functions needed to be developed

for sin, cos, and tan.

Fig 4.2

To further break down the problem being solved, the left and right rotation

angles must be written in terms of the input values {(a, b), (c, d)} that

compose the 2 x 2 matrix input

Fig 4.3

Verilog Library of Programmable Modules (LPM’s) are extremely accurate

but utilize a large percentage of the system resources. Which is to say that

there are built in Libraries within the FPGA's development software that

already facilitate trigonometric functions. However, it is noted that the single

2 x 2 matrix will take multiple trig functions to return a desired SVD.

33

Additionally, concurrency is the goal, which means that multiple calculations

should be occurring simultaneously. A single ATAN function in the LPM

took up 20% of the system's resources alone. Therefore, Coordinate Rotation

Digital Computer (CORDIC) modules needed to be developed for this

specific application. The CORDIC algorithm works generally by a series of

successive approximations that iteratively bring you closer to the true value

through vector rotations. The number of iterations and the resolution of the

binary value being used determine the margin of error produced from the

calculations. The image below shows the generic CORDIC algorithm.

Fig 4.4

4.4Implementing SVD in a mesh-connected network of

processors

With the functions in place to handle the SVD of a single 2 x 2 matrix, the

next step is to begin integrating numerous instances of those processors and

link them together. They are be linked in a mesh-connected network of

processors. The general flow of information works iteratively again where

the diagonal elements first calculate the left and right rotation angles and

calculate the SVD locally. Those angles are propagated outward to

34

neighbouring processors. The SVD for those neighbouring elements are

calculated while the rotation angles are propagated further outwards until all

elements have completed one iteration of the SVD. The flow of signals is

represented below for a 8 x 8 matrix of values.

 Fig 4.5

The next step is to trade the resultant data between neighbouring processors

and repeat. The 16 submatrices in the array structure can be sorted into two

groups based on their positions, which are the four diagonal processing

elements and the twelve off-diagonal processing elements. These submatrices

are interconnected by the input and output lines for transmitting the rotation

angles and the cell values. Obviously, there are some differences between the

input and output of these two submatrices. The diagonal processing elements

propagate the two rotation angles ϴ and ф to the other off-diagonal processing

elements along the rows and the columns; in contrast, the off-diagonal processing

elements just have access to the two parameters ϴ and ф

35

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

The Singular Value Decomposition is an important matrix factorization

method used extensively in engineering applications. It is particularly useful

in the context of signal processing, image processing and robotics

applications. Real-time data processing necessitates the use of hardware to

sustain the computation speed required. The Jacobi-type methods, which

form the basis for the systolic algorithms, are especially amenable to parallel

processing. Two widely used SVD algorithms which are based on the Jacobi-

type methods are the one-sided Jacobi rotation SVD algorithm (Hestenes

Method) and the two-sided Jacobi rotation SVD algorithm (Kogbetliantz

Method). The Kogbetliantz Method is embraced on the grounds that it is

useful for mapping onto standard systolic exhibit design and is profoundly

appropriate for parallel calculation. Brent, Luk and Van Loan propelled one

sort of the systolic cluster with innate parallelism and synchronized

multiprocessing capacities which are suited to address the difficulty of

constant preparing. In the mean time, a parallel requesting proposed by

Brent, Luk and Van Loan can be connected in the SVD calculation, too. It

utilizes less emphasess to figure the SVD than the section cycle requesting

and the column cycle requesting. As per the BLV exhibit calculation, all the

preparing components function as corner to corner rushes of movement. The

slanting preparing components can not begin work until the point that all the

off-askew handling components complete the calculation. In this thesis, an n

x n meshed-connected array based on the BLV array structure is proposed to

36

eliminate the idle time that the processing elements wait for the input data.

Only two steps are required in the proposed array to finish one iteration

computation instead of (n-1) steps in the BLV array. All processing elements

can be defined as two groups of the blocks, Angle Solve blocks and Vector

Rotation blocks. In the first step, Angle Solve blocks calculate the left and

right rotation angles. Then Vector Rotation blocks rotate the original matrix

with the left and right rotation angles, respectively. After O(n) sweeps, the

original matrix is transformed into a diagonalized matrix. In order to realize

the hardware implementation solution, the CORDIC arithmetic technique is

used to figure out the inverse tangent functions and vector rotation functions.

