

CONNECTIVITY BASED BOUNDARY RECOGNITION IN

WIRELESS SENSOR NETWORKS

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Saurav Kumar (141213)

Divyanshoo Sharma(141229)

Under the supervision of

Dr. Shailendra Shukla

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

i

 Certificate

 Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Coonectivity Based

Boundary Recognition In Wireless Sensor Networks ” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer

Science and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried out

over a period from August 2017 to May 2018 under the supervision of Dr. Shailendra

Shukla (Assistant Professor (Senior Grade))
The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature) (Student Signature)

Saurav kumar, 141213 Divaynshoo sharma,141229

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Shailendra Shukla
Assistant Professor (Senior Grade)

Computer Science Department

Dated:

ii

 ACKNOWLEDGMENT

This may seem long but the task of our project work both theoretically and practically

may not have been completed without the help guidance and mental support of the

following persons.

Firstly, we would like to thanks my guide Assistant Professor (Senior Grade), Department

of CSE Jaypee University of Information technology Waknaghat, Dr. Shailendra Shukla

sir who provided us with the idea and related material for the project proposal. He indeed

guided us to do the task for our thesis in such a way that it seems to be research work. His

continuous monitoring to support us and our research work encouraged us a lot for doing

our thesis in very smooth manner.

Secondly, we would like to thanks our Parents who have always been with us for

inspiring us and thirdly, we would like to thanks God for keeping us energetic, healthy

and enthusiastic

Signature of the student …………………… Signature of the student………..

Saurav Kumar: Divyanshoo sharma:

Date Date

iii

 Table of Content

Certificate (i)

Acknowledgement (ii)

Table of Content (iii)

List of Abbreviations (v)

List of Figures (vi)

List of Tables (vii)

Abstract (ix)

Chapter 1 Introduction

1.1 Introduction 1

1.2 Problem Statement 5

1.3 Objectives 5

1.4 Methodology 6

1.5 Organization 7

Chapter-2 Literature Survey

 2.1 Distance Based Boundary Recognition 8

 2.2 Connectivity Based Boundary Recognition 11

Chapter-3 System Design

 3.1 System Development 15

 3.2 Platform used for simulation 18

 3.3 Algorithm 20

 3.4 Practical issues 24

Chapter-4 Performance Analysis

 4.1 Proposed Approach 26

 4.2 Algorithm for the INITIALIZE (n0) function 26

 4.3 Flowchart of INITIALIZE function 28

 4.4 Practice Run of the INITIALIZE function 29

 4.5 Analysis for the sparse network 36

 4.6 Implementation In Cooja Simulator 37

iv

 4.7 Simulation On The Dense Network 41

 4.8 Implementation In Cooja 42

 4.9 Analysis For The Dense Network 43

 4.10 code 44

CHAPTER -5 Conclusion

 5.1 Conclusion 49

 5.2 Future Scope 49

v

 List of Abbreviations

S.NO. Abbreviation Full Form

1. WSN Wireless sensor network

2. BNs Boundary nodes

3. ABBD Angle Based Boundary Recognition

4. EBDG Energy Balanced Data Gathering

5. BRGT Boundary Recognition via Graph Theory

6. SDBR Self recognition Boundary Recognition

7. CNs Closure Nodes

8. CBC Coarse Boundary Cycles

9. CDCHD Connectivity based Distributed Coverage Hole

Recognition

10. LCA Least Common Ancestor

11. SBNS Sequential Boundary Node Selection

12. DBNS Distributed Boundary Node Selection

13. THD Topological Hole Recognition

14. D-LPCN Distributed Least Polar Angle Connected Node

15. UDG Unit Disk Graph

16. IoT Internet of Things

17. TCP/IP Transmission Control Protocol/Internet Protocol

vi

 List Of Figures

S.No. Figure Number Page

Number

1. Fig 1: Differentiating between boundary and interior node 2

2. Fig 2: Overview of methods used for boundary recognition 6

3. Fig 3: The Proposed Approach For Boundary Extraction 15

4. Fig 4: Boundary cycle corresponding to the boundary node 16

5. Fig5. The external and internal geometric boundaries (solid

curves) of a wireless sensor network. The dashed lines denote

the communication link.

17

6 Fig6. Contiki operating sysytem an IPv6 routing protocol on 41

nodes in the Cooja Contiki network simulator

20

7 Fig 7. Decision on each node after executing INITIALIZE(no)

function

21

8 Fig 8. Value of ft after executing the erosion operation 22

9 Fig 9. Tight inner and outer boundaries 22

10 Fig10. INITIALIZE(n0) algorithm 27

11 Fig11: Flow chart to depict the working of INITIALIZE (n0)

function

28

12 Fig 12. Deployed wireless sensor network and 1-hop neighbour

set for each node

29

13 Fig 13: 2-hop neighbour set of each node in the deployed

network

30

14 Fig 14: Practice run of the INITIALIZE function on node

numbered 13

31

15 Fig 15. Practice run of the code showing the values of variables

at each iteration

32

16 Fig 16. Practice run on the node numbered 13 33

17 Fig 17. Node numbered 13 is identified as actual initerior node

and node numbered 15 is identified as suspected boundary node

34

vii

18 Fig 18. Console output for the INITIALIZE function 35

19 Fig 19. console output after the execution of erosion function 36

20 Fig 20. Implementation in cooja simulator, nodes with LED red

on are on boundary whereas the nodes with LED Blue are

interior node

37

21 Fig 21. Mote output window, node with id 5,9,17 and 13 are

boundary node

38

22 Fig.22: Creating Mote Of Sky Types 39

23 Fig.23: Firmware selected 39

24 Fig 24: Network created 40

25 Fig 25: Decision on node with ID:13 41

26 Fig 26. Implementation in cooja simulator, nodes with LED red

on are on boundary whereas the nodes with LED Blue are

interior node

42

27 Fig27. Mote output window showing decision on nodes 43

viii

 LIST OF TABLES

S.No. Table Number Page

Number

1. Table 1: Existing approaches for boundary recognition 12

ix

 Abstract

In this project, we handle the issue of boundary recognition by actualizing the algorithm

proposed by which depends on basic, conveyed and connectivity based approach. This

algorithm looks at the 2-hop iso-contour of every node. In particular, the proposed

algorithm settles on a harsh choice on a speculated boundary node by looking at its 2-hop

iso-contour and afterward refines the choice in view of a heuristic activity (otherwise

called the disintegration task), which fundamentally decreases the measure of the

presumed boundary node set. All the more critically, boundary cycles comparing to

inward and external boundary are recognized and give important information to different

applications. An intensive assessment demonstrates that our algorithm is material to a

large portion of the disseminated WSNs. Lastly we analyse the simulation and deduce the

accuracy of the algorithm for two different wireless sensor networks.

