Development of database of genes related to Endometriosis Project report submitted in fulfillment of the requirement for the degree of Bachelor of Technology In ### **BIOINFORMATICS** by Deeksha Pandey (131514) Under the supervision of Dr. Jayashree Ramana Department of Biotechnology and Bioinformatics Jaypee University of Information Technology Waknaghat, Solan-173234, Himachal Pradesh ## **BONAFIDE CERTIFICATE** This is to certify that this project report entitled "Development of database of genes related to Endometriosis", submitted to Jaypee University of Information Technology, Waknaghat, Solan, is a bonafide record of work done by "Deeksha Pandey" for the degree of B.Tech Bioinformatics has been carried out under my supervision. Dr. Jayashree Ramana, Assistant Professor (Senior Grade) Biotechnology and Bioinformatics Department Jaypee University of Information Technology, Waknaghat, Solan, H.P Dated: ## **DECLARATION BY THE AUTHOR** This is to affirm this report titled "Development of database of genes related to Endometriosis" has been written by me, i.e. Deeksha Pandey, under the supervision of Dr. Jayashree Ramana. No part of report has been plagiarized from other sources and all the information used from other sources has been acknowledged. I aver that if any part of this report is found to be plagiarized, I shall take full responsibility of it. Deeksha Pandey (131514) ## **ACKNOWLEDGEMENT** I owe my profound gratitude to my project supervisor *Dr. Jayashree Ramana*, who took keen interest and guided me all along in my project work titled — *Development of database of genes related to Endometriosis*, till the completion of my project by providing all the necessary information for developing the project. The project development helped me in understanding the disease better and inspired me to work in order to help in any further research. I'm really thankful to her. ## **TABLE OF CONTENTS** | BONAFIDE CERTIFICATE | 2 | |----------------------------|-------| | DECLARATION BY AUTHOR | 3 | | ACKNOWLEDGEMENT | 4 | | LIST OF FIGURES AND TABLES | 6 | | ABSTRACT | 7 | | INTRODUCTION | 8-13 | | AIMS AND OBJECTIVES | 14 | | METHODOLOGY | 15-17 | | RESULTS | 18-36 | | CONCLUSIONS | 37 | | REFERENCES | 38-39 | # List of Figures | S.no | Title | Page no. | |------|--------------------------|----------| | 1 | Pie charts | 6 | | 2 | Endometriosis sightings | 10 | | 3 | Endometriosis statistics | 12 | | 4 | Methodology graph | 14 | | 5 | Data flow diagram | 16 | | | | | | | | | # List of tables | S.no | Title | Page no | |------|------------|---------| | 1 | Repository | 16-22 | ## **Abstract** Endometriosis has become one of the major concerns in the current times, it may or may not be cancerous and to understand the functioning of the endometriotic condition we need to understand the genetic predisposition of this condition of endometriosis. So, in order to understand the genetic predisposition, a database will be developed that will include all the genes that may be resulting in endometriosis and these genes will later be analyzed based on their functioning and abundance in various case studies. Fig 1. Pie chart # <u>INTRODUCTION</u> <u>OVERVIEW</u> In the condition of endometriosis, a layer of tissue generally covering the internal part of the female reproductive organ grows outside of it. The main organs affected are ovaries, fallopian tubes, the tissues around the uterine lining, in the very rare cases it is noticed in the other parts of the female body. The women suffering from it feels the pelvic pain. The fifty percent of the patients suffer from pelvic pain along with the pain during their periods. Painful sexual intercourse is also reported in the patients suffering. The symptoms that usually get neglected include bowel symptoms. Approximately 25% of patients don't show any type of symptoms. Even with the endometriosis, the tissues act normal they get thick, break down and dispose with period blood every month. When it effects ovaries, cysts that form are called endometriomas. . It can cause severe pain during menstruation. It's believed that it can have social and psychological effects. Although the cause is not entirely clear but we can visualize family history of the condition in various cases. The tissue growths due to endometriosis are not cancer. (Although there are some cancerous cases also reported but in general it's not cancer) Biopsy is the method used for