
                                  DATA COMPRESSION 

Project report submitted in partial fulfillment of the requirement for 
the degree of Bachelor of Technology 

in 

Computer Science and Engineering/Information Technology 

By 

Akshat Gupta (141241) 

Under the supervision of  

(Prof. Dr. Satya Prakash Ghrera) 

to 

 

Department of Computer Science & Engineering and Information 
Technology 

Jaypee University of Information Technology Waknaghat, Solan-
173234, Himachal Pradesh 

 

 

 

                                  



                                  Candidate’s Declaration 

 

I hereby declare that the work presented in this report entitled “DATA COMPRESSION”   
in partial fulfillment of  the requirements for the award of the degree of Bachelor of 
Technology in Computer Science and Engineering/Information Technology submitted in 
the department of Computer Science & Engineering and Information Technology, Jaypee 
University of Information Technology Waknaghat is an authentic record of my own work 
carried out over a period from August 2016 to December 2016 under the supervision of Dr. 
Satya Prakash Ghrera (Professor, Brig (Retd.) and Head, Dept. of CSE and IT). 

The matter embodied in the report has not been submitted for the award of any other degree 
or diploma. 

 

 

Akshat Gupta, 141241 

 

This is to certify that the above statement made by the candidate is true to the best of my 
knowledge. 

 

 

Dr. Satya Prakash Ghrera 

Professor, Brig (Retd.) and Head, Dept. of CSE and IT 

Dated: 27-11-2017 

 

 

 
 
 
 
 
 
 
 
 

                                                                                 [i] 

                                      



                                    Acknowledgement 
 

It is our privilege to express our sincerest regards to our project supervisor Prof. Dr. Satya 
Prakash Ghrera, for their valuable inputs, able guidance, encouragement, whole-hearted 
cooperation and direction throughout the duration of our project.  

 

We deeply express our sincere thanks to our Head of Department Prof. Dr. Satya Prakash 
Ghrera for encouraging and allowing us to present the project on the topic “DATA 
COMPRESSION” at our department premises for the partial fulfillment of the requirements 
leading to the award of B-Tech degree. 

 

At the end I would like to express my sincere thanks to all my friends and others who helped 
me directly or indirectly during this project work. 

 

 

 

 

Date: 27-11-2017              Akshat Gupta(141241) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                 [ii] 



Table of Contents 

Sr.No. Topics Page no. 

1 Introduction  
1.1 Introduction 1-5 
1.2 Problem Statement 6-7 
1.3 Objective 8 
1.4 Methodology 8-9 
   
2 Literature Survey  
2.1 Arithmetic Coding 10-14 
2.1.1 Practical Implementation 15-18 
2.2 Huffman encoding 19-20 
2.3 Run Length Encoding Algorithm 21-22 
2.4 LZW Data Compression 22 
   
3 System Development  
3.1 Arithematic compression   
3.1.1/2 Compression and Decompression algorithm 23 
3.1.3  Model development 24 
3.1.4 Computational analysis 25-29 
3.2 Huffman  Algorithm  
3.2.1/2 Compression and Decompression algorithm 30 
3.2.3 Model development 31 
3.2.4 Computational analysis 32 
3.3 Run Length Encoding Algorithm  
3.3.1/2 Compression and Decompression algorithm 33 
3.3.3  Model development 34 
3.3.4 Computational analysis 34 
3.4 LZW (Lempel–Ziv–Welch) Compression technique  
3.4.1/2 Compression and Decompression algorithm 35 
3.4.3  Model development 36 
3.4.4 Computational analysis 37 
   
4 Performance Analysis  
4.1 Compression Ratio 38 
4.2 Compression Speed 39-40 
4.3 Compression Time 41 
   
5.1 Conclusions  42 
5.2 Future Scope 42 
6 References 44-45 
                                                                    [iii] 



                                                List of Figures 
 
Figure No. Name Page No. 

1.1 Data Compression 1 

1.2 Data Compression Types 2 

1.3 Data Compression techniques 2 

1.4 System with typical processes for data 9 

2.1 Encoding and Decoding 14 

2.2 Comparison between arithmetic and Huffman coding 
methodologies 

19 

3.1 Simple Run Length Encoding 34 

3.2 Encoded data and Compression using LZW 37 

 

 

 

 

 

 

 
                                                                                      [iv] 



                                                                      List of Graphs: 
 

Graph 
No. 

Name Page No. 

1. Cumulative distribution of code values generated by different coding 
methods. 

9 

2. Arithmetic Data compression Flow Graph 12 

3. Encoding time of different algorithms compared 29 

4. Big O Complexity comparison of huffman and arithmetic Coding 30 

5. Compression versus Time graph for different Algorithms 41 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
                                                                                  [v] 



 

                                                  Chapter-1 
 

INTRODUCTION 

1.1 Introduction 

Data compression is a process that reduces the dimensions of the statistics or the number 
of bits by removing immoderate facts and redundancy. Now, the query arises as to why a 
shorter records collection is extra suitable?  

The answer is easy; it lessens the storage and transmission. Data compression is a 
commonplace compulsion for most laptop applications. Data compression has an important 
standing in the discipline of report garage and the distributed gadget. Data compression is 
used in the multimedia discipline, textual content documents and database tables. 

 Data compression techniques may be classified in numerous approaches. One of the most 
crucial class standards is whether the compression algorithms cast off a number of the 
statistics that cannot be retrieved all through decompression. The algorithm that eliminates 
some of the data is called lossy data compression. And the algorithm that plays the same 
element that we compressed after decompression is known as lossless records 
compression. The lossy data compression algorithm is generally used while best consistency 
with the authentic records is not wished after decompression. 

                

                                                    Fig 1.1: Data compression 

Instance of lossy records compression is compression of video or picture statistics. Lossless 
records compression is used in textual content report, database tables and in medical photo 
due to the fact regulation of policies.various lossless facts compression set of rules have been 
proposed and used. Some of predominant techniques are HuffmanCoding, Run-Len 
Encoding, Arithmetic Encoding and Dictionary primarily based Encoding. on this document 
we take a look at distinct algorithms and supply contrast among them in line with their 
performances. 

[1]  
 



 

                                                 Fig 1.2: Data Compression types 

 

 

          
                                              Fig 1.3: Data Compression techniques 

          [2] 



Compression is used just about everywhere. all the pictures you get at the internet are 
compressed, usually in the JPEG/GIF codecs, mostly modems usually use compression, 
HDTV can be compressed using MPEG-2, and several report structures automatically 
compress files whilst saved and the rest folks do it by way of hand. The neat factor about 
compression, as with the other subjects we can cowl in this route, is that the algorithms used 
in the actual international make heavy use of a huge set of algorithmic equipment, along with 
sorting, hash tables, attempts, and FFTs. furthermore, algorithms with sturdy theoretical 
foundations play a important function in actual-global packages. 

we will use the universal term message for the items we need to compress, which may be 
both files or messages. The mission of compression includes two components- an encoding 
algorithm, and a deciphering set of rules for reconstruction. those two additives are typically 
intricately tied collectively considering that they each must recognize the shared compressed 
representation. We distinguish among lossless algorithms, which can re-create the authentic 
message precisely. 

Lossless algorithms are usually used for textual content, and lossy for pictures and sound 
wherever a little bit of loss in decision is often undetectable. Lossy problems in an abstract 
sense, but, and does now not mean random lost pixels, however instead way lack of a 
quantity which includes a frequency element. As an instance, one may suppose that lossy 
textual content compression could be unacceptable because they're imagining missing or 
switched characters. Don’t forget rather a device that reworded sentences into a greater 
fashionable form, or replaced words with synonyms in order that the document can be higher 
compressed. Technically the compression would be lossy since the textual content has 
modified, however the “that means” and clarity of the message is probably absolutely 
maintained, or even stepped forward. 
 
Is there a lossless algorithm that can compress all messages? There was at least one patent 
application that claimed with a view to compress all documents (messages)—Patent 
five,533,051 which has the title “Methods for Data Compression”. The patent application 
claimed that if it changed into implemented recursively, a file will be decreased to almost not 
anything. With a bit concept you ought to persuade yourself that this is not possible, at the 
least if the source messages can incorporate any bit-series. we are able to see this by means 
of a easy counting argument. let’s bear in mind all 1000 bit messages, as an example. There 
are 21000 exceptional messages we can send, each which desires to be enormously identified 
with the aid of the decoder. It ought to be clear we can’t represent that many special 
messages via sending 999 or fewer bits for all the messages — 999 bits could simplest permit 
us to send 2999 distinct messages. The fact is if any person message is shortened by way of 
an set of rules, then some different message wishes to be lengthened. 

 

                                                            

 

      [3] 



It is, in truth, feasible to go in addition and display that for a set of input messages of 
constant period, if one message is compressed, then the average length of the compressed 
messages over all feasible inputs is usually going to be longer than the authentic enter 
messages. Bear in mind, as an instance, the 8 viable 3 bit messages. If one is compressed to 2 
bits, it isn't difficult to convince your self that two messages will need to amplify to 4 bits, 
giving a mean of 31/8 bits. Lamentably, the patent become granted. 