1

 Chapter-1

 INTRODUCTION

1.1 Introduction

Wireless sensor networks (WSNs), included large number of little and reasonable (sensor)

nodes with compelled figuring power, restricted memory, and short battery lifetime, can

be utilized to screen and gather information in an area of intrigue.

Wireless sensor networks are extensively applied in many fields such as battlefield

surveillance, target tracking environment monitoring, and health care. Most of the above

applications are mission-critical and require complete coverage of the monitored area so

that the events under observation can be precisely detected.

In the wake of being sent, a wireless sensor network (WSN) stays reliant on human

intercessions as it routinely should be kept up and nourished with new parameters, for

example, refreshed communications pathways and positions and abilities of recently

included sensors. In severe and remote regions, sensors need to work unattended and thus

devoid of the necessary human maintenance. Accordingly, averting and repairing

abandons caused by battery consumption and decimation by creatures or potentially

spatial occasions are relatively inconceivable. These deformities may at last prompt

losing correspondence network in a few sections of the WSN.

Failure of boundary nodes degrade the overall performance of the wireless sensor

networks(WSN) such as decreasing the connectivity, unbalancing the WSNs load, and

aggravating the burden of hole border nodes in data forwarding.

As it is relatively difficult to keep the presence of gaps in light of irregular occasions

particularly in dynamic WSN open air environments, a few activities have concentrated

on constraining and keeping the impacts of these voids.

2

What are Boundary Nodes?

Nodes performing observation of target territory are called boundary nodes. They are

required to stay mindful for occasion acknowledgment like articles moving in and moving

out the territory under surveillance. An arrangement of boundary nodes is indicated by

BNs, because of dynamic association in observation they experiences speedy vitality

depletion, results to a shorter lifetime.

Since sensor nodes are haphazardly sent in a network, nodes' shutdown, or a natural

deterrent may happen because of which holes can be framed in the network, building sets

of unavailable nodes and leaving revealed regions. ‘

Furthermore, in like manner they can cause the non-achievement of directing algorithms.

While perceiving either the nodes on the boundary of void or on the network's boundary;

revealed regions will be recognized and could be repaired by an incremental development

of new sensors, the already specified acknowledgment furthermore empowers the routing

protocols to recognize and pass these holes.

 Fig1.Differentiating between boundary and interior node
[1]

3

Application and Motivation

Limit nodes ordinarily play a more essential role than rest of the nodes. From one

viewpoint, limit nodes not just specifically connect with the external condition, for

example, events coming in or moving out of the locale checked by the WSN, any

correspondence with the outside condition is executed with the help of boundary nodes

and help to obtain statistics about the WSN structure.

Then again, because of the interaction between the limits of a WSN and its physical

condition, for example, design of the floor in a building, a guide of a transportation

organize, territory varieties, and deterrents, boundary nodes are vital for monitoring the

WSN shape which shows huge highlights of the fundamental condition.

Rather than the external boundary of a WSN, boundaries of inward openings (named

internal boundaries) are basic markers of the general soundness of a WSN, for example,

inadequate scope and network. In this way, boundary recognition is of awesome

significance for different WSN applications.

Some of the applications of the boundary recognition include:

Node’s energy conservation:

 If a sensor node can self-distinguish its location on a coverage boundary, it can

consequently tune its technique to wake up neighbouring nodes to fill in the coverage gap

to preserve vitality.

Localization of sensor nodes in the Wireless Sensor Network.

Geographic Routing

Geographic routing is a routing principal that depends on geographic position data to send

a message to the geographic location of the destination instead of utilizing the system

address, it can be extremely effective if all the coverage boundaries can be distinguished

already.

4

Boundary Recognition Approach

Impressive endeavors have been put resources into creating limit recognition algorithms,

bringing about three classes of techniques: geometric, statistical and topological

strategies.

Geometry based strategies employ the geometrical tools to identify the limit nodes and

coverage voids with the presumption that nodes are aware of their own locations. In spite

of the fact that the geometric strategies can discover more exact boundary nodes than the

rest two classes, the necessity of hub area data restrains its application, particularly in

extensive scale WSNs.

Statistical strategies usually identify limit nodes by assuming that the nodes in WSNs

abide by the probability distribution. The measurable techniques more often than not

make suppositions about the probability distribution of the node deployment, and

afterward probabilistically distinguish limit nodes in view of some factual properties

under certain system conditions. Although good results can be achieved when the node

degree in WSNs is smooth, the method is prone to being invalid when the node degree

fluctuates sharply. One noteworthy shortcoming of the statistical techniques is the

impossible necessity on node distribution and thickness.

The topological techniques utilize topological properties, for example, connectivity

information to identify boundary nodes. particularly this approach is applied to the

location-free environment, recognize boundary nodes and coverage holes by exploiting

the connectivity information of nodes. Typically, the topological techniques have higher

bundle control overheads than the rest two classes due to collecting connectivity

information from neighbouring nodes, however, don't require node location information

and for the most part, beat the statistical strategies. In this paper, we center around

perceiving precise boundaries utilizing minimal effort connectivity information in WSNs.

5

1.2 Problem Statement

 Determine suspected boundary nodes in a wireless sensor network(WSN)

 Performing disintegration (heuristic) task on the arrangement of suspected limit

nodes, to get the real boundary nodes.

 Identifying the tight inner and outer boundaries and boundary cycles.

1.3 Objectives

 To do an exhaustive assessment and demonstrate that the proposed calculation is

applicable in appropriated WSNs.

 To implement the Connectivity based boundary recognition algorithm proposed by
[1]

.

 Extending the proposed algorithm’s approach to 3-D networks. The existing algorithm

works only for 2-D networks and is unable to detect boundaries for 3-D networks.
[1]

 Coping with Continuous changing behavior of network i.e. mobility of the sensor

nodes.

 Implementing the algorithm on the wireless sensor nodes in cooja simulator.