diagnosis. The few things that are believed to help with endometriosis include pain medication, hormonal treatments and surgery. Tentative evidences suggested that the regular use of oral contraceptives does help to reduce the risk of endometriosis. ## **SYMPTOMS** The primary symptom of the endometriosis is pelvic pain, often associated with menstrual period. Although many women experiences cramping during their menstrual period, women with endometriosis typically describe menstrual pain that's far worse than usual. They also tend to report that the pain increases over time. Common signs and symptoms of endometriosis may include: - Painful periods (dysmenorrhea). Pelvic pain and cramping begins before the starting of menstrual cycle and continues for several days during the cycle, women also have lower back pain as well as abdominal pain. - Pain during sex. Pain during the intercourse or after sex is quite common in case of endometriosis. - Pain while bowel movements /urination. Women are likely to experience pain while urination during the period. - Excessive bleeding during menstrual cycle. Women experience occasional heavy periods (menorrhagia) or bleeding between periods (menometrorrhagia) in such cases. - Infertility. Endometriosis causes infertility in most of the cases. - Other symptoms. Apart from these one may experience fatigue, diarrhea, constipation, bloating or nausea during menstrual periods. The severity of pain isn't necessarily a reliable source to tell the extent of the condition. Since a few women with mild endometriosis too have intense pain, while a few suffering with advanced endometriosis may experience a little pain or in some cases no pain at all. Endometriosis can easily be mistaken for other conditions that are responsible for pelvic pain, such as pelvic inflammatory disease (PID) or ovarian cysts. It's also confused with irritable bowel syndrome (IBS), IBS can accompany endometriosis in various cases, which complicates the diagnosis. ## **CAUSES** As we already know that the meticulous cause of the endometriosis is not very convincing, the possible explanations that can cause endometriosis includes: - Retrograde menstruation. In retrograde menstruation, menstrual blood containing endometrial cells flows back through the fallopian tubes and into the pelvic cavity instead of out of the body. These displaced endometrial cells stick to the pelvic walls and surfaces of pelvic organs, where they grow and continue to thicken and bleed over the course of each menstrual cycle. - Transformation of peritoneal cells. In what's known as the "induction theory," experts propose that hormones or immune factors promote transformation of peritoneal cells — cells that line the inner side of your abdomen into endometrial cells. - Embryonic cell transformation. Hormones such as estrogen may transform embryonic cells cells in the earliest stages of development into endometrial cell implants during puberty. - Surgical scar implantation. After a surgery, such as a hysterectomy or C-section, endometrial cells may attach to a surgical incision. - Endometrial cells transport. The blood vessels or tissue fluid (lymphatic) system may transport endometrial cells to other parts of the body. - Immune system disorder. It's possible that a problem with the immune system may make the body unable to recognize and destroy endometrial tissue that's growing outside the uterus. ## **RISK FACTORS** Factors that cause the risk of developing the condition of endometriosis are as following: - Not being able to give birth - Getting the period at a very early age - Getting the menopause at later stage of life than normal - Comparative small menstrual cycles, that is lesser than the 27 days - Production of higher amount of estrogen in the body - Comparative lower body-mass-index - If more than one blood relations (mother, aunt or sister) suffering with endometriosis - Uterine abnormalities @ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED. Fig 4.1- endometriotic sightings ## **COMPLICATIONS** #### **Infertility** The top most complication due to the endometriosis is diminished fertility. Roughly around 1/3 to 1/2 of women suffering from the endometriosis face struggle in conceiving. As it's known to conceive the baby, an egg must be unconstrained from one of the ovaries then it should travel through the fallopian tube so that it can be impregnated by a sperm cell and then it should