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ABSTRACT 

Wireless sensor nodes are prone to failure in hostile environments therefore, in this paper, a 

fault tolerant algorithm is described for a wireless sensor network - Concurrent Data 

Collection Trees. As the network becomes faulty it should be restored to its normal working 

within an effective time-frame. But in case of Concurrent Data Collection trees, the 

complexity to reconstruct the network increases as the number of parallel streams increase. 

Concurrent Data Collection Trees offer effective data collection and in some cases the data is 

not lost completely if a fault occurs. We have discussed various cases which shed light on the 

data that is either completely lost or not. Two different network structures namely alpha and 

beta rings along with their advantages and disadvantages is discussed. 
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INTRODUCTION 

IoT networks are gaining popularity because of their widespread use in day-to-day 

activities and their promising future applications. To support urbanization in coming years, it 

is significant for the natives to get up and coming data in a convenient way by embracing 

current advances in technology. Internet of Things (IoT) is a better solution among these 

latest technologies. Multiple users will own and share the IoT systems, an arrangement of 

sensors and middleware. Various inquiries will be put together by clients and even IoT 

gadgets in the meantime, which initiates different parallel information streams in same 

system. Sensors nodes are battery powers devices. Energy saving is very significant to 

lifetime of a sensor network. The amount of energy consumed in a transmission is 

proportional to the corresponding communication distance. Therefore, long distance 

communication between nodes and base station are usually not encouraged. The consumption 

of energy can be reduced by adopting the clustering algorithm, where a group of clusters are 

formed and each cluster has its own sub-cluster head to which it communicates. These sub-

cluster heads in turn are connected to the cluster head which controls all clusters and finally 

sends data to the base station. We have carried out our work on the network structures 

presented by Cheng et. al. in “Delay-Aware Data Collection Network Structure for Wireless 

Sensor Networks” and “Concurrent Data Collection Trees for IoT Applications”. 

Wireless sensor networks are used in a variety of applications; therefore they possess 

a number of characteristics which are crucial for their successful working. There have been 

many types of networks around for wireless sensors but considering Cheng’s et. al. 

Concurrent Data Collection Trees, can improve data collection efficiency as they use parallel 

data streams for data transmission. But energy saving becomes crucial to the aspect of battery 

powered devices. In IoT networks there are a number of devices operating together, 

interconnected to each other and require a lot of energy while operating. Therefore a network 

has to be constructed in such a way that it uses less power while at the same time has less 

delay in transmitting data. Concurrent Data Collection Trees offer this possibility by using 

parallel data streams for effective data collection and slightly undermining the energy 
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parameter. Previous network structures that communicated in parallel did not take into 

account both of the above variables/factors. 

However good they may seem, every network has its own limitations of working in 

hostile environments. One such limitation is fault in networks where three cases have been 

discussed – node becomes faulty, base station becomes faulty, and both become faulty. But 

in case of parallel networks and as complex as Concurrent Data Collection Trees the task of 

making them fault tolerant becomes difficult. Therefore, in this project report we have 

described an effective fault-tolerant scheme for concurrent data collection trees along with 

various other cases that can effectively restore the networks to its normal working in a timely 

manner. Other than the algorithm we have discussed different cases as to which network 

structure is better and the different possibilities of its restoration at different time slots 

associated with it. Our, results have been verified using simulations carried out using the 

code we developed in Python. 
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RELATED WORK 

The problem of fault tolerance has been discussed previously by many authors but a 

parallel network such as Concurrent Data Collection Tree has not received much attention. 

Although parallel network structures have been discussed before but Concurrent Data 

Collection Tree is much more flexible and efficient in terms of data transfer and processing. 

In [3] the author has discussed about the fault occurring in Wireless sensor grid networks. 

The author has discussed about the levelling algorithm which is energy efficient. The 

transmission range method is described which better than levelling algorithm in terms of a 

network that is partitioned. The two algorithms are then combined which minimize the 

chances of network partitioning. In [4] an algorithm is proposed for a network possessing a 

tree topology. The algorithm proposed is a distributed sorting algorithm which takes 

advantage of Dijkstra’s model in terms that the fault need not be corrected manually but 

rather is solved by the software architecture described in the algorithm. In [5] the fault-

tolerant described is used for controlling fault in heterogeneous wireless sensor networks. 

The k-degree Anycast Topology Control (k-ATC) problem is discussed along with its three 

solutions: the greedy centralized algorithm for minimizing the transmission range between all 

wireless sensor nodes and a distributed and localized algorithm for adjusting the wireless 

sensor nodes’ transmission range. The algorithm described here also minimizes energy 

consumption. In [6] the author has presented two algorithms: Full 2-Connectivity Restoration 

Algorithm (F2CRA) and the Partial 3-Connectivity Restoration Algorithm (P3CRA) for fault 

tolerance. F2CRA and P3CRA construct fan shaped topology and dual ring topology to 

restore the network to its normal working. F2CRA and P3CRA are suitable in scenarios 

where cost and performance are given prime importance. In [7] the author has discussed 

about the issues of fault detection and its data recovery. To solve such problems a cluster 

based technique is suggested using genetic algorithm. Clustering the network according to 

Energy-Efficient Distance-Based Clustering Algorithm and using GA some nodes are 

selected as backup nodes. Such clustering algorithm helps in detecting the faults occurring in 

nodes. In [8] the author has discussed about the effect of re-clustering the network after the 
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fault has occurred, he told when the network is reconstructed when cluster head is faulty 

there is always a loss of energy and time. In order to remove these loss he proposed the 

genetic algorithm which take into consideration three parameters in clustered network which 

are distance between every node from cluster heads, remained energy of cluster heads and 

member number of each cluster head. Result of simulation shows that this genetic algorithm 

has better result of recovering cluster head than that which consider only one parameter. In 

[9] the author has presented a new method for fault tolerance and detection. This method is 

based on majority vote, which result in detecting the faulty nodes accurately. The researchers 

compared this genetic algorithm with Chen, Lee, and hybrid algorithms. Result shows that 

this genetic algorithm based on majority vote method his more efficient in detecting false 

alarm rate and detection accuracy. 