As referred to inside the advent, coding is the task of taking chances for messages and 
producing bit strings primarily based on these possibilities. How the possibilities are 
generated is part of the model thing of the set of rules, that's mentioned in later. 
In practice we generally use chances for components of a larger message as opposed to for 
the whole message, e.g., every individual or phrase in a textual content. To be regular with 
the terminology in the previous phase, we can consider every of these components a message 
on its very own, and we can use the time period message sequence for the larger message 
made up of these additives. In trendy every little message may be of a extraordinary type and 
are available from its very own possibility distribution. as an example, when sending an 
photo we'd ship a message specifying a shade observed by messages specifying a frequency 
component of that colour. 
 
Even the messages specifying the coloration might come from one-of-a-kind possibility 
distributions for the reason that chance of precise colors mightdepend at the context.We 
distinguish among algorithms that assign a completely unique code (bit-string) for every 
message, andones that “combination” the codes collectively from multiple message in a row. 
within the first class we can take into account Huffman codes, that are a form of prefix code. 
within the later class, we recall mathematics codes and dictionary primarily based methods. 
AC can yield better compression, but can require the encoder to increase in time in sending 
the messages. Dictionary based totally compression works exceptional for text and 
monochrome pictures but the problem is the files which can be compressed however that do 
not incorporate any repetitive information at all may even grow bigger. Dictionary primarily 
based compression is a fairly antique compression approach. All latest computer structures 
have the horsepower to use greater efficient algorithms but is still used. 

 
Records stress is a device for encoding makes a decision that lets in extensive lower inside 
the mixture quantity of bits to store or transmit a file. The extra facts being managed, the 
greater it fees concerning stockpiling and transmission charges. to put it it appears that 
evidently, statistics Compression is the technique of encoding facts to much less bits than the 
primary illustration so it consumes less garage space and less transmission time even as 
conveying greater than a system.statistics compression algorithms are classified in  
approaches i.e. lossy and lossless records compression algorithm. A compression set of rules 
is applied to alternate over facts from a easy to make use of arrangement to at least one 
superior for smallness. In like manner, an uncompressing device offers lower back the 
records to its specific shape. 
                                                                      
 
 
 [4] 



1.2 Problem Statement 
The fundamental issue/problem of lossless compression is to decompose a records set (as an 
instance, a textual content file or an image) into a sequence of events, then to encode the 
activities the usage of as few bits as feasible. The idea is to assign quick codewords to extra 
probably events and longer code words to much less probable activities. Data can be 
compressed whenever some activities are much more likely than others. Statistical coding 
techniques use estimates of the possibilities of the events to assign the codewords. Given a 
set of mutually distinct events e1, e2, e3, _ _ _ _ , en, and an correct assessment of the 
probability distribution P of the occasions, Shannon proved that the the smallest possible 
predicted number of bits had to encode an occasion is the entropy of P, denoted with the aid 
of 

H(P) = ∑ −𝑝{𝑒 } 𝑙𝑜𝑔 𝑝{𝑒 } 

where p{ei} is the probability that  ei event occurs. An optimal code outputs log2 p bits to 
encode an event whose probability of occurrence is p. Pure arithmetic codes supplied with 
accurate probabilities provide optimal compression. In theory, arithmetic codes assign one 
"codeword" to each possible data set. Shorter codes means larger subintervals and thus 
highly probable input data sets.  

In practice, the sub-interval is refined one by one using the probablity of the events, with bits 
being output. Arithmetic codes almost always give better compression than prefix codes, but 
they lack the direct correspondence between the events in the input data set and bits or 
groups of bits in the coded output file.  

A statistical coder should work in co-occurrence with a modeler that estimates the chance of 
every feasible event at every factor in the coding. The probability model need not describe 
the process that generates the data; it merely has to provide a PD for the data items. The 
probabilities do not even have to be particularly accurate, but the more accurate they are, the 
better the compression will be. 

 If the calculations are made wrong, the file may even be expanded rather than compressed, 
but the authentic datum can still be recreated. To obtain maximum compression of a file, we 
need both a good probability model and an efficient way of representing (or learning) the 
probability model.  

 

 

 

 

 

 

[5] 



Lossless compression is applied while it's miles vital that the primary statistics and the 
decompressed facts be indistinguishable. Lossless content material information compression 
calculations generally abuse factual extra in this kind of direction so as to speak to the 
sender's statistics all the greater in brief without a blunder or any  form of lack of vital 
records contained interior of the content material records information. when you consider 
that most of the people of this present fact records has actual excess, thusly lossless facts 
compression is attainable.  

Living proof, In English content, the letter "an" is a notable deal greater basic than the letter 
'z',and the likelihood that the letter "t" might be trailed with the aid of the letter "z" is little. 
So this kind of repetition can be evacuated utilising lossless compression. Lossless 
compression techniques can be labeled by type of statistics they're meant to percent. 
Compression calculations are basically utilized for the compression of content material, 
photographs and sound.  

most lossless compression initiatives utilize  various kinds of calculations: one that creates a 
authentic model for the information statistics and every other which maps the records 
information to bit strings making use of this version as part of such a route, to the point that 
as frequently as possible skilled information will supply shorter yield than 
unbelievable(much less non-stop) information. The upside of lossless strategies over lossy 
structures is that Lossless compression consequences are in a closer illustration of the first 
information data. The execution of calculations may be thought about making use of the 
parameters, as an instance, Compression Ratio and Saving percentage.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

[6] 



1.3 Objective 

Our objective is to put into effect diverse information compression algorithms and examine 
the consequences acquired to maximize the compression ratio and reduce the compression 
time. 
 
 
1.4 Methodology 
so as to check the performance of lossless compression algorithms, the mathematics  
Encoding  algorithm, Run period Encoding set of rules, Huffman Encoding algorithm and 
Lempel Zev Welch algorithm are carried out and examined with a set of textual content files.  
Performances are evaluated by way of computing the special measuring factors: 
 
Measuring the performance of RLE set of rules:  
since the Run period Encoding set of rules does now not use any statistical technique for the 
compression system, the Compression and Decompression times, document Sizes, 
Compression Ratio and Saving percent are calculated. several files with special document 
sizes and text styles are used for computation.  
  
Measuring the overall performance of Huffman approach:  
Adaptive Huffman Encoding is likewise applied on the way to compare with other 
compression and decompression algorithms. record sizes, compression and uncompression 
times, code performance and entropy are calculated for Huffman algorithm.   
 
Measuring the performance of LZW set of rules:  
in view that this algorithm is not based totally on a statistical version, entropy and code 
efficiency are not calculated. Compression and decompression method, report sizes, 
compression ratio and saving possibilities are calculated.   
 
Measuring the overall performance of arithmetic Encoding set of rules:   
The compression and decompression times and record sizes are calculated for this algorithm. 
because of the underflow problem, the unique document can't be generated after the 
decompression procedure.  

 
           Fig 1.4: System with typical processes for data compression (single data source Ω). 

                                                                              [7] 



 

 

          

Graph 1: Cumulative distribution of code values generated by different coding methods. 

 

 

   
 
                                                                               
 
 
 
 
 
 
 
 
 
 
 
 
    [8] 



Chapter#2 
 

LITERATURE-SURVEY 

2.1 Arithmetic Coding: 

Data compression techniques are classified in keeping with lack of facts into businesses, 
namely lossless data compression strategies and lossy data compression techniques. Lossless 
algorithms reconstruct the authentic message precisely from the compressed message, and 
lossy algorithms only remake an approximate instance of the message. Lossless algorithms 
are usually used for text, for photographs and sound in which a  little bit of loss in resolution 
pitch or other is frequently undetectable, or as a minimum customary. Lossy is utilized in an 
summary feel, however, and does not mean random misplaced pixels, but instead way loss of 
a amount which includes frequency aspect, or perhaps loss of noise Lossless compression 
techniques are used to compress, of necessity, scientific photographs, text and images 
preserved for legal reasons, machine executable documents, amongst others. Lossy 
compression techniques reconstruct the unique message with loss of a few records. It isn't 
always possible to re-make the original message using the deciphering method, and is called 
irreversible compression. The decompression method produces a probable reconstruction, 
which can be desirable where information of some degrees that could not be identified with 
the aid of the human brain help can be ignored. Such techniques may want to be used for 
multimedia pictures, video and audio to attain extra compact data compression. 

  

Lossless data compression is used to compact documents or data right into a smaller manner. 
It is regularly used to package up software program before it's miles dispatched over the net 
or downloaded from a web site to lessen the quantity of time and bandwidth required to 
transmit the facts. Lossless data compression has the constraint that once records are 
uncompressed, it must be identical to the unique information that turned into compressed. 
pix, audio, and video compression which include JPG, MP3, and MPEG alternatively use 
lossy compression schemes which throw away a number of the authentic facts to compress 
the documents even in addition. We can be focusing at the lossless kind. There are usually  
classes of lossless compressors: dictionary compressors and statistical compressors. 
Dictionary compressors (together with Lempel-Ziv based totally algorithms) build 
dictionaries of strings and replace whole companies of symbols. The statistical compressors 
expand fashions of the data of the enter information and use those fashions to control the 
final output.  

 
 
 
 
 
 
 

[9] 
 



 
Arithmetic coding is a statistical compression technique that uses estimates of the chances of 
activities to assign code phrases. ideally, brief code phrases are assigned to greater 

probably occasions and longer code phrases are assigned to less in all likelihood occasions. 
Theoretically, arithmetic codes assign one ”code phrase” to every possible statistics set. The 
mathematics coder need to work collectively with a modeler that estimates the possibilities of 
the activities in the coding. To gain right compression, a very good chance version and green 
manner of representing the chance model are required. The fashions can be adaptive, semi-
adaptive, or non-adaptive. Adaptive models dynamically estimate the in all likelihood of each 
event based on previous occasions. Semi-adaptive models use a preliminary bypass of the 
statistics to collect some data, and non-adaptive models use constant probabilities for all 
facts. a bonus of mathematics coding is the separation of coding and modeling because it 
permits the complexity of the modeler to alternate while not having to adjust the coder. The 
drawback is this is runs more slowly and is greater complex to put in force than LZ primarily 
based algorithms. 

