Dr. Himanshu Jirdal

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-2 EXAMINATION- OCTOBER, 2019

M. Tech I Semester

COURSE CODE: 15M1WCI331

MAX. MARKS: 25

COURSE NAME: Advanced Theory of Computation

COURSE CREDITS: 3

MAX. TIME: One and Half Hour

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1. Let $G = (\{S, A_1, A_2\}, \{a, b\}, P, S)$, where P consists of $S \rightarrow aA_1A_2a$, $A_1 \rightarrow baA_1A_2b$, $A_2 \rightarrow A_1ab$, $aA_1 \rightarrow baa$, $bA_2b \rightarrow abab$ Test whether w = baabbabaaabbaba

is in L(G).

[4 marks]

2. Construct a grammar G such that

 $L(G) = \{w \in \{a, b\} \mid w \text{ has an equal number of } a\text{'s and } b\text{'s}\}.$ [4 marks]

3. Construct a grammar G accepting the set L of all strings over $\{a, b\}$ having more a's than b's.

[4 marks]

4. Construct a grammar G accepting all strings over $\{a, b\}$ containing an unequal number of a's and b's.

[4 marks]

- 5. Prove (1 + 00*1) + (1 + 00*1)(0 + 10*1)* (0 + 10*1) = 0*1(0 + 10*1)*. [4 marks]
- 6. Consider the transition system given in Fig. 5.13. Prove that the strings recognized are (a + a(b + aa)*b)* a(b + aa)* a.

Fig. 5.13 Transition system of Example 5.8.

[5 marks]