attach the aforementioned to the uterus wall to begin developing as a fetus. The case of endometriosis barricades the fallopian tube thus hindering the egg and sperm from fusion. But many of the women with mild and moderate endometriosis are still able to conceive and carry a pregnancy to the term. #### Ovarian cancer Ovarian cancer is oddly common in women with endometriosis. Although in rare cases another type of cancer that is endometriosis-associated adenocarcinoma is reported to develop later in life in women who have had endometriosis. ## **STATISTICS AND HISTORY** As per a report endometriosis affected around 10.8 million women. Another evaluation says that about 6–10% of women suffer with endometriosis. It is commonly found with the age group of 30's to 40's, although it can commence in girls of even 8-years-old. It does result in a few deaths every year. Endometriosis was first determined to be an entirely separate condition/disease in the 1920s. Before 1920s endometriosis and adenomyosis were considered to be the same. Endometriosis was first discovered microscopically by Karl von Rokitansky in 1860. Fig 6.1 ## AIMS AND OBJECTIVES - 1- All the genes related to the condition of endometriosis were collected from various literature and research articles and the database was developed. - 2- A web-resource containing the repository of all genes specific to endometriosis was developed. # **METHODOLOGY** Reviewed various Extracted the research required data papers Made a Pooled genes repository of the out of the responsible literature genes A web resource for further Final verification research First of all, I reviewed various research papers in order to understand the concept and functioning of endometriosis and then once reviewing various research papers I pooled out the genes responsible for endometriosis based on case studies and created a repository of these genes which are supposedly responsible for endometriosis. This repository consists the genes, their official name, the pubmed id of the research paper they are taken from and their functions in respect to endometriosis. Then these genes were verified and a web resource was developed. To develop the web resource the requirements were as following, #### The non-functional requirements: - There should be sufficient network bandwidth - Backup- provision for data backup - Maintainability- easy to maintain - Performance/ response time- fast response - Usability by target user community- easy to use - Expandability- needs to be future proof or upgradable - Safety- should be safe to use #### Hardware requirements: - **Operating System:** Windows 7 and above. - **Processor:** Intel dual core or above - **Processor Speed:**1.0GHZ or above - **RAM:** 1 GB RAM or above - **Web Browser:** Google Chrome 29.0.1547 and above, Mozilla Firefox 1.7 and above. - Software Requirements: Notepad, Xampp 5.1.28 #### **Technologies used:** - HTML. - CSS. - JavaScript. - Php. - mySQL. # **DATAFLOW DIAGRAM** Since the entire repository of 640 genes can't be displayed so first 80 genes are mentioned below | Seri | | | | | | |------|-------|--------------------------------|--------------|-------|--| | al | | | PubMe | Gene | | | no. | GENE | Official full name | d ID | ID | Function | | | | enhancer of zeste 2 | | | Induces epithelial- | | | | polycomb repressive | 287549 | | mesenchymal transition | | 1 | EZH2 | complex 2 subunit | 64 | 2146 | (EMT) in cancers | | | | | | | known to regulate | | | | | 287549 | | epigenetic gene
silencing and suppress | | 2 | SIRT1 | sirtuin 1 | 20/549 | 23411 | recombination of rDNA | | L | SILLI | SH (UIII I | VV | 23411 | in eutopic endometrium | | | | | | | of infertile women with | | | | | | | endometriosis disorder | | | | | | | leading to over- | | | | | 287549 | | expression of the | | 3 | BCL6 | B-cell CLL/lymphoma 6 | 06 | 604 | | | | | TED LO | | | likely participate in the | | | KRAS | KRAS proto-oncogene,
GTPase | 287549 | 3845 | pathogenesis | | 4 | KKAS | GIFase | 06 | 3843 | | | | | | 288370 | | the genes related to
endometrium-embryo | | | | | 27 | | interaction regulated by | | 5 | (PGR) | progesterone receptor gene | | 5241 | progesterone | | | , , | heparin binding EGF like | 288370 | 1839 | | | 6 | HBEGF | growth factor | 27 | 1039 | | | | | | 288370 | 3685 | | | 7 | ITGAV | integrin subunit alpha V | 27 | 3003 | | | 0 | FFCD2 | intermin subscript but 2 | 288370 | 2600 | | | 8 | ITGB3 | integrin subunit beta 3 | 27