6

1.4 Methodology

 Fig2: Overview of methods used for boundary recognition

The algorithm proposed to detect boundary nodes utilizes connectivity information of

each node. At earlier stages the 1-hop and 2-hop information of each node is determined.

Then a function INITIALIZE(n0) is executed to compute the value of ft which determines

whether a node is an actual interior node or is a suspected boundary nodes.

After the execution of INITIALIZE() function, these steps follow:

 After the execution of the function on every node, the final set of suspected boundary

node is obtained.

 The suspected boundary nodes in the set are far more than the actual boundary nodes.

 An erosion activity is performed to refine the arrangement of suspected boundary node.

Computing the 2-hop and 1-hop neighbour

information of every node

Determining the value of ft and

accordingly making the set of suspected

boundary nodes

Playing out the heuristic task to refine the

arrangement of suspected nodes

Computing and searching for boundary

cycles.

7

 After determining the value of fd the boundary cycles are identified which corresponds to

both tight inner and tight external boundaries.

 The remote channel considered here, fulfills the UDG (unit plate diagram) model where

two nodes are associated if and just if their separation is at generally 1.

1.5 Organization

This report is organized into five chapters.

In chapter 1, Introduction, the genesis of the problem, problem statement and

methodology followed by different objectives.

In Chapter 2, Literature review presents several existing algorithms for boundary

recognition in WSN

In chapter 3, A Solution for boundary recognition using connectivity information of

sensor nodes is given.

In the chapter 4, The proposed algorithm is presented with its analysis both computational

and mathematical.

Chapter 5 consist of Conclusion and Future scope

8

 Chapter-2

 LITERATURE SURVEY

 Boundary recognition algorithms mainly have two approaches one is distance based

approach which use the geometrical value between sensor nodes and the another approach

is connectivity based approach which use the neighbour information of nodes.

2.1 DISTANCE BASED BOUNDARY RECOGNITION:

It initially decides the boundary of an arrangement of nodes which can be considered as

an arrangement of seeds. At that point, it decides the greatest hop distances around every

seed and analyzes whether the shape around a seed frames a closed cycle. Just nodes that

are close to the boundaries are distinguished and they are not expressly associated as a

polygon.

Following methods based on distance based boundary recognition technique:

a. ABBD (Angle Based Boundary Recognition Algorithm) ALGORITHM
[11]

:

It is produced to identify boundaries utilizing the separation between neighbour nodes.

The fundamental thought of this algorithm is to test whether every sensor node is secured

by the polygon shaped by its neighbour nodes. A sensor node will be proclaimed non-

boundary node, in the event that it is covered by no less than three nodes.

Some essential highlights of this algorithm are right off the bat it depends on 1-hop

neighbour data, besides it delivers less system overhead and ultimately the algorithm is

valuable in improving the lifetime of limit nodes. The multifaceted nature of this

algorithm is O (n/k) time and O(kδ
3
) messages. Where n is the quantity of nodes, δ is the

quantity of neighbour and k is the quantity of nodes all the while executing nearby

calculation.

9

b. THE D-LPCN ALGORITHM
[12]

:

DLPCN algorithm is a distributed model of LPCN algorithm proposed by[12].In this

algorithm iteration is performed on every node in the network. In every iteration, any

boundary node, aside from the first, picks its closest polar angle node among its

neighbours regarding the node found in the past iteration. The important starting node can

be thusly chosen using the Minimum Finding algorithm, which has two key purposes of

intrigue.

The first is that the algorithm works with an associated network, given as planar or not.

Additionally, it considers any blocking condition and contains the essential parts to avoid

them. The second favorable position is that the algorithm can decide every one of the

boundaries of the diverse associated parts of the network.

In this algorithm vitality utilization of each node was compute and it is discovered that

the utilization of the energy in network relies upon the number of boundary nodes i.e hub

thickness, Degree of every hub and their number.

c. EBDG (Energy balanced Data Gathering) ALGORITHM
[10]

:

energy utilization is a natural issue in wireless sensor network depicted by multihop

routing and many-to-one traffic pattern, and this uneven vitality dispersing would

altogether be able to diminish organize lifetime.

To determine the issue of energy usage in wireless sensor network and amplifying the

lifetime of the network an algorithm was proposed by [10]. In this paper, energy

utilization adjusting issue was defined as an ideal transmitting information circulation

issue by consolidating the thoughts of Corona-based network division and combined

directing technique with information aggregation.

The paper firstly presents a confined zone-based routing plan that assured balanced

vitality utilization among nodes within each corona. A centralized algorithm with time

complexity O(n) (n is the number of coronas) to solve the transmitting information

distribution problem went for balancing vitality utilization among nodes in various

10

coronas is designed. The approach for computing the flawless number of coronas to the

extent of maximizing the lifetime of the network is also included in this paper.

d. BRGT(Boundary Recognition via Graph-Theory)ALGORITHM
[5]

:

This is a centralized algorithm which uses graph clustering strategy, in which it permits

the division of the system into little clusters that evade association openings. At that

point, the boundary nodes of every group are recognized utilizing centrality scores.

The discovery of limit nodes is enforced by the combination of adjoining clusters. Just

nodes that are on the fringe of a solitary group and are not associated with at least two

clusters are chosen as boundary nodes. It isn't reasonable for expansive networks..

Limitation:

Since the distance based boundary discovery systems utilize the Geometrical technique,

can discover more precise boundary nodes than the other two categories(Topological and

Statistical), the necessity of hub area data constrains its application, particularly in huge

scale WSNs.

11

2.2 CONNECTIVITY BASED BOUNDARY RECOGNITION:

It uses N-hop neighbour information to construct iso-contour of each node. Connectivity-

based Boundary Recognition for the topology has demonstrated the extraordinary effect

on the execution of such administrations as area, directing, and way arranging in wireless

sensor networks. It doesn't require sensor areas and just uses network connectivity

information.

Algorithms used for recognition of the boundary nodes include:

a. Funke’s algorithm(Topological Hole Recognition)
[6]

:

This algorithm builds iso-contours of one common node looks at where the contours are

broken and yield boundary nodes with specific certifications. Be that as it may, just nodes

close to the boundaries are recognized, and the density prerequisite is fairly high.

In initial segment of this algorithm, there is a straightforward circulated methodology to

distinguish nodes close to the boundary of the sensor field as well as near hole

boundaries.