 

 

 

 

 

 

 

 

 



 

5 
 

 
PROJECT OBJECTIVE 

 

 

 
“To design an algorithm for fault-tolerance for Concurrent Data Collection Tree network 

structure.” 
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LITERATURE SURVEY (I) 

“A Delay-Aware Data Collection Network Structure for Wireless Sensor Networks” 

 

Abstract  

In any network to save energy is very significant. Here in this paper i.e. “Delay aware data 

collection network structure for wireless sensor networks is proposed”, two algorithms are 

suggested and implemented to deal with this very problem of minimizing energy to gain 

longer life time, for that even the efficiency of collecting data is also ignored. 
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Top-Down Approach 

 

1.   Begin with a mess network i.e. fully connected network with nodes N >= 4. 

Considering N=8 

All the nodes are with connection degree=7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These 8 nodes will form 𝐻̂s , where s=1  i.e.  𝐻̂1 

Now define parameter b=N/2 = 4 

 

Fig 1(a). Initial Network Structure 
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1. Select b=4 nodes from 𝐻̂1  to form H2 , such that the total edge weight within set H2  is 

maximized. 

As  all have same edge weight, taking {O,P,E,R} to form H2 

𝐻̂2 = {O, P, Q, R} 

H2 = {M, N, S, T} 

Cut all the connections among nodes in H2  

Set b=b/2=2 

Set s=s+1 = 2 

 

 

 

 

 

 

 

 

 

Fig 1(b). Network Structure after 

iteration 1 
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2. Since b=2 >=2, the previous step is repeated  

Select b=2  from set 𝐻̂2 to form set H3 

H3 = {M, T} 

𝐻̂3 = {N, S} 

Cut all the connections between nodes in set H3 

Set b=b/2 = 1  

Set s=s+1=3 

 
 

 

 
 

3. With b=1<2 , Algo proceeds and define parameter r=2 

Nodes with degree=N-r =6  (i.e. M, T) forms L 

Nodes with degree>N-r  (i.e. N, S) forms U 

Reduce connections among nodes between set L & U until each node in set L is only 

connected to a single node in set U, provided that total edge weight is minimized. 

Set r=2r=4 

 

Fig 1(c). Network Structure after 

iteration 2 



 

10 
 

 
4. Since r=4<N, previous step is repeated.  

Nodes with degree = N-r = 4 (i.e.  O, P, Q, R) forms L 

Nodes with degree > N-r (i.e. M, N, S, T) forms U 

Reduce connections among nodes between set L & U until each node in set L is only 

connected to single node in set U 

Set r=2r=8  

 
 

 

 

 

Fig 1(d). Network Structure after 

iteration 3 

Fig 1(e). Network Structure after 

iteration 4 
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5. When r=8>N, the basic operation of proposed top down approach is completed. 

Resultant network will now consist of two nodes with degree log2(N)=3 (i.e. N & S) 

The one closer to B.S. will be selected as cluster head and be directly connected to 

base station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1(f). Final Network Structure 
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Bottom-Up Approach 

 

 

1. Step 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Step 2 

 

 

 

 

Fig 2(a). Initial Network Structure 

Fig 2(b). Network Structure after 

iteration 1 
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3. Step 3 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 2(c). Network Structure after 

iteration 2 
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4.  Step 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2(d). Network Structure after 

iteration 3 
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5. Step 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2(e) Final Structure of Network made 

with Bottom-Up Approach  
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Performance Analysis (I) 

 

Type 1 – Single Cluster Network 

I. Data Collection Time – Lower the better  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Proposed network structure (DADCNS). 

2. Collection Tree Protocol. 

3. Minimum Spanning Tree Protocol. 

4. Single Chain.  

5. Single Cluster 2 Hop (SC2H). 

Fig. 3 Averaged Data Collecting Time 
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II. Minimizing ψ- Lower the better 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Minimum Spanning Tree Protocol. 

2. Control Tree Protocol. 

3. Single Chain.  

4. Top-down approach (DADCNS). 

5. Bottom-up approach (DADCNS). 

6. Single Cluster 2 Hop (SC2H). 

Fig. 4 Averaged ᴪ 
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III. Network Lifetime – Higher the better 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Minimum Spanning Tree Protocol for N > 4 

2. Single Chain.  

3. Control Tree Protocol. 

4. Top-down approach (DADCNS). 

5. Bottom-up approach (DADCNS). 

6. Single Cluster 2 Hop (SC2H). 

 

Fig. 5 Averaged Lifetime 
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Type II – Multiple Cluster Network  

 

I. Data Collection Time – Lower the better 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Proposed Network Structure (DADCNS). 

2. Multiple Cluster 2 Hop (MC2H) – DCT increases as N increases. 

 

 

 

 

Fig. 6 Averaged Data Collecting Time 
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II. Minimizing ψ - Lower the better 

 

 

 
 

 

 
 

1. Both give similar performance for N ≤ 12 

2. N > 12 

a. Proposed Network Structure (DADCNS). 

b. Multiple Cluster 2 Hop (MC2H). 