288370 | 3690 | | | 9 | SPP1 | secreted phosphoprotein 1 | 27 | 6696 | | | , | DALA | societed bijoshiohiotem i | <i>24 /</i> | ~~~ | The encoded | | | | | | | preproprotein is | | | GDF-9 | growth differentiation | 288316 | | proteolytically | | 10 | gene | factor 9 | 46 | 2661 | processed to generate | | 11 | АМН | anti-Mullerian hormone | 288316
46 | 268 | each subunit of the disulfide-linked homodimer. This protein regulates ovarian function. This complex binds to the anti-Mullerian hormone receptor type 2 and causes the regression of Mullerian ducts in the male embryo that would otherwise differentiate into the uterus and fallopian tubes. prevents the development of the | |-----|--------|----------------------------|--------------|-------|---| | | AMHR2 | anti-Mullerian hormone | 288316 | | mullerian ducts into
uterus and Fallopian | | 12 | | type 2 receptor | 46 | 269 | tubes | | | 17β- | hydroxysteroid 17-beta | 288009 | | | | 13 | HSD1 | dehydrogenase 3 | 57 | 3293 | | | | | , , | 287795 | | | | 14 | IL6R | Interleukin-6 | 73 | 3570 | | | | | | | | plays a crucial role in | | | | prostaglandin-endoperoxide | 287346 | | the acquisition of oocyte | | 15 | PTGS2 | synthase 2 | 88 | 5743 | competence | | | CONTRA | 11. 754 | 287200 | 505 | | | 16 | CCND1 | cyclin D1 | 98 | 595 | | | | | | 206700 | | Increased expression in | | 17 | ID2 | inhibitor of DNA binding 2 | 286789
15 | 3398 | patients
with endometriosis | | 17 | 1102 | proline and arginine rich | 15 | 2298 | Increased expression in | | | | end leucine rich repeat | 286789 | | patients | | 18 | PRELP | protein | 15 | 5549 | with endometriosis | | | | F | | 2245 | Increased expression in | | | | SPARC related modular | 286789 | | patients | | 19 | SMOC2 | calcium binding 2 | 15 | 64094 | with endometriosis | | | | - | | | Overexpression in | | | | | | | Eutopic Endometrium | | 0.0 | E1774 | 0 114 11 4 | 286732 | 24445 | From Women | | 20 | FJX1 | four jointed box 1 | 06 | 24147 | | | 21 | KLF11 | Kruppel like factor 11 | 289384 | 8462 | Endometriosis related | | | | | 37 | | fibrosis is regulated
epigenetically
female fibrotic
predilection was
mediated by differential
sex steroid regulation of | |----|---------|---|------------------------|-------|---| | 22 | COL1A1 | collagen type I alpha 1
chain | 289384
37
289272 | 1277 | KLF11/Collagen 1A1
(COL1A1) signaling | | 23 | IL6 | interleukin 6 | 43 | 3569 | | | | | X-ray repair cross | 289267 | | meta-analysis suggested
that Arg399Gln in
XRCC1 was associated | | 24 | XRCC1 | complementing 1 | 25 | 7515 | with endometriosis risk | | | | | 289257 | | detect pelvic | | 25 | Ucn1 | Urocortin | 54 | 7349 | endometriosis in | | 23 | Ochi | Orocortin | | 1349 | symptomatic women
have a statistically | | | | | | | significantly different | | | | | 289232 | | expression profile in | | | | leucine rich repeat | 87 | | deep- | | 26 | LGR5 | containing G protein-
coupled receptor 5 | | 8549 | infiltrating endometriosi
s | | | | | | | TGF-β1 plays a major
role in the development
of | | | TGF-β | transforming growth factor | 289034 | | peritoneal endometriosis | | 27 | ligands | beta 1 | 71 | 7040 | lesions | | | | | | | results suggest that
P2X3 might be involved | | | | | 288982 | | in endometriosis pain
signal transduction via | | 28 | P2RX3 | purinergic receptor P2X 3 | 82 | 5024 | ERK signal pathway | | | | ras homolog family | 288812 | | | | 29 | RHOJ | member J | 65 | 57381 | | | 30 | C2 | complement C2 | 288812
65 | 717 | | | 50 | HLA- | major histocompatibility | 288812 | 111 | | | 31 | DRA | complex, class II, DR alpha | 65 | 3122 | | | | | | | | data indicate | | | | C-C motif chemokine | 288567 | | CCL19/CCR7
contributes to | | 32 | CCL19 | ligand 19 | 57 | 6363 | proliferation and | | | | | | | invasion of ESCs, which are conducive to the pathogenesis of endometriosis throug h activating PI3K/Akt pathway. data indicate CCL19/CCR7 contributes to proliferation and invasion of ESCs, which are conducive to the pathogenesis of endometriosis throug | |----|--------------|-------------------------------------|--------------|------------|--| | 33 | CCR7 | C-C motif chemokine
receptor 7 | 288567
57 | 1236 | h activating PI3K/Akt pathway. Pharmacological blockage of the CXCR4-CXCL12 axis | | 34 | CXCL12 | C-X-C motif chemokine
ligand 12 | 291613
47 | 6387 | in endometriosis leads
to contrasting effects in
proliferation, migration
and invasion.