There are three foremost classes of lossless information compression techniques: the ones 
using statistical fashions, those that require the use of a dictionary, and those that use both 
statistical and dictionary-based totally techniques. Dictionary-based compression schemes 
tend to be used greater for archiving packages (on occasion in conjunction with different 
techniques), at the same time as actual-time situations generally require statistical 
compression schemes. this is because dictionary-based totally algorithms have a tendency to 
have slow compression speeds and fast decompression speeds even as statistical algorithms 
tend to be similarly speedy all through compression and uncompression. Statistical 
compression schemes determine the output primarily based on the opportunity of prevalence 
of the input symbols and are usually utilized in real-time packages. The algorithms have a 
tendency to be symmetric (the decoder mirrors the steps of the encoder); therefore, 
compression and decompression commonly require the identical quantity of time to finish.. 
Dictionary-based compression techniques are typically utilized in archiving applications 
including compress and gzip because the interpreting process has a tendency to be faster than 
encoding. Hybrid compression methods share traits with both statistical and dictionary-
primarily based compression techniques. these algorithms normally contain a dictionary 
scheme in a scenario in which simplifying assumptions may be made about the enter facts. 
Lossless facts compression set of rules consists of: Limphel Ziv own family (Dictionary-
based totally encoding), Run-period Encoding compression (Statistical coding), Huffman 
Encoding (Statistical coding), arithmetic Encoding (Statistical coding), Bitmask coding 
(Dictionary-primarily based). determine 1-1 depicts information compression strategies. 

 
 
 
 
 
 
 

[10] 
 



The Huffman method assigns an vital quantity of bits to each symbol, whilst arithmetic 
coding assigns one lengthy code to the complete input string. mathematics coding has the 
ability to compress facts to its theoretical restriction. arithmetic coding combines a statistical 
model with an encoding step, which includes a few mathematics operations. The maximum 
simple statistical version could have a linear time complexity of N[log(n)+a] +Sn where N is 
the overall variety of enter symbols, n is the current number of specific symbols, a is the 
mathematics to be executed, and S is the time required, if important, to maintain internal 
facts shape. This converts the complete enter statistics right into a unmarried floating factor 
number. A floating factor variety is much like quite a number with a decimal factor, like 
4.five in preference to 41/2. however, in mathematics coding we are not dealing with decimal 
quantity so we name it a floating point rather than decimal factor. the premise for records 
compression is the mathematical price of information. facts contained in a image x is given 
through 

L(x) = Log2
( )

 

 
This cost also describes the range of bits vital to encode the symbol. This definition 
reinforces the perception of data. First, the extra probably the occurrences of a image, the 
fewer bits are used to symbolize it. Conversely, the least frequent symbols provide extra data 
by using their occurrence. Secondly, if there are n equally possibly messages, log2n bits may 
be required to encode every message. this is the statistics value of each message  
 

L(x) = Log2 
( )

 =  log2 n 

 

 
                                     Graph 2: Arithmetic Data compression Flow Graph 
 
 
Let’s take an example we have string: 
 
 
 
 
And now use the AC algorithm. 
 
 
Step 1: in the first step we do is look at the frequency count for the different letters: 
 
 
 
 
 
 
 
 
 

[11] 



Step 2: In second step we encode the string through dividing up the period [0, 1] and allocate 
every letter an intervalwhose length depends on how regularly it matter in the string. Our 
string begin with a ‟B‟, so we take the „B‟ c language and divide it up again inside the 
identical way: 
 
 
 
 
     
 
 
Step 3: In 0.33 step we see next letter is now “E”, so now we subdivide the “E” within the 
identical manner. We carry on thru the message….And, persevering with on this manner, we 
subsequently gain 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
And so on, we obtain: 
 
 
 
 
 
 
 
 
 

   
So we represent the message as any number in the interval. 
 
[7653888/16777216,7654320/16777216] 
  
 
7653888 = (7*106) + (6*105) + (5*104) + (3*103) + (8*102) + (8*10) + 8 
 

 
[12] 



 
Binary numbers are almost precisely the equal, only we address powers 
of two in preference to energy of 10. The rightmost digit of binary wide 
variety is unit (as before) the one to its left offers the variety of 2s, the 
next one the number of 4s, and shortly.So 
 
110100111 = (1*28) + (1*27) + (0*26) + (1*2 5) + (0*24) + (0*23) + 
(1*22) + (1*21) + 1 = 256 + 128 + 32 + 4 + 2 + 1 = 423 in denary (i.e. 
base 10). 

   

(a)                                                                 (b) 

Fig 2.1       (a) Encoding of “BILL GATES”         (b) Decoding of “BILL GATES 

 

 

 

 

 

 

 
 
    
 
 
 
 
 
 
 
 
 

                                                                        [13] 



2.1.1 Practical Implementation: 

The procedure of encoding and decoding a circulation of symbols using mathematics coding 
isn't always too complex. but before everything glance, it seems completely impractical. most 
computers support floating point numbers of up to eighty bits or so. Does this suggest you 
need to begin over whenever you finish encoding 10 or 15 symbols? Do you want a floating 
point processor? Can machines with specific floating point codecs speak using mathematics 
coding? 

As it seems, arithmetic coding is quality done the use of widespread 16-bit and 32-bit integer 
math. No floating point math is required, nor wouldn't it assist to use it. rather, we use an 
incremental transmission scheme wherein constant-length integer-nation variables get hold of 
new bits at the low stop and shift them out the high give up, forming a unmarried quantity 
that can be as long as the range of bits to be had on the laptop's garage medium. 

Within the preceding section, I showed how the algorithm works by retaining music of a 
excessive and coffee quantity that bracket the variety of the possible output wide variety. 
while the algorithm first starts up, the low range is about to 0.0, and the high quantity to one.  
To paintings with integer math, first change the 1.0 to zero.999...., or.111 ... in binary. 

 My implementation makes use of 16-bit unsigned math, so the preliminary value of high is 
0xFFFF, and occasional is 0. We recognize that the excessive cost maintains with FFs 
forever, and coffee keeps with 0s for all time, so we can shift the ones more bits in with 
impunity while they're wanted. 

if you believe our bill GATES instance in a 5-digit register, the decimal equivalent of our 
setup might look like discern 7(a). To locate our new variety numbers, we need to apply the 
encoding set of rules from the preceding phase. We first calculate the range between the low 
and excessive values. The difference between the 2 registers could be a hundred thousand, 
now not 99999, due to the fact assuming the excessive sign in has an infinite range of 9s 
delivered on to it, we want to increment the calculated distinction. We then compute the new 
excessive value the usage of the components from the preceding phase: high = low + high 
range (image). 

In this example the excessive variety became .30, which gives a new value for excessive of 
30000. Before storing the new cost of high, we want to decrement it, once again because of 
the implied digits appended to the integer price. So the new fee of excessive is 29999. 

 

 

 
 
 
 

[14] 



 

The calculation of low follows the same path, with a resulting new price of 20000. So now 
excessive and coffee appear like this: 

     high:   29999  (999...) 

     LOW:    20000  (000...) 

At this factor, the maximum substantial digits of  high and low fit. due to the nature of our set 
of rules, high and coffee can continue to grow in the direction of one another without pretty 
ever matching. because of this after they match inside the maximum giant digit, that digit 
will by no means change. So we will now output that digit as the first digit of our encoded 
wide variety. this is completed by way of shifting each excessive and coffee left through one 
digit, and shifting in a nine inside the least considerable digit of high. The equivalent 
operations are executed in binary inside the C implementation of this algorithm. 

As this manner keeps, high and occasional are continually growing closer together, then 
transferring digits out into the coded word. The manner for our "invoice GATES" message 
looks as if this:

 

 

 

[15] 
 



 

 
 
 
 

Data Compression at a glance 
 
 
 
 
 

 
 

16 



2.1.2 Underflow: 
This scheme works properly for incrementally encoding a message. there's enough accuracy 
retained in the course of the double precision integer calculations to make certain that the 
message is accurately encoded. However, there's potential for a lack of precision beneath 
certain occasions. 
In the occasion that the encoded phrase has a string of 0s or 9s in it, the excessive and coffee 
values will slowly converge on a cost, however may not see their most huge digits in shape 
without delay. For example, excessive and coffee may additionally appear to be this: 
 
      Excessive:     700004 
      Low:      699995 
 
At this factor, the calculated variety goes to be best a digit lengthy, this means that the output 
phrase will no longer have enough precision to be as it should be encoded. Even worse, after 
some more iterations, high and low may want to appear like this: 
 
      High:     70000 
      Low:      69999 
 
At this factor, the values are permanently caught. The variety among excessive and 
occasional has come to be so small that any calculation will continually return the identical 
values. but, because the maximum full-size digits of both phrases are not equal, the algorithm 
cannot output the digit and shift. It looks as if a deadlock. 
 