 

 

Fig. 7 Averaged ᴪ 
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III. Network Lifetime – Higher the better  

 

 

 

 

 

 

1. Proposed Network Structure (DADCNS). 

2. Multiple Cluster 2 Hop (MC2H).  

 

 

 

 

Fig. 8 Averaged Lifetime 
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LITERATURE SURVEY (II) 

“Concurrent Data Collection Trees for IoT Applications” 

 

Abstract 

In IoT network a lot of devices work together. They generate massive amounts of data thus 

data collection process becomes a chief concern in large networks. Data collection processes 

must utilize minimum amount of time while collecting data. For this reason a new network 

structure – Concurrent Data Collection Trees for IoT networks has been proposed in this 

paper. This network minimizes data collection time to an acceptable value. Another concern 

is that if a large network, as large as IoT network encounters any fault. Base Station or a node 

in a network might become faulty because of many reasons – environmental conditions, 

battery run out, improper handling, etc. To solve this problem we are trying to design an 

approach for fault tolerance in concurrent data collection tree network structure. 

Concurrent Data Collection Tree 

It is a network structure N = {n1, n2, n3, ……,n|N|} nodes and S = {s1, s2, s3, ….., s|S|} base 

stations assuming that all IoT nodes communicate with each other and base station. Data 

fusion technique fuses multiple packets of data (from IoT nodes) into one single packet 

before it is forwarded to one’s parent node. For concurrent data collection processes it must 

employ equal number of data streams and base stations – “Each concurrent data aggregation 

process will use a different base station (BS) to access the IoT network and the total number 

of concurrent data streams is k”. Concurrent data streams must use equal number of nodes 

determined by equation (1). This equation determines maximum number of streams a node 

must utilize so that data collection time is minimum. This networks structure has a constraint: 

|N|≥ k. 

𝑢𝑚𝑎𝑥 =  ⌊
|𝑁|

𝑘
⌋                         (1) 
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The following equation represents number of hubs used by an information stream in ith 

vacancy. 

 

𝑢𝑖 = min [𝑢𝑚𝑎𝑥  , |N| − ∑ 𝑢𝑗̂
𝑖−1
𝑗=1 ](2) 

 

where 𝑢̂𝑗  is number of nodes that have completed transmission of data after jth time slot. 

𝑢̂𝑗 =  ⌈
𝑢𝑗

2
⌉ (3) 

If uiis odd then one of the nodes is involved in node-to-base transmission, else it is a node-to-

node transmission. 

Time-slot is a particular slot in which each data stream helps to communicate with nodes and 

base stations. During a particular time slot only some nodes (maximum 3) and some 

concurrent data streams become active. This is what justifies the parallel behavior of the 

given network structure. 

In Ƭ1 time slot all nodes and base stations communicate in concurrent fashion, but in Ƭ2 time 

slot the left over nodes communicate using DADCNS. The leftover nodes are calculated 

using |𝑁| − 𝜏1 ⌈
𝑢𝑚𝑎𝑥

2
⌉ . 
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Therefore overall duration of k concurrent data collection processes is T = Ƭ1 + Ƭ2 . 

 

A) The α-ring 

A ring structure for concurrent data collection with |Nα| nodes and |Nα| ≥ 2k. An α-

ring case is valid only for umax = 2. “A data stream in an α-ring Nα will need Ƭ1 time-

slots to aggregate data from |Nα| nodes onto a single node. Such anode will take one 

time-slot to report the fused data to the BS”. If nodes are numbered arbitrarily then at 

any time slot two nodes that will communicate (during Ƙth data collection process) i.e. 

node nc1 transmits data to node nc2.  

 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)), 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) 

Data fusion will be performed on node nc2. Overall duration can be calculated using Ƭ1 and  

Ƭ2 from equations (2) &(3). 

 

 

 

 

 

 

 
 

     

      

 

T = Ƭ1 + Ƭ2 = 5 + 1 = 6. 

Fig. 9 Alpha ring with 6 nodes 
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B) The β-ring 

For umax = 3 and |Nβ| ≥ 3k the network is known as β-ring. 2 nodes will communicate 

using node-to-node (N2N) communication while the other node will communicate 

using node-to-base (N2BS) communication. If nodes are numbered arbitrarily then at 

a particular time slot of Ƙth data collection process node nc3 will be involved in node-

to-base station communication and nc4 will transmit data nc5. 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) 

Data fusion will be performed on node nc5. 

 

 

 

 

 

 

 

 

 

    

    

     

     

     

      
T = Ƭ1 + Ƭ2 = 4 + 1 = 5. 

 

 

Fig. 10 Beta ring 9 nodes 
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C) Multiple Rings 

I) umax≥ 4: 𝑛𝛼 =
𝑢𝑚𝑎𝑥

2
  α-rings are formed. Each of the α-rings formed will first 

be granted 2k nodes. The rest |N|- nα(2k) nodes will then be granted to those nα 

rings one by one. Each α-ring will operate independently as described above. 

II) umax ≥ 5: A single β-ring with 𝑛′𝛼 =
𝑢𝑚𝑎𝑥−3

2
  number of α-rings are formed. 

Initially, β-ring will be granted 3k nodes, while each α-ring will be granted 2k 

nodes. The rest |N|-3kBS – n’α(2kBS) node will be granted to the β-ring until 

|Nβ| = 2Ƭ1 + 1. The remaining nodes will be distributed to α-rings one by one. 

An algorithm for constructing such a network structure is described in the 

Algorithms section. 

 

Results & Analysis 

The duration of data collection process T (total number of spaces required by base stations of 

different data streams) is used as a performance indicator. The reference structure used for 

performance comparison is DADCNS. DADCNS is sued in form of a single cluster. The 

performance parameter of concurrent data collection tree network structure is comparatively 

low in comparison to DADCNS.  