Pharmacological
blockage of the
CXCR4-CXCL12 axis | | 35 | CXCR4 | C-X-C motif chemokine
receptor 4 | 291613
47 | 7852 | in endometriosis leads
to contrasting effects in
proliferation, migration
and invasion.
Serum miR-122 and
miR-199a were
significantly increased
in endometriosis, | | 36 | miR-
122 | microRNA 122 | 291495
41 | 40690
6 | indicating that these
microRNAs might serve
as biomarkers for the
diagnosis
of endometriosis.
Serum miR-122 and
miR-199a were | | 37 | miR-
199a | microRNA 199a-1 | 291495
41 | 40697
6 | significantly increased
in endometriosis, | | 38 | ARID1
A | AT-rich interaction domain
1A | 291351
19 | 8289 | indicating that these microRNAs might serve as biomarkers for the diagnosis of endometriosis. The decreased gene and protein expression levels of ARID1A are related to the occurrence and development of endometriosis-associated ovarian cancer, especially OCCC. study suggest that | |----|-------------|---|--------------|------------|--| | | | | | | CYP2C19*2 is
positively associated
with endometriosis and
that BMI may have a
significant interaction
with CYP2C19*2 and | | 39 | CYP2C1
9 | cytochrome P450 family 2
subfamily C member 19 | 291028
10 | 1557 | the risk
of endometriosis.
The MALAT1/miR-
200c sponge may be a | | 40 | MIR200
C | microRNA 200c | 291160
25 | 40698
5 | potential therapeutic
target for endometriosis
The MALAT1/miR- | | 41 | MALAT
1 | metastasis associated lung
adenocarcinoma transcript
1 (non-protein coding) | 291160
25 | 37893
8 | 200c sponge may be a
potential therapeutic
target for endometriosis
The MALAT1/miR-
200c sponge may be a | | 42 | ZEB1 | zinc finger E-box binding
homeobox 1 | 291160
25 | 6935 | potential therapeutic
target for endometriosis
The MALAT1/miR-
200c sponge may be a | | 43 | ZEB2 | zinc finger E-box binding
homeobox 2 | 291160
25 | 9839 | potential therapeutic
target for endometriosis
The FEN1 rs174538 A
allele is a novel | | 44 | FEN1 | Flap Endonuclease 1 | 291090
95 | 2237 | protective biomarker
for endometriosis and | | 15 | IUNIT7. | West four ille manubor 7 A | 291078
40 | 7476 | this genotype may have interactions with age- and hormone-related factors on the development of endometriosis. It seems that the aberrant activation of Wnt/β-catenin signaling in the secretory phase of the menstrual cycle in endometriosis has two essential elements: excessive inactivation of GSK-3β and suppression of the expression of Wnt signaling inhibitor | |----|--------------|---|--------------|-------|--| | 45 | WNT7a | Wnt family member 7A | | 7476 | DKK-1
It seems that the | | | | dialskonf WNT aignaling | 291078
40 | | aberrant activation of Wnt/β-catenin signaling in the secretory phase of the menstrual cycle in endometriosis has two essential elements: excessive inactivation of GSK-3β and suppression of the expression of Wnt signaling inhibitor. | | 46 | DKK-1 | dickkopf WNT signaling
pathway inhibitor 1 | 291078
40 | 22943 | signaling inhibitor DKK-1 It seems that the aberrant activation of Wnt/β-catenin signaling in the secretory phase of the menstrual cycle in endometriosis has two essential elements: excessive inactivation of | | 47 | CTNNBI
P1 | catenin beta interacting
protein 1 | | 56998 | GSK-3β and
suppression of the
expression of Wnt | | | | | | | signaling inhibitor
DKK-1
The ectoenzymes ADA
and ENPP1 are | |----|--------|---|--------------|------------|--| | 48 | ADA | adenosine deaminase | 291948
39 | 100 | biomarker candidates
for endometriosis.
The ectoenzymes ADA | | 49 | ENPP1 | ectonucleotide
pyrophosphatase/phosphodi
esterase 1 | 291948
39 | 5167 | and ENPP1 are
biomarker candidates
for endometriosis.
The ectoenzymes ADA | | 50 | ENPP3 | ectonucleotide
pyrophosphatase/phosphodi
esterase 3 | 291948
39 | 5169 | and ENPP1 are
biomarker candidates
for endometriosis.