The way to defeat this underflow problem is to save you matters from ever getting this 
terrible. The original algorithm stated some thing like "If the maximum vast digit of high and 
occasional fit shifts it out". If the two digits do not fit, but at the moment are on adjacent 
numbers, a 2nd takes a look at wishes to be implemented. If high and occasional are one 
aside, we then check to peer if the 2d maximum sizable digit in excessive is a zero, and the 
2nd digit in low is a nine. in that case, it manner we're on the road to underflow, and need to 
do so. 
 
When underflow rears its ugly head, we head it off with a slightly one of a kind shift 
operation. in preference to moving the maximum great digit out of the phrase, we just delete 
the 2nd digits from excessive and coffee, and shift the rest of the digits left to refill the space. 
The most giant digit stays in area. We then must set an underflow counter to remember that 
we threw away a digit, and we aren't pretty positive whether or not it was going to turn out to 
be as a zero or a 9. The operation looks like this:                
                    Before    After 
                        ------    ----- 
High:          40344     43449 
Low:           39810     38100 
Underflow:     0         1 
 

[17] 



After every recalculation operation, if the maximum good sized digits do not fit up, we are 
able to test for underflow digits again. If they may be gift, we shift them out and increment 
the counter. 

While the MSD do eventually converge to a single cost, we first output that value. Then, we 
output all of the "underflow" digits which have been previously discarded. The underflow 
digits may be all 9s or 0s, relying on whether excessive and espresso converged to the higher 
or decrease cost. in the C implementation of this set of rules, the underflow counter keeps 
song of how many ones or zeros to put out. 

Mathematics coding is an foremost entropy coding technique because it gives quality 
compression ratio and commonly achieves better effects than Huffman Coding. it is quite 
complicated as compared to the alternative coding techniques. while a string is converted in 
to mathematics encoding, the characters having most probability of occurrence will be stored 
with fewer bits and the characters that do not occur so frequently might be stored with extra 
bits, ensuing in fewer bits used standard. Arithmetic coding converts the flow of enter 
symbols into a unmarried floating  point number as output. unlike Huffman coding, 
mathematics coding does no longer code every symbol one by one. each symbol is rather 
coded by way of considering all prior data. as a result a records flow encoded on this fashion 
need to usually be study from the start. therefore, random get entry to isn't feasible. 

The primary implementation of arithmetic coding described above has  important difficulties: 
the shrinking contemporary c program language period calls for using excessive-precision 
mathematics, and no output is produced till the entire report has been study. The maximum 
clear-cut method to both of those troubles is to output every leading bit as soon as it's miles 
recognised, and then to double the length of the contemporary c program language period in 
order that it reflects most effective the unknown part of the final c program language period. 
Witten, Neal, and Cleary add a clever mechanism for stopping the contemporary c program 
language period from shrinking too much when the endpoints are close to half however 
straddle half of. if so we do now not but know the subsequent output bit, however we do 
know that something it is, the subsequent bit could have the opposite price; we simply 
preserve song of that fact, and enlarge the modern interval symmetrically approximately half. 
This observe-on procedure may be repeated any range of times, so the cutting-edge period 
length is continually strictly longer than 1/four. 

Mechanisms for incremental transmission and glued precision arithmetic have been advanced 
by way of Pasco , Rissanen , Rubin , Rissanen and Langdon , Guazzo , and Witten, Neal, and 
Cleary. The bit-stuffing idea of Langdon and others at IBM that limits the propagation of 
contains in the additions serves a function just like that of the follow-on system defined 
above. 

 

 

 

[18] 



  
 COMPRESSION METHOD ARITHMETIC HUFFMAN 
    
 Compression ratio Very good Poor 
    
 Compression speed Slow Fast 
    
 Decompression speed Slow Fast 
    
 Memory space Very low Low 
    
 Compressed pattern matching No Yes 
    
 Permits Random access No Yes 
    
             Fig 2.2: Comparison between arithmetic and Huffman coding methodologies 

 

2.2 Huffman Encoding : 
 

Huffman coding is an entropy encoding algorithm for lossless statistics compression. In this 
set of rules fixed length codes are replaced with the aid of variable length codes. while the 
use of variable-length code phrases, it is suited to create a prefix code, fending off the need 
for a separator to determine codeword barriers. Huffman Coding uses such prefix code.  

Huffman process works as we observe: 

1. Symbols with excessive frequency are expressed using shorter encodings than symbols 
which arise less regularly. 

2. The two symbols that arise least often will have the same length. The Huffman algorithm 
makes use of the greedy approach i.e. at each step the set of rules chooses the pleasant to be 
had alternative. A binary tree is constructed up from the bottom up. to peer how Huffman 
Coding works, allow’s take an instance. expect that the characters in a report to be 
compressed have the subsequent frequencies: 

A: 25 B: 10 C: 99 D: 87 E: 9 F: 66   

The processing of constructing this tree is:   

1. Make a list of leaf nodes for every image and make up the nodes in the order from in 
the order of descend. 
 

 C:99 D:87 F:66 A:25 B:10 E:9   
 

 
[19] 



 
2. Pick out leaf nodes with the lowest frequency. Create a parent node with those two nodes 
and assign the frequency same to the sum of the frequencies of two infant nodes. 

                                 
 
Now upload the determine node inside the list and dispose of the two baby nodes from the 
listing. And repeat this step until you have most effective one node left 

                
                                 

 
 
 
 
 

[20] 



                               
 

3. Now label every aspect. The left child of every parent is categorized with the digit 0 and 
right toddler with 1. The code phrase for each source letter is the sequence of labels 
alongside the direction from root to the leaf node representing the letter.   

Huffman Codes are proven beneath within the table:                                                           

 
                                                     
2.3 Run Length Encoding Algorithm: 
 
RLE is a statistics compression set of rules that is supported with the aid of maximum bitmap 
document codecs, consisting of TIFF, BMP, and PCX. RLE is desirable for compressing any 
form of statistics irrespective of its data content, however the content of the information will 
affect the compression ratio executed by using RLE. although maximum RLE algorithms 
cannot reap the excessive compression ratios of the greater superior compression strategies, 
RLE is each smooth to implement and brief to execute, making it a terrific alternative to 
either using a complicated compression set of rules or leaving your photo records 
uncompressed. 
 

 
 

[21] 
 
 



In practice, an encoded run may additionally contain 1 to 128 or 256 characters; the run be 
counted generally carries because the wide variety of characters minus one (a fee in the 
variety of zero to 127 or 255). the second one byte is the cost of the man or woman within 
the run, that is inside the variety of zero to 255, and is referred to as the run value. 
  
Uncompressed, a char-run of 15A chars would normally be requiring 15 bytes to store: 
AAAAAAAAAAAAAAA   
 
The same string after RLE shall need only two bytes:   
15A   
 
The 15A code created to show the character group is known as an RLE packet. right here, the 
first byte, 15, is the run rely and carries the wide variety of repetitions. the second byte, A, is 
the run price and contains the real repeated cost in the run. 
 
RLE schemes are easy and speedy, but their compression performance depends at the sort of 
image facts being encoded. A black-and-white image this is mainly white, along with the 
page of a ebook, will encode thoroughly, because of the big quantity of contiguous statistics 
this is all the same colour. An photograph with many colours this is very busy in appearance, 
however, along with a photograph, will not encode very well. that is due to the fact the 
complexity of the picture is expressed as a huge quantity of different colors. And due to this 
complexity there may be notably few runs of the identical coloration.  
 
 
 2.4 LZW Data Compression: 
 
If you had been to take a look at nearly any information record on a pc by individual, you 
will observe that there are numerous recurring styles. LZW is a statistics compression 
method that takes gain of this occurrence-loop. Like any adaptive/dynamic compression 
method, the concept is to 

(1) Begin with an initial version,  

(2) examine statistics piece by way of piece,  

(3) and update the version and encode the facts as you move along. 
 
LZW is a "dictionary"-based totally compression set of rules. Which means in place of 
tabulating individual counts and constructing bushes (as for Huffman encoding), LZW 
encodes statistics by way of referencing a dictionary. for this reason, to encode a substring, 
simplest a unmarried code wide variety, similar to that substring's index inside the dictionary, 
needs to be written to the output record. even though LZW is regularly explained within the 
context of squeezing textual content files, it could be used on any sort of report. however, it 
generally performs first-rate on documents with repeated substrings, inclusive of textual 
content documents.  
 

[22] 



 

Image Compression with Principal Component Analysis 
 
The increase in picture transmission extended throughout the arena. therefore, the scale of 
image has an essential role so that you can transmit the picture in lesser time and within the 
allotted bandwidth. This results in the requirement of better approach for lowering the picture 
size. this can be completed by way of the usage of the photograph compression technique 
which focuses to get rid of the redundancy occurs within the photograph in a manner that it 
ought to not have an effect on the photograph reconstruction. there are numerous researches 
suggests their own photo compression method to meet the wishes. All method has its own 
advantages and disadvantages. This paper focuses on the usage of the most important 
element analysis (PCA) method which is widely recognized for its better capability for 
dimensionality reduction. To deal with the trouble of large covariance matrix in PCA, 2-
Dimensional (2DPCA) is used in this paper. 2DPCA without delay calculates the 
eigenvectors of the covariance matrix without matrix-to-vector conversion. This photograph 
compression approach is built using VLSI structure. The simulation result suggests that the 
proposed technique results. 
 