 

 As value of k increases the value of T also increases linearly in DADCNS while in 

the concurrent data collection tree structure with increase in value of |N|, value of umax 

also increases but the total value of T increases slightly. Therefore with increase in 

value of |N| & k the performance gap between two network structures also widens.    

 

 When value of k or |N| is increased, value of umax also changes. This change in the 

value of umax leads to variations in the number of α and β rings. Therefore it is 

observed that when k or |N| increases the value of T does not increase monotonically. 
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ALGORITHMS 

 
A) Bottom-Up Approach (I) 

 Initially all nodes are disconnected and each node is represented as SCH(0) – 

Sub cluster head of level 0. 

 Each SCH performs random back-off and transmits density probing packet to 

its neighboring SCHs within rdp distance. 

 Each SCH will do a random back off and then broadcast an invitation packet 

(IVP) to its neighbors within rcom distance. 

 SCHs receiving IVP will send connection request and nearest distance 

neighbors will form a connection belonging to level w+1 clusters. 

 Distance rcom will be increased if no connection can be formed within a 

specified time frame and the SCH will transmit CR again at this new rcom. 

 When rcom = rdp the SCH of the cluster will form connection with the base 

station.  

 The above process continues until no more connection can be formed. 

 

B) Fault Tolerance Algorithm for Concurrent Data Collection Tree 

 Case A – When Node becomes faulty 

 If the node does not acknowledges its neighboring node within a specific time 

frame an acknowledgement packet is resent. 

 Again if the acknowledgement is not received within that time frame, there is 

a high probability that the node is faulty. 

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛̂

𝑘
⌋. 

 Calculate the new values of τ1& τ2. 

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5. 
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 Case B – When Base Station becomes faulty 

 If the base station does not acknowledges the node within a specific time 

frame an acknowledgement packet is resent. 

 Again if the acknowledgement is not received within that time frame, there is 

a high probability that the base station is faulty. 

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−𝑏̂
⌋. 

 Calculate the new values of τ1& τ2. 

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5. 

 

 Case C – When both node and base station are faulty 

 If the base station or node does not acknowledges the node or its neighboring 

node within a specific time frame an acknowledgement packet is resent. 

 Again if the acknowledgement is not received within that time frame, there is 

a high probability that the base station or node is faulty. 

 Calculate 𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛̂

𝑘−𝑏̂
⌋. 

 Calculate the new values of τ1& τ2. 

 Reconstruct the network structure with new value of c1, c2, c3, c4 and c5. 

 

 

 

 

 

 

 



 

    
   

 

 

 

 

 

 

Chapter IV 
 



 

29 
 

PERFORMANCE ANALYSIS 

Below a set of simulations are performed for each step which depicts different cases 

in alpha and beta ring scenario and as to what extent data can be recovered in case of a fault. 

Based on these simulations theoretically here and in code implementation in python we have 

been able to discover different properties of alpha and beta rings. In the three cases where a 

base station becomes faulty, node becomes faulty and both become faulty only the network 

structure changes while their working remains almost same with same properties applied to 

each network structure. Below a comparison of properties of both alpha and beta rings is 

provided which each serves as a different case in different scenario of a faulty network and 

how it can be recovered. 

Analysis: 

A. Base Station Faulty: 

a) Alpha Ring: 

In case of an alpha ring the data can be recovered completely if the fault 

occurs just before the last time slot during which the data is transferred to the 

base station. The data aggregation nodes contain the data of all the nodes and 

if a fault occurs, can be used to recover the data. However, all other nodes 

that do not take part in the data aggregation process do not contain data only 

of the node just next to them and hence are not that much effective in data 

recovery. In another scenario if the fault occurs during some intermediate 

value of the time slot, then the whole network needs to be reconstructed 

again. 

b) Beta Ring: 

In this network the data loss is significantly more in comparison to alpha ring 

as some nodes have already transferred data to the base station and during 

failure even the data aggregation nodes are not able to fully recover the data 

as they are loosely connected because of their network communication 

structure. 
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B. Node Faulty: 

a) Alpha Ring: 

Suppose as given in the figure below the fault occurs during some initial 

value of the time slot then there is either little or no loss at all and the network 

can be reconstructed again. This results in less time complexity since the 

network where the fault occurs is reconstructed immediately thereby restoring 

its normal functioning. However, in the intermediate time slots, a fault may 

result in significant loss of data with it requiting to reconstruct it from the 

start. The concluding time slots scenario works similar to the “Base Station 

Faulty” situation. 

b) Beta Ring: 

The beta ring in this scenario work similar to the “Base Station Faulty” 

situation. 

 

 

C. Node and Base Station Faulty: 

a) Alpha Ring: 

The alpha ring can behave in accordance with the “Base Station Faulty” or 

“Node Faulty” depending on the situation as shown below in the figure. 

b) Beta Ring: 

There is no exception for beta ring in this situation and will behave according 

to the “Base Station Faulty” situation. 
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CASE I: BASE STATION FAULTY 

Fig. 11 Initial Alpha Ring with 6 nodes Ist time slot  

Ƙ=1, 2, 3.    t = 1. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 1, 3, 5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2, 4, 6 

Fig. 12 Initial Beta Ring with 6 nodes Ist time slot 

Ƙ=1, 2.    t = 1.  Nβ = 6 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) = 1, 4 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 2, 5 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) = 3, 6 
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Fig. 13 Alpha Ring with 6 nodes IInd time slot 