MiR23b and Sp1 are | | 51 | miR23b | microRNA 23b | 290932
45 | 40701
1 | involved in the pathogenesis of ovarian endometriosis, which may facilitate the formation of ectopic lesions. MiR23b and Sp1 are involved in the pathogenesis of | | 52 | Sp1 | Sp1 transcription factor | 290932
45 | 6667 | ovarian endometriosis,
which may facilitate the
formation of ectopic
lesions.
helps to understand the
possibility of using | | 53 | LYN | LYN proto-oncogene, Src
family tyrosine kinase | 290509
63 | 4067 | GlcCer to modulate the SDF-1α-CXCR4-
LYNpTyr396 axis in endometriosis.
helps to understand the possibility of using GlcCer to modulate the | | 54 | GCS | glutamate-cysteine ligase
catalytic subunit | 290509
63 | 2729 | SDF-1α-CXCR4-
LYNpTyr396 axis in
endometriosis. | | 55 | CXCR4 | C-X-C motif chemokine
receptor 4 | 290509
63 | 7852 | helps to understand the
possibility of using
GlcCer to modulate the | | 56 | TNF | tumor necrosis factor | 290405 | 7124 | ignificant elevation of TNF-α, IL-1β and IL-6, significant up-regulation of microRNA 125b and significant down-regulation of Let-7b in sera of endometriosis patient s versus control. There was a positive correlation between miR 125b levels and TNF-α, IL-1β, and IL-6 and a negative correlation between miR Let7b levels and TNF-α in sera | |----|-----|-----------------------------------|--------------|------|--| | 57 | IL6 | interleukin 6 | 290405
78 | 3569 | of patients
with endometriosis.
ignificant elevation of
TNF-α, IL-1β and IL-6, | | 58 | IL8 | C-X-C motif chemokine
ligand 8 | 290405
78 | 3576 | significant up-regulation | | | | | 290345 | | significant down- regulation of Let-7b in sera of endometriosis patient s versus control. There was a positive correlation between miR 125b levels and TNF-α, IL-1β, and IL-6 and a negative correlation between miR Let7b levels and TNF-α in sera of patients with endometriosis. blocking endothelin-1 was effective to | |----|--------------|---|--------------|------------|--| | 59 | EDN1 | endothelin 1 | 46 | 1906 | decrease pain | | 60 | BDKRB
2 | bradykinin receptor B2 | 290345
46 | 624 | the presence and the
function of the BK
system in endometriosis
endometriosis mainly
correlating the cytokine | | 61 | CDKN1
B | cyclin dependent kinase
inhibitor 1B | 292165
64 | 1027 | p27kip1 expression with
the diagnostic and
disease treatment.
study indicated that | | 62 | MIR30C
1 | microRNA 30c-1 | 292011
89 | 40703
1 | miR-30c serves an important role in the development and progression of EMs by regulating the expression of PAI-1 study indicated that miR-30c serves an important role in the | | 63 | SERPIN
E1 | serpin family E member 1 | 292011
89 | 5054 | development and
progression of EMs by
regulating the
expression of PAI-2
CSOSA/NLC/A-317491
could be used as an | | 64 | P2rx3 | purinergic receptor P2X 3 | 291844
06 | 81739 | effective treatment
strategy for P2X3- | | | | | | | targeted therapy
in endometriosis pain.
CSOSA/NLC/A-317491
could be used as an
effective treatment | |----|----------------|---------------------------------------|--------------|-------------|---| | 65 | ссрА | LacI family transcriptional regulator | 291844
06 | 51843
55 | strategy for P2X3-
targeted therapy
in endometriosis pain.
results suggest that
upregulation of NAG-1 | | 66 | PRDX2 | peroxiredoxin 2 | 291571
23 | 7001 | contributes to TSA-
induced apoptosis in
HESCs.
results suggest that
upregulation of NAG-1
contributes to TSA- | | 67 | GDF15 | growth differentiation
factor 15 | 291571
23 | 9518 | induced apoptosis in
HESCs.