The hole identification algorithm is constructed simply with respect to the topology of the

correspondence graph, i.e. the main information accessible is which nodes can interact

with each other.

b. Research by I. Khan on “Self-recognition scheme for WSN boundary detection

(SDBR)” (Oct. 2009)
[9]

: In this algorithm, each node can choose to be a boundary or

interior one by the development of its 2-hop neighbours' graph. At that point, the node

will checks if this graph frames a closed cycle or broken path. The broken way shows the

node is dwelling on the boundary, while if there should be an occurrence of the closed

cycle the node is set apart as an inner node.

The major drawback of this algorithm is its determination of coarse limits in which a few

interior nodes are wrongly perceived as boundary nodes.

12

c. Research by W.-C. Chu on “Decentralized boundary recognition without location

information in wireless sensor networks.” (Apr 2012)
[13]

: The algorithm proposed

here, relaxes the condition of distinguishing boundary nodes from interior nodes and

identifies more nodes as boundary nodes.

d. CBC
[8]

 : Hseih et al. depicted the Distributed Boundary Recognition Algorithm which

depends on four stages. The principal stage is to choose Closure Nodes (CNs) which

generally encase the openings and boondocks of the detecting field. In the second stage,

those closure nodes are associated with each other to frame Coarse Boundary Cycles

(CBCs) for recognizing every obstruction. The third stage is proposed to find the correct

Boundary Nodes (BNs) and interface them to refine the CBCs to be final boundaries.

The last stage is proposed to keep up the uprightness of BNs while the boundary is broken

because of nodes failure.

e. DBNS & SBNS ALGORITHM
[2][3]

:

Both of the algorithms are proposed by Sahoo et al. The SBNS algorithm accept the sink

to be a boundary node at that point utilizes the correct hand rule to choose boundary

nodes in a sequential way. The procedure is dined by the sink and is rehashed until the

beginning node (sink) is returned to.

While DBNS algorithm characterizes extraordinary nodes as boundary nodes at that point

interfacing them to frame cycles encasing limits. An outrageous node is characterized as a

node that has either most extreme or least value in its directions contrasted with of its

one-hop neighbours.

The fundamental downside of these methods is the need of a precise arrange of sensor

nodes. Every node must be furnished with a situating gadget, for example, GPS to get its

geographical location, which isn't appropriate for small sensors with low vitality

utilization.

13

 f.CDCHD [5]
:

 Fekete et al. proposed another boundary recognition algorithm called

Connectivity-based Distributed Coverage Hole Recognition CDCHD.

The essential thought is that nodes on the boundaries have moderately smaller normal

degrees than nodes inside the network. A statistical limit is utilized to recognize boundary

nodes and internal nodes.

g. LCA (Least Common Ancestor) :

Wang et al. construct a shortest path tree through flooding the entire network beginning

from a seed node. At that point the algorithm looks for cut nodes that are characterized as

nodes which have their Least Common Ancestor (LCA) generally far away and their

ways to the LCA very much isolated. By utilizing the cut nodes, the algorithm artificially

consolidates gaps into a solitary gap to build one composite cycle.

This algorithm has been criticized for the flooding of the whole network and the

synchronization of the nodes of the cycle R, which requires more execution time and

communication overhead.

Limitations:

In spite of the fact that the last two algorithms are as straightforward as the Funke's, they

have normal shortcoming, specifically requiring a high node thickness, recognizing

significantly more than actual boundary nodes and not demonstrating the distinguished

boundary nodes definitively.

14

 Table 1. A set of existing approaches for detecting boundary nodes.

Protocol Location

awarness

Additional

information

Protocol

type

Network

flooding

Boundary

recognition 2D

 or

 3D

DBNS
[2]

 Yes Coordinates Distributed Boundary nodes Network + Holes 2D

SBNS
[3]

 Yes Coordinates Distributed Boundary nodes Network 2D

CDCHD
[4]

 No Distances Distributed 2-hop

neighbours

Holes 2D

BRGT
[5]

 No Angles Centralized The_whole

network

Network + Holes 2D

THD
[6]

 No Distances Centralized The_whole

network

Network + Holes 2D

LCA
[7]

 No Distances Distributed The_whole

network

Network + Holes 2D

CBC
[8]

 No Distances Distributed The_whole

network

Network + Holes 2D

SDBR
[9]

 No Distances Distributed 3-hop

neighbours

Network + Hole 2D

EBDG
[10]

ABBD
[11]

 No

NO

Angles

Angles

Distributed

Distributed

1-hop neighbour

The whole

Network

Network + Hole 2D

 Network + Holes 2D

15

 Chapter-3

 SYSTEM DESIGN

3.1 System Development:

Assume that, there are expansive numbers of sensor hubs, say n hubs, are scattered in a 2-

D geometric locale where adjacent nodes are associated with each other to shape a

Wireless Sensor Network (WSN). For simplicity of introduction, we expect that the

remote interchanges take after the UDG display.

 The WSN can be modelled as a graph G (V, E) where the vertex set V represents nodes

and the edge set E represents interaction links between set of nodes.

 Without loss of generality, we accept the chart G (V, E) is associated. The implanting that

connects the vertexes V to the real nodes in the WSN is meant by p: V → R2; the i-hop

neighbour nodes of node nx is indicated by Ni (nx); |. | processes the cardinality of a set.

 Fig3: The Proposed Approach For Boundary Extraction
[3]

16

 The external boundary of the wireless sensor network is the minimum closed curve

encasing the graph G (V, E) however not encompassing whatever other closed curve that

encases the chart G (V, E).

 Likewise, an interior boundary of the wireless sensor network is the maximal closed

curve encasing an opening of the graph G (V, E) yet not being encompassed by whatever

other closed curves that encase the like hole.

 Henceforth, an external (or internal) boundary of the WSN is really contained edges,

vertices, and fragments of edges in the graph G (V, E) as represented in Figure.

 For clarification, we call the nodes having a place with boundaries as genuine limit hubs

and call alternate nodes as real inside nodes. In this manner, utilizing given nearby

connectivity data, we will probably around find a limit node set, including genuine

boundary nodes as well as some real inside nodes close WSN boundaries, and after that

endeavor to lessen the measure of the boundary hub set and further to separate exact limit

cycles from the found boundary node set.

 Fig 4. Boundary cycle corresponding to the boundary node

17

Analytical Model Development

Considering the below given geometric boundaries, we can readily define the boundary

nodes as follows.

