
FAULT-TOLERANCE IN CONCURRENT DATA COLLECTION
TREES FOR IoT APPLICATIONS

Project report submitted in partial fulfillment of the requirement for the
degree of Bachelor of Technology

in

Computer Science & Engineering

By

141203 Shobhit Kumar Srivastava
 141204 Pranjal Sharma

Under the supervision of

Mr. Arvind Kumar

To

Department of Computer Science & Engineering and Information

Technology
Jaypee University of Information Technology, Waknaghat, Solan-

173234, Himachal Pradesh

I

CERTIFICATE

This is to certify that this project report entitled Fault Tolerance in Concurrent Data

Collection Trees for IoT Applications submitted to Jaypee University of Information

Technology, is a bonafide record of work done by

141203 Shobhit Kumar Srivastava

141204 Pranjal Sharma

under my supervision from January, 2018 to May, 2018 in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science &

Engineering.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Mr. Arvind Kumar

Assistant Professor

Department of Computer Science & Engineering and IT

Dated:

II

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our Project Supervisor Mr.

Arvind Kumar as well as our Project Coordinator Dr. Punit Gupta who gave us the golden

opportunity to do this wonderful project on the topic Fault Tolerance in Concurrent Data

Collection Trees for IoT Applications, which also helped us in doing a lot of Research and

we came to know about so many new things we are really thankful to them.

Secondly we would also like to thank our parents and friends who helped us a lot in

finalizing this project within the limited time frame.

(Pranjal Sharma) (Shobhit K Srivastava)

III

TABLE OF CONTENT

S. No. TOPIC PAGE NO.

1. List of Abbreviations IV

2. List of Figures VI

3. List of Graphs VII

4. Abstract VIII

5. Introduction 1

6. Related Work 3

7. Project Objective 5

8. Literature Survey (I) – “Delay-Aware Data Collection Network

Structure”

6

9. Literature Survey (II) – “Concurrent Data Collection Trees for

IoT Applications”

22

10. Algorithms 27

11. Performance Analysis 29

12. Test Data Set Used & Results 51

13. Conclusion 59

14. References 60

15. Appendix A 62

16. Appendix B 64

IV

LIST OF ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

WSN Wireless Sensor Network

CH Cluster Head

CM Cluster Member

DADCNS Delay-Aware Data Collection Network Structure

CTP Collection Tree Protocol

SC Single Chain

ETX Expected Transmissions

MST Minimum Spanning Tree

DPP Density Probing Packet

SCH Sub Cluster Head

IVP Invitation Packet

RP Rejecting Packet

CR Connection Request

MAC Media Access Control

CDMA Code Division Multiple Access

DCT Data Collection Time

MANET Mobile Adhoc Network

N2N Node to Node

N2BS Node to Base Station

MCU Microcontroller Unit

TCR Transceiver Unit

SB Sensor Board

V

𝐸𝑖_𝑆𝑁 Energy consumed by Sensor board

𝐸𝑖_𝑀𝐶𝑈 Energy consumed by Microcontroller Unit

𝐸𝑖_𝑇𝐶𝑅 Energy consumed by Transceiver Unit

VI

LIST OF FIGURES

Fig. 1(a)-1(f) DADCNS made with Top-Down Approach

Fig. 2(a)-2(e) DADCNS made with Bottom-Up Approach

Fig. 9 α-ring structure

Fig. 10 β-ring structure

Fig. 11, 13, 15,

17, 19, 21

Alpha Ring Structure in case where Base Station is Faulty

Fig. 12, 14, 16,

18, 20, 22

Beta Ring Structure in case where Base Station is Faulty

Fig. 23, 25, 27,

29, 31, 33, 35, 37

Beta Ring Structure in case where Node is Faulty

Fig. 24, 26, 28,

30, 32, 34, 36, 38

Alpha Ring Structure in case where Node is Faulty

Fig. 39, 41, 43,

45, 47, 49

Alpha Ring Structure in case where Base Station and Node is Faulty

Fig. 40, 42, 44,

46, 48, 50

Alpha Ring Structure in case where Base Station and Node is Faulty

VII

LIST OF GRAPHS

Fig. 3 Average Data Collection Time for DADCNS (Single Cluster Network)

Fig. 4 Averaged ψ (Single Cluster Network)

Fig. 5 Averaged Lifetime (Single Cluster Network)

Fig. 6 Average Data Collection Time for DADCNS (Multiple Cluster

Network)

Fig. 7 Averaged ψ (Multiple Cluster Network)

Fig. 8 Averaged Lifetime (Multiple Cluster Network)

Fig. A(i)-A(v) 3D Graph Structure in case where Base Stations are Faulty

Fig. B(i)-B(v) 3D Graph Structure in case where Nodes are Faulty

Fig. C(i)-C(v) 3D Graph Structure in case where Nodes & One BS are Faulty

Fig. C(vi)-C(x) 3D Graph Structure in case where Nodes & Two BS are Faulty

Fig. C(xi)-C(xv) 3D Graph Structure in case where Nodes & Three BS are Faulty

Fig. C(xvi)-C(xx) 3D Graph Structure in case where Nodes & Four BS are Faulty

Fig. C(xxi)-C(xxv) 3D Graph Structure in case where Nodes & Five BS are Faulty

VIII

ABSTRACT

Wireless sensor nodes are prone to failure in hostile environments therefore, in this paper, a

fault tolerant algorithm is described for a wireless sensor network - Concurrent Data

Collection Trees. As the network becomes faulty it should be restored to its normal working

within an effective time-frame. But in case of Concurrent Data Collection trees, the

complexity to reconstruct the network increases as the number of parallel streams increase.

Concurrent Data Collection Trees offer effective data collection and in some cases the data is

not lost completely if a fault occurs. We have discussed various cases which shed light on the

data that is either completely lost or not. Two different network structures namely alpha and

beta rings along with their advantages and disadvantages is discussed.