RA treatment induces
autophagy and Beclin1 | | 60 | DECM | Declin1 | 290639
47 | 0670 | may play an important
role
in endometriosis progres | | 68 | BECN1 | Beclin1 | 290639
47 | 8678 | sion
RA treatment induces
autophagy and Beclin1
may play an important
role | | 69 | RARA | retinoic acid receptor alpha | | 5914 | in endometriosis progres
sion
the study findings
suggest that HOXA11-
AS1 lncRNA may play | | | | | 290174
17 | | a role in the
development of
peritoneal endometriosis
, but HOXA11-AS1
may not influence
endometrial receptivity | | 70 | HOXA9
HOXA1 | homeobox A9 | 290174 | 3205 | in endometriosis-
associated infertility.
the study findings | | 71 | 0 | homeobox A10 | 17 | 3206 | suggest that HOXA11- | | 72 | HOXA1
1-AS | HOXA11 antisense RNA | 290174
17 | 22188 | AS1 lncRNA may play a role in the development of peritoneal endometriosis, but HOXA11-AS1 may not influence endometrial receptivity in endometriosis-associated infertility. the study findings suggest that HOXA11-AS1 lncRNA may play a role in the development of peritoneal endometriosis, but HOXA11-AS1 may not influence endometrial receptivity in endometriosis-associated infertility. the study findings suggest that HOXA11-AS1 lncRNA may play | |----|---------------|---|--------------|-------|---| | 73 | HOXA1 | homeobox A13 | 290174
17 | 3209 | a role in the development of peritoneal endometriosis, but HOXA11-AS1 may not influence endometrial receptivity in endometriosis-associated infertility. EnSCs proliferation by targeting the 3' untranslated region of VEGFA. miR-34a-5p provides a novel avenue for the understanding of the development of endometriosis the present results suggest that the CFTR-NFkB-uPAR signaling may contribute to the | | 74 | VEGFA | vascular endothelial growth
factor A | 289900
49 | 7422 | | | 75 | CFTR | cystic fibrosis
transmembrane
conductance regulator | 289780
08 | 1080 | | | | | | 289780
08 | | progression of
human endometriosis
the present results
suggest that the CFTR-
NFkB-uPAR signaling
may contribute to the | |----|-------|--|--------------|------|--| | 76 | PLAUR | plasminogen activator,
urokinase receptor | | 5329 | progression of
human endometriosis
the present results | | | | potassium voltage-gated | 289780
08 | | suggest that the CFTR-
NFκB-uPAR signaling
may contribute to the | | 77 | KCNE1 | channel subfamily E
regulatory subunit 1 | | 3753 | progression of
human endometriosis
the present results | | | | | 289780
08 | | suggest that the CFTR-
NFκB-uPAR signaling
may contribute to the | | 78 | NFKB1 | nuclear factor kappa B
subunit 1 | | 4790 | progression of
human endometriosis
study showed for the | | | | | | | first time that MFG-E8
expression is impaired
in the endometrium of | | 79 | MFGE8 | milk fat globule-EGF factor
8 protein | 289677
12 | 4240 | patients
with endometriosis
study showed for the | | | | | | | first time that MFG-E8
expression is impaired
in the endometrium of | | ^^ | | interleukin 6 family | 289677 | 0004 | patients | | 80 | LIF | cytokine | 12 | 3976 | with endometriosis | # The screen shots of the web repository ## **CONCLUSION** A web resource with a repository of genes was created, this repository consists the genes, their official name, the pubmed id of the research paper they are taken from and their functions in respect to endometriosis. These gene can be accessed by their official name, pubmed id and structure for further research work conducted by any research fellow, it'll be able to help them with all the basic data and knowledge due to which the research can be taken further without wasting time on collecting the basic data. ## **Refrences** - 1. Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissues into the peritoneal cavity. Am J Obstet Gynecol. 1927:422–469. doi: 10.1016/S0002-9378(15)30003-X. [PMC free article] [PubMed] [Cross Ref] - 2. Viganò P, Somigliana E, Chiodo I, Abbiati A, Vercellini P. Molecular mechanisms and biological plausibility underlying the malignant transformation of endometriosis: a critical analysis. Hum Reprod Update. 