Ƙ=1, 2, 3.    t = 2. Nα = 6 

c1 = 2, 4, 6 

c2 = 3, 5, 1 

Fig. 14 Beta Ring with 6 nodes IInd time slot 

Ƙ=1, 2.    t = 2.  Nβ = 6 

c3 = 3, 6 

c4 = 4, 1 

c5 = 5, 2 
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Fig. 16 Beta Ring with 6 nodes IIIrd time slot 

Ƙ=1, 2.    t = 3.  Nβ = 6 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 6, 3 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) = 1, 4 
 

Fig. 15 Alpha Ring with 6 nodes IIIrd time slot 

Ƙ=1, 2, 3.    t = 3. Nα = 6 

c1 = 3, 5, 1 

c2 = 4, 6, 6 
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 Fig. 17 Alpha Ring with 6 nodes IVth time slot 

Ƙ=1, 2, 3.    t = 4. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4, 6, 2 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5, 1, 3 

Fig. 18 Beta Ring with 6 nodes IVth time slot 

Ƙ=1, 2.    t = 4.  Nβ = 6 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =1,4 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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Fig. 19 Alpha Ring with 6 nodes IVth time slot 

Ƙ=1, 2, 3.    t = 5. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 5, 1, 3 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 2, 4 

Fig. 20 Beta Ring with 6 nodes IVth time slot 

Ƙ=1, 2.    t = 4.  Nβ = 6 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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Fig. 21 Alpha Ring with 6 nodes VIth time slot 

Ƙ=1, 2, 3.    t = 6. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  6, 2, 4 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф 

Fig. 22 Beta Ring with 6 nodes IVth time slot 

Ƙ=1, 2.    t = 4.  Nβ = 6 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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CASE II: NODE FAULTY 

 

 
 Fig. 24 Alpha Ring with 9 nodes Ist time 

slot 

Ƙ=1, 2, 3.    t =1. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 1,3,5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2,4, 6 

Fig. 23 Beta Ring with 9 nodes Ist time slot 

Ƙ=1, 2, 3.    t = 1.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =1, 4, 7 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 2, 5, 8 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =3, 6, 9 
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Fig. 26 Alpha Ring with 9 nodes IInd time 

slot 

Ƙ=1, 2, 3.    t = 2. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 6 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5, 7 

Fig. 25 Beta Ring with 9 nodes IInd  time slot 

Ƙ=1, 2, 3.    t = 2.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =3, 6, 9 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 4, 7, 1 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =2, 5, 8 
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Fig. 28 Alpha Ring with 8 nodes IIIrd time 

slot 

Ƙ=1, 2, 3.    t =3. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 3,5,7 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4,6, 8 

Fig. 27  Beta Ring with 9 nodes IIIrd time slot 

Ƙ=1, 2, 3.    t = 3.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =5, 8, 2 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 6, 9, 3 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =4, 7, 1 
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Fig. 30 Alpha Ring with 8 nodes IVth time 

slot 

Ƙ=1, 2, 3.    t =4. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4,6,8 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5,7, 1 

Fig. 29 Beta Ring with 9 nodes IVth time slot 

Ƙ=1, 2, 3.    t = 4.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =7, 1, 4 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = 8, 2, 5 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =6, 9, 3 
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Fig. 32 Alpha Ring with 8 nodes Vth time 

slot 

Ƙ=1, 2, 3.    t =5. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 5, 7, 1 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 8, 2 

Fig. 31 Beta Ring with 9 nodes Vth time slot 

Ƙ=1, 2, 3.    t = 5.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =8, 2, 5 
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Fig. 34 Alpha Ring with 8 nodes VIth time 

slot 

Ƙ=1, 2, 3.    t =6. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 6, 8, 2 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 7, 1, 3 

Fig. 33 Beta Ring with 9 nodes Vth time slot 

Ƙ=1, 2, 3.    t = 5.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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Fig. 36 Alpha Ring with 6 nodes VIIth time 

slot 

Ƙ=1, 2, 3.    t =7. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 7, 1, 3 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 8, 2, 4 

Fig. 23 Beta Ring with 9 nodes Vth time slot 

Ƙ=1, 2, 3.    t =5.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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Fig. 38 Alpha Ring with 6 nodes VIIIth 

time slot 

Ƙ=1, 2, 3.    t =8. Nα = 8 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4, 8 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф 

Fig. 37 Beta Ring with 9 nodes Vth time slot 

Ƙ=1, 2, 3.    t = 5.  Nβ = 9 

c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) =ф 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) = ф 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) =ф  
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CASE 3: NODE AND BASE STATION FAULTY 

  

 
Fig. 39 Alpha Ring with 6 nodes Ist time 

slot 

Ƙ=1, 2, 3.    t =1. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  1, 3, 5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 2, 4, 6 

Fig. 40 Alpha Ring with 5 nodes Ist time 

slot 

Ƙ=1, 2.    t =1. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 7, 1, 3 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 8, 2, 4 
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Fig. 41 Alpha Ring with 6 nodes IInd time 

slot 

Ƙ=1, 2, 3.    t =2. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  2, 4, 6 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5, 1 

Fig. 42 Alpha Ring with 5 nodes IInd time 

slot 

Ƙ=1, 2.    t =2. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 4 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 3, 5 
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 Fig. 43 Alpha Ring with 6 nodes IIIrd time 

slot 

Ƙ=1, 2, 3.    t =3. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  3, 5, 1 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4, 6, 2 

Fig. 44 Alpha Ring with 5 nodes IIIrd time 

slot 

Ƙ=1, 2.    t =3. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 3,  5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 4,  1 
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 Fig. 45 Alpha Ring with 6 nodes IVth time 

slot 

Ƙ=1, 2, 3.    t =4. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  4, 6, 2 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5 , 1,  3 