Chapter I

1

INTRODUCTION

IoT networks are gaining popularity because of their widespread use in day-to-day

activities and their promising future applications. To support urbanization in coming years, it

is significant for the natives to get up and coming data in a convenient way by embracing

current advances in technology. Internet of Things (IoT) is a better solution among these

latest technologies. Multiple users will own and share the IoT systems, an arrangement of

sensors and middleware. Various inquiries will be put together by clients and even IoT

gadgets in the meantime, which initiates different parallel information streams in same

system. Sensors nodes are battery powers devices. Energy saving is very significant to

lifetime of a sensor network. The amount of energy consumed in a transmission is

proportional to the corresponding communication distance. Therefore, long distance

communication between nodes and base station are usually not encouraged. The consumption

of energy can be reduced by adopting the clustering algorithm, where a group of clusters are

formed and each cluster has its own sub-cluster head to which it communicates. These sub-

cluster heads in turn are connected to the cluster head which controls all clusters and finally

sends data to the base station. We have carried out our work on the network structures

presented by Cheng et. al. in “Delay-Aware Data Collection Network Structure for Wireless

Sensor Networks” and “Concurrent Data Collection Trees for IoT Applications”.

Wireless sensor networks are used in a variety of applications; therefore they possess

a number of characteristics which are crucial for their successful working. There have been

many types of networks around for wireless sensors but considering Cheng’s et. al.

Concurrent Data Collection Trees, can improve data collection efficiency as they use parallel

data streams for data transmission. But energy saving becomes crucial to the aspect of battery

powered devices. In IoT networks there are a number of devices operating together,

interconnected to each other and require a lot of energy while operating. Therefore a network

has to be constructed in such a way that it uses less power while at the same time has less

delay in transmitting data. Concurrent Data Collection Trees offer this possibility by using

parallel data streams for effective data collection and slightly undermining the energy

2

parameter. Previous network structures that communicated in parallel did not take into

account both of the above variables/factors.

However good they may seem, every network has its own limitations of working in

hostile environments. One such limitation is fault in networks where three cases have been

discussed – node becomes faulty, base station becomes faulty, and both become faulty. But

in case of parallel networks and as complex as Concurrent Data Collection Trees the task of

making them fault tolerant becomes difficult. Therefore, in this project report we have

described an effective fault-tolerant scheme for concurrent data collection trees along with

various other cases that can effectively restore the networks to its normal working in a timely

manner. Other than the algorithm we have discussed different cases as to which network

structure is better and the different possibilities of its restoration at different time slots

associated with it. Our, results have been verified using simulations carried out using the

code we developed in Python.

3

RELATED WORK

The problem of fault tolerance has been discussed previously by many authors but a

parallel network such as Concurrent Data Collection Tree has not received much attention.

Although parallel network structures have been discussed before but Concurrent Data

Collection Tree is much more flexible and efficient in terms of data transfer and processing.

In [3] the author has discussed about the fault occurring in Wireless sensor grid networks.

The author has discussed about the levelling algorithm which is energy efficient. The

transmission range method is described which better than levelling algorithm in terms of a

network that is partitioned. The two algorithms are then combined which minimize the

chances of network partitioning. In [4] an algorithm is proposed for a network possessing a

tree topology. The algorithm proposed is a distributed sorting algorithm which takes

advantage of Dijkstra’s model in terms that the fault need not be corrected manually but

rather is solved by the software architecture described in the algorithm. In [5] the fault-

tolerant described is used for controlling fault in heterogeneous wireless sensor networks.

The k-degree Anycast Topology Control (k-ATC) problem is discussed along with its three

solutions: the greedy centralized algorithm for minimizing the transmission range between all

wireless sensor nodes and a distributed and localized algorithm for adjusting the wireless

sensor nodes’ transmission range. The algorithm described here also minimizes energy

consumption. In [6] the author has presented two algorithms: Full 2-Connectivity Restoration

Algorithm (F2CRA) and the Partial 3-Connectivity Restoration Algorithm (P3CRA) for fault

tolerance. F2CRA and P3CRA construct fan shaped topology and dual ring topology to

restore the network to its normal working. F2CRA and P3CRA are suitable in scenarios

where cost and performance are given prime importance. In [7] the author has discussed

about the issues of fault detection and its data recovery. To solve such problems a cluster

based technique is suggested using genetic algorithm. Clustering the network according to

Energy-Efficient Distance-Based Clustering Algorithm and using GA some nodes are

selected as backup nodes. Such clustering algorithm helps in detecting the faults occurring in

nodes. In [8] the author has discussed about the effect of re-clustering the network after the

4

fault has occurred, he told when the network is reconstructed when cluster head is faulty

there is always a loss of energy and time. In order to remove these loss he proposed the

genetic algorithm which take into consideration three parameters in clustered network which

are distance between every node from cluster heads, remained energy of cluster heads and

member number of each cluster head. Result of simulation shows that this genetic algorithm

has better result of recovering cluster head than that which consider only one parameter. In

[9] the author has presented a new method for fault tolerance and detection. This method is

based on majority vote, which result in detecting the faulty nodes accurately. The researchers

compared this genetic algorithm with Chen, Lee, and hybrid algorithms. Result shows that

this genetic algorithm based on majority vote method his more efficient in detecting false

alarm rate and detection accuracy.

5

PROJECT OBJECTIVE

“To design an algorithm for fault-tolerance for Concurrent Data Collection Tree network

structure.”

Chapter II

6

LITERATURE SURVEY (I)

“A Delay-Aware Data Collection Network Structure for Wireless Sensor Networks”

Abstract

In any network to save energy is very significant. Here in this paper i.e. “Delay aware data

collection network structure for wireless sensor networks is proposed”, two algorithms are

suggested and implemented to deal with this very problem of minimizing energy to gain

longer life time, for that even the efficiency of collecting data is also ignored.

7

Top-Down Approach

1. Begin with a mess network i.e. fully connected network with nodes N >= 4.

Considering N=8

All the nodes are with connection degree=7

These 8 nodes will form 𝐻̂s , where s=1 i.e. 𝐻̂1

Now define parameter b=N/2 = 4

Fig 1(a). Initial Network Structure

8

1. Select b=4 nodes from 𝐻̂1 to form H2 , such that the total edge weight within set H2 is

maximized.

As all have same edge weight, taking {O,P,E,R} to form H2

𝐻̂2 = {O, P, Q, R}

H2 = {M, N, S, T}

Cut all the connections among nodes in H2

Set b=b/2=2

Set s=s+1 = 2

Fig 1(b). Network Structure after

iteration 1

9

2. Since b=2 >=2, the previous step is repeated

Select b=2 from set 𝐻̂2 to form set H3

H3 = {M, T}

𝐻̂3 = {N, S}

Cut all the connections between nodes in set H3

Set b=b/2 = 1

Set s=s+1=3

3. With b=1<2 , Algo proceeds and define parameter r=2

Nodes with degree=N-r =6 (i.e. M, T) forms L

Nodes with degree>N-r (i.e. N, S) forms U

Reduce connections among nodes between set L & U until each node in set L is only

connected to a single node in set U, provided that total edge weight is minimized.