 Fig5. The external and internal geometric boundaries (solid curves) of a wireless sensor

network. The dashed lines denote the communication link.

Initially, nodes associated to boundaries are certainly boundary nodes.

Further, if any portion is associated with a boundary, edges and hubs having a place with

this boundary won't have the capacity to shape a (shut) boundary cycle comparing to this

boundary, so additional nodes must be joined as boundary nodes.

For instance, nodes 1 and 2 in Figure3 don't lie on any boundaries but on the other hand

are viewed as boundary nodes to frame boundary cycles. Rather than boundary nodes, the

various nodes are named inside nodes.

On a basic level, the assignment of boundary (and opening) identification is to distinguish

boundary nodes and after that develop relating boundary cycles.

18

3.2 Platform used for simulation

Contiki:

 It is an operating system for networked, memory-compelled frameworks with an

attention on the low-power wireless Internet of Things (IoT) gadgets. Surviving

utilizations for Contiki incorporate system for street lighting, sound checking for smart

cities communities, radiation observing, and cautions.

 Contiki picked up the popularity because of its inherent TCP/IP stack and lightweight

preemptive scheduling over occasion driven bit which is an extremely spurring

highlight for IoT.

 Contiki gives multitasking and an inherent Internet Protocol Suite (TCP/IP stack), yet

requires just around 10 kb of RAM (random access memory) and 30 kb of ROM (read-

only memory). Whole system, including a GUI, needs around 30 kb of RAM.

 Contiki is intended to keep running on kinds of equipment gadgets which are

extremely compelled in memory, energy, computation power, and interactive data

transmission. A classic Contiki system has memory of the order of kbs, a power

budget of the order of milliwatts, computing speed estimated in megaHertz, and

correspondence data transfer capacity on the order of many kbps. Such frameworks

incorporate numerous sorts of embedded systems.

 Contiki gives three system components: the TCP/IP stack which gives IPv4

organizing, the uIPv6 stack, which gives IPv6 organizing, and the Rime stack, which is

an arrangement of custom lightweight networking protocols for low-power wireless

network.

19

Simulation:

 The Contiki framework incorporates a network simulator called Cooja, that recreates

network of Contiki nodes.

 The nodes may have a place with both of three classes: imitated nodes, where the

whole equipment of every node is emulated.

 Cooja nodes, where the Contiki code for the node is arranged for and executed on the

simulation host.

 Java nodes, where the conduct of the hub must be re-implemented as a Java class. One

Cooja simulation might contain a blend of nodes from any of the three predefined

classes. Emulated nodes can likewise be utilized to incorporate non-Contiki nodes in a

simulated network.

Programming Model

 To perform proficiently on little memory frameworks, the Contiki programming

model depends on protothreads.

 Protothreads are collectively scheduled.

 A Contiki process must always provide control back to the kernel at regular intervals

of time.

20

Fig6. Contiki operating sysytem an IPv6 routing protocol on 41 nodes in the Cooja Contiki

network simulator

3.3 ALGORITHM

The essential thought of the proposed algorithm is right off the bat recognizing a set of

questionable boundary nodes, at that point clarifying them, and ultimately searching them

for actual boundary cycles.

The outline is listed below.

 Every node, represented by n0, keeps up a neighbourhood variable, signified by ft,

which is introduced in light of its 2-hop iso-contour separated from the subgraph of

G(V,E).

21

 As per the estimation of ft, it is generally chosen whether node n0 is a limit node: ft= 1

demonstrates that node n0 is probably going to be a limit node and is in this way

named as a suspected boundary node, while ft= 0 shows that node n0 is recognized to

be an inside node, as appeared in Figure.

 Fig 7. Decision on each node after executing INITIALIZE(no) function

 In the wake of trading the estimations of ft between sets of neighbouring nodes, each

presumed boundary node locally plays out a erosion task to refresh the decision on the

value of its ft as indicated by the segment of distinguished inside nodes in its 1-hop

neighbour nodes, to be specific, clarifying the rough decision made in the previous

step, as delineated in Figure.

 Fig 8. Value of ft after executing the erosion operation

22

 Each speculated limit node, say node n0, keeps up another local variable, indicated by

fd, to separate itself from the other suspected boundary nodes.

 The suspected boundary nodes helpfully scan for boundary cycles in light of their

estimations of fd. Therefore, a set of tight boundary cycles comparing to internal and

external boundaries are acquired, as appeared in Figure.

 Fig 9. Tight inner and outer boundaries

3.3.1 Initializing the local variable ft

 Here, a node say n0 load the value its local ft using the return value of the function,

INITIALIZE (n0).

 As per the underlying estimation of ft, a rough judgment regarding whether node n0 is

probably going to be a boundary hub is made, so the nodes in the WSN are assembled

into a speculated boundary node set with ft= 1 and an inside node set with ft= 0.

 The function INITIALIZE (n0) distinguishes node n0 as a presumed limit hub if a

closed way encasing hub n0 isn't found in its 2-hop iso-contour; for effortlessness, we

state this condition as the CLOSED-CYCLE condition.

23

 In the usage of the function INITIALIZE (n0), the parameter Lth indicates the

insignificant dimension of all conceivable closed ways that fulfill the CLOSED-

CYCLE condition.

 As per the CLOSED-CYCLE condition, hubs with ft= 0 are certainly genuine inside

hubs, however hubs with ft=1 are just plausible to be real limit hubs and in this way are

named as presumed boundary nodes.

 One can promptly derive that the underlying estimations of ft for genuine limit hubs

are dependably 1, while the underlying qualities for real inside hubs take either 0 or 1,

suggesting that a segment of real inside hubs are disgracefully found as presumed limit

hubs, particularly in low-thickness WSNs. Henceforth, surprisingly the CLOSED-

CYCLE condition is simply adequate.

3.3.2 Executing the heuristic operation

 After the instatement of ft at every node, the quantity of associated boundary

recognition is dependably times with that of genuine limit node, which forces

unfavourable effects on limit discovery.

 Perceptions show that a major of 1-hop neighbour nodes of real boundary nodes have

ft=1, yet some genuine inside nodes, which are contiguous real boundary nodes or

which have moderately scanty neighbourhoods, frequently end up having ft= 1, and a

dominant part of 1-hop neighbour hubs of these hubs have ft= 0.