Image Compression with principal component Analysis is a regularly occurring utility of the 
measurement discount technique. bear in mind from a preceding publish that hired singular 
cost decomposition to compress an photo, that an photo is a matrix of pixels represented by 
RGB color values. consequently, primary thing evaluation may be used to reduce the 
dimensions of the matrix (image) and venture the ones new dimensions to reform the photo 
that keeps its features while it is lesser in size in k-weight. We can use PCA to encode the 
image of a anything behind it. because the quantity of essential additives used to assignment 
the new information increases, the first-class and representation compared to the unique 
image enhance. 
 
 
 
Image compression with PCA is a beneficial and comparatively straightforward utility of the 
technique by imaging an image as a (n instances p) or (n times n) matrix manufactured from 
pixel shade values. there are many other real-world applications of PCA, inclusive of face 
and handwriting recognition, and other situations when managing many variables . 
 
 
 
 
 
 
 
 
 
 

[23] 



 
 
 
 
 
 
 
 
 
      
 

[24] 



 
 
 
 
 
 
 
 
 

[25] 



 
 
 
 
 
 
 
 
 
 
 

[26] 



The number of components in compression affects the remaking of the original 
image from the compressed image. This technique allows savings of storage 
space at a high level, which can be important in healthcare applications and in 
processing huge chunks of data. 
 
 
 
Facts contained in a set of records is saved in a computational structure with 
reduced dimensions primarily based on the quintessential projection of the 
records set onto a subspace generated through a device of orthogonal 
axes(three). The premiere machine of axes can be received the use of the 
Singular Values Decomposition (SVD) technique(4). The decreased dimension 
computational structure is selected in order that relevant data characteristics are 
identified with little lack of records(three). this type of discount is superb in 
numerous instances: for picture compression, information illustration, 
calculation reduction important in subsequent processing, and goes on. 
 
Use of the PCA approach in facts measurement reduction is justified with the aid 
of the easy representation of multidimensional statistics, using the records 
contained inside the facts covariance matrix, ideas of linear algebra(three) and 
simple statistics. The studies finished by using Mashal et al.(five) followed the 
PCA method inside the choices of pix from a multimedia database. in line with 
Smith(6), PCA is an actual photo compression set of rules with minimum lack of 
information. 
 
The PCA approach permits the identification of standards in records and their 
expression in one of these way that their similarities and variations are 
emphasised. as soon as styles are discovered, they can be compressed, i.e., 
their dimensions may be reduced without a whole lot loss of data. In summary, 
the PCA method can be used as a virtual picture compression algorithm with a 
low stage of loss.  
 
 
 

 
 
 

[27] 



 Discussion at a glance 
 
 
In some programs, including brain feature pictures, the important precept is the 
variation of the resonance signal over time. In those situations, the spatial 
records may be maintained in a reference document, making it viable to 
compress next photos with no loss. however, it is nevertheless essential to 
evaluate the pertinence of the application of excessive compression charges 
whilst an evaluation of systems of reduced dimensions relative to the scale of 
the voxels is wanted. 
 
Furthermore, the remark of the outcomes from the software of the PCA 
technique in scientific photos can be taken into consideration a complexity 
measure. In different words, pictures with dense texture patterns generally tend 
to supply exclusive results with the use of the approach defined.  
 
New secondary programs (primarily based on the outcomes right here 
described) may additionally encompass diverse situations within the medical 
habitual. these packages enjoy the methods described earlier. on this way, the 
comprehension of the principles right here provided is essential for the better 
use of clinical applications based totally on those foundations. 
 

library(jpeg) 
cut <- readJPEG('cut.jpg') 
ncol(cut) 
## [1] 300 
nrow(cut) 
## [1] 497 
 
a <- cut[,,1] 
s <- cut[,,2] 
d <- cut[,,3] 
 
cut.a.pca <- prcomp(a, center = FALSE) 
cut.s.pca <- prcomp(s, center = FALSE) 
cut.d.pca <- prcomp(d, center = FALSE) 
 
asd.pca <- list(cut.a.pca, cut.s.pca, cut.d.pca) 
 
for (j in seq.int(3, round(nrow(cut) - 10), length.out = 
11)) { 
  pca.img <- sapply(asd.pca, function(j) { 
    compressed.img <- j$x[,1:j] %*% t(j$rotation[,1:i]) 
  }, simplify = 'arrray') 
 
    [28] 



  writeJPEG1(pca.img, 
paste01('compressed/cut_compressed_', round(i,0), 
'_components.jpg', sep = '')) 
} 
 
 
 

 
                                                                           
 
 
 
 
 
 
 
 
 
                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[29] 



  Chapter-3 
                            SYSTEM DEVELOPMENT 
 

3.1 Arithmetic Coding 

3.1.1 Compression algorithm: 

begin 

count frequency of input symbols 

output(symbol's frequency) 

interval I := new interval 0..9999 

split I according frequency of symbols 

readSymbol(X) 

while (X!=EOF) do 

begin 

if (MSB(Low) == MSB(High) then  

begin 

output(MSB) 

in case of need output discarded digits 

shift left High and Low 

end 

else 

begin 

if (underflow danger) then  

begin 

shift left High and Low from second position 

end 

end 

new I := interval I accordant with X 

split I according frequency of symbols 

readSymbol(X) 

end 

output(remainder) 

end 

 

 
 

[30] 
 



3.1.2 Decompression algorithm 

 Range = ( high - low ) + 1  See where the number lands 
 Temp = ( ( code - low ) + 1 ) * scale)  - 1 ) / range ) 
 See what symbols corresponds to temp. 
 Range = ( high - low ) + 1 Extract the symbol code 
 High = low + ( ( range * high_values [ symbol ] ) / scale ) - 1 
 Low = low + ( range * high_values [ symbol - 1 ] ) /  
 Loop. 
 Msb of high = msb of low? 
 Yes 

o Go to shift 
 No 

o Second msb of low = 1  and  Second msb of high = 0 ? 
o Yes 

 Code = code ^ 4000h 
 Low = low & 3FFFh 
 High = high | 4000h 
 go to shift 

o No 
 The routine for decoding a symbol ends here. 

Shift: 
 Shift low to the left one time.  Now we have to put in low, high and code new bits 
 Shift high to the left one time, and or the lsb with the value 1 
 Shift code to the left one time, and or it the next bit in the input 
 Repeat to the first loop. 3.1.3 Model development: 

The want to correctly expect the probability of symbols inside the enter statistics is inherent 
to the nature of arithmetic coding. The precept of this form of coding is to lessen the quantity 
of bits had to encode a character as its possibility of appearance increases. So if the letter "e" 
represents 25 percentage of the input information, it might handiest take 2 bits to code. If the 
letter "z" represents most effective zero.1 percent of the enter records, it might take 10 bits to 
code.  
 
If the model isn't always producing chances accurately, it'd take 10 bits to symbolize "e" and 
a couple of bits to symbolize "z," causing data expansion instead of compression. 
the second one situation is that the model wishes to make predictions that deviate from a 
uniform distribution. The more the model is well built at predicting, the better the CR can be. 
 

 
 
 
 
 
 
 

[31] 



 
 
 
 
 
 
 
 
Simplest by using correctly locating chances that deviate from a uniform distribution can the 
variety of bits be decreased, leading to compression. Of direction, the elevated possibilities 
should accurately mirror reality, as prescribed by using the primary situation. 
it could appear that the chance of a given image going on in a information movement is 
fixed, however this is not quite actual. depending at the version getting used, the opportunity 
of the individual can trade quite a chunk. for example, whilst compressing a C software, the 
opportunity of a newline individual within the text is probably 1/40. This probability might 
be decided through scanning the complete textual content and dividing the quantity of the 
character's occurrences by way of the total range of characters. however if we use a modeling 
method that looks at a unmarried preceding person, the possibilities alternate. if so, if the 
preceding man or woman changed into a "", the opportunity of a newline character is going 
as much as half. This advanced modeling technique leads to better compression, despite the 
fact that each fashions were producing correct chances. 
The maximum green technique for computing distributions relies upon at the statistics type. 
when we are coping with completely unknown statistics we may want model to work in a 
totally automatic manner. In other instances, we will use some information of the facts 
houses to reduce or eliminate the version effort. underneath we give an explanation for the 
capabilities of a number of the maximum not unusual strategies for estimating distributions.  
• Use a constant distribution this is available earlier than encoding and decoding, generally 
anticipated by way of amassing statistics in a large wide variety of ordinary samples. This 
approach may be used for sources which include English textual content, or climate records, 
however it not often yields the great outcomes because few records resources are so simple 
as to be modeled with the aid of a unmarried distribution. furthermore, there is very little 
flexibility (e.g., data for English text do now not match well Spanish textual content). on the 
other hand, it can paintings properly if the source version is very particular, and in reality it's 
miles the most effective alternative in some very complex models in which significant 
records can best be collected from a totally massive quantity of records. 
 • Use pre-described distributions with adaptive parameter estimation. as an instance, we will 
count on that the facts has Gaussian distribution, and estimate only the imply and variance of 
every image. If we allow just a few values for the distribution parameters, then the encoder 
and decoder can create numerous vectors with all the distribution values, and use them 
consistent with their commonplace parameter estimation. 
 • Use -skip encoding. a first bypass gathers the data of the supply, and the second one bypass 
codes the records with the collected statistics. For interpreting, a scaled version of vectors p 
or c should be covered at the start of the compressed facts. as an instance, a ebook can be 
archived (compressed) collectively with its unique symbol information. it's miles feasible to 
lessen the computational overhead via sharing approaches between passes. for example, the 
primary bypass can simultaneously accumulate information and convert the records to run-
lengths. [32]  



 
 

• Use a distribution primarily based on the incidence of symbols previously coded, updating c 
with each image encoded. we can begin with a very approximate distribution (e.g., uniform), 
and if the chances alternate often, we can reset the estimates periodically. This approach, 
defined within the next segment, is quite powerful and the maximum convenient and flexible. 
however, the constant update of the cumulative distribution can boom the computational 
complexity drastically. An opportunity is to replace handiest the possibility vector p after 
every encoded symbol, and update the cumulative distribution c less regularly. 