Set r=2r=4

Fig 1(c). Network Structure after

iteration 2

10

4. Since r=4<N, previous step is repeated.

Nodes with degree = N-r = 4 (i.e. O, P, Q, R) forms L

Nodes with degree > N-r (i.e. M, N, S, T) forms U

Reduce connections among nodes between set L & U until each node in set L is only

connected to single node in set U

Set r=2r=8

Fig 1(d). Network Structure after

iteration 3

Fig 1(e). Network Structure after

iteration 4

11

5. When r=8>N, the basic operation of proposed top down approach is completed.

Resultant network will now consist of two nodes with degree log2(N)=3 (i.e. N & S)

The one closer to B.S. will be selected as cluster head and be directly connected to

base station.

Fig 1(f). Final Network Structure

12

Bottom-Up Approach

1. Step 1

2. Step 2

Fig 2(a). Initial Network Structure

Fig 2(b). Network Structure after

iteration 1

13

3. Step 3

 Fig 2(c). Network Structure after

iteration 2

14

4. Step 4

Fig 2(d). Network Structure after

iteration 3

15

5. Step 5

Fig. 2(e) Final Structure of Network made

with Bottom-Up Approach

16

Performance Analysis (I)

Type 1 – Single Cluster Network

I. Data Collection Time – Lower the better

1. Proposed network structure (DADCNS).

2. Collection Tree Protocol.

3. Minimum Spanning Tree Protocol.

4. Single Chain.

5. Single Cluster 2 Hop (SC2H).

Fig. 3 Averaged Data Collecting Time

17

II. Minimizing ψ- Lower the better

1. Minimum Spanning Tree Protocol.

2. Control Tree Protocol.

3. Single Chain.

4. Top-down approach (DADCNS).

5. Bottom-up approach (DADCNS).

6. Single Cluster 2 Hop (SC2H).

Fig. 4 Averaged ᴪ

18

III. Network Lifetime – Higher the better

1. Minimum Spanning Tree Protocol for N > 4

2. Single Chain.

3. Control Tree Protocol.

4. Top-down approach (DADCNS).

5. Bottom-up approach (DADCNS).

6. Single Cluster 2 Hop (SC2H).

Fig. 5 Averaged Lifetime

19

Type II – Multiple Cluster Network

I. Data Collection Time – Lower the better

1. Proposed Network Structure (DADCNS).

2. Multiple Cluster 2 Hop (MC2H) – DCT increases as N increases.

Fig. 6 Averaged Data Collecting Time

20

II. Minimizing ψ - Lower the better

1. Both give similar performance for N ≤ 12

2. N > 12

a. Proposed Network Structure (DADCNS).

b. Multiple Cluster 2 Hop (MC2H).

Fig. 7 Averaged ᴪ

21

III. Network Lifetime – Higher the better

1. Proposed Network Structure (DADCNS).

2. Multiple Cluster 2 Hop (MC2H).

Fig. 8 Averaged Lifetime

22

LITERATURE SURVEY (II)

“Concurrent Data Collection Trees for IoT Applications”

Abstract

In IoT network a lot of devices work together. They generate massive amounts of data thus

data collection process becomes a chief concern in large networks. Data collection processes

must utilize minimum amount of time while collecting data. For this reason a new network

structure – Concurrent Data Collection Trees for IoT networks has been proposed in this

paper. This network minimizes data collection time to an acceptable value. Another concern

is that if a large network, as large as IoT network encounters any fault. Base Station or a node

in a network might become faulty because of many reasons – environmental conditions,

battery run out, improper handling, etc. To solve this problem we are trying to design an

approach for fault tolerance in concurrent data collection tree network structure.

Concurrent Data Collection Tree

It is a network structure N = {n1, n2, n3, ……,n|N|} nodes and S = {s1, s2, s3, ….., s|S|} base

stations assuming that all IoT nodes communicate with each other and base station. Data

fusion technique fuses multiple packets of data (from IoT nodes) into one single packet

before it is forwarded to one’s parent node. For concurrent data collection processes it must

employ equal number of data streams and base stations – “Each concurrent data aggregation

process will use a different base station (BS) to access the IoT network and the total number

of concurrent data streams is k”. Concurrent data streams must use equal number of nodes

determined by equation (1). This equation determines maximum number of streams a node

must utilize so that data collection time is minimum. This networks structure has a constraint:

|N|≥ k.

𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘
⌋ (1)

23

The following equation represents number of hubs used by an information stream in ith

vacancy.

𝑢𝑖 = min [𝑢𝑚𝑎𝑥 , |N| − ∑ 𝑢𝑗̂
𝑖−1
𝑗=1](2)

where 𝑢̂𝑗 is number of nodes that have completed transmission of data after jth time slot.

𝑢̂𝑗 = ⌈
𝑢𝑗

2
⌉ (3)

If uiis odd then one of the nodes is involved in node-to-base transmission, else it is a node-to-

node transmission.

Time-slot is a particular slot in which each data stream helps to communicate with nodes and

base stations. During a particular time slot only some nodes (maximum 3) and some

concurrent data streams become active. This is what justifies the parallel behavior of the

given network structure.

In Ƭ1 time slot all nodes and base stations communicate in concurrent fashion, but in Ƭ2 time

slot the left over nodes communicate using DADCNS. The leftover nodes are calculated

using |𝑁| − 𝜏1 ⌈
𝑢𝑚𝑎𝑥

2
⌉ .

24

Therefore overall duration of k concurrent data collection processes is T = Ƭ1 + Ƭ2 .

A) The α-ring

A ring structure for concurrent data collection with |Nα| nodes and |Nα| ≥ 2k. An α-

ring case is valid only for umax = 2. “A data stream in an α-ring Nα will need Ƭ1 time-

slots to aggregate data from |Nα| nodes onto a single node. Such anode will take one

time-slot to report the fused data to the BS”. If nodes are numbered arbitrarily then at

any time slot two nodes that will communicate (during Ƙth data collection process) i.e.

node nc1 transmits data to node nc2.

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)),

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|))

Data fusion will be performed on node nc2. Overall duration can be calculated using Ƭ1 and

Ƭ2 from equations (2) &(3).