Fig. 46 Alpha Ring with 5 nodes IVth time 

slot 

Ƙ=1, 2.    t =4. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 4, 1 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 5, 2 
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Fig. 47 Alpha Ring with 6 nodes Vth time 

slot 

Ƙ=1, 2, 3.    t =5. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  5, 1, 3 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = 6, 2, 4 

Fig. 48 Alpha Ring with 5 nodes Vth time 

slot 

Ƙ=1, 2.    t =5. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2,5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф 
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 Fig. 49 Alpha Ring with 6 nodes VIth time 

slot 

Ƙ=1, 2, 3.    t =6. Nα = 6 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) =  2, 4, 6 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) =ф 

Fig. 50 Alpha Ring with 5 nodes Vth time 

slot 

Ƙ=1, 2.    t =5. Nα = 5 

c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)) = 2, 5 

c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) = ф 
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TEST DATA SET USED & RESULTS 

For each of the simulations performed below for all three cases we have considered 

initial total number of nodes equal to 300, total number of data streams equal to 10 and time 

slots are generated using (4) & (5). For the first case where base station is faulty, nodes are 

kept at 300 while data streams are decremented successively in each iteration by 2 and 

suitable values of time slots are calculated. For the second case where nodes are faulty, base 

stations or data streams are kept constant at 10 while nodes are decremented successively in 

each iteration by 2. For the third case where both nodes and base stations are faulty a nested 

concept is used to first make a single base station faulty and decrementing number of nodes 

successively by 1 and in the outermost iteration increasing faulty base stations by a factor of 

1 successively. 

From the following set of simulations we have observed how the 3D graph structure 

changes with subject to changes made in number of nodes and base stations. As for the first 

case we have observed that the graph structure changes drastically as the number of base 

stations or data streams vary which gives the indication that it has significant effect on the 

performance of the network as the number of time slots decreases. Furthermore, in the case 

where nodes become faulty there is almost slight or no difference in the 3D graph structure. 

The only place where variation is observed is on the top left edges of the graph near the 10th 

base station and the values near 300th node. Only a slight difference in the values of time-

slots is observed. In the third case where both become faulty, for figures C(i)-C(v) the graph 

structure changes slightly between the middle and upper ends with only a slight difference in 

the values of time slots. In figures C(vi)-C(x) where two base station are faulty a significant 

difference is observed on the top right corner of the graph with only slight changes in the 

value of time slots. This variation increases in the manner as from top right to top left and 

then downward. With this our observation is that as the number of nodes changes it has lesser 

impact on the number of time slots and thus on the performance, but a change in the number 

of base stations or data streams decreases time slots significantly. Also when two cases are 

combined the number of time slots decrease with decrease in the number of data streams. 



 

52 
 

RESULTS: CASE A: BASE STATION FAULTY 

 

 
 

 

 

 

 

 

 

 

 

Fig. A(ii) 
Number of nodes (N) = 300 

Faulty Base Station (𝒃̂) = 2 
Total Data Streams (k) = 8 

Fig. A(i) 
Number of nodes (N) = 300 

Faulty Base Station (𝒃̂) = 0 
Total Data Streams (k) = 10 

Fig. A(iii) 
Number of nodes (N) = 300 

Faulty Base Station (𝒃̂) = 4 
Total Data Streams (k) = 6 

Fig. A(iv) 
Number of nodes (N) = 300 

Faulty Base Station (𝒃̂) = 6 
Total Data Streams (k) = 4 

Fig. A(v) 
Number of nodes (N) = 300 

Faulty Base Station (𝒃̂) = 8 
Total Data Streams (k) = 2 
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RESULTS: CASE B: NODE FAULTY 

 

 

 

 

 

 

 

 

 
 

Fig. B(i) 
Number of nodes (N) = 300 
Faulty nodes (𝒏̂) = 0 
Total Data Streams (k) = 10 

Fig. B(ii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 
Total Data Streams (k) = 10 

Fig. B(iii) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 
Total Data Streams (k) = 10 

Fig. B(iv) 
Number of nodes (N) = 294 
Faulty nodes (𝒏̂) = 6 
Total Data Streams (k) = 10 

Fig. B(v) 
Number of nodes (N) = 292 
Faulty nodes (𝒏̂) = 8 
Total Data Streams (k) = 10 
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RESULTS: CASE C: NODES FAULTY & ONE BS FAULTY 

 
 

 

 

 
 

 

 

 

 

 

Fig. C(i) 
Number of nodes (N) = 299 
Faulty nodes (𝒏̂) = 1 

Faulty base station (𝒃̂) = 1 
Total Data Streams (k) = 9 

Fig. C(ii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 

Faulty base station (𝒃̂) = 1 
Total Data Streams (k) = 9 

Fig. C(iii) 
Number of nodes (N) = 297 
Faulty nodes (𝒏̂) = 3 

Faulty base station (𝒃̂) = 1 
Total Data Streams (k) = 9 

Fig. C(iv) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 

Faulty base station (𝒃̂) = 1 
Total Data Streams (k) = 9 

Fig. C(v) 
Number of nodes (N) = 295 
Faulty nodes (𝒏̂) = 5 

Faulty base station (𝒃̂) = 1 
Total Data Streams (k) = 9 
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RESULTS— NODES FAULTY & TWO BS FAULTY 

 

 

 

 
 

 

 

 

 

 

 