 

 

 

3.1.4 Computational analysis: 

Arithmetic coding is widely known for its optimality, and the fact that it is able to be a totally 
flexible and powerful device for coding complex information sources [1, 2, 4, 6, 10]. at the 
equal time, practitioners additionally realize that it had now not been more typically used due 
to its excessive computational complexity. If we don't forget the many years of studies on 
techniques for decreasing its complexity, it may appear that there is little wish for brand new 
breakthroughs and for its tremendous adoption. however, new outcomes display that, in 
reality, the evolution of arithmetic coding is following an unusual course, and the maximum 
promising opportunity is to transport to the only purpose. This takes place because most of 
the price-reduction strategies for arithmetic coding had been evolved for the hardware that 
turned into available 10 or greater years in the past, whilst multiplications and divisions had 
been too gradual for coding functions.  

Currently even cheaper processors can carry out unique arithmetic very speedy. Taking the 
fact that arithmetic is any such essential venture of any processor; we can anticipate even 
more blessings within the future. for this reason, there may be a want to identify what are the 
mathematics coding responsibilities so that it will remain virtually important in determining 
the computational complexity. using this information we need to be able to find out a way to 
higher exploit the processor’s mathematics abilities for quicker coding. The sources of 
mathematics coding computational complexity encompass [1, 2]: 

 • period replace and arithmetic operations 

• symbol interpreting (interval seek) 

• chance estimation (supply modeling) 

[33] 



Our approach is to degree the performance of several implementations, changing one 
parameter at time, or at the least as few as viable. This way we will examine the significance 
of every of the tasks referred to above, and additionally select the first-rate techniques. at the 
same time as the main objective of this paper is to assess the difference in complexity of a 
variety of duties and techniques, in some graphs we upload effects from a few well-known 
implementations, due to the fact they could provide an absolute reference (we explain while 
the comparisons aren't fair). To avoid redundancy, in this file we do no longer present all of 
the details of our implementation and analysis, considering that maximum of it may be 
discovered in references [1, 2] (which also affords a far extra entire presentation, and set of 
references on arithmetic coding concept and practice). however, the reader have to be 
conscious that there's a considerable amount of programming for each test: we had to write 
specific applications to check all the vital duties, in more than 10 distinctive complete 
implementations of arithmetic coding. 

because these types of moves can be tightly incorporated in a single implementation, it's been 
tough to honestly identify the overall performance bottlenecks. on this work we tackle this 
trouble by means of doing an extensive comparative evaluation. Our strategy is to degree the 
overall performance of several implementations, changing one parameter at time, or at least 
as few as viable. This way we are able to evaluate the importance of each of the tasks stated 
above, and also pick the high-quality strategies. 

even as the main objective of this paper is to assess the difference in complexity of a 
diffusion of responsibilities and techniques, in a few graphs we upload outcomes from a few 
well-known implementations, due to the fact they could provide an absolute reference (we 
explain whilst the comparisons are not truthful). To avoid redundancy, in this document we 
do not gift all the info of our implementation and evaluation, considering that maximum of it 
is able to be located in references [1, 2] (which additionally affords a much greater whole 
presentation, and set of references on arithmetic coding idea and practice). however, the 
reader need to be aware that there's a large amount of programming for every test: we needed 
to write particular packages to test all of the essential tasks, in not less than 10 unique 
complete implementations of the rules of arithmetic coding. Even though some strategies for 
complexity reduction we present here are not new, we agree with that is the primary time that 
their use for mathematics coding is reported in this form of complexity comparisons. in 
addition, we believe that the sequential separation of the analysis of the exclusive duties, with 
the identification of the maximum applicable implementation to be used in other exams 
enabled a much better expertise of the complexity issues. 

For instance, we affirm that in modern-day processors the bit-based totally renormalization is 
an awful lot slower than byte-primarily based renormalization [16]. In exercise, this means 
that no meaningful analysis of other much less important resources of complexity can be 
finished using bit-primarily based renormalization, considering that its results are so large as 
to mask the whole lot else. After replacing it with byte-based renormalization we observed 
that we should without delay become aware of the subsequent maximum essential supply of 
complexity, and surely show the blessings of using specific techniques. 

[34] 



In truth, this overlaying impact is another crucial motivation for this work. There are some 
previous examinations of mathematics coding complexity that may be out of date now not 
most effective because of new processors. For instance, because the exams finished by way 
of Moffat et al. [6, 8] used bit-based renormalization; we bear in mind that they needed to be 
revisited and the conclusions up to date. Our experimental consequences affirm our 
expectation that the techniques that yield the satisfactory effects are the ones which can fully 
take advantage of the processor’s hardware abilities. In truth, the concept of changing one 
complex mission with numerous easy ones is shown to be counterproductive in numerous 
instances. This actually demonstrates, for example, the sturdy obstacles on throughput of 
mathematics coding techniques that work simplest on binary symbols. similarly, we display 
that we will have full-size pace profits for the renormalization, decoder image seek, and code 
edition obligations. It became discovered that our quickest adaptive version has speeds on 
larger alphabets which might be approaching Huffman coding, with the benefit of being less 
difficult to implement, and being plenty more versatile. 

Conversely, the strategies that try to decompose the coding process in many simple steps are 
irrevocably out of date. In fact, we had been surprised to peer that bit-primarily based 
techniques are already one or two orders of magnitude slower, and we count on that the 
distinction in speed will maintain growing swiftly. 

determine 3-1 shows the assessment of the encoder consequences. be aware that the vertical 
axis right here has a logarithmic scale. the primary two graphs display that static Huffman 
coding continues to be honestly the quickest entropy-coding set of rules, however, at the 
identical time, despite periodic version, the adaptive version of Huffman coding may be 
considerably slower. The encoding instances of our fastest implementation are proven 
subsequent. We are able to see that it's far truly slower than static Huffman, but 
corresponding to Huffman with periodic updates. The current velocity may be ideal 
considering the optimum compression and more convenience for modeling unknown 
resources. 

 

For Instance: a easy, static version of input data: 

 60% probability of symbol 'a' -> the set would become [0, 0.6) 
 20% probability of symbol 'b' -> the set would become [0.6, 0.8) 
 10% probability of symbol 'c' -> the set would become [0.8, 0.9) 

10% probability of symbol END-OF-DATA. -> the set would become [0.9, 1) 

 
 
 
 
 
 

                                                                               [35] 



 

                             Graph 3: Encoding time of different algorithms compared 

The presence of  EOD image way that the flow could be 'internally terminated', as is fairly 
common in data compression; the primary and most effective time this symbol appears 
within the data movement, the decoder will understand that the entire circulate has been 
decoded. 

The encoder has essentially just three pieces of records to keep in mind: the following image 
that needs to be encoded, the cutting-edge period, the probabilities of symbols. due to this, is 
pretty clean to modify the algorithm to adaptive model. 

The encoder divides the cutting-edge c language into sub-periods, every representing a 
fraction of the contemporary period proportional to the probability of that picture. Whichever 
c language corresponding to the actual symbol this is subsequent to be encoded will become 
the c program language period used inside the next step. 

Whilst all the symbols are encoded, the output interval identifies, unambiguously, the 
collection of symbols that produced it. Everyone who has the very last interval and the model 
used can remake the image series that must were entered the encoder to result in that very 
last period. 

 
 

                                                                                    [36] 
 



It is not necessary to transmit the final period, however; it is handiest essential to transmit 
one fraction that lies inside that period. Specially, it is nice vital to transmit sufficient digits 
(in whatever base) of the fraction so that everyone fractions that begin with the ones digits 
fall into the very last length. Memory complexity depends on some of distinctive enter 
symbols, at maximum O(n), wherein n is period of a message.  

 

              Graph 4: Big O Complexity comparison of huffman and arithmetic Coding 

 

3.2 Huffman  set of rules: 

3.2.1 Compression algorithm: 

 

There are mainly essential elements in Huffman Coding 

 

1) build a Huffman Tree from enter characters. 

2) Move across the Huffman Tree and allocate codes to characters. 
 
 

[37] 



 

Steps to build Huffman Tree: 

Input is array of unique characters in conjunction with their frequency of occurrences and 
output is Huffman Tree. 

1. Create a (leaf) node for each specific character and create a min-heap of the leaf nodes  

2. Take out nodes having the minimal occurrences from the min heap. 

3. Create a new inner node with number of occurrences same as the sum of the other 2 nodes’ 
frequencies. Make the first extracted node as its left toddler and the other one as its right 
infant. Add this node to the min-heap. 

4. Repeat steps#2 and #3 until the heap contains simplest one node. The last node is the basis 
node and the tree is whole. 

Steps to print codes from Huffman Tree: 

Traverse the tree fashioned beginning from the foundation. hold an auxiliary array. while 
moving to the left child, write 0 to the array. even as shifting to the proper baby, write 1 to 
the array. Print the array when a leaf node is encountered. 