T = Ƭ1 + Ƭ2 = 5 + 1 = 6.

Fig. 9 Alpha ring with 6 nodes

25

B) The β-ring

For umax = 3 and |Nβ| ≥ 3k the network is known as β-ring. 2 nodes will communicate

using node-to-node (N2N) communication while the other node will communicate

using node-to-base (N2BS) communication. If nodes are numbered arbitrarily then at

a particular time slot of Ƙth data collection process node nc3 will be involved in node-

to-base station communication and nc4 will transmit data nc5.

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|))

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|))

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|))

Data fusion will be performed on node nc5.

T = Ƭ1 + Ƭ2 = 4 + 1 = 5.

Fig. 10 Beta ring 9 nodes

26

C) Multiple Rings

I) umax≥ 4: 𝑛𝛼 =
𝑢𝑚𝑎𝑥

2
 α-rings are formed. Each of the α-rings formed will first

be granted 2k nodes. The rest |N|- nα(2k) nodes will then be granted to those nα

rings one by one. Each α-ring will operate independently as described above.

II) umax ≥ 5: A single β-ring with 𝑛′𝛼 =
𝑢𝑚𝑎𝑥−3

2
 number of α-rings are formed.

Initially, β-ring will be granted 3k nodes, while each α-ring will be granted 2k

nodes. The rest |N|-3kBS – n’α(2kBS) node will be granted to the β-ring until

|Nβ| = 2Ƭ1 + 1. The remaining nodes will be distributed to α-rings one by one.

An algorithm for constructing such a network structure is described in the

Algorithms section.

Results & Analysis

The duration of data collection process T (total number of spaces required by base stations of

different data streams) is used as a performance indicator. The reference structure used for

performance comparison is DADCNS. DADCNS is sued in form of a single cluster. The

performance parameter of concurrent data collection tree network structure is comparatively

low in comparison to DADCNS.

 As value of k increases the value of T also increases linearly in DADCNS while in

the concurrent data collection tree structure with increase in value of |N|, value of umax

also increases but the total value of T increases slightly. Therefore with increase in

value of |N| & k the performance gap between two network structures also widens.

 When value of k or |N| is increased, value of umax also changes. This change in the

value of umax leads to variations in the number of α and β rings. Therefore it is

observed that when k or |N| increases the value of T does not increase monotonically.

Chapter III

 27

ALGORITHMS

A) Bottom-Up Approach (I)

 Initially all nodes are disconnected and each node is represented as SCH(0) –

Sub cluster head of level 0.

 Each SCH performs random back-off and transmits density probing packet to

its neighboring SCHs within rdp distance.

 Each SCH will do a random back off and then broadcast an invitation packet

(IVP) to its neighbors within rcom distance.

 SCHs receiving IVP will send connection request and nearest distance

neighbors will form a connection belonging to level w+1 clusters.

 Distance rcom will be increased if no connection can be formed within a

specified time frame and the SCH will transmit CR again at this new rcom.

 When rcom = rdp the SCH of the cluster will form connection with the base

station.

 The above process continues until no more connection can be formed.

B) Fault Tolerance Algorithm for Concurrent Data Collection Tree

 Case A – When Node becomes faulty

 If the node does not acknowledges its neighboring node within a specific time

frame an acknowledgement packet is resent.

 Again if the acknowledgement is not received within that time frame, there is

a high probability that the node is faulty.

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛̂

𝑘
⌋.

 Calculate the new values of τ1& τ2.

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5.

 28

 Case B – When Base Station becomes faulty

 If the base station does not acknowledges the node within a specific time

frame an acknowledgement packet is resent.

 Again if the acknowledgement is not received within that time frame, there is

a high probability that the base station is faulty.

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−𝑏̂
⌋.

 Calculate the new values of τ1& τ2.

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5.

 Case C – When both node and base station are faulty

 If the base station or node does not acknowledges the node or its neighboring

node within a specific time frame an acknowledgement packet is resent.

 Again if the acknowledgement is not received within that time frame, there is

a high probability that the base station or node is faulty.

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛̂

𝑘−𝑏̂
⌋.

 Calculate the new values of τ1& τ2.

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5.

Chapter IV

29

PERFORMANCE ANALYSIS

Below a set of simulations are performed for each step which depicts different cases

in alpha and beta ring scenario and as to what extent data can be recovered in case of a fault.

Based on these simulations theoretically here and in code implementation in python we have

been able to discover different properties of alpha and beta rings. In the three cases where a

base station becomes faulty, node becomes faulty and both become faulty only the network

structure changes while their working remains almost same with same properties applied to

each network structure. Below a comparison of properties of both alpha and beta rings is

provided which each serves as a different case in different scenario of a faulty network and

how it can be recovered.

Analysis:

A. Base Station Faulty:

a) Alpha Ring:

In case of an alpha ring the data can be recovered completely if the fault

occurs just before the last time slot during which the data is transferred to the

base station. The data aggregation nodes contain the data of all the nodes and

if a fault occurs, can be used to recover the data. However, all other nodes

that do not take part in the data aggregation process do not contain data only

of the node just next to them and hence are not that much effective in data

recovery. In another scenario if the fault occurs during some intermediate

value of the time slot, then the whole network needs to be reconstructed

again.

b) Beta Ring:

In this network the data loss is significantly more in comparison to alpha ring

as some nodes have already transferred data to the base station and during

failure even the data aggregation nodes are not able to fully recover the data

as they are loosely connected because of their network communication

structure.

30

B. Node Faulty:

a) Alpha Ring:

Suppose as given in the figure below the fault occurs during some initial

value of the time slot then there is either little or no loss at all and the network

can be reconstructed again. This results in less time complexity since the

network where the fault occurs is reconstructed immediately thereby restoring

its normal functioning. However, in the intermediate time slots, a fault may

result in significant loss of data with it requiting to reconstruct it from the

start. The concluding time slots scenario works similar to the “Base Station

Faulty” situation.

b) Beta Ring:

The beta ring in this scenario work similar to the “Base Station Faulty”

situation.

C. Node and Base Station Faulty:

a) Alpha Ring:

The alpha ring can behave in accordance with the “Base Station Faulty” or

“Node Faulty” depending on the situation as shown below in the figure.

b) Beta Ring:

There is no exception for beta ring in this situation and will behave according

to the “Base Station Faulty” situation.