Fig. C(vi) 
Number of nodes (N) = 299 
Faulty nodes (𝒏̂) = 1 

Faulty base station (𝒃̂) = 2 
Total Data Streams (k) = 8 

Fig. C(vii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 

Faulty base station (𝒃̂) = 2 
Total Data Streams (k) = 8 

Fig. C(viii) 
Number of nodes (N) = 297 
Faulty nodes (𝒏̂) = 3 

Faulty base station (𝒃̂) = 2 
Total Data Streams (k) = 8 

Fig. C(ix) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 

Faulty base station (𝒃̂) = 2 
Total Data Streams (k) = 8 

Fig. C(x) 
Number of nodes (N) = 295 
Faulty nodes (𝒏̂) = 5 

Faulty base station (𝒃̂) = 2 
Total Data Streams (k) = 8 
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RESULTS— NODES FAULTY & THREE BS FAULTY 

 

 

 

 

 

 

 

 

 

 

Fig. C(xi) 
Number of nodes (N) = 299 
Faulty nodes (𝒏̂) = 1 

Faulty base station (𝒃̂) = 3 
Total Data Streams (k) = 7 

Fig. C(xii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 

Faulty base station (𝒃̂) = 3 
Total Data Streams (k) = 7 

Fig. C(xiii) 
Number of nodes (N) = 297 
Faulty nodes (𝒏̂) = 3 

Faulty base station (𝒃̂) = 3 
Total Data Streams (k) = 7 

Fig. C(xiv) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 

Faulty base station (𝒃̂) = 3 
Total Data Streams (k) = 7 

Fig. C(xv) 
Number of nodes (N) = 295 
Faulty nodes (𝒏̂) = 5 

Faulty base station (𝒃̂) = 3 
Total Data Streams (k) = 7 
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RESULTS— NODES FAULTY & FOUR BS FAULTY 

 

 

 

 
 

 

 

 

 

 
 

Fig. C(xvi) 
Number of nodes (N) = 299 
Faulty nodes (𝒏̂) = 1 

Faulty base station (𝒃̂) = 4 
Total Data Streams (k) = 6 

Fig. C(xvii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 

Faulty base station (𝒃̂) = 4 
Total Data Streams (k) = 6 

Fig. C(xviii) 
Number of nodes (N) = 297 
Faulty nodes (𝒏̂) = 3 

Faulty base station (𝒃̂) = 4 
Total Data Streams (k) = 6 

Fig. C(xix) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 

Faulty base station (𝒃̂) = 4 
Total Data Streams (k) = 6 

Fig. C(xx) 
Number of nodes (N) = 295 
Faulty nodes (𝒏̂) = 5 

Faulty base station (𝒃̂) = 4 
Total Data Streams (k) = 6 
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RESULTS— NODES FAULTY & FIVE BS FAULTY

Fig. C(xxi) 
Number of nodes (N) = 299 
Faulty nodes (𝒏̂) = 1 

Faulty base station (𝒃̂) = 5 
Total Data Streams (k) = 5 

Fig. C(xxii) 
Number of nodes (N) = 298 
Faulty nodes (𝒏̂) = 2 

Faulty base station (𝒃̂) = 5 
Total Data Streams (k) = 5 

Fig. C(xxiii) 
Number of nodes (N) = 297 
Faulty nodes (𝒏̂) = 3 

Faulty base station (𝒃̂) = 5 
Total Data Streams (k) = 5 

Fig. C(xxiv) 
Number of nodes (N) = 296 
Faulty nodes (𝒏̂) = 4 

Faulty base station (𝒃̂) = 5 
Total Data Streams (k) = 5 

Fig. C(xxv) 
Number of nodes (N) = 295 
Faulty nodes (𝒏̂) = 5 

Faulty base station (𝒃̂) = 5 
Total Data Streams (k) = 5 



 

 
 

 

 

 

Chapter V
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CONCLUSION 
 

With ever increasing demand of IoT devices it becomes difficult to maintain a network with 

minimum delay and in real world fault free. Thus in this project we have successfully devised 

an algorithm for concurrent data collection trees that promise data collection time with 

minimum delay. This algorithm administers the problem of a faulty node as well as a faulty 

base station. In the next phase we worked work upon different scenario of fault tolerance in 

two case i.e alpha ring and beta ring. From these cases we concluded that whether data can 

be recovered or not and to what extent. 
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APPENDIX A 

 

I) Case A - When Node becomes faulty 

 

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘
⌋ 

Proof: 

for 𝑛̂ = 1  𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−1

𝑘
⌋ 

for𝑛̂ = 2   𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−2

𝑘
⌋ 

for𝑛̂ = 𝑛   𝑢𝑚𝑎𝑥 = ⌊
|𝑁|−𝑛

𝑘
⌋ 

 

for𝑛̂ nodes 

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘
⌋ 

 

II) Case B – When base station becomes faulty 

𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘 − 𝑏̂
⌋ 

 

Proof: 

for𝑏̂ = 1𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−1
⌋ 

for𝑏̂ = 2𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−2
⌋ 

for 𝑏̂ = 𝑛𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘−𝑏
⌋ 

 

Where umax= maximum number 

of nodes              that can 

communicate 

N: total number of nodes in the 

network 

k: total number of data streams or 

base stations 

𝑛̂: total number of faulty nodes 

 

Where umax= maximum number 

of nodes              that can 

communicate 

N: total number of nodes in the 

network 

k: total number of data streams or 

base stations 

𝑛̂: total number of faulty nodes 

𝑏̂: total number of faulty base 

stations 
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For 𝑏̂ base stations 

𝑢𝑚𝑎𝑥 = ⌊
|𝑁|

𝑘 − 𝑏̂
⌋ 

 

III) When 𝒏̂ nodes and 𝒃̂ base stations become faulty 

𝑢𝑚𝑎𝑥 = ⌊
|𝑁| − 𝑛̂

𝑘 − 𝑏̂
⌋ 

It can be proved in a similar way as the above two cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Where umax= maximum number 

of nodes              that can 

communicate 

N: total number of nodes in the 

network 

k: total number of data streams or 

base stations 

𝑛̂: total number of faulty nodes 

𝑏̂: total number of faulty base 

stations 
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APPENDIX B 

Code for Generating 3D Plots 

import pandas as pd 

importnumpy as np 

import math 

from mpl_toolkits.mplot3d import axes3d 

importmatplotlib.pyplot as plt 

frommatplotlib import cm 

fromscipy.interpolate import griddata 

data=pd.DataFrame() 

data1=pd.DataFrame() 

n=int(input("Enter number of nodes: ")) 

k=int(input("Enter value of k: ")) #number of data streams or base 

stations 

ni=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

ii=[] 

m=[] 

jj=[] 

um=[] 

alphar=[] 

betar=[] 

tau1=[] 

tau2=[] 

T=[] 

fori in range(30,n+1,15): 

m.append(i) 

for j in range(1,k+1): 

ii.append(i) 

jj.append(j) 

umax=math.floor(math.fabs(i)/j) 

if(umax==0 or umax==1): 

alphar.append('0') 

betar.append('0') 

tau1.append(1) 

tau2.append(0) 

T.append(1) 

elif(umax%2==0 and umax>=4): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

tau1.append(t1) 

tau2.append(t2) 
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            t=t1+t2 

T.append(t) 

nalpha=umax/2 

alphar.append(nalpha) 

betar.append('0') 

elif(umax==2): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

tau1.append(t1) 

tau2.append(t2) 

            t=t1+t2 

T.append(t) 

alphar.append('2') 

betar.append('0') 

elif(umax==3): 

            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

tau1.append(t1) 

tau2.append(t2) 

            t=t1+t2 

T.append(t) 

betar.append('1') 

alphar.append('0') 

elif(umax%2!=0 and umax>=5): 

            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

tau1.append(t1) 

tau2.append(t2) 

            t=t1+t2 

T.append(t) 

nalpha=(umax-3)/2 

alphar.append(nalpha) 

betar.append('1') 

um.append(umax) 
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data['N']=ii 

data['k']=jj 

data['umax']=um 

data['Alpha Rings']=alphar 

data['Beta Rings']=betar 

data['Tau 1']=tau1 

data['Tau 2']=tau2 

data['T']=T 

 

data.to_csv('col1.csv', index=False) 

fig = plt.figure() 

ax = fig.gca(projection = '3d') 

X=np.array(ni) 

Y=np.array(T) 

Z=np.array(m) 

Y=np.reshape(Y, (19,10)) 

x, z= np.meshgrid(X, Z) 

 

surf=ax.plot_surface(x, z, Y, color=None,cmap=cm.jet) 

ax.set_xlabel('Data Streams (k)') 

ax.set_ylabel('Nodes (N)') 

ax.set_zlabel('Time Slots (T)') 

plt.show() 

 

Code for Calculating Time Slots and Data Streams 

Alpha Ring 

import math 

hd=[] 

c1=[] 

c2=[] 

n=int(input("Enter number of nodes: ")) 

k=int(input("Enter value of k: ")) #number of data streams or base 

stations 

i=n 

j=k 

umax=math.floor(math.fabs(i)/j) 

 

if(umax%2==0 and umax>=4): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 
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                t2=0 

 

            t=t1+t2 

 

nalpha=umax/2 

 

elif(umax==2): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

 

elif(umax==3): 

            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

elif(umax%2!=0 and umax>=5): 

            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

 

nalpha=(umax-3)/2 

 

 

 

l=64 

fori in range(1,k+1): 

    l=l+1 

for j in range(1,t1+1): 

hd.append(chr(l)+str(j)) 

cone=int(math.fmod((2*(i-1)+(j-1)),n)+1) 

ctwo=int(math.fmod((2*(i-1)+(j)),n)+1) 

c1.append(cone) 
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c2.append(ctwo) 

    #hd.append('|') 

c1.append('|') 

c2.append('|') 

 

print(hd) 

print(c1) 

print(c2) 

 

Beta Ring 

import math 

c3=[] 

c4=[] 

c5=[] 

hd=[] 

n=int(input("Enter number of nodes: ")) 

k=int(input("Enter value of k: ")) #number of data streams or base 

stations 

i=n 

j=k 

umax=math.floor(math.fabs(i)/j) 

 

if(umax%2==0 and umax>=4): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

 

nalpha=umax/2 

 

elif(umax==2): 

            t1=math.floor((2*(math.fabs(i)-umax)/umax)+1) 

            temp2=math.fabs(i)-(t1*(umax/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

 

elif(umax==3): 
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            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

elif(umax%2!=0 and umax>=5): 

            t1=math.floor((2*(math.fabs(i)-umax)/(umax+1))+1) 

            temp2=math.fabs(i)-(t1*((umax+1)/2)) 

if(temp2>0): 

                t2=math.floor(math.log2(temp2))+1 

else: 

                t2=0 

 

            t=t1+t2 

 

nalpha=(umax-3)/2 

 

 

 

l=64 

fori in range(1,k+1): 

    l=l+1 

for j in range(1,t1+1): 

hd.append(chr(l)+str(j)) 

cthree=int(math.fmod((3*(i-1)+2*(j-1)),n)+1) 

cfour=int(math.fmod((3*(i-1)+2*(j-1)+1),n)+1) 

cfive=int(math.fmod((3*(i-1)+2*(j-1)+2),n)+1) 

c3.append(cthree) 

c4.append(cfour) 

c5.append(cfive) 

c3.append('|') 

c4.append('|') 

c5.append('|') 

 

print(hd) 

print(c3) 

print(c4) 

print(c5)     