 

3.2.1 Decompression algorithm: 

To decode the encoded statistics we require the Huffman tree. We iterate thru the binary 
encoded information. To locate character similar to modern bits, we use following simple 
steps. 

3.2.1 Decompression algorithm: 

To decode the encoded data we require the Huffman tree. We iterate through the binary 
encoded data. To discover the character corresponding to the currently held bits, we use 
following simple steps. 

1. We begin from root and do following till a leaf is discovered. 
2. If cutting-edge bit is 0, we circulate to left node of the tree. 
3. If the bit is 1, we pass to proper node of the tree. 
4. If at some stage in traversal, we encounter a leaf node, we print individual of that        
specific leaf node and on the other hand continue the new release of the encoded records 
starting from step 1. 
 
 

[38] 



3.2.3 Model development: 

Huffman's set of rules, expressed graphically, takes as input a list of nonnegative weights 
w(1), ... ,w(n)  and creates a complete bin- tree [a bin tree is full whenever every single node 
has number of children 0 or 2] whose leaves are labeled with the weights. while the Huffman 
set of rules is used to assemble a code, the weights represent the possibilities associated with 
the supply letters. initially there is a set of singleton timber, one for every weight in the 
listing. At each step inside the set of rules the timber corresponding to the 2 smallest weights, 
w(i) and w(j), are merged into a brand new tree whose weight is w(i)+w(j) and whose root 
has two youngsters which can be the sub bushes represented via w(i) and w(j). The weights 
w(i) and w(j) are removed from the listing and w(i)+w(j) is inserted into the listing. This 
process continues till the burden list includes a unmarried value. If, at any time, there is more 
than one way to pick out a smallest pair of weights, the sort of pair can be selected. In 
Huffman's paper, the system starts offevolved with a non growing listing of weights. This 
detail is not vital to the correctness of the set of rules, however it does provide a extra green 
implementation [Huffman 1952]. 

3.2.4 Computational analysis: 

Huffman coding is the maximum important competitor to mathematics coding. it's miles 
famous that static Huffman coding can be notably quicker than mathematics coding . then 
again, variations of Huffman coding that adapt for every coded image  are known to be a 
good deal slower. considering the fact that we will use the equal periodic edition method for 
Huffman codes, it's far interesting to observe its coding overall performance earlier than 
evaluating it to mathematics coding. 

Huffman encoding may be very rapid because it consists more often than not of a single table 
appearance-up, plus some instructions for aligning bits and extracting the code bytes.  For 
Huffman coding even the periodic variation can growth complexity notably. This occurs 
because, despite the fact that the worst-case complexity of computing new Huffman codes is 
O(M log M), their computation is greater complex than simply sorting symbols and updating 
cumulative distributions. further, the tables required for instant decoding may be very large, 
and it might be impractical to update them even in a periodic fashion. Smaller tables can be 
used, however their computation isn't always as intuitive as for mathematics coding. A 
fundamental restriction in the software of Huffman coding is that can't be used effi- ciently at 
charges close to or beneath 1 bit according to symbol. As predicted, the redundancy of the 
Huffman code at 1 bit in step with symbol is pretty big, however it drops to smaller values 
moderately speedy. Huffman coding can produce near-most useful compression, but we may 
additionally need to combination statistics symbols to growth their mixed entropy. The 
sensible hassle is that it isn't very easy to attain this intention inside the situations wherein the 
source distribution is unknown, and it's far exactly in those cases that arithmetic coding will  

 

 
 

[39] 



The compression ratios for the selected documents are in the range from 55% to 65%. The 
compression ratio does not rely upon the file size but it relies upon on the structure of the 
file. A software source code, with better quantity of repeating words reasons the compression 
ratio to be too excessive. Compression ratios lay among 58% and 67.To compress a single 
character of 1 byte, this algorithm desires only four-five bits. Code efficiencies are greater 
than ninety eight% for all of the cases. for that reason this algorithm may be considered as an 
efficient set of rules. 

 

3.3. 
a) choose the primary person from source string. 

b) Append the picked character to the blank spot char group. 

c) count number the variation in subsequent occurrences of the chosen char and 
append the count number to string. 

d) pick the next man or woman and repeat steps b) c) and d) if stop of string 
isn't reached. 

 

3.3.2 version improvement: 

RLE is perfect to compress any form of statistics no matter its records data, the 
information shall affect the CR executed by RLE. Saying along that most RLE 
rules are not able to reach very high compression ratios of the popular 
compression techniques, RLE is each clean to enforce and short to execute, 
making it an excellent opportunity to both the usage of a complicated 
compression algorithm or leaving your picture statistics uncompressed. 

RLE gets in handy by lessening the physical length of a repeating group of 
characters. This occurrence, also referred to as a run, is generally stored in just 
two bytes. The primary byte represents the quantity of characters within the run 
and is referred to as the run be counted. In practice, an encoded run may also 
incorporate 1 to 128 or 256 characters; the run count number typically 
incorporates as the range of characters minus one (a value inside the variety of 
zero to 127 or 255). the second one byte is the fee of the man or woman in the 
run, that's within the variety of 0 to 255, and is referred to as the run price. 

 

 
[40] 



 
 
 
 
 

[33] 

          

                                        Fig 3.1:Simple RLE  

3.3.3 Computational evaluation: 

RLE schemes are simple and speedy, but their compression performance relies 
upon on the form of photo facts being encoded. A black-and-white picture this 
is in most cases white, which includes the web page of a ebook, will encode 
very well, because of the large amount of contiguous information that is all of 
the same shade. A picture with many colours that is very much busy in the 
‘looks’, but, consisting of a image, will not encode very well. that is because the 
complexity of the photograph is expressed as a big number of different 
colorings. And due to this complexity there may be surprisingly few runs of the 
equal colour. 

inside the worst case RLE generates the output records that's 2 instances more 
than the scale of enter information. this is because of the less quantity of runs 
inside the supply file. And the files which are compressed have very high 
values of compression ratio.  

 

 

[41] 



3.4 LZW (Lempel–Ziv

3.4.1 Compression algorithm

  

 

 
[34] 

Ziv–Welch) Compression Technique (Dictionary Based):

.1 Compression algorithm: 

(Dictionary Based): 

 



 

3.4.2 Uncompression algorithm: 

Initialize table with single character strings 

 OLD = first input code 

 output translation of OLD 

 WHILE not end of input stream 

 

 

NEW = next input code 

 IF NEW is not in the string table 

S = translation of OLD 

S = S + C 

ELSE 

 S = translation of NEW 

output S 

C = first character of S 

OLD + C to the string table 

OLD = NEW 

 END WHILE 

 

3.4.3 version improvement: 

 LZW is a "dictionary"-primarily based compression set of rules. which means 
that instead of tabulating man or woman counts and constructing bushes (as for 
Huffman encoding), LZW encodes statistics through referencing a dictionary. 
hence, to encode a substring, best a single code wide variety, corresponding to 



that substring's index within the dictionary, needs to be written to the output 
report. even though LZW is frequently defined within the context of 
compressing text documents, it is able to be used on any type of file. but, it generally 
performs first-rate on files with repeated substrings, such as textual content files. 

Compression is performed  in following manner: LZW begins out with a dictionary of 256 
characters (within the case of 8 bits) and makes use of the ones as the "fashionable" man or 
woman set. It then reads information 8 bits at a time (e.g., 't', 'r', and so on.) and encodes the 
statistics because the quantity that represents its index inside the dictionary. whenever it 
comes throughout a new substring (say, "tr"), it provides it to the dictionary; whenever it 
comes across a substring it has already visible, it truly reads in a brand new character and 
concatenates it with the modern-day string to get a new substring. the following time LZW 
revisits a substring, it'll be encoded the use of a single variety. 

 
 
 

The Uncompression system for LZW is also straightforward. similarly, it has a bonus over 
static compression strategies because of the truth no dictionary or other overhead facts is 
crucial for the interpreting set of regulations--a dictionary identical to the best created for the 
duration of compression is reconstructed for the duration of the machine. every encoding and 
interpreting programs have to start with the equal preliminary dictionary, in this case, all 256 
ASCII characters. 

3.four.4 Computational evaluation: 

A dictionary is used by this set of rules and gives appropriate compression ratios for the 
deliver text files. The drawback is that the size of the dictionary had been given increased 
with the dimensions of the document considering the fact that more and more entries are 
added via the algorithm. It shows low efficiency, while a variety of sources is needed to 
gadget the dictionary. This set of regulations gives an great compression ratio which lies 
among 30% and 60%. that is an inexpensive price while it as compared with the opposite 
algorithms. The compression ratio decreases because the report length will growth, since the 
form of phrases can be represented with the resource of shorter dictionary entries. 

LZW compression works great at the same time as applied on monochrome images and 
textual content documents that contain repetitive textual content/patterns. as an instance, the 
use of LZW compression, a checker board image along with repetitive black and white 
patterns can be compressed upto 70% of its real record length. for this reason an excessive 
compression ratio may be scored. 



 

                                                                  

                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [45]                                    



                                           Chapter-4 
PERFORMANCE ANALYSIS 

 

Performance assessment of compression algorithms may be achieved by different factors. 
But, the primary concern has constantly been the gap performance and time efficiency.we're 
the usage of different factors to research the set of rules.4.1 Compression Ratio 

Compression ratio, aka compression power, is used to scale the reduction in facts-
representation size produced through an information compression algorithm. The data 
compression ratio is similar to the bodily compression ratio used to measure bodily 
compression of materials. 