31

CASE I: BASE STATION FAULTY

Fig. 11 Initial Alpha Ring with 6 nodes Ist time slot

Ƙ=1, 2, 3. t = 1. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 1, 3, 5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2, 4, 6

Fig. 12 Initial Beta Ring with 6 nodes Ist time slot

Ƙ=1, 2. t = 1. Nβ = 6

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) = 1, 4

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 2, 5

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) = 3, 6

32

Fig. 13 Alpha Ring with 6 nodes IInd time slot

Ƙ=1, 2, 3. t = 2. Nα = 6

c1 = 2, 4, 6

c2 = 3, 5, 1

Fig. 14 Beta Ring with 6 nodes IInd time slot

Ƙ=1, 2. t = 2. Nβ = 6

c3 = 3, 6

c4 = 4, 1

c5 = 5, 2

33

Fig. 16 Beta Ring with 6 nodes IIIrd time slot

Ƙ=1, 2. t = 3. Nβ = 6

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 6, 3

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) = 1, 4

Fig. 15 Alpha Ring with 6 nodes IIIrd time slot

Ƙ=1, 2, 3. t = 3. Nα = 6

c1 = 3, 5, 1

c2 = 4, 6, 6

34

 Fig. 17 Alpha Ring with 6 nodes IVth time slot

Ƙ=1, 2, 3. t = 4. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4, 6, 2

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5, 1, 3

Fig. 18 Beta Ring with 6 nodes IVth time slot

Ƙ=1, 2. t = 4. Nβ = 6

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =1,4

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

35

Fig. 19 Alpha Ring with 6 nodes IVth time slot

Ƙ=1, 2, 3. t = 5. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 5, 1, 3

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 2, 4

Fig. 20 Beta Ring with 6 nodes IVth time slot

Ƙ=1, 2. t = 4. Nβ = 6

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

36

Fig. 21 Alpha Ring with 6 nodes VIth time slot

Ƙ=1, 2, 3. t = 6. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 6, 2, 4

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф

Fig. 22 Beta Ring with 6 nodes IVth time slot

Ƙ=1, 2. t = 4. Nβ = 6

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

37

CASE II: NODE FAULTY

 Fig. 24 Alpha Ring with 9 nodes Ist time

slot

Ƙ=1, 2, 3. t =1. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 1,3,5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2,4, 6

Fig. 23 Beta Ring with 9 nodes Ist time slot

Ƙ=1, 2, 3. t = 1. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =1, 4, 7

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 2, 5, 8

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =3, 6, 9

38

Fig. 26 Alpha Ring with 9 nodes IInd time

slot

Ƙ=1, 2, 3. t = 2. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 6

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5, 7

Fig. 25 Beta Ring with 9 nodes IInd time slot

Ƙ=1, 2, 3. t = 2. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =3, 6, 9

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 4, 7, 1

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =2, 5, 8

39

Fig. 28 Alpha Ring with 8 nodes IIIrd time

slot

Ƙ=1, 2, 3. t =3. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 3,5,7

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4,6, 8

Fig. 27 Beta Ring with 9 nodes IIIrd time slot

Ƙ=1, 2, 3. t = 3. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =5, 8, 2

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 6, 9, 3

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =4, 7, 1

40

Fig. 30 Alpha Ring with 8 nodes IVth time

slot

Ƙ=1, 2, 3. t =4. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4,6,8

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5,7, 1

Fig. 29 Beta Ring with 9 nodes IVth time slot

Ƙ=1, 2, 3. t = 4. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =7, 1, 4

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 8, 2, 5

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =6, 9, 3

41

Fig. 32 Alpha Ring with 8 nodes Vth time

slot

Ƙ=1, 2, 3. t =5. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 5, 7, 1

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 8, 2

Fig. 31 Beta Ring with 9 nodes Vth time slot

Ƙ=1, 2, 3. t = 5. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =8, 2, 5

42

Fig. 34 Alpha Ring with 8 nodes VIth time

slot

Ƙ=1, 2, 3. t =6. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 6, 8, 2

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 7, 1, 3

Fig. 33 Beta Ring with 9 nodes Vth time slot

Ƙ=1, 2, 3. t = 5. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

43

Fig. 36 Alpha Ring with 6 nodes VIIth time

slot

Ƙ=1, 2, 3. t =7. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 7, 1, 3

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 8, 2, 4

Fig. 23 Beta Ring with 9 nodes Vth time slot

Ƙ=1, 2, 3. t =5. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

44

Fig. 38 Alpha Ring with 6 nodes VIIIth

time slot

Ƙ=1, 2, 3. t =8. Nα = 8

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 8

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф

Fig. 37 Beta Ring with 9 nodes Vth time slot

Ƙ=1, 2, 3. t = 5. Nβ = 9

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф

45

CASE 3: NODE AND BASE STATION FAULTY

Fig. 39 Alpha Ring with 6 nodes Ist time

slot

Ƙ=1, 2, 3. t =1. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 1, 3, 5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2, 4, 6

Fig. 40 Alpha Ring with 5 nodes Ist time

slot

Ƙ=1, 2. t =1. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 7, 1, 3

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 8, 2, 4

46

Fig. 41 Alpha Ring with 6 nodes IInd time

slot

Ƙ=1, 2, 3. t =2. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 6

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5, 1

Fig. 42 Alpha Ring with 5 nodes IInd time

slot

Ƙ=1, 2. t =2. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5

47

 Fig. 43 Alpha Ring with 6 nodes IIIrd time

slot

Ƙ=1, 2, 3. t =3. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 3, 5, 1

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4, 6, 2

Fig. 44 Alpha Ring with 5 nodes IIIrd time

slot

Ƙ=1, 2. t =3. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 3, 5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4, 1

48

 Fig. 45 Alpha Ring with 6 nodes IVth time

slot

Ƙ=1, 2, 3. t =4. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4, 6, 2

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5 , 1, 3

Fig. 46 Alpha Ring with 5 nodes IVth time

slot

Ƙ=1, 2. t =4. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4, 1

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5, 2

49

Fig. 47 Alpha Ring with 6 nodes Vth time

slot

Ƙ=1, 2, 3. t =5. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 5, 1, 3

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 2, 4

Fig. 48 Alpha Ring with 5 nodes Vth time

slot

Ƙ=1, 2. t =5. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2,5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф

50

 Fig. 49 Alpha Ring with 6 nodes VIth time

slot

Ƙ=1, 2, 3. t =6. Nα = 6

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 6

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) =ф

Fig. 50 Alpha Ring with 5 nodes Vth time

slot

Ƙ=1, 2. t =5. Nα = 5

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 5

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф

51

TEST DATA SET USED & RESULTS

For each of the simulations performed below for all three cases we have considered

initial total number of nodes equal to 300, total number of data streams equal to 10 and time

slots are generated using (4) & (5). For the first case where base station is faulty, nodes are

kept at 300 while data streams are decremented successively in each iteration by 2 and

suitable values of time slots are calculated. For the second case where nodes are faulty, base

stations or data streams are kept constant at 10 while nodes are decremented successively in

each iteration by 2. For the third case where both nodes and base stations are faulty a nested

concept is used to first make a single base station faulty and decrementing number of nodes

successively by 1 and in the outermost iteration increasing faulty base stations by a factor of

1 successively.