2006;12:77–89. doi: 10.1093/humupd/dmi037. [PubMed] [Cross Ref] - 3. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15:587–607. doi: 10.1093/molehr/gap064. [PubMed] [Cross Ref. - 4. Meola J, Rosa e Silva JC, Dentillo DB, da Silva WA, Jr, Veiga-Castelli LC, Bernardes LA, et al. Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil Steril2. 2010;93:1750–1773. doi: 10.1016/j.fertnstert.2008.12.058. [PubMed] [Cross Ref] - 5. Lasorella A, Iavarone A, Israel MA. Id2 specially alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol. 1996;16:2570–2578. doi: 10.1128/MCB.16.6.2570. [PMC free article] [PubMed] [Cross Ref] - 6. Eyster KM, Klinkova O, Kennedy V, Hansen KA. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil Steril. 2007;88:1505–1533. doi: 10.1016/j.fertnstert.2007.01.056. [PubMed] [Cross Ref] - 7. Grover J, Chen X-N, Korenberg JR, Recklies AD, Roughley PJ. The gene organization, chromosome location, and expression of a 55-kDa matrix protein (PRELP.of human articular cartilage. Genomics. 1996;38:109–117. doi: 10.1006/geno.1996.0605. [PubMed] [Cross Ref] - 8. Bengtsson E, Mörgelin M, Sasaki T, Timpl R, Heinegård D, Aspberg A. The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem. 2002;277:15061–15068. doi: 10.1074/jbc.M108285200. [PubMed] [Cross Ref] - 9. Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994;19:415–421. doi: 10.1016/0968-0004(94)90090-6. [PubMed] [Cross Ref] - 10. Tasheva ES, Klocke B, Conrad GW. Analysis of transcriptional regulation of the small leucine rich proteoglycans. Mol Vis. 2004;10:758–772. [PubMed] - 11. Vannahme C, Gosling S, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J. 2003;373:805–814. doi: 10.1042/bj20030532. [PMC free article] [PubMed] [Cross Ref] - 12. Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C. The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. J Biol Chem. 2006;281:22855–22864. doi: 10.1074/jbc.M513463200. [PubMed] [Cross Ref] - 13. American Society for Reproductive Medicine Revised American Society for Reproductive Medicine classification of endometriosis. Fertil Steril. 1997;67:817–821. doi: 10.1016/S0015-0282(97)81391-X. [PubMed] [Cross Ref] - 14. Arnold JM, Mok SC, Purdle D, Chenevix-Trench G. Decreased expression of the ID3 gene at 1p36.1 in ovarian adenocarcinomas. Br J Cancer. 2001;84:352–359. doi: 10.1054/bjoc.2000.1620. [PMC free article] [PubMed] [Cross Ref] - 15. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [PubMed] [Cross Ref] - 16. Barone MV, Pepperkok R, Peverali FA, Philipson L. Id proteins control growth induction in mammalian cells. Proc Natl Acad Sci U S A. 1994;91:4985–4988. doi: 10.1073/pnas.91.11.4985. [PMC free article] [PubMed] [Cross Ref] - 17. Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, Okayama H, et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem. 1994;269:2139–2145. [PubMed] - 18. Goumenou AG, Matalliotakis IM, Tzardi M, Fragouli IG, Mahutte NG, Arici A. p16, retinoblastoma (pRb), and cyclin D1 protein expression in human endometriotic and adenomyotic lesions. Fertil Steril. 2006;85((Suppl 1)):1204–1207. doi: 10.1016/j.fertnstert.2005.11.032. [PubMed] [Cross Ref] - 19. Chrobak A, Gmryrek GB, Sozanski R, Sieradzka U, Paprocka M, Gabrys M, et al. The influence of extracellular matrix proteins on T-cell proliferation and apoptosis in women with endometriosis or uterine leiomyoma. Am J Reprod Immunol. 2004;51:123–129. doi: 10.1046/j.8755-8920.2003.00129.x. [PubMed] [Cross Ref] - 20. Machado DE, Berardo PT, Palmero CY, Nasciutti LE. Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. J Exp Clin Cancer Res. 2010;19:29–34. [PMC free article] [PubMed] - 21. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23:265–275. doi: 10.1210/me.2008-0387. [PMC free article] [PubMed] [Cross Ref] - 22. Zhao ZZ, Croft L, Nyholt DR, Chapman B, Treloar SA, Hull ML, et al. Evaluation of polymorphisms in predicted target sites for micro RNAs differentially expressed in endometriosis. Mol Hum Reprod. 2011;17:92–103. doi: 10.1093/molehr/gaq084. [PMC free article] [PubMed] [Cross Ref]