 In perspective of this component, for any hub with ft= 1, if the proportion of its 1-hop

neighbour hubs with ft= 0is over a limit, signified by Eth, this hub is profoundly

plausible to be a genuine inside hub, so its ft ought to be set to 0.

 We plan a erosion task to understand the refinement of ft at suspected boundary nodes.

24

3.3.3 Finding boundary cycles

To introduce our outcome definitively, we endeavor to acquire exact boundary Cycles

relating to both inward and external boundary of the wireless sensor networks.

3.4 PRACTICAL ISSUES

Working with Realistic Channel Models

The algorithm is proposed in the idealized UDG show.

In spite of the fact that the UDG demonstrate is basic, commonsense remote interchanges

can never fulfill it, and, henceforth, more reasonable channel models, for instance, the

QUDG show, are produced.

With the QUDG show, it is conceivable that the 2-hop iso contours of some real limit

hubs can frame closed cycles in order to fulfill the CLOSED-CYCLE condition, and,

subsequently, they are erroneously recognized as inside hubs, which corrupts the nature

of the proposed algorithm.

Given that a real boundary node is recognized as an inside hub due to ft= 0, it can be

watched that the lion's share of its 1-hop neighbour hubs are distinguished as speculated

limit hubs with ft= 1, however given a genuine inside hub with ft= 0, it is of little

likelihood that the lion's share of its 1-hop neighbour node are distinguished as presumed

boundary nodes.

It can be presumed that, for any recognized inside hub with ft= 0, if the proportion of the

quantity of its 1-hop neighbour nodes with ft= 0 to the aggregate number of its 1-hop

neighbour nodes is underneath a limit, it will probably be a real neighbour node and its ft

ought to be set to 1.

25

 Chapter-4

 PERFORMANCE ANALYSIS

4.1 Proposed Approach

The proposed approach can be divided into three phases:

1) In the first phase we execute a function INITIALIZE (no) on each node of the

network. The value returned by this function initializes the value of ft .

2) Second phase comprises of heuristic operation which refines the set of suspected

boundary nodes, by computing Eth for each suspected boundary node.

3) In the last phase, we present our result in a meaningful way and look for the

CLOSED-CYCLE condition to find the tight inner and outer boundaries.

4.2 Algorithm for the INITIALIZE (n0) function

The algorithm gives the set of suspected boundary node and this is the first step of the

whole algorithm proposed by [1]

26

 Fig10. INITIALIZE(n0) algorithm

27

4.3 Flowchart of INITIALIZE function

 NO

 NO

 YES

 Fig11: Flow chart to depict the working of INITIALIZE (n0) function

 START

Computing connectivity

information for each

node in WSN.

Is each node computed

for the value of ft ?

Look for closed path

enclosing the node

 Is the

closed path

complete?

Return value 0

 END

Return value 1

28

4.4 Practice Run of the INITIALIZE function

We carry out simulations in different scenarios, with the goal to evaluate the performance

of the proposed algorithm with respect to the node density and distribution, the wireless

channel model.

First, we dry run the INITIALIZE function which will initiate the variable ft for each node

in the wireless sensor network.

For the dry run we consider a network of wireless sensor nodes, the network is sparse.

(Shown in the figure).

We need to find out 1 and 2-hop neighbour information for each node.

 Fig 12. Deployed wireless sensor network and 1-hop neighbour set for each node

29

 Fig 13: 2-hop neighbour set of each node in the deployed network

After gathering the neighbour information we practice run the INITIALIZE function code

on two nodes of the deployed network that are node 13(interior) and 5(exterior).

The basic idea is to check whether the 2-hop isocontour for a node is broken or is

completely surrounded or covered by the network.

30

 Fig 14. Practice run of the INITIALIZE function on node numbered 13

Value of the variable nr is changing after every iteration.

 Each new value of nr is used to find the candidate nodes set (means nodes which are

common in the 2-hop neighbour set of the node on which the code is executed and the

nodes which appear in the 1-hop neighbour set of the node having value nr), so that the

decision on the node, whether its intireor or boundary node can be made. Value of nr is

also used to determine the recover node set which adds into the set Vc whose value is the

check condition for the while loop. As soon as the decision is made for the node, the

variable ft is initialised and the program ends.

31

 Fig 15. Practice run of the code showing the values of variables at each iteration

32

 Fig 16. Practice run on the node numbered 13

33

 Fig 17. Node numbered 13 is identified as actual initerior node and node numbered 15 is

identified as suspected boundary node

34

From the practice run we can infer that the results or the decision given by the

INITIALIZE function is in accordance with the deployed network. Here it should be

noted that the any node identified as boundary node is only suspected to be boundary

node and needs a refinement operation however nodes identified as interior nodes are the

actual interior nodes and need no refinement decision or operation.

To obtain the result or value of ft for each node of the deployed network we run the code

in the c (programming language) compiler i.e. DevBlocks and see the results in the

console output.

 Fig 18. Console output for the INITIALIZE function

From the results we can infer that the INITIALIZE function identified node numbered 14

and 15 as suspected boundary node although they are actual interior nodes. This

anomality is because, majority of 1-hop neighbour of these two nodes are boundary

nodes.

To refine the decision on these nodes we execute the erosion function. We check and

verify the results for each node after the execution of erosion or heuristic operation.

35

 Fig 19. console output after the execution of erosion function

From the console output we can infer that still the decision on the node numbered 14 and

15 does not match with the deployed network.

4.5 Analysis for the sparse network

From the results obtained after the compilation of the INITIALIZE and erosion function

we deduce that the algorithm did not provide the correct output for the node numbered 14

and 15.

Out of the total 17 nodes deployed as the wireless sensor node, the algorithm gave

incorrect decision for 2 nodes (node numbered 14 and node numbered 15)

According to this network the accuracy of the algorithm for a sparse network is:

 Accuracy = Number of nodes correctly detected * 100 %

 Total number of nodes

 Accuracy = (15 / 17) * 100 % = 88 % (approx)

36

4.6 Implementation in Cooja simulator

Implementation in cooja simulator aim at the recognition of Boundary nodes in the

deployed network and making the sensor aware about the position (at the boundary) by

blinking the respective LED of the nodes.

Following are the screenshots of the implementation in cooja simulator.