From the following set of simulations we have observed how the 3D graph structure

changes with subject to changes made in number of nodes and base stations. As for the first

case we have observed that the graph structure changes drastically as the number of base

stations or data streams vary which gives the indication that it has significant effect on the

performance of the network as the number of time slots decreases. Furthermore, in the case

where nodes become faulty there is almost slight or no difference in the 3D graph structure.

The only place where variation is observed is on the top left edges of the graph near the 10th

base station and the values near 300th node. Only a slight difference in the values of time-

slots is observed. In the third case where both become faulty, for figures C(i)-C(v) the graph

structure changes slightly between the middle and upper ends with only a slight difference in

the values of time slots. In figures C(vi)-C(x) where two base station are faulty a significant

difference is observed on the top right corner of the graph with only slight changes in the

value of time slots. This variation increases in the manner as from top right to top left and

then downward. With this our observation is that as the number of nodes changes it has lesser

impact on the number of time slots and thus on the performance, but a change in the number

of base stations or data streams decreases time slots significantly. Also when two cases are

combined the number of time slots decrease with decrease in the number of data streams.

52

RESULTS: CASE A: BASE STATION FAULTY

Fig. A(ii)
Number of nodes (N) = 300

Faulty Base Station (𝒃̂) = 2
Total Data Streams (k) = 8

Fig. A(i)
Number of nodes (N) = 300

Faulty Base Station (𝒃̂) = 0
Total Data Streams (k) = 10

Fig. A(iii)
Number of nodes (N) = 300

Faulty Base Station (𝒃̂) = 4
Total Data Streams (k) = 6

Fig. A(iv)
Number of nodes (N) = 300

Faulty Base Station (𝒃̂) = 6
Total Data Streams (k) = 4

Fig. A(v)
Number of nodes (N) = 300

Faulty Base Station (𝒃̂) = 8
Total Data Streams (k) = 2

53

RESULTS: CASE B: NODE FAULTY

Fig. B(i)
Number of nodes (N) = 300
Faulty nodes (𝒏̂) = 0
Total Data Streams (k) = 10

Fig. B(ii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2
Total Data Streams (k) = 10

Fig. B(iii)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4
Total Data Streams (k) = 10

Fig. B(iv)
Number of nodes (N) = 294
Faulty nodes (𝒏̂) = 6
Total Data Streams (k) = 10

Fig. B(v)
Number of nodes (N) = 292
Faulty nodes (𝒏̂) = 8
Total Data Streams (k) = 10