Two SVD processors, the Basic SVD Processor and the Extended SVD

Processor, are developed in the thesis. Due to the area limitations of the

device,Virtex-112000 from Xilinx, a 4 X 4 Basic SVD Processor or an 8X8

Extended SVD Processor is the maximum size processor which can be

contained on the chip. The Basic SVD Processor takes advantage of the

proposed mesh-connected array and some design techniques utilizing the

features of the device to improve the performance.

5.2 FUTURE SCOPE

Now that the SVD algorithm has been successfully realized in the hardware

implementation, some amelioration can be considered in the future. On the base of

the Basic SVD Processor and the Extended SVD Processor technology, the SVD of

a big matrix can be computed by using multi-FPGA devices. The analogous

research where the multi-FPGAs perform the matrix algorithm has been published .

The Spartan device can be considered to take the place of Virtex-II, because

Spartan-3 also has DCM, block Select RAM and embedded multipliers, and it is a

low cost FPGA. Due to the area limit of the device, the left and right rotation

matrixes have not been computed in the design. It only needs the vector rotation

blocks. There are two solutions to achieve the left and right rotation matrixes. One

solution is to use more Vector Rotation blocks in the design, and the singular vector

and the left and right rotation matrixes can be computed in parallel. Another one is

37

to reuse Vector Rotation blocks, and the idle time that Angle Solve blocks should

wait for the new data is extended to three times in a 4 X 4 Basic SVD Processor

The 2X2 matrix can further help us to make nXn matrices where n>=2 through mesh

connected array structure that we discussed above .

38

REFRENCES

[1] R. P. Brent, F. T. Luk, C. Van Loan, “Computation of the Singular

value Decomposition Using Mesh-connected Processors,”

Journal of VLSI and Computer Systems, vol. 1, no. 3, pp. 242-

270, 1985.

[2] R. P. Brent, F. T. Luk, "The Solution of Singular Value and

Symmetric Eigenvalue Problems on Multiprocessor Array”, SIAM

Journal of Scientific and Statistical Computing, vol. 6, pp69-84,

1985.

[3] A. Ahmedsaid, A. Amira, A. Bouridane, "Improved SVD Systolic

Array and Implementation on FPGA", Proc. IEEE Field-

Programmable Technology, pp35-42, 2003.

[4] G. E. Forsythe, P. Henrici, " The Cyclic Jacobi Method for

Computing the Principal Values of a Complex Matrix",

Transactions of the American Mathematical Society, 94(1), pp1-

23, January, 1960.

[5] R. Andraka, " A Survey of CORDIC Algorithm for FPGA Based

Computers", Proc. of ACM/SIGDA International Symposium on

39

FPGAs, pp191-200, 1998.

[6] W. Ma, "An FPGA-Based Singular Value Decomposition

Processor", Masters Thesis, University of New Brunswick,

August 2005.

[7] R. Andraka, “A survey of CORDIC algorithm for FPGA based

computers”,International Symposium on Field Programmable Gate Arrays, Proc.s

of the 1998 ACM/SIGDA sixth international symposium on Field programmable

gate arrays, Page(s): 191 -200, 1998.

[8] H. Andrews and C. Patterson, “Singular value decompositions and digital

image processing”, IEEE Trans, on Acoustics, Speech, and Signal Processing

[see also IEEE Transactions on Signal Processing], Vol.: 24, Issue: 1 , Feb

1976, Pages:26 - 53.

 [9] “AN FPGA-BASED SINGULAR VALUE DECOMPOSITION

PROCESSOR" by Weiwei Ma

 [10] Eigen values and Singular Values (Mathworks.com)

http://dspace.hil.unb.ca:8080/bitstream/handle/1882/43573/MR35614.pdf?sequence=1
http://dspace.hil.unb.ca:8080/bitstream/handle/1882/43573/MR35614.pdf?sequence=1
http://www.mathworks.com/moler/eigs.pdf

40