Fig 20. Implementation in cooja simulator, nodes with LED red on are on boundary whereas the

nodes with LED Blue are interior node

37

 Fig 21. Mote output window, node with id 5,9,17 and 13 are boundary node

The deployment of wireless sensor nodes in real world can be realized with the help of

simulators. The simulators depict the deployment of sensor nodes in a real life network

and allow us to compute various parameters and characteristics of the nodes.

Here we are using Cooja simulator which relies on contiki operating system for its

execution.

Before starting the simulation we need to store our code in the directory of contiki and

after that the code must be first compiled on the terminal in order to make it function.

38

The following steps have been performed for the above simulation to occur:

Step1: A new simulation is created with 17 nodes of mote type “sky”.

 Fig.22: Creating Mote Of Sky Types

Step2: The firmware to compile is Node-recognition.c

 Fig.23: Firmware selected

39

Step3: After the code in c is compiled successfully a sky file is created. On clicking the

create button the required network is created.

 Fig 24: Network created

Step4: To make identification and simulation of sensor nodes much easier we enable the

mote type, mote ID’s, Radio traffic and Radio Environment from the view option.

Step5: Now we start the simulation by clicking on the start button from the simulation

window.

Step6: we can also adjust the speed of the simulation, to make the simulation run faster

than the real environment deployment.

Step7: After the code is successfully executed for each node, we can see the decision on

the nodes.

40

Step8: To view the decision on any node we can can do so by filtering the node by

specifying the mote ID in the mote output window(here it is shown for mote D1).

 Fig 25: Decision on node with ID:13

4.7 Simulation on dense network

A second simulation is carried out, with aim as previous i.e. detecting boundary nodes

and performing erosion operation on it.

The simulation is carried on 58 nodes which are deployed randomly in the network.

After collecting the information for each node’s 1 and 2 hop neighbour we compile the

code for boundary recognition and make it run on each node.

41

4.8 Implementation in cooja

Implementation in cooja simulator aim at the recognition of Boundary nodes in the

deployed network and making the sensor aware about the position (at the boundary) by

blinking the respective LED of the nodes.

Following are the screenshots of the implementation in cooja simulator.

Fig 26. Implementation in cooja simulator, nodes with LED red on are on boundary whereas the

nodes with LED Blue are interior node

42

 Fig27. Mote output window showing decision on nodes

4.9 Analysis for the dense network

From the results obtained after the compilation of the INITIALIZE and erosion function

we deduce that the algorithm did not provide the correct output for some nodes.

Out of the total 58 nodes deployed as the wireless sensor node, the algorithm gave

incorrect decision for 23 nodes

43

This is because actual interior nodes with majority of neighbour as boundary nodes are

detected as boundary nodes.

According to this network the accuracy of the algorithm for a sparse network is:

 Accuracy = Number of nodes correctly detected * 100 %

 Total number of nodes

 Accuracy = (23 / 58) * 100 % = 40 % (approx)

4.7 Code

#include "contiki.h"

#include "dev/leds.h"

#include "node-id.h"

#include <stdio.h>

/*---*/

int arr_led[50];

/*---*/

PROCESS(hello_world_process, "Hello world process");

PROCESS(blink_process, "LED blink process");

AUTOSTART_PROCESSES(&hello_world_process,&blink_process);

/*---*/

/* Implementation of the first process */

PROCESS_THREAD(hello_world_process, ev, data)

{

 PROCESS_BEGIN();

 int ex_path[50],key=0;

 int ar1[17][12] = {{2,14,13,12,0},{3,1,0},{2,14,17,0},{17,16,5,0},

 {16,8,6,4,0},{5,7,8,0},{6,8,9,0},{16,5,6,9,7,0},{10,15,8,7,0},

 {15,9,13,11,0},{10,13,12,0},{1,11,13,0},{1,12,11,10,15,14,0},

 {1,3,17,15,13,0},{14,9,10,13,0},{17,4,5,8,0},{3,14,4,16,0}};

 int ar2[17][12]={{3,17,15,13,12,11,10,14,0},{17,14,12,13,0},{1,17,15,13,14,4,16},

 {3,14,16,17,5,8,6},{8,4,17,9,7,6,16,0},{4,16,8,9,5,7,0},{8,5,16,10,15,0},

 {17,4,16,6,5,7,15,10,9,0},{11,13,15,14,16,5,6,0},{13,14,15,8,7,11,12,1,0},

44

 {13,15,9,1,14,0},{2,14,13,10,1,15,0},{14,2,1,11,12,10,15,9,3,7,0},

 {2,12,13,17,3,4,16,9,10,1,11,0},{1,3,17,15,13,10,8,7,9,11,12,14},

 {3,14,4,5,17,8,6,9,7,0},{14,2,1,13,15,16,5,8,4}};

 int k=0,size =0,temp;

 int inc_xp=0,step,lth=5,size2;

 temp = node_id;

 while(k<12)

 {

 if(ar2[temp-1][k]!=0)

 size++;

 else

 break;

 k++;

 }

 int road_map[size];

 int p;

 for(p=0;p<size;p++)

 {

 road_map[p]=0;

 }

 int vc[size];

 int ppt;

 for(ppt=0;ppt<size;ppt++)

 vc[ppt]=ar2[temp-1][ppt];

 size2 = size;

 while(size2 > 0)

 {

 int nr,value,ttp;

 for(ttp=0;ttp<size;ttp++)

 {

 if(vc[ttp]!=0)

 break;

 }

 nr = ttp;

 value = vc[nr];

 vc[nr]=0;

 size2--;

 ex_path[inc_xp++]=nr;

 key=inc_xp-1;

 road_map[nr]=1;

 step=2;

 int candidate_nodes[size];

 while(1)

45

 {

 int cd1=0,g,h,size_cd,nm,min=99;

 for(g=0;g<size;g++)

 {

 for(h=0;h<12;h++)

 {

 if(ar2[temp-1][g]==ar1[value-1][h] && ar1[value-1][h]!=0)

 {

 candidate_nodes[cd1++]=ar2[temp-1][g];

 if(road_map[g] < min)

 {

 nm = g;

 min = road_map[g];

 }

 break;

 }

 }

 }

 size_cd = cd1;

 if(road_map[nr]-road_map[nm]>lth)

 {

 printf("I AM INTERIOR NODE\n");

 leds_toggle(LEDS_BLUE);

 arr_led[node_id]=0;

 return 0;

 }

 int cd2=0,q,w;

 for(q=0;q<size;q++)