54

RESULTS: CASE C: NODES FAULTY & ONE BS FAULTY

Fig. C(i)
Number of nodes (N) = 299
Faulty nodes (𝒏̂) = 1

Faulty base station (𝒃̂) = 1
Total Data Streams (k) = 9

Fig. C(ii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2

Faulty base station (𝒃̂) = 1
Total Data Streams (k) = 9

Fig. C(iii)
Number of nodes (N) = 297
Faulty nodes (𝒏̂) = 3

Faulty base station (𝒃̂) = 1
Total Data Streams (k) = 9

Fig. C(iv)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4

Faulty base station (𝒃̂) = 1
Total Data Streams (k) = 9

Fig. C(v)
Number of nodes (N) = 295
Faulty nodes (𝒏̂) = 5

Faulty base station (𝒃̂) = 1
Total Data Streams (k) = 9

55

RESULTS— NODES FAULTY & TWO BS FAULTY

Fig. C(vi)
Number of nodes (N) = 299
Faulty nodes (𝒏̂) = 1

Faulty base station (𝒃̂) = 2
Total Data Streams (k) = 8

Fig. C(vii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2

Faulty base station (𝒃̂) = 2
Total Data Streams (k) = 8

Fig. C(viii)
Number of nodes (N) = 297
Faulty nodes (𝒏̂) = 3

Faulty base station (𝒃̂) = 2
Total Data Streams (k) = 8

Fig. C(ix)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4

Faulty base station (𝒃̂) = 2
Total Data Streams (k) = 8

Fig. C(x)
Number of nodes (N) = 295
Faulty nodes (𝒏̂) = 5

Faulty base station (𝒃̂) = 2
Total Data Streams (k) = 8

56

RESULTS— NODES FAULTY & THREE BS FAULTY

Fig. C(xi)
Number of nodes (N) = 299
Faulty nodes (𝒏̂) = 1

Faulty base station (𝒃̂) = 3
Total Data Streams (k) = 7

Fig. C(xii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2

Faulty base station (𝒃̂) = 3
Total Data Streams (k) = 7

Fig. C(xiii)
Number of nodes (N) = 297
Faulty nodes (𝒏̂) = 3

Faulty base station (𝒃̂) = 3
Total Data Streams (k) = 7

Fig. C(xiv)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4

Faulty base station (𝒃̂) = 3
Total Data Streams (k) = 7

Fig. C(xv)
Number of nodes (N) = 295
Faulty nodes (𝒏̂) = 5

Faulty base station (𝒃̂) = 3
Total Data Streams (k) = 7

57

RESULTS— NODES FAULTY & FOUR BS FAULTY

Fig. C(xvi)
Number of nodes (N) = 299
Faulty nodes (𝒏̂) = 1

Faulty base station (𝒃̂) = 4
Total Data Streams (k) = 6

Fig. C(xvii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2

Faulty base station (𝒃̂) = 4
Total Data Streams (k) = 6

Fig. C(xviii)
Number of nodes (N) = 297
Faulty nodes (𝒏̂) = 3

Faulty base station (𝒃̂) = 4
Total Data Streams (k) = 6

Fig. C(xix)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4

Faulty base station (𝒃̂) = 4
Total Data Streams (k) = 6

Fig. C(xx)
Number of nodes (N) = 295
Faulty nodes (𝒏̂) = 5

Faulty base station (𝒃̂) = 4
Total Data Streams (k) = 6

58

RESULTS— NODES FAULTY & FIVE BS FAULTY

Fig. C(xxi)
Number of nodes (N) = 299
Faulty nodes (𝒏̂) = 1

Faulty base station (𝒃̂) = 5
Total Data Streams (k) = 5

Fig. C(xxii)
Number of nodes (N) = 298
Faulty nodes (𝒏̂) = 2

Faulty base station (𝒃̂) = 5
Total Data Streams (k) = 5

Fig. C(xxiii)
Number of nodes (N) = 297
Faulty nodes (𝒏̂) = 3

Faulty base station (𝒃̂) = 5
Total Data Streams (k) = 5

Fig. C(xxiv)
Number of nodes (N) = 296
Faulty nodes (𝒏̂) = 4

Faulty base station (𝒃̂) = 5
Total Data Streams (k) = 5

Fig. C(xxv)
Number of nodes (N) = 295
Faulty nodes (𝒏̂) = 5

Faulty base station (𝒃̂) = 5
Total Data Streams (k) = 5

Chapter V

59

CONCLUSION

With ever increasing demand of IoT devices it becomes difficult to maintain a network with

minimum delay and in real world fault free. Thus in this project we have successfully devised

an algorithm for concurrent data collection trees that promise data collection time with

minimum delay. This algorithm administers the problem of a faulty node as well as a faulty

base station. In the next phase we worked work upon different scenario of fault tolerance in

two case i.e alpha ring and beta ring. From these cases we concluded that whether data can

be recovered or not and to what extent.

60

LIST OF REFERENCES
[1] C-T. Cheng, N. Ganganath, and K. Fok, “Concurrent data collection trees for IoT

applications, ”IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 793–

799, September 2017.

[2] C.-T. Cheng, C. K. Tse, and F. C. M. Lau, “A delay-aware data collection network

structure for wireless sensor networks,” IEEE Sensors J., vol. 11, no. 3, pp. 699–710,

Mar. 2011.

[3] X. M. Huang, J. Deng. J. Ma, and Z. Wu;, "Fault tolerant routing for wireless sensor

grid networks," In Proceedings of the IEEE Sensors Applications Symposium, pp. 66-

-70, 2006.

[4] G. Alari, J. Beauquier, J. Chacko, A.K. Datta, S. Tixeuil, A fault-tolerant distributed

sorting algorithm in tree networks, 26 A. Sasaki / Information Processing Letters 83

(2002) 21–26 in: Proc. 1998 IEEE Internet. Performance, Computing and

Communications Conf., 1998, pp. 37 -43.

[5] Mihaela Cardei , Shuhui Yang , Jie Wu, Algorithms for Fault-Tolerant Topology in

Heterogeneous Wireless Sensor Networks, IEEE Transactions on Parallel and

Distributed Systems, v.19 n.4, p.545-558, April 2008

[6] Y. Zeng, L. Xu, Z. Chen, "Fault-tolerant algorithms for connectivity restoration in

wireless sensor networks", Sensors, vol. 16, no. 1, pp. 3, 2016.

[7] K. Rajeswari and S. Neduncheliyan, “Genetic algorithm based fault tolerant

clustering inwireless sensor network,” IET Communications, vol. 11, no. 12, pp.

1927–1932, 2017.

[8] Elmira Moghaddami Khalilzad, Sanam Hosseini, "Recovery of Faulty Cluster Head

Sensors by Using Genetic Algorithm (RFGA) ", International Journal of Computer

Science Issues,Vol.9, No. 4, pp. 141-145, 2012.

[9] Ghaffari, A., & Nobahary, S. (2015). FDMG: Fault detection method by using

genetic algorithm in clustered wireless sensor networks. Journal of AI and Data

Mining, 3(1), 47–57.

[10] Florens, M. Franceschetti, and R. J. McEliece, “Lower bounds ondata collection time

in sensory networks,” IEEE J. Sel. Areas Commun.,vol. 22, no. 6, pp. 1110–1120,

Aug. 2004.

https://dl.acm.org/citation.cfm?id=1399334
https://dl.acm.org/citation.cfm?id=1399334
https://dl.acm.org/citation.cfm?id=1399334

61

[11] W.Wang, Y.Wang, X.-Y. Li, W.-Z. Song, and O. Frieder, “Efficient interference-

aware TDMA link scheduling for static wireless networks, ”in Proc. 12th Annu. Int.

Conf. Mobile Comput. Netw., (MobiCom’06),Los Angeles, CA, Sep. 2006, pp. 262–

273.

[12] Solis I. and Obraczka K., “The impact of timing in data aggregation or sensor

networks,” in Proc. IEEE Int. Conf. Commun., Paris, France,Jun. 2004, vol. 6, pp.

3640–3645.

[13] Z. Y. Chen and X. F. Wang, “Effects of network structure and routing strategy on

network capacity,” Phys. Rev. E, vol. 73, no. 3, pp. (036107) 1–5, Mar. 2006.

[14] M. Song and B. He, “Capacity analysis for flat and clustered wireless sensor

networks,” in Proc. Int. Conf. Wireless Algorithms, Syst. Appl.,(WASA 2007),

Chicago, IL, Aug. 2007, pp. 249 -253.

[15] Billionnet A., “Different formulations for solving the heaviest subgraph problem,”

Inform. Syst. Oper. Res., vol. 43, no. 3, pp. 171–186,Aug. 2005.

[16] Z. Bi, L. D. Xu, and C. Wang, “Internet of things for enterprise systems of modern

manufacturing,” Industrial Informatics, IEEE Transactions on, vol. 10, no. 2, pp.

1537–1546, 2014.

[17] Y. J. Fan, Y. H. Yin, L. D. Xu, Y. Zeng, and F. Wu, “IoT-based smart rehabilitation

system,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1568–1577,

May 2014.

[18] L. D. Xu, W. He, and S. Li, “Internet of things in industries: Asurvey,” IEEE

Transactions on Industrial Informatics, vol. 10,no. 4, pp. 2233–2243, Nov 2014.

[19] S. Fang, L. D. Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu,“An integrated system

for regional environmental monitoring nd management based on internet of things,”

IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1596–1605,May

2014.