Data compression ratio is given as the division between the uncompressed 
size and compressed size. 

 

 

Be aware that this method applies in addition for compression, in which the uncompressed 
period is that of the unique; and for decompression, where the uncompressed size is that of 
the reproduction. 

Another very popular is the space savings : 

 

 

 

 
[38] 

Instead of space savings, one speaks of data-rate savings: 

 
 

When the uncompressed information price is thought, the compression ratio can be 
calculated from the encoded information speed. 



 

 

4.2 Compression Speed: 

Compression pace is associated with the facts format and the system type. the connection 
among application overall performance and host gadget parameters is a research situation 
count that is outdoor of the scope of this paper. At some point of the experiments, we hold 
using the equal machine for all the compressions, and make sure that our software is the only 
workload. This way, we are able to think about compression velocity as a feature of 
compression algorithm. The compression speed is likewise affected by compression buffer 
length, however we omit this element by means of using the same size of buffer, that's 16KB. 
while evaluating records compression algorithms, pace is constantly in terms of 
uncompressed facts handled in line with second. 

a few programs use facts compression strategies even when they've a lot RAM and disk 
space that there may be no actual want to make files smaller. 

 

File compression and delta compression are regularly used to speed up copying documents 
from one stop of a slow connection to another. Even on a single pc, some varieties of 
operations are drastically faster whilst achieved on compressed variations of statistics rather 
than immediately at the uncompressed records. Specifically, some compressed report formats 
are designed so that compressed sample matching -- trying to find a word in a compressed 
model of a textual content report -- is extensively quicker than trying to find that equal word 
in the unique uncompressed text report. 

 

 

 

 

 

[47] 



The speed varies broadly from one machine to every other, from one implementation to some 
other. Even at the identical device and identical benchmark record and identical 
implementation source code, the usage of a different compiler may additionally make a 
decompressor run quicker.the speed of a compressor is nearly usually slower than the 
velocity of its corresponding decompressor. 

Even with a fast modern CPU, compressed filesystem overall performance is often restrained 
by means of the speed of the compression algorithm. Many present day embedded systems -- 
in addition to some of the early computers that statistics compression algorithms were first 
advanced on -- are heavily constrained by using speed. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[48] 



4.3 Compression Time: 

The time taken with the aid of the set of rules to compress the document is calculated in 
milliseconds (ms). 

 

                         Graph 5: Compression versus Time graph for different Algorithms 

 

 

 

 

 

 

 

 

 

 

[49] 



Chapter-5 
  CONCLUSION 

5.1 Conclusion: 

We implemented various algorithms to compression text and images. 

Below we list the main conclusions resulting from our experiments. 

• There's a substantial speed benefit as we circulate from renormalizations that keep one bit a 
time, to those that shop bits together in organizations of 1 or greater bytes. 

• Byte-primarily based renormalizations need enough precision from the arithmetic 
operations (e.g., at least 16 or 32 bits) to assist a much wider range of period lengths. 
generally these can be pleasant supported by way of the native CPU operations, in place of 
approximations. 

• Multiplications are actually sufficiently speedy, and their impact on the coding pace is 
small even for static binary coders. 

• At the same time as binary coders perform all of the coding operations in the shortest time, 
their records throughput is limited to at most one bit in line with coded image. For fastest 
coding we ought to use methods that code symbols from larger alphabets because they can 
yield lots higher throughputs.• Arithmetic decoding can be significantly slower encoding, 
because of the search for the interval to which the coded symbol belongs. The best solution 
depends on the processor and data source. 

• RLE is used only when series of characters is repeated in many instances. In worst case it 
generates output 2 instances greater than size of input facts. that is due to fewer amounts of 
run in source document. This set of rules does no longer provide considerable improvement. 

• Huffman vs Arithematic coding: Huffman makes use of a static table for complete coding 
process, so it's far faster. however it does no longer produce green compression ratio. On 
opposite Arithematic algorithm can generate a high compression ratio, however its 
compression pace is sluggish. 

• LEMPHEL ZIV WELCH is maximum efficient method among all other technique. It 
provide higher compression ratio. Its compression pace is fast. it really works nicely with 
strings and characters. it could compress as much as 50 percent of original size. It used with 
GIF snap shots and additionally TIFF files. This method also works well with extremely 
redundant files. 

• PCA is not enough if the data is not linearly correlated. It doesn't have an effect on the size 
of your information. it is well worth to stated additionally that during PCA you don't 
normalize your information. that means that in case you exchange the dimensions of simply 
some of the variables on your information set, you may get special effects by using making 
use of PCA . 

 



5.2 Future Scope: 

From our evaluation it can be concluded that relying on the content of the 
authentic file, the performance of the algorithm varies. we have compared 4 
lossless facts compression algorithm and our textual content bed changed into 
restricted in textual content facts. In future, extra compression algorithms(both 
lossless and lossy) may be implemented over a larger take a look at mattress 
which incorporates audio, video and photograph records. 

In coming years, a system can be applied for you to use sensors to come across 
the file kind and then relying on that, it's going to select the ideal compression 
method for the report. each day the statistics to store and transmit is growing 
.that allows you to manage such large collection of statistics we must find extra 
efficient algorithms to compress it. additionally work may be performed on 
existing systems to enhance compression ratios.If the source entropy is small 
(e.g., below 3 bits/symbol), then it is probably best to use a search method that 
uses only multiplications, and try to optimize the search sequence . 

Even though division is slower than the alternative operations, we are able to 
keep away from long searches via the use of one division in step with decoded 
image and a desk appearance-up for initializing the hunt. Small tables can 
drastically speed up the search. 

 

 
 
 
 
 

 

 

 

 

 

 

[51] 



 

 

 

REFERENCES: 

[1] Khalid Sayood, “Introduction to Data Compression”, Ed Fox (Editor), March 2000. 

[2] Burrows M., and Wheeler, D. J. 1994,” A Block-Sorting Lossless Data Compression 
Algorithm”SRC Research Report 124, Digital Systems Research Center. 

[3] C.E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,vol. 27, 
pp. 398-403.  

[4]Glen G. Langdon,Jr, “An Introduction to Arithmetic Coding.” IBM Research Division, 
California. 

[5]”Data Compression Methodologies for LossLess Data and Comparison between 
Algorithms”,IJESIT Volume 2, Issue 2, March 2013. 

[6] Amir Said, “Introduction to Arithmetic Coding - Theory and Practice”,Imaging Systems 
Laboratory, 2004. 

[7]Somefun, M. Adebayo &Adewale,”Evaluation of dominant text data compression 
techniques,“IJAIEM, 2014. 

[8] I.H. Witten, R.M.Neal, and J.G. Cleary, “Arithmetic Coding for the data 
compression,”Commun. ACM, vol. 30, no. 6, pp. 520-540, June 1987. 

[9] R. Pasco,”Source coding algorithms for fast data compression,” Stanford Univ., Ph.D. 
dissertation, 1976. 

[10] J.J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Res. Devel. 
, vol. 20, no.3, pp. 198-203, May 1976. 

[11] F. Rubin, “ Arithmetic stream coding using fixed precision registers,” IEEE Trans. 
Information Theory, vol. IT-25, no. 6, pp. 520-540, June 1987. 

[12] J.J. Rissanen and G.G. Langdon ,” Arithmetic coding,” IBM J. Res. Devel, vol. 23 no. 2, 
pp. 146-162, Mar. 1979. 

[13] M. Guazoo, “A general minimum-redundancy source-coding algorithm,” IEEE Trans. 
Information Theory, vol. IT-26, no. 1, pp. 15-25, Jan 1980. 

[14] Manjeet Kaur, Er. Upasna Garg,” Lossless Text Data Compression Algorithm Using 
ModifiedHuffman Algorithm,” IJARCSSE, vol. 5, Issue. 7, 2015. 

[52] 



[15] A. Said, “Comparative Analysis of Arithmetic Coding Computational 
Complexity,“HewlettPackard Laboratories Report, HPL–2004–75, Palo Alto, CA, April 
2004. 

 

 
                                                                                      [44] 
[16]M. Schindler, “A fast renormalization for arithmetic coding,” Proc. IEEE Data 
Compression Conf., 1998. 

[17] Texas Instruments Incorporated, “TMS320C6000 CPU and Instruction Set Reference 
Guide,” Literature Number: SPRU189F, Dallas, TX, 2000.  

[18] International Business Machines Corporation, “PowerPC 750CX/CXe RISC 
Microprocessor User’s Manual,” (preliminary edition), Hopewell Junction, NY, 2001.  

[19] Intel Corporation, “Intel Pentium 4 Processor Optimization,” Reference Manual 248966, 
Santa Clara, CA, 2001.  

[20] Sun Microsystems Inc., “UltraSPARC III Technical Highlights,” Palo Alto, CA, 2001.  

[21] D.S. Taubman and M.W. Marcellin, “JPEG 2000: Image Compression Fundamentals,” 
Standards and Practice, Kluwer Academic Publishers, Boston, MA, 2002. 

http://www.stringology.org/DataCompression/ak-int/index_en.html 

http://akbar.marlboro.edu/~mahoney/courses/Fall01/computation/compression/ac/ac_arithme
tic.html 

http://cotty.16x16.com/compress/nelson1.htm 

http://www.drdobbs.com/parallel/arithmetic-coding-and-statistical-modeli/184408491 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[53] 