 {

 for(w=0;w<12;w++)

 {

 if(vc[q]==ar1[value-1][w] && vc[q]!=0)

 {

 candidate_nodes[cd2++]=vc[q];

 }

 }

 }

 size_cd = cd2;

 if(size_cd>0)

 {

 int a,s;

 for(a=0;a<size;a++)

 {

 for(s=0;s<size_cd;s++)

 {

 if(vc[a]==candidate_nodes[s])

 {

 vc[a]=0;

 size2--;

 road_map[a]=step;

 }

 }

46

 }

 step++;

 nr = 0;

 int mmp;

 for(mmp=0;mmp<size;mmp++)

 {

 if(candidate_nodes[nr]==ar2[temp-1][mmp])

 {

 nr = mmp;

 break;

 }

 }

 ex_path[inc_xp++] = nr;

 key = inc_xp-1;

 value = ar2[temp-1][nr];

 }

 else if(step>2)

 {

 step--;

 int z,recover_nodes[size],rn=0,size_rn;

 for(z=0;z<size;z++)

 {

 if(road_map[z]==step)

 {

 recover_nodes[rn++]=z;

 road_map[z]=0;

 }

 }

 size_rn=rn;

 int p;

 for(p=0;p<size_rn;p++)

 {

 if(recover_nodes[p]!=nr)

 {

 vc[recover_nodes[p]]=ar2[temp-1][recover_nodes[p]];

 size2++;

 }

 }

 if(key>=0)

 {

 nr = ex_path[key];

 inc_xp--;

 key = inc_xp-1;

 }

 }

 else

 break;

 }

 printf("I AM BOUNDARY\n");

 leds_toggle(LEDS_RED);

 arr_led[node_id]=1;

 return 0;

47

 }

 PROCESS_END();

}

/*---*/

/* Implementation of the second process */

PROCESS_THREAD(blink_process, ev, data)

{

 PROCESS_BEGIN();

 int ar1[17][12] = {{2,14,13,12,0},{3,1,0},{2,14,17,0},{17,16,5,0},

 {16,8,6,4,0},{5,7,8,0},{6,8,9,0},{16,5,6,9,7,0},{10,15,8,7,0},

 {15,9,13,11,0},{10,13,12,0},{1,11,13,0},{1,12,11,10,15,14,0},

 {1,3,17,15,13,0},{14,9,10,13,0},{17,4,5,8,0},{3,14,4,16,0}};

 if(arr_led[node_id]==1)

{

 int res,j,count=0,count_i=0;

 for(j=0;j<12;j++)

{

 res = ar1[node_id-1][j];

 if(arr_led[res]==1)

 count++;

 else if(arr_led[res]==0)

 {

 count_i++;

 count++;

 }

 else if(res==0)

 break;

}

float Eth = 0.00;

 Eth = (float) count_i/count;

 if (Eth >0.53)

 {

 arr_led[node_id]=0;

 }

}

 return 0;

 PROCESS_END();

}

/*---*/

48

 Chapter – 5

 CONCLUSION

5.1 Conclusion

From the simulations performed we can conclude that the algorithm proposed by Baoqi

Huang, Wei Wu, and Tao Zhang detects the boundary node of a deployed network of

sensor nodes with an accuracy of 88% in sparse network and 40% accuracy in dense

network.

5.2 Future scope

After the boundary nodes are detected correctly, there are further many extensions to the

project.

The algorithm can be executed for 3-D networks; here we need to tackle with the z-

coordinate of the sensor node with which we realize the 3-D space.

Efforts can be made for finding virtual coordinates for localization of sensor nodes.

49

References :

1. Baoqi Huang, Wei Wu, Tao Zhang An Improved Connectivity-based Boundary

Recognition Algorithm in Wireless Sensor Networks, in 38th Annual IEEE Conference

on Local Computer Networks.(2016)

2. P.K. Sahoo, J.P. Sheu, K.Y. HsiehTarget tracking and boundary node selection

algorithms of wireless sensor networks for internet services Inform. Sci., 230 (1) (2013)

3. P.K. Sahoo, J.P. Sheu, K.Y. HsiehTarget tracking and boundary node selection

algorithms of wireless sensor networks for internet services Inform. Sci., 230 (1) (2013)

4. S.P. Fekete, A. Kroller, D. Pfisterer, S. Fischer, C. Buschmann, Neighbourhood-based

topology recognition in sensor networks, in: Proceedings of the 1st International

Workshop on Algorithmic Aspects of Wireless Sensor Networks, Turku Finland, July

2004

5. G. Destino, G.T. Freitas de Abreu, Network boundary recognition via graph-theory, in:

Proceedings of the 5th Workshop on Positioning, Navigation and Communication, 2008

6. S. Funke, Topological hole recognition in wireless sensor networks and its

applications, in: Proc of the Joint Workshop on Foundations of Mobile Computing, 2005

7. Y. Wang, J. Gao, J.S.B. Mitchell, Boundary recognition in sensor networks by

topological methods, in: Proc of the 12th Annual International Conference on Mobile

Computing and Networking, Los angeles, California, 2006

8. K.Y. Hsieh, J.P. Sheu Hole recognition and boundary recognition in wireless sensor

networks Personal, Indoor and Mobile Radio Communications, IEEE (2009)

50

9. I.M. Khan, M.Z. Khan, H. Mokhtar, M. Merabti Enhancements of the self-recognition

scheme for boundary recognition in wireless sensor networks Developments in E-systems

Engineering (DeSE), IEEE (2011)

10. Haibo Zhang, Hong Shen Balancing Energy Consumption to Maximize Network

Lifetime in Data-Gathering Sensor Networks in IEEE Transactions on Parallel and

Distributed Systems (2009)

11. Shailendra Shukla, Rajiv Misra Angle Based Double Boundary Recognition in

Wireless Sensor Networks JOURNAL OF NETWORKS, MARCH 2014

12. Massinissa Saoudi,Farid Lalem,Ahcène Bounceur,Reinhardt Euler,M-Tahar

Kechadi,Abdelkader Laouid,Madani Bezoui,Marc Sevaux D-LPCN: A distributed least

polar-angle connected node algorithm for finding the boundary of a wireless sensor

network

13. Research by W.-C. Chu on “Decentralized boundary recognition without location

information in wireless sensor networks.” (Apr 2012)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Haibo%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hong%20Shen.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