[20] L. Li, S. Li, and S. Zhao, “QoS-aware scheduling of services oriented internet of

things,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1497–1505,

May 2014.

62

APPENDIX A

I) Case A - When Node becomes faulty

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘
⌋

Proof:

for 𝑛̂ = 1 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−1

𝑘
⌋

for𝑛̂ = 2 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−2

𝑘
⌋

for𝑛̂ = 𝑛 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛

𝑘
⌋

for𝑛̂ nodes

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘
⌋

II) Case B – When base station becomes faulty

𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘 − 𝑏̂
⌋

Proof:

for𝑏̂ = 1𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−1
⌋

for𝑏̂ = 2𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−2
⌋

for 𝑏̂ = 𝑛𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−𝑏
⌋

Where umax= maximum number

of nodes that can

communicate

N: total number of nodes in the

network

k: total number of data streams or

base stations

𝑛̂: total number of faulty nodes

Where umax= maximum number

of nodes that can

communicate

N: total number of nodes in the

network

k: total number of data streams or

base stations

𝑛̂: total number of faulty nodes

𝑏̂: total number of faulty base

stations

63

For 𝑏̂ base stations

𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘 − 𝑏̂
⌋

III) When 𝒏̂ nodes and 𝒃̂ base stations become faulty

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘 − 𝑏̂
⌋

It can be proved in a similar way as the above two cases.

Where umax= maximum number

of nodes that can

communicate

N: total number of nodes in the

network

k: total number of data streams or

base stations

𝑛̂: total number of faulty nodes

𝑏̂: total number of faulty base

stations

64

APPENDIX B

Code for Generating 3D Plots

import pandas as pd

importnumpy as np

import math

from mpl_toolkits.mplot3d import axes3d

importmatplotlib.pyplot as plt

frommatplotlib import cm

fromscipy.interpolate import griddata

data=pd.DataFrame()

data1=pd.DataFrame()

n=int(input("Enter number of nodes: "))

k=int(input("Enter value of k: ")) #number of data streams or base

stations

ni=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ii=[]

m=[]

jj=[]

um=[]

alphar=[]

betar=[]

tau1=[]

tau2=[]

T=[]

fori in range(30,n+1,15):

m.append(i)

for j in range(1,k+1):

ii.append(i)

jj.append(j)

umax=math.floor(math.fabs(i)/j)

if(umax==0 or umax==1):

alphar.append('0')

betar.append('0')

tau1.append(1)

tau2.append(0)

T.append(1)

elif(umax%2==0 and umax>=4):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

tau1.append(t1)

tau2.append(t2)

65

 t=t1+t2

T.append(t)

nalpha=umax/2

alphar.append(nalpha)

betar.append('0')

elif(umax==2):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

tau1.append(t1)

tau2.append(t2)

 t=t1+t2

T.append(t)

alphar.append('2')

betar.append('0')

elif(umax==3):

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

tau1.append(t1)

tau2.append(t2)

 t=t1+t2

T.append(t)

betar.append('1')

alphar.append('0')

elif(umax%2!=0 and umax>=5):

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

tau1.append(t1)

tau2.append(t2)

 t=t1+t2

T.append(t)

nalpha=(umax-3)/2

alphar.append(nalpha)

betar.append('1')

um.append(umax)

66

data['N']=ii

data['k']=jj

data['umax']=um

data['Alpha Rings']=alphar

data['Beta Rings']=betar

data['Tau 1']=tau1

data['Tau 2']=tau2

data['T']=T

data.to_csv('col1.csv', index=False)

fig = plt.figure()

ax = fig.gca(projection = '3d')

X=np.array(ni)

Y=np.array(T)

Z=np.array(m)

Y=np.reshape(Y, (19,10))

x, z= np.meshgrid(X, Z)

surf=ax.plot_surface(x, z, Y, color=None,cmap=cm.jet)

ax.set_xlabel('Data Streams (k)')

ax.set_ylabel('Nodes (N)')

ax.set_zlabel('Time Slots (T)')

plt.show()

Code for Calculating Time Slots and Data Streams

Alpha Ring

import math

hd=[]

c1=[]

c2=[]

n=int(input("Enter number of nodes: "))

k=int(input("Enter value of k: ")) #number of data streams or base

stations

i=n

j=k

umax=math.floor(math.fabs(i)/j)

if(umax%2==0 and umax>=4):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

67

 t2=0

 t=t1+t2

nalpha=umax/2

elif(umax==2):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

elif(umax==3):

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

elif(umax%2!=0 and umax>=5):

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

nalpha=(umax-3)/2

l=64

fori in range(1,k+1):

 l=l+1

for j in range(1,t1+1):

hd.append(chr(l)+str(j))

cone=int(math.fmod((2*(i-1)+(j-1)),n)+1)

ctwo=int(math.fmod((2*(i-1)+(j)),n)+1)

c1.append(cone)

68

c2.append(ctwo)

 #hd.append('|')

c1.append('|')

c2.append('|')

print(hd)

print(c1)

print(c2)

Beta Ring

import math

c3=[]

c4=[]

c5=[]

hd=[]

n=int(input("Enter number of nodes: "))

k=int(input("Enter value of k: ")) #number of data streams or base

stations

i=n

j=k

umax=math.floor(math.fabs(i)/j)

if(umax%2==0 and umax>=4):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

nalpha=umax/2

elif(umax==2):

 t1=math.floor((2*(math.fabs(i)-umax)/umax)+1)

 temp2=math.fabs(i)-(t1*(umax/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

elif(umax==3):

69

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

elif(umax%2!=0 and umax>=5):

 t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1)

 temp2=math.fabs(i)-(t1*((umax+1)/2))

if(temp2>0):

 t2=math.floor(math.log2(temp2))+1

else:

 t2=0

 t=t1+t2

nalpha=(umax-3)/2

l=64

fori in range(1,k+1):

 l=l+1

for j in range(1,t1+1):

hd.append(chr(l)+str(j))

cthree=int(math.fmod((3*(i-1)+2*(j-1)),n)+1)

cfour=int(math.fmod((3*(i-1)+2*(j-1)+1),n)+1)

cfive=int(math.fmod((3*(i-1)+2*(j-1)+2),n)+1)

c3.append(cthree)

c4.append(cfour)

c5.append(cfive)

c3.append('|')

c4.append('|')

c5.append('|')

print(hd)

print(c3)

print(c4)

print(c